
Rapid Cyber-bullying detection method using
Compact BERT Models

Mitra Behzadi
Department of Computer Science

University of California Irvine

Irvine, California, USA

Email: mbehzadi@uci.edu

Ian G. Harris
Department of Computer Science

University of California Irvine

Irvine, California, USA

Email: harris@ics.uci.edu

Ali Derakhshan
Department of Computer Science

University of California Irvine

Irvine, California, USA

Email: aderakh1@uci.edu

Abstract—Nowadays, many people use their social media
platform to spread hate online and that is why the problem of
cyber-bullying detection has been the focus of many researchers
over the past decade. In this work, we tackle this problem
with transfer learning. We use various compact BERT models
and fine-tune them with hate-speech data. We incorporate Focal
Loss function to handle class imbalance in the data. Using this
approach, we were able to achieve state-of-the-art results of 0.91
precision, 0.92 recall and 0.91 F1-score on the hate-speech data-
set. Additionally, using our transfer learning pipeline, we show
that the more compact BERT models are significantly faster in
detection and are suitable for real-time applications of cyber-
bullying detection.

Keywords—Cyber-bulling, Hate-Speech, Compact BERT,
Transfer Learning, Focal Loss

I. INTRODUCTION

During the past decade with the rapid growth of social me-

dia interactions, many real world issues mirrored themselves in

the online world. Society has dealt with bullying and hate for a

long time. However, those bullies can now easily hide behind a

computer or smart-phone, using their social media platform to

write offensive, abusive or hateful texts about somebody else

or a group of people. This phenomena called cyber-bullying,

has affected people and caused depression in many children

and adolescents.[1] It would be very beneficial if instances of

cyber-bullying were detected as rapidly as they appear online.

That is why there has been increased focus on cyber-bullying

detection on different social media platforms in the past few

years.
While dealing with this problem, one encounters many chal-

lenges and difficulties. Using informal language and emojis,

different languages, lack of a good benchmark data-set and

the need for speed real-time detection in the streaming data

[2] are just a few important challenges. In this work, we

focus on increasing the speed of cyber-bullying detection and

demonstrate that smaller networks can perform just as well as

bigger ones using transfer learning techniques.
We contribute to this research field in two ways. Firstly,

we fine-tune various compact BERT models [3] to increase

the cyber-bullying detection speed and achieve state-of-the-

art performance. Secondly, we use the Focal Loss function in

fine-tuning of these models and show how effective it can be

in achieving even better results from BERT models.

II. RELATED WORK

Many researchers have tried to solve the problem of cyber-

bullying detection over the past decade. In the early works like

[4] and [5], more conventional natural language processing

ideas such as N-grams and TF-IDF were used to extract the

features from text and then those features were used to train a

type classifier such as SVM or Naive Bayes. In fact there are

many interesting articles written that are covered in surveys

such as [2].
Later on, deep learning methods gained more momentum

and neural networks, including recurrent and convolutional

neural networks (RNN and CNN), have played a major role in

language modeling. As a result, in many approaches such as

[6][7][8], different variations of LSTM and CNN models were

developed to tackle the problem of cyber-bullying detection.

These type of methods also incorporate word embedding

layers such as word2vec[9] or GloVe[10], which are usually

pre-trained on large set of words. These layers map a word

into a high dimensional vector in a space where words with

similar meaning are closer to each other. Some approaches like

[8] also include user metadata such as number of followers

and their network of friends in their detection method. The

researchers train a combined classifier which has a text path

and metadata path.
In the past couple of years, there have been various com-

petitions and challenges around this topic. In fact, several

published articles are from the teams that participated in chal-

lenges such as SemEval2019[11]. In many articles like [12]

and [13], you can recognize a shift towards using Transformer

based architectures like BERT[14] in this area. In fact, among

top 10 teams that participated in SemEval2019 offensive lan-

guage detection, 7 were using BERT based architectures.[11]

BERT has Transformer layers that allow for a significant

parallelization.[15] parallelization leads to more speed and

that is a bonus. Also, BERT pre-trained models are powerful

language representation models that can be easily fine-tuned

and produce state-of-the-art results.[14]

III. PROPOSED METHOD

A. Data Distribution
For the purpose of this project, we used the Hate-speech

data-set gathered in [16]. This data-set consists of 85948

199

2021 IEEE 15th International Conference on Semantic Computing (ICSC)

978-1-7281-8899-7/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSC50631.2021.00042

20
21

 IE
EE

 1
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 S
em

an
tic

 C
om

pu
tin

g 
(IC

SC
) |

 9
78

-1
-7

28
1-

88
99

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

SC
50

63
1.

20
21

.0
00

42

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore.  Restrictions apply. 



tweets which are labeled using a crowd-sourcing mechanism.

There are 3 target classes which are labeled as Normal,

Abusive and Hateful. As can be seen in Figure 1, the majority

of the data is not abusive nor hateful. Moreover, the data-set

is imbalanced and the the hateful class is small.

Fig. 1. Hate-Speech Data Distribution

B. Text Preprocessing

Twitters text usually includes emojis and hashtags as well

as links to other pages. We first replaced the links with the

word ”url” and replaced every @username with the word

”userid”. Following that, inspired by [12], we decided to use

the valuable information hidden in hashtags and emojis.

As hashtags can be more than one word, or even a sentence,

we used a open-source python library available on GitHub

called Wordsegment 1 to split the hashtags into words. For

example, a hashtag occurrence like ”#drawntodeath” will

become ”drawn to death” after this segmentation step.

We used another open-source python library available on

GitHub called Emoji2 to convert each emoji instance to

meaning behind that emoji. For example an emoji showing an

angry face will be converted to ”:angry face:”. We also remove

the ”:” from the two sides and add single space between chains

of emojis.

Finally, we made sure to convert every uppercase letter

into lowercase. This conversion is only necessary because the

BERT models we fine-tuned are only trained using uncased

text.

C. Compact BERT Models

Bidirectional Encoder Representations from Transformer or

BERT [14] has proven to be a very powerful language model

that can be used in many natural language problems, including

sentiment analysis and text classification with fine-tuning.

However, there is a downside to the original BERT and it

has to do with its size. That is, BERT is a very large network

1https://github.com/grantjenks/python-wordsegment
2https://github.com/carpedm20/emoji

and has so many transformer layers and hidden embeddings.

Hence, fine-tuning with smaller data-sets would not lead to

the best results.

Very recently, compact BERT models were introduced in

[3] that address this issue. Researchers developed a total of

24 compact BERT models, varying in number of transformer

layers and hidden embedding sizes. Each of these networks

were trained with a teacher network that was essentially a

very large BERT pre-trained model. They used unlabeled data

and distillation method so that the student network could learn

from the soft labels the teacher produces.

In this work, we selected 5 of these 24 compact BERT

models to experiment with. As can be seen in Table I,

the selected architectures are quite variant, with number of

transformer layers ranging from 2 to 12 and hidden embedding

sizes ranging from 128 to 768.

TABLE I
COMPACT BERT ARCHITECTURES THAT WERE INTRODUCED IN [3]

Model Name Transformer
Layers

Hidden
Embedding

Sizes
BERT-Base 12 768

BERT-Medium 8 512

BERT-Small 4 512

BERT-Mini 4 256

BERT-Tiny 2 128

D. Detection Pipeline

We use the compact BERT models in a pipeline shown in

Figure 2 to classify the processed data into the 3 classes of

normal, abusive and hateful. First, the whole prepossessed data

is loaded as batches of text and true labels. Text instances are

padded if necessary to match the sequence length. Then, the

text is tokenized with a pre-trained BERT tokenizer.

Each pre-trained BERT model comes with a correspond-

ing pre-defined vocabulary set that then produces a token

dictionary. The pre-trained BERT tokenizer uses this token

dictionary to convert text as a sequence of words into sequence

of identifiers which are numeric.

The final layer of the BERT model is removed and instead

we include a dense layer with size 3, because we have

3 different classes. The dense layer is then followed by a

softmax layer to produce probability scores for each class.

The class with maximum probability score will result in the

final predicted label.

E. Focal Loss

Inspired by the work of [17], we decided to use Focal Loss

as our cost function. Focal Loss was first introduced in [18]

as a variant of Cross-Entropy loss that also pays attention to

how easy or hard it is to classify each sample. It has shown

to be beneficial to applications with class imbalance problem

[18]. The calculation of Focal Loss is shown in Equation 1,

where pt = p if the sample is of positive class with true label

200

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Our Proposed Method Pipeline

y = 1. Otherwise, pt = 1− p. By this definition, a sample is

easier to classify if it has a smaller pt.

FL(pt) = −αt(1− pt)
γ log(pt) (1)

It is very important to chose a right hyper-parameter γ for

each application. In the next section, we will explain how this

parameter was determined for our case.

IV. EXPERIMENTS AND RESULTS

A. Training Setup

To develop this project, we used Keras in the Google

Colaboratory environment. We were able to use the TPU

engines. For our optimization algorithm, we chose to use

AdaBound [19] which was introduced very recently and can

lead to more smooth training. All the hyper-parameters of our

setup can be seen in Table II.

TABLE II
TRAINING HYPER-PARAMETERS

Batch Size 128

Sequence Length 128

Number of Epochs 5

Learning Rate 0.0001

Focal Loss Parameter γ 0.1

B. FL Hyper-parameter Decision

To find the best value of γ for our usage of Focal Loss, we

randomly split the data into 90% train and 10% validation.

Then using Small-Bert and fixing every other hyper-parameter,

we changed γ to different values to see which one would lead

to better validation results. It is important to note that setting

γ = 0 is equivalent to using the conventional Cross-Entropy

loss.

TABLE III
IMPACT OF γ ON VALIDATION RESULTS

γ Accuracy AUC Precision Recall F1-score
0 0.9092 0.9702 0.9003 0.9092 0.9021

0.01 0.9138 0.9705 0.9062 0.9138 0.9077

0.1 0.9143 0.9709 0.9064 0.9143 0.9076

1 0.9125 0.9700 0.9029 0.9125 0.9033

2 0.9145 0.9683 0.9063 0.9145 0.9064

5 0.9113 0.9654 0.9026 0.9113 0.9026

10 0.9077 0.9643 0.8991 0.9076 0.8955

As can be seen in Table III, using values for γ which are

too big resulted in worse evaluation metrics. This happens

because by increasing γ we are reducing the weight of easy

to classify samples more and more, which can damage the

training process. It appears that the best result occurs for γ =
0.1, which is big enough to have a positive impact, but small

enough to avoid ignoring easy to classify instances.

C. Evaluation Results

To evaluate the performance, we used 10-fold cross-

validation on the whole data-set, to be able to fairly compare

our final results with previous research by Founta et al. [8].

We used various evaluation metrics to find the best model,

with more emphasis on F1-score which is the harmonic mean

Precision and Recall.

TABLE IV
EVALUATION RESULTS

Model Accuracy AUC Precision Recall F1-score
BERT-
Base

0.9156 0.9734 0.9090 0.9156 0.9103

BERT-
Medium

0.9140 0.9726 0.9071 0.9140 0.9084

BERT-
Small

0.9147 0.9722 0.9080 0.9147 0.9093

BERT-
Mini

0.9148 0.9717 0.9078 0.9148 0.9086

BERT-
Tiny

0.9147 0.9699 0.9066 0.9147 0.9064

Founta
et al. [8]

0.84 0.93 0.85 0.85 0.85

As can be seen in Table IV, our method is able to achieve

better results than the previous work on the same data-set.

The improvement is achieved in spite of the fact that our

201

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore.  Restrictions apply. 



approach does not consider user-based and network-based

metadata which is used by Founta et al.[8].

Moreover, it is interesting to see how close these compact

BERT models are in evaluation metrics. BERT-Base has the

highest F1-score and so if we are only considering the metrics,

this is the winning model for our work.

However, we also considered the time it took to train and

test each network. All models were trained and tested on

Google Colaboratory TPU with 8 workers, and time was

measured based on how long it took to process a batch of

data, which was set to 128 for both train and test phases.

According to our time analysis in Table V, the models vary

quite noticeably in their speed, with more variance in training

times rather than test times. It is expected that adding more

transformer layers and hidden embedding sizes would slow

the networks down, but conventionally that meant also much

better evaluation results. However, it is not the case here, as

BERT-Tiny is the fastest with 6ms per step and yet only falls

short by 0.04 percent in F1-score in comparison to BERT-

Base which takes 17ms per step. So, it is safe to say that in

this case, the more compact networks have more to offer if

they were to be employed in a system that needed real-time

detection.

TABLE V
COMPACT BERT MODELS TIME ANALYSIS

Model Training Time Test Time
BERT-Base 136ms 17ms

BERT-Medium 65ms 10ms

BERT-Small 40ms 7ms

BERT-Mini 29ms 7ms

BERT-Tiny 19ms 6ms

V. CONCLUSION

In this work we presented a new method for cyber-bullying

detection, which relied on the basis of transfer learning and

fine-tuning compact BERT models. We achieved better results

than previous work, without using any metadata. Moreover,

We demonstrated that our method is both fast and reliable,

which makes it very suitable for real-time detection of cyber-

bullying.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 1813858. This research

was also supported by a generous gift from the Herman P. &

Sophia Taubman Foundation.

REFERENCES

[1] M. P. Hamm, A. S. Newton, A. Chisholm, J. Shulhan, A. Milne,
P. Sundar, H. Ennis, S. D. Scott, and L. Hartling, “Prevalence and effect
of cyberbullying on children and young people: A scoping review of
social media studies,” JAMA pediatrics, vol. 169, no. 8, pp. 770–777,
2015.

[2] S. Salawu, Y. He, and J. Lumsden, “Approaches to automated detection
of cyberbullying: A survey,” IEEE Transactions on Affective Computing,
2017.

[3] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models,” arXiv
preprint arXiv:1908.08962v2, 2019.

[4] M. Dadvar and F. De Jong, “Cyberbullying detection: a step toward a
safer internet yard,” in Proceedings of the 21st International Conference
on World Wide Web, 2012, pp. 121–126.

[5] A. Kontostathis, K. Reynolds, A. Garron, and L. Edwards, “Detecting
cyberbullying: query terms and techniques,” in Proceedings of the 5th
annual acm web science conference, 2013, pp. 195–204.

[6] P. Singh and S. Chand, “Pardeep at semeval-2019 task 6: Identifying and
categorizing offensive language in social media using deep learning,” in
Proceedings of the 13th International Workshop on Semantic Evaluation,
2019, pp. 727–734.

[7] V. Golem, M. Karan, and J. Šnajder, “Combining shallow and deep
learning for aggressive text detection,” in Proceedings of the First
Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018),
2018, pp. 188–198.

[8] A. M. Founta, D. Chatzakou, N. Kourtellis, J. Blackburn, A. Vakali, and
I. Leontiadis, “A unified deep learning architecture for abuse detection,”
in Proceedings of the 10th ACM Conference on Web Science, 2019, pp.
105–114.

[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[10] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[11] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and
R. Kumar, “Semeval-2019 task 6: Identifying and categorizing offensive
language in social media (offenseval),” arXiv preprint arXiv:1903.08983,
2019.

[12] P. Liu, W. Li, and L. Zou, “Nuli at semeval-2019 task 6: Transfer learn-
ing for offensive language detection using bidirectional transformers,” in
Proceedings of the 13th International Workshop on Semantic Evaluation,
2019, pp. 87–91.

[13] P. Aggarwal, T. Horsmann, M. Wojatzki, and T. Zesch, “Ltl-ude at
semeval-2019 task 6: Bert and two-vote classification for categorizing
offensiveness,” in Proceedings of the 13th International Workshop on
Semantic Evaluation, 2019, pp. 678–682.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[16] A.-M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn,
G. Stringhini, A. Vakali, M. Sirivianos, and N. Kourtellis, “Large scale
crowdsourcing and characterization of twitter abusive behavior,” in 11th
International Conference on Web and Social Media, ICWSM 2018.
AAAI Press, 2018.

[17] S. Srivastava, P. Khurana, and V. Tewari, “Identifying aggression and
toxicity in comments using capsule network,” in Proceedings of the
First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018),
2018, pp. 98–105.

[18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[19] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” arXiv preprint arXiv:1902.09843,
2019.

202

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore.  Restrictions apply. 


