2021 IEEE 15th International Conference on Semantic Computing (ICSC) | 978-1-7281-8899-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/1CSC50631.2021.00042

2021 IEEE 15th International Conference on Semantic Computing (ICSC)

Rapid Cyber-bullying detection method using
Compact BERT Models

Mitra Behzadi
Department of Computer Science
University of California Irvine
Irvine, California, USA
Email: mbehzadi @uci.edu

Abstract—Nowadays, many people use their social media
platform to spread hate online and that is why the problem of
cyber-bullying detection has been the focus of many researchers
over the past decade. In this work, we tackle this problem
with transfer learning. We use various compact BERT models
and fine-tune them with hate-speech data. We incorporate Focal
Loss function to handle class imbalance in the data. Using this
approach, we were able to achieve state-of-the-art results of 0.91
precision, 0.92 recall and 0.91 F1-score on the hate-speech data-
set. Additionally, using our transfer learning pipeline, we show
that the more compact BERT models are significantly faster in
detection and are suitable for real-time applications of cyber-
bullying detection.

Keywords—Cyber-bulling, Hate-Speech, Compact BERT,
Transfer Learning, Focal Loss

1. INTRODUCTION

During the past decade with the rapid growth of social me-
dia interactions, many real world issues mirrored themselves in
the online world. Society has dealt with bullying and hate for a
long time. However, those bullies can now easily hide behind a
computer or smart-phone, using their social media platform to
write offensive, abusive or hateful texts about somebody else
or a group of people. This phenomena called cyber-bullying,
has affected people and caused depression in many children
and adolescents.[1] It would be very beneficial if instances of
cyber-bullying were detected as rapidly as they appear online.
That is why there has been increased focus on cyber-bullying
detection on different social media platforms in the past few
years.

While dealing with this problem, one encounters many chal-
lenges and difficulties. Using informal language and emojis,
different languages, lack of a good benchmark data-set and
the need for speed real-time detection in the streaming data
[2] are just a few important challenges. In this work, we
focus on increasing the speed of cyber-bullying detection and
demonstrate that smaller networks can perform just as well as
bigger ones using transfer learning techniques.

We contribute to this research field in two ways. Firstly,
we fine-tune various compact BERT models [3] to increase
the cyber-bullying detection speed and achieve state-of-the-
art performance. Secondly, we use the Focal Loss function in
fine-tuning of these models and show how effective it can be
in achieving even better results from BERT models.

Ian G. Harris
Department of Computer Science
University of California Irvine
Irvine, California, USA
Email: harris@ics.uci.edu

Ali Derakhshan
Department of Computer Science
University of California Irvine
Irvine, California, USA
Email: aderakhl @uci.edu

II. RELATED WORK

Many researchers have tried to solve the problem of cyber-
bullying detection over the past decade. In the early works like
[4] and [S], more conventional natural language processing
ideas such as N-grams and TF-IDF were used to extract the
features from text and then those features were used to train a
type classifier such as SVM or Naive Bayes. In fact there are
many interesting articles written that are covered in surveys
such as [2].

Later on, deep learning methods gained more momentum
and neural networks, including recurrent and convolutional
neural networks (RNN and CNN), have played a major role in
language modeling. As a result, in many approaches such as
[6][7]1[8], different variations of LSTM and CNN models were
developed to tackle the problem of cyber-bullying detection.
These type of methods also incorporate word embedding
layers such as word2vec[9] or GloVe[10], which are usually
pre-trained on large set of words. These layers map a word
into a high dimensional vector in a space where words with
similar meaning are closer to each other. Some approaches like
[8] also include user metadata such as number of followers
and their network of friends in their detection method. The
researchers train a combined classifier which has a text path
and metadata path.

In the past couple of years, there have been various com-
petitions and challenges around this topic. In fact, several
published articles are from the teams that participated in chal-
lenges such as SemEval2019[11]. In many articles like [12]
and [13], you can recognize a shift towards using Transformer
based architectures like BERT[14] in this area. In fact, among
top 10 teams that participated in SemEval2019 offensive lan-
guage detection, 7 were using BERT based architectures.[11]
BERT has Transformer layers that allow for a significant
parallelization.[15] parallelization leads to more speed and
that is a bonus. Also, BERT pre-trained models are powerful
language representation models that can be easily fine-tuned
and produce state-of-the-art results.[14]

III. PROPOSED METHOD
A. Data Distribution

For the purpose of this project, we used the Hate-speech
data-set gathered in [16]. This data-set consists of 85948

978-1-7281-8899-7/21/$31.00 ©2021 IEEE 199
DOI 10.1109/ICSC50631.2021.00042

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore. Restrictions apply.

tweets which are labeled using a crowd-sourcing mechanism.
There are 3 target classes which are labeled as Normal,
Abusive and Hateful. As can be seen in Figure 1, the majority
of the data is not abusive nor hateful. Moreover, the data-set
is imbalanced and the the hateful class is small.

Abusive
31%

Normal
63%

Fig. 1. Hate-Speech Data Distribution

B. Text Preprocessing

Twitters text usually includes emojis and hashtags as well
as links to other pages. We first replaced the links with the
word “url” and replaced every @username with the word
“userid”. Following that, inspired by [12], we decided to use
the valuable information hidden in hashtags and emojis.

As hashtags can be more than one word, or even a sentence,
we used a open-source python library available on GitHub
called Wordsegment ! to split the hashtags into words. For
example, a hashtag occurrence like “#drawntodeath” will
become “drawn to death” after this segmentation step.

We used another open-source python library available on
GitHub called Emoji’> to convert each emoji instance to
meaning behind that emoji. For example an emoji showing an
angry face will be converted to ”:angry_face:”. We also remove
the :” from the two sides and add single space between chains
of emojis.

Finally, we made sure to convert every uppercase letter
into lowercase. This conversion is only necessary because the
BERT models we fine-tuned are only trained using uncased
text.

C. Compact BERT Models

Bidirectional Encoder Representations from Transformer or
BERT [14] has proven to be a very powerful language model
that can be used in many natural language problems, including
sentiment analysis and text classification with fine-tuning.
However, there is a downside to the original BERT and it
has to do with its size. That is, BERT is a very large network

Uhttps://github.com/grantjenks/python-wordsegment
Zhttps://github.com/carpedm20/emoji

and has so many transformer layers and hidden embeddings.
Hence, fine-tuning with smaller data-sets would not lead to
the best results.

Very recently, compact BERT models were introduced in
[3] that address this issue. Researchers developed a total of
24 compact BERT models, varying in number of transformer
layers and hidden embedding sizes. Each of these networks
were trained with a teacher network that was essentially a
very large BERT pre-trained model. They used unlabeled data
and distillation method so that the student network could learn
from the soft labels the teacher produces.

In this work, we selected 5 of these 24 compact BERT
models to experiment with. As can be seen in Table I,
the selected architectures are quite variant, with number of
transformer layers ranging from 2 to 12 and hidden embedding
sizes ranging from 128 to 768.

TABLE I
COMPACT BERT ARCHITECTURES THAT WERE INTRODUCED IN [3]
Model Name Transformer Hidden
Layers Embedding
Sizes

BERT-Base 12 768
BERT-Medium 8 512

BERT-Small 4 512

BERT-Mini 4 256

BERT-Tiny 2 128

D. Detection Pipeline

We use the compact BERT models in a pipeline shown in
Figure 2 to classify the processed data into the 3 classes of
normal, abusive and hateful. First, the whole prepossessed data
is loaded as batches of text and true labels. Text instances are
padded if necessary to match the sequence length. Then, the
text is tokenized with a pre-trained BERT tokenizer.

Each pre-trained BERT model comes with a correspond-
ing pre-defined vocabulary set that then produces a token
dictionary. The pre-trained BERT tokenizer uses this token
dictionary to convert text as a sequence of words into sequence
of identifiers which are numeric.

The final layer of the BERT model is removed and instead
we include a dense layer with size 3, because we have
3 different classes. The dense layer is then followed by a
softmax layer to produce probability scores for each class.
The class with maximum probability score will result in the
final predicted label.

E. Focal Loss

Inspired by the work of [17], we decided to use Focal Loss
as our cost function. Focal Loss was first introduced in [18]
as a variant of Cross-Entropy loss that also pays attention to
how easy or hard it is to classify each sample. It has shown
to be beneficial to applications with class imbalance problem
[18]. The calculation of Focal Loss is shown in Equation 1,
where p; = p if the sample is of positive class with true label

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore. Restrictions apply.

predicted
labels

1

probability
scores

- 1

Wi1,b1 Ww2,b2 | | wa,b3

T_T_T

Pre-defined Pre-trained BERT Model

Vocabulary

” l = ids T
- — Pre-trained BERT
Token Dictionary | Tokenizer
]

texts

true
labels

‘ Data Batch Loader ‘

i

~ -
[Prepmcmed Dl;

N

Fig. 2. Our Proposed Method Pipeline

y = 1. Otherwise, p; = 1 — p. By this definition, a sample is
easier to classify if it has a smaller p;.

FL(pt) = —a(1 — pt)" log(pr) (D

It is very important to chose a right hyper-parameter ~y for
each application. In the next section, we will explain how this
parameter was determined for our case.

IV. EXPERIMENTS AND RESULTS
A. Training Setup

To develop this project, we used Keras in the Google
Colaboratory environment. We were able to use the TPU
engines. For our optimization algorithm, we chose to use
AdaBound [19] which was introduced very recently and can
lead to more smooth training. All the hyper-parameters of our
setup can be seen in Table II.

TABLE I
TRAINING HYPER-PARAMETERS
Batch Size 128
Sequence Length 128
Number of Epochs 5
Learning Rate 0.0001
Focal Loss Parameter -y 0.1

201

B. FL Hyper-parameter Decision

To find the best value of ~ for our usage of Focal Loss, we
randomly split the data into 90% train and 10% validation.
Then using Small-Bert and fixing every other hyper-parameter,
we changed + to different values to see which one would lead
to better validation results. It is important to note that setting
v = 0 is equivalent to using the conventional Cross-Entropy
loss.

TABLE III
IMPACT OF y ON VALIDATION RESULTS

¥ Accuracy AUC Precision | Recall | Fl-score
0 0.9092 0.9702 0.9003 0.9092 0.9021
0.01 0.9138 0.9705 0.9062 0.9138 0.9077
0.1 0.9143 0.9709 0.9064 0.9143 0.9076
1 0.9125 0.9700 0.9029 0.9125 0.9033
2 0.9145 0.9683 0.9063 0.9145 0.9064
5 09113 0.9654 0.9026 0.9113 0.9026
10 0.9077 0.9643 0.8991 0.9076 0.8955

As can be seen in Table III, using values for v which are
too big resulted in worse evaluation metrics. This happens
because by increasing « we are reducing the weight of easy
to classify samples more and more, which can damage the
training process. It appears that the best result occurs for v =
0.1, which is big enough to have a positive impact, but small
enough to avoid ignoring easy to classify instances.

C. Evaluation Results

To evaluate the performance, we used 10-fold cross-
validation on the whole data-set, to be able to fairly compare
our final results with previous research by Founta et al. [8].
We used various evaluation metrics to find the best model,
with more emphasis on Fl-score which is the harmonic mean
Precision and Recall.

TABLE IV
EVALUATION RESULTS

Model Accuracy AUC Precision Recall F1-score
BERT- 0.9156 0.9734 0.9090 0.9156 0.9103
Base
BERT- 0.9140 0.9726 0.9071 0.9140 0.9084
Medium
BERT- 0.9147 0.9722 0.9080 0.9147 0.9093
Small
BERT- 0.9148 0.9717 0.9078 0.9148 0.9086
Mini
BERT- 0.9147 0.9699 0.9066 0.9147 0.9064
Tiny
Founta 0.84 0.93 0.85 0.85 0.85
et al. [8]

As can be seen in Table IV, our method is able to achieve
better results than the previous work on the same data-set.
The improvement is achieved in spite of the fact that our

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore. Restrictions apply.

approach does not consider user-based and network-based
metadata which is used by Founta et al.[8].

Moreover, it is interesting to see how close these compact
BERT models are in evaluation metrics. BERT-Base has the
highest F1-score and so if we are only considering the metrics,
this is the winning model for our work.

However, we also considered the time it took to train and
test each network. All models were trained and tested on
Google Colaboratory TPU with 8 workers, and time was
measured based on how long it took to process a batch of
data, which was set to 128 for both train and test phases.

According to our time analysis in Table V, the models vary
quite noticeably in their speed, with more variance in training
times rather than test times. It is expected that adding more
transformer layers and hidden embedding sizes would slow
the networks down, but conventionally that meant also much
better evaluation results. However, it is not the case here, as
BERT-Tiny is the fastest with 6ms per step and yet only falls
short by 0.04 percent in Fl-score in comparison to BERT-
Base which takes 17ms per step. So, it is safe to say that in
this case, the more compact networks have more to offer if
they were to be employed in a system that needed real-time
detection.

TABLE V
COMPACT BERT MODELS TIME ANALYSIS

Model Training Time | Test Time
BERT-Base 136ms 17ms
BERT-Medium 65ms 10ms
BERT-Small 40ms 7ms
BERT-Mini 29ms 7ms
BERT-Tiny 19ms 6ms

V. CONCLUSION

In this work we presented a new method for cyber-bullying
detection, which relied on the basis of transfer learning and
fine-tuning compact BERT models. We achieved better results
than previous work, without using any metadata. Moreover,
We demonstrated that our method is both fast and reliable,
which makes it very suitable for real-time detection of cyber-
bullying.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1813858. This research
was also supported by a generous gift from the Herman P. &
Sophia Taubman Foundation.

REFERENCES

[1] M. P. Hamm, A. S. Newton, A. Chisholm, J. Shulhan, A. Milne,
P. Sundar, H. Ennis, S. D. Scott, and L. Hartling, “Prevalence and effect
of cyberbullying on children and young people: A scoping review of
social media studies,” JAMA pediatrics, vol. 169, no. 8, pp. 770-777,
2015.

S. Salawu, Y. He, and J. Lumsden, “Approaches to automated detection
of cyberbullying: A survey,” IEEE Transactions on Affective Computing,
2017.

2

—

202

[3] I Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models,” arXiv
preprint arXiv:1908.08962v2, 2019.

M. Dadvar and F. De Jong, “Cyberbullying detection: a step toward a
safer internet yard,” in Proceedings of the 21st International Conference
on World Wide Web, 2012, pp. 121-126.

A. Kontostathis, K. Reynolds, A. Garron, and L. Edwards, “Detecting
cyberbullying: query terms and techniques,” in Proceedings of the 5th
annual acm web science conference, 2013, pp. 195-204.

P. Singh and S. Chand, “Pardeep at semeval-2019 task 6: Identifying and
categorizing offensive language in social media using deep learning,” in
Proceedings of the 13th International Workshop on Semantic Evaluation,
2019, pp. 727-734.

V. Golem, M. Karan, and J. gnajder, “Combining shallow and deep
learning for aggressive text detection,” in Proceedings of the First
Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018),
2018, pp. 188-198.

A. M. Founta, D. Chatzakou, N. Kourtellis, J. Blackburn, A. Vakali, and
I. Leontiadis, “A unified deep learning architecture for abuse detection,”
in Proceedings of the 10th ACM Conference on Web Science, 2019, pp.
105-114.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532-1543.

M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and
R. Kumar, “Semeval-2019 task 6: Identifying and categorizing offensive
language in social media (offenseval),” arXiv preprint arXiv:1903.08983,
2019.

P. Liu, W. Li, and L. Zou, “Nuli at semeval-2019 task 6: Transfer learn-
ing for offensive language detection using bidirectional transformers,” in
Proceedings of the 13th International Workshop on Semantic Evaluation,
2019, pp. 87-91.

P. Aggarwal, T. Horsmann, M. Wojatzki, and T. Zesch, “Ltl-ude at
semeval-2019 task 6: Bert and two-vote classification for categorizing
offensiveness,” in Proceedings of the 13th International Workshop on
Semantic Evaluation, 2019, pp. 678-682.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

A.-M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn,
G. Stringhini, A. Vakali, M. Sirivianos, and N. Kourtellis, “Large scale
crowdsourcing and characterization of twitter abusive behavior,” in 11th
International Conference on Web and Social Media, ICWSM 2018.
AAAI Press, 2018.

S. Srivastava, P. Khurana, and V. Tewari, “Identifying aggression and
toxicity in comments using capsule network,” in Proceedings of the
First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018),
2018, pp. 98-105.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980-2988.

L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” arXiv preprint arXiv:1902.09843,
2019.

[4]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2021 at 17:29:29 UTC from IEEE Xplore. Restrictions apply.

