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We report on the single atom and single site-resolved detection of the total density in a cold atom
realization of the 2D Fermi-Hubbard model. Fluorescence imaging of doublons is achieved by splitting
each lattice site into a double well, thereby separating atom pairs. Full density readout yields a direct
measurement of the equation of state, including direct thermometry via the fluctuation-dissipation theorem.
Site-resolved density correlations reveal the Pauli hole at low filling, and strong doublon-hole correlations
near half filling. These are shown to account for the difference between local and nonlocal density
fluctuations in the Mott insulator. Our technique enables the study of atom-resolved charge transport in the
Fermi-Hubbard model, the site-resolved observation of molecules, and the creation of bilayer Fermi-
Hubbard systems.
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Understanding strongly correlated quantum systems
poses a major challenge both for theory and experiment.
Recent years have seen a significant progress in simulating
quantum many-body physics with ultracold atoms [1–4]. In
particular, the Fermi-Hubbard model plays a paradigmatic
role in the study of strongly correlated fermions, most
prominently for understanding high-Tc superconductivity
[5]. Quantum gas microscopes [4,6,7] of fermionic atoms
[8–12] provide the ability to explore fermion correlations
with single-atom, single-site resolution. Recent works
have demonstrated the metal and Mott insulator crossover
[13–16], studied spin and charge correlations [17–22],
revealed magnetic polarons [23] and studied spin [24],
charge [25], and heat transport [26]. However, most experi-
ments employ fluorescence imaging directly on the lattice
used for Hubbard physics. Light-assisted collisions then
remove atom pairs residing on the same lattice site from the
image [27,28], leading to parity projection [6,7] and, in
particular, the appearance of doubly occupied sites (dou-
blons) as holes. Such Fermi gas microscopes thus measure
only the density of singly occupied sites (singlons), i.e., the
local moment [19]. The full density can be obtained via
absorption imaging [13] but without single site resolution,
or by selectively imaging either singlons or doublons [29].
Revealing the microscopic correlations giving rise to

macroscopic observables of the Fermi-Hubbard model
requires single-shot measurements of the full density. As
the prime example, the fluctuation-dissipation theorem [30]
relates the compressibility to the global number fluctua-
tions of the system via the temperature, requiring measure-
ments of the total density sensitive to atomic shot noise
[31–33]. The importance of nonlocal density fluctuations
has been demonstrated [16,34], but revealing their micro-
scopic origin requires site-resolved density measurements.

Progress in fluorescence imaging of the total density was
achieved with superlattices [18] that spatially separated
atom pairs into distinct wells, revealing the interplay of
charge and spin [23] in systems of ∼6 × 6 sites.
In this Letter, we introduce a bilayer Fermi gas micro-

scope enabling full site-resolved density readout of large
(∼1500 sites) 2D Fermi-Hubbard systems in a single
fluorescence image. This directly yields the equation of
state as pressure, compressibility, and doublon density are
obtained as a function of density. Site-resolved density
correlations reveal the importance of nonlocal correlations,
from the Pauli hole at low filling to strong doublon-
hole correlations at half filling. The measured density
fluctuation and compressibility directly yield a theory-
independent thermometer via the fluctuation-dissipation
theorem [30]. In the Mott insulator, we find strongly
correlated nearest-neighbor doublon-hole pairs, required
to compensate for local density fluctuations to yield the
near-vanishing compressibility.
To record the full density information, our setup consists

of a bilayer optical lattice potential beneath a microscope
objective, shown schematically in Fig. 1(a). In the experi-
ment, a 2D Fermi-Hubbard gas is prepared in a single
horizontal layer of a 3D optical lattice as reported in
Ref. [8], with horizontal (vertical) lattice spacing of a ¼
541 nm (3 μm). For imaging, the depth of the horizontal
lattices is increased to prevent tunneling in the 2D plane.
Some lattice sites will contain doublons. We now impose a
vertical superlattice [purple arrow in Fig. 1(a)] with 532 nm
spacing, created by retroreflecting a 1064 nm laser beam
off the flat surface of the hemispheric microscope objective.
Driven by Feshbach enhanced repulsive interactions, two
atoms originally in a single lattice site separate vertically
into different wells [Fig. 1(b)] [35]. After the splitting
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process, Raman sideband cooling is performed as in
Ref. [8] and emitted optical pumping photons are collected
through the microscope objective. In contrast to previous
work with bosons [36], the layer separation is within the
depth of focus of the microscope, allowing atoms in both
layers to be simultaneously imaged onto the same diffrac-
tion limited spot on the camera.
We now demonstrate that separated atoms continue to

fluoresce without light-induced loss. By raising the har-
monic trapping potential, we create a band insulator at the
center of the cloud and perform the vertical separation of
atom pairs before imaging. Figure 1(c) shows a typical
histogram of an image, with fluorescence counts from
singly occupied sites clearly distinguishable from those
for originally doubly occupied sites. The fluorescence
obtained from atoms in each layer can be tuned via the
intensity of Raman light [35]. Typical images are shown in

Figs. 1(d)–1(f), for various values of the ratio U=t between
the on-site interaction strength U, and the tunneling
rate t [15]. Figure 1(d) shows a strongly correlated metal
at U=t ∼ 7. As U=t is increased, the tell-tale “wedding
cake” structure emerges, with a central band insulator
at a fluorescence level corresponding to n ¼ 2 surrounded
by a Mott insulator at lower fluorescence corresponding
to n ¼ 1. Singly and doubly occupied sites are clearly
distinguished [35], leading to the digitized images below.
Figure 2(a) shows examples of radially averaged density

n (circles) and doublon density d (squares) at varying U=t.
On a given lattice site, we set d ¼ 1 when n ¼ 2, and the
hole density h ¼ 1 when n ¼ 0. With increasing repulsion
(from left to right) a Mott plateau emerges at n ¼ 1. The
compressibility κ in Fig. 2(b) is obtained via the local
density approximation from the variation in the measured
local potential VðrÞ as κn2¼∂n=∂μjT¼−∂n=∂VjT [37,38].
It is observed to vanish in the region of the Mott plateau,
directly indicating insulating behavior [13,39]. A simulta-
neous reduction in local (on-site) fluctuations in the density
in Fig. 2(c), hn̂2i − hn̂i2 ¼ nð1 − nÞ þ 2d, is caused by the
reduced double occupancy d in the Mott insulator at n ¼ 1.

FIG. 1. Observing the formation of fermionic Mott and band
insulators via total density readout in a bilayer microscope.
(a) A degenerate Fermi gas is prepared in a 2D optical lattice
potential (black arrows) beneath a microscope objective. A
vertical superlattice (purple arrows, 532 nm separation) can hold
two atoms in different layers simultaneously within the micro-
scope focus (collecting 770 nm light, orange shading). The
intensity of Raman light (blue arrow and shading) used for
imaging is tunable for each layer by changing the beam angle.
(b) Repulsively interacting atom pairs, originally in a single
well, are split by imposing the vertical superlattice before
imaging. (c) A typical fluorescence histogram, clearly indicating
the presence of n ¼ 1 and n ¼ 2 atoms per lattice site.
(d)–(f) A strongly correlated metal (U=t ∼ 7) turns into a
fermionic Mott insulator (with n ¼ 1) surrounding a band
insulator (n ¼ 2) upon increasing U=t to (e) 19 and (f) 84.
Reconstructed lattice occupations shown below.

FIG. 2. Equation of state of the 2D Fermi-Hubbard model.
(a) Radially averaged profiles of total density (circles) and
doublon density (squares) in a Fermi-Hubbard gas at U=t ¼
7.1ð4Þ (blue), 11.8(5) (black), and 25.3(6) (red). (b) Measured
normalized compressibility κn2t. (c) Local density fluctuations
hn̂2i − hn̂i2 (circles) and total atom number fluctuations per area
ðhN̂2i − hN̂i2Þ=area in a 5 × 5 box (triangles). (d)–(f) Thermo-
dynamic variables vs density: (d) normalized pressure P=U,
(e) compressibility κn2t, and (f) doublon density d. All lines show
Monte Carlo predictions [40] for T=t ¼ 1.4 (blue), T=t ¼ 1.6
(black), and T=t ¼ 2.25 (red) with the sameU=t as the data. Here
and elsewhere, data are corrected by measured rates of loss
(∼5%) and hopping (∼5%) [35].
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Access to the total density directly yields a measurement
of the equation of state of the Fermi-Hubbard model.
The canonical equation of state relates pressure P ¼
Pðn; T;U; tÞ to density, temperature T, and interaction
parameters U and t. However, one is free to replace, e.g.,
temperature by any other thermodynamic variable like the
doublon fraction, and, e.g., t by compressibility κ, thereby
obtaining an equation of state of directly and locally
observable quantities [37,38]. From the variation of density
with potential nðVÞ one obtains the pressure PðVÞ ¼R
μ0−V
−∞ nðμ0Þdμ0 ¼ R

∞
V nðV 0ÞdV 0 [34,37,41–43]. Together

with P, one has the compressibility κn2 ¼ n∂n=∂PjT,
and the dimensionless doublon fraction d, all as a function
of density n [Figs. 2(d)–2(f), respectively]. For the strong-
est interactions it can be observed how the pressure needs
to rise above U before breakdown of the Mott insulator
occurs and the density can grow above n ¼ 1. Finally, the
compressibility, together with the total density fluctuations
in Fig. 2(c) directly yield the temperature T via the
fluctuation-dissipation theorem. To this end, in the follow-
ing we will investigate density correlations.
The density correlations of a noninteracting Fermi gas are

determined by Pauli exclusion, which forbids two identical
fermions to share the same phase-space cell. At nondegen-
erate temperatures, the probability to find two like fermions
near each other is suppressed for distances smaller than the
thermal de Broglie wavelength λdB ∼ a

ffiffiffiffiffiffiffiffi
t=T

p
. As the phase

space density nλ2dB=a
2 ≳ 1, i.e., T ≲ nt, the size of this Pauli

exclusion hole saturates to the spacing a=
ffiffiffi
n

p
between

identical fermions. In a two-state mixture of fermions and
at low filling, repulsion between unlike spins further
deepens the correlation hole between particles. These non-
local anticorrelations have the effect of reducing the total
atom number fluctuations in a given region. Any local
upward density fluctuation will be partially compensated by
a reduction in nearby density. In Fig. 2(c) we demonstrate
that density fluctuations are reduced in a 5 × 5 site box
(triangles) compared to onsite fluctuations (circles), indicat-
ing the presence of nonlocal anticorrelations between
fermions.
We now use the full site-resolved density readout of our

microscope to directly measure the correlation hole in an
interacting Fermi-Hubbard lattice gas. The Pauli hole has
been inferred from antibunching of the parity-projected
density in previous work [19]. The connected density-
density correlation hn̂in̂iþδiC ¼ hn̂in̂iþδi − niniþδ charac-
terizes the nontrivial correlation of finding two particles a
distance of δ lattice sites apart, beyond that for uncorrelated
particles at the same density. Figure 3(a) shows the
spatial dependence of hn̂in̂iþδiC at various densities. Strong
nonlocal anticorrelations are clearly visible. Figure 3(b)
reports the total, local, and nonlocal density fluctuations.
Significant negative nonlocal correlations indicate a de
Broglie wavelength that extends over multiple lattice sites,
requiring T ∼ t [44,45]. We note that nonlocal correlations

were inferred but not directly measured in Ref. [16]. The
magnitude of local and nonlocal fluctuations is maximal at
n ≈ 0.5, a direct consequence of strong on-site repulsion
between unlike spins. This effectively reduces the available
area for each species by half. On-site density fluctuations
are thus equal to that of a single spin species in half the
area, of density n and binomial fluctuation hn̂2i − hn̂i2≈
nð1 − nÞ, peaking at n ¼ 0.5. Pauli exclusion requires a
corresponding anticorrelation in the area surrounding a
given local fluctuation, so nonlocal fluctuations peak near
the same filling.
The spatial Pauli hole is directly visualized through the

density-density correlation function gð2Þnn ¼hn̂in̂iþδi=niniþδ.

Figure 3(c) shows the measured gð2Þnn for nearest-neighbor
and next-nearest neighbor displacements δ versus nr2,
which normalizes distance by the Fermi wavelength. The

strong reduction of gð2Þnn within one interparticle spacing
(blue shaded region) represents the direct observation
of the correlation hole due to Pauli exclusion of like

spins, and repulsion of unlike spins. The gð2Þnn for a single,
noninteracting fermionic species at the full density n shows
good agreement, highlighting again that strong interspin
repulsion reduces the available area for a given spin species
by half.
With access to both the measured microscopic density

fluctuations (Fig. 3) and the macroscopic compressibility
(Fig. 2), we are now in the position to probe the funda-
mental correspondence between fluctuations and response

FIG. 3. Measurement of nonlocal density correlations in the 2D
Fermi-Hubbard model. (a) Connected density-density correla-
tions at various densities at U=t ¼ 11.8ð5Þ. (b) Density fluctua-
tions

P
δhn̂in̂iþδiC (total, black circles), hn̂2i − hn̂i2 (local, red

triangles), and
P

δ≠0hn̂in̂iþδiC (nonlocal, blue diamonds).

(c) Density-density correlation function gð2Þnn for displacements
(0,1) (blue circles) and (1,1) (black squares) vs nr2, and theory for
a noninteracting single-component Fermi lattice gas for displace-
ment (0,1) (blue dashed line) at T=t ¼ 0.69 (consistent with
thermometry in Fig. 4). The shading is a guide to the eye,
indicating the correlation hole due to Pauli exclusion between like
spins and repulsion between unlike spins.
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in thermal quantum systems [46]. The general density
fluctuation-dissipation theorem

κn2 ¼ ∂ni
∂μ

����
T
¼ β

X

δ

hn̂in̂iþδiC; ð1Þ

where β ¼ 1=T relates directly measurable macroscopic
and microscopic quantities without reference to any
theoretical model [30]. Significantly, nonlocal density
correlations will remain a sensitive thermometer down to
T ¼ 0 for any compressible system because κn2 ¼
∂ni=∂μjT will saturate to the density of states at low
temperatures [32]. For example, in low density metallic
regions with a free particle energy dispersion, ∂μ=∂nijT →
2πt as T → 0, which implies sensitivity to temperatures
T ≪ t. Moreover, by averaging over the system’s area,
Eq. (1) relates compressibility to the global atom number
fluctuations: κn2 ¼ βðhN̂2i − hN̂i2Þ=area. In small sub-
systems, however, number fluctuations are enhanced due
to nonlocal correlations across boundaries. This is the
origin of the violation of the area law for entanglement
entropy already present for noninteracting fermions
[47–49].
Figure 4 shows the total connected density-density

correlation (black circles) versus the normalized compres-
siblity κn2t for the same dataset as Fig. 3. A linear fit results
in a temperature of the cloud of T=t ¼ 0.69ð2Þ using
Eq. (1). The entire inhomogeneous atomic gas contributes
data, providing high statistical precision for this single
parameter fit. Moreover, the agreement of the data with a
linear fit demonstrates that any individual measurement

realizes a spatially localized thermometer. For comparison,
local fluctuations (red triangles) are nonlinear and are
consistently larger than total fluctuations, highlighting
again the importance of negative nonlocal correlations,
inferred in Ref. [16].
We quantitatively benchmark the fluctuation thermom-

eter by independently obtaining the temperature from fits of
the radial singlon profiles of the same data to numerical
linked-cluster expansion (NLCE) calculations [50].
Thermometry is repeated for different amounts of heating
of the atom cloud [19,35]. As demonstrated in the inset of
Fig. 4, the temperatures measured via fluctuation ther-
mometry and those obtained from fits to NLCE agree. Note
that in general, comparison of measured quantities to
theory requires fitting to nonlinear and in some cases
nonmonotonic functions, leading to difficulties in assessing
systematic errors. In contrast, the sole sources of systematic
uncertainty in fluctuation thermometry are the calibration
of the trap potential, entering linearly into uncertainty
in T, and measurable errors in the density. We have thus
established a theory-independent, precise, and sensitive
thermometer for interacting lattice fermions. The method is
also ideally suited for homogeneous systems in box
potentials [24], where density fluctuations in the presence
of a well-calibrated linear gradient will provide access to
the local temperature. This opens up prospects for the study
of heat transport in the Fermi-Hubbard model.
The fluctuation-dissipation theorem provides insight into

charge fluctuations in the Mott insulator at half-filling, at
temperatures T ≪ U, where the compressibility vanishes.
In any system where either T → 0 or κn2 → 0, Eq. (1)
implies that local and nonlocal density fluctuations must
cancel. For finite tunneling t ∼ T ≪ U, the system remains
insulating, although the local operator t acts as a perturba-
tion that causes charge fluctuations over short distances
[34]. The dominant contributions to hn̂in̂jiC ¼ hd̂id̂jiC þ
hĥiĥjiC − 2hd̂iĥjiC are nearest neighbor doublon-hole
fluctuations that occur with probability ∼ðt=UÞ2 [51].
Their existence has been inferred in Ref. [19] by observing
bunching of holes after parity projection. For fermions,
these nearest neighbor doublon-hole correlations signal
spin singlet formation, as Pauli exclusion prevents tunnel-
ing for spin triplets.
Armed with full density readout, in Fig. 5 we now

directly detect these doublon-hole fluctuations. At our
temperatures T ≪ U, where thermal fluctuations are frozen
out, doublon-hole fluctuations are purely quantum in
origin. Many of these isolated doublon-hole pairs can be
directly observed as fluctuations within the strongly
coupled Mott insulator in Fig. 1(e) ½U=t ¼ 18.8ð5Þ�. In
Figs. 5(a)–5(c) we show the spatial dependence of the
connected doublon-hole correlator hd̂iĥjiC, the nearest
neighbor correlator hd̂iĥiþ1iC, and the doublon-hole dis-

tribution function gð2Þdh ¼ hd̂iĥiþ1i=dihiþ1 versus density at

FIG. 4. Direct thermometry via density-density correlations.
Density fluctuations vs normalized compressibility κn2t for
U=t ¼ 11.8ð5Þ: local fluctuations hn̂2i − hn̂i2 (red triangles)
and total fluctuations

P
δhn̂in̂iþδiC (black circles). A linear

fit of total fluctuations vs compressibility, fixed through
the origin (black solid line), provides the temperature T ¼P

δhn̂in̂iþδiC=n2κ (gray shading shows statistical uncertainty).
Inset: Measured temperatures vs inferred temperatures TNLCE
from theoretical fits to radial singlon profiles, after heating the
system for variable time [35]. Errors are only statistical.
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U=t ¼ 11.8ð5Þ, all of which demonstrate strongly
enhanced local doublon-hole correlations near n ¼ 1.
In Fig. 5(d) we report the nearest neighbor doublon-hole

pair density hd̂iĥnni ¼
P

j∈nnhd̂iĥji with respect to ðt=UÞ2.
The linear relationship highlights the physical origin of
doublon-hole pair correlations in a coherent, off-resonant
tunneling process of amplitude ∼t=U. To demonstrate the
strength of bunching, we obtain the conditional probability
PðhnnjdiÞ ¼ hd̂iĥnni=di to find a hole next to a doublon in
Fig. 5(e). As a comparison, we also show the conditional
probability for a Poisson process at the same hole and
doublon density 4d (blue shaded area). At small t=U, the
conditional probability far exceeds random chance, show-
ing that doublons and holes are tightly bound in a Mott
insulator.
In conclusion, we demonstrate a robust method to

measure the total site-resolved density in a cold-atom
realization of the 2D Fermi-Hubbard model. We use this
ability to directly detect nonlocal correlations, in
particular the Pauli correlation hole at low filling and
doublon-hole correlations in the Mott insulating region.
Model-free thermometry is established via the fluctuation-
dissipation theorem. Using a magnetic field gradient,
we can also perform spin dependent splitting [35],
which will eventually allow simultaneous observation
of both charge and spin. Our superlattice geometry
opens up the ability to study bilayer and even multilayer

Fermi-Hubbard models, relevant for high-temperature
superconductivity [52,53].
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Note added.—After completion of our experimental work
[54], a spin-resolved bilayer imaging technique was real-
ized in Ref. [55].
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