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1. Introduction

Identifying and estimating signals in the presence of a large amount of noise is a challenging
problem in high-dimensional statistical inference. In the classic normal model setup, we
observe data for a p-dimensional multivariate normal variable X with an unknown mean
vector @, which contains non-zero components corresponding to signals and potentially
many zero components corresponding to noises. The coordinates of X are assumed to be
conditionally independent with a common unknown variance o2, that is,

X|6, o~N(@®,01,), (1)

where I, is the p x p identity matrix. The goal is to estimate the high-dimensional mean
vector # under the squared error loss L(#8, é) = ||§ — 02

The naive maximum likelihood estimator (MLE) éMLE = X performs poorly when
the parameter dimension is high and the mean vector # is sparse [1]. The frequentist
approaches for improving the MLE are usually based on penalized likelihoods. The estima-
tors, such as the ridge estimator [2,3], the lasso estimator [4] and the elastic net estimator
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[5], are derived as the minimizers of penalized likelihoods under various penalty functions.
Recent work often embeds local parameters as well as global parameters in the penalty
functions to better separate signals from noises. For example, the adaptive lasso method
proposed by Zou [6] uses different weights for penalizing the coefficients of different
coordinates.

Under the Bayesian framework, the penalized likelihood estimators can often be inter-
preted as the posterior modes of certain posterior distributions, and their penalty functions
are the negative logarithm of the corresponding priors. For example, the ridge estimator
can be viewed as the posterior mode (mean) under a conjugate normal prior, and the lasso
estimator can be viewed as the posterior mode under a double-exponential prior [4]. The
choice of prior distributions is critical in high-dimensional Bayesian analysis. A popu-
lar class of priors for inducing sparsity are the so-called ‘spike-and-slab’ priors [7]. They
consist of a point mass at 0 that provides substantial shrinkage for noises, and a (heavy-
tailed) continuous distribution that gives little shrinkage to large signals. Although such
a two-group model has conceptual and theoretical appeals, its computational complexity
is exponential in parameter dimension, and so the implementation on massive datasets is
usually impractical.

In the past decade, increasing attention has been drawn to continuous one-group priors
that feature a peak around zero and heavy tails on the two sides. These priors, while far
from exhaustive, include the Strawderman-Berger prior [8,9], the normal-Jeffreys prior
[10], the normal-exponential-gamma (NEG) prior [11], the normal-gamma (NG) prior
[12], the horseshoe (HS) prior [13], the three-parameter beta prior [14], the generalized
double Pareto (GDP) prior [15], the Dirichlet-Laplace prior [16] and the horseshoe+ prior
[17]. They often contain both global and local scale parameters. In these priors, the prior
variance of each coordinate is represented by the product of a global scale parameter, which
is common across all coordinates, and a local scale parameter, which is specific to that
coordinate. The shared global scale parameter represents the overall variation in @, and is
usually tied with the likelihood variance o2, while the local scale parameters allow better
separation of signals and noises through different shrinkage degrees for different coor-
dinates. These global and local scale parameters are assumed to follow another layer of
hyper-priors. The shape of a hyper-prior can have large impact on its shrinkage profile,
and is usually assumed to be a specific form based on certain assumption of the sparsity
levels or the signal sizes. These distributions are attractive for their computational tractabil-
ity and excellent empirical and theoretical properties when their sparsity assumptions are
satisfied [18,19]. However, when their sparsity assumptions are violated, they leave much
to be desired. For example, the Bayes estimator under the horseshoe prior closely attains
the oracle risk for highly sparse data, but its performances for non-sparsity scenarios leave
room for improvement [18].

The major thrust of this paper is to develop a new class of global-local priors, the
adaptive normal-hypergeometric-inverted-Beta (ANHIB) priors, which generalize several
popular shrinkage priors in the literature and retain the desirable theoretical properties.
These priors do not require prior knowledge of data sparsity levels and signal sizes, and thus
can be used as good default priors in a large variety of situations. We prove that the Bayes
estimator under the ANHIB priors provides strong suppression to noises and essentially
no shrinkage to large signals. Moreover, we demonstrate through simulation studies and
empirical analysis that the ANHIB estimator with the default configuration consistently
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provides superior estimation performance under various sparsity levels and signal sizes,
and substantially improves some common shrinkage estimators.

The rest of this paper is organized as follows: Section 2 describes the construction of
the ANHIB prior, shows the properties of its marginal density and compares its shrink-
age profile with some commonly used priors in the literature. Section 3 establishes the
theoretical properties of the Bayes estimator under the ANHIB prior. The empirical perfor-
mances of the ANHIB prior is evaluated and compared with other shrinkage priors through
simulation studies in Section 4. Its usage in wavelet de-noising and linear regression is fur-
ther demonstrated using an electrocardiogram data set and a prostate cancer data set in
Section 5. Finally, Section 6 concludes with discussions on the results and future work.

2. The adaptive normal-hypergeometric-inverted-beta priors
2.1. Construction of the adaptive normal-hypergeometric-inverted-Beta priors

Among the Bayesian approaches for estimating the mean of a high-dimensional normal
distribution, a very successful strand of methods is through using priors that are scale
mixtures of normals, that is, the probability density function p(®) is

p(®) = f N(@ 0,y G(dy?), )

where N(6 |0, ¥?) represents the normal density function with mean vector 0 and p x
p diagonal covariance matrix Diag(yﬁrz) = Diag(y&%, R 1,b§), and G(dy?) is the mixing
distribution. The choice of the mixing distribution G(d¥?) largely determines the shape of
p(8), especially the peak height at the origin and the tail heaviness at large values, and thus
the shrinkage profile of the corresponding Bayes estimator. Various forms of the mixing
distribution have been proposed in the literature (e.g. [8-13,15]).

To obtain accurate and robust signal estimation, we would like our prior distribution
p(#) to have the following three properties:

(1) Scale invariance. The prior p(#) is desired to incorporate the scale of the observations,
so that the Bayes estimator is invariant to measurement units;

(2) Flexibility. The prior p(#) is desired to have a flexible form. Also, it should contain local
parameters, so that it can provide strong shrinkage for noises and little shrinkage for
signals.

(3) Adaptivity. The shape of the prior p(#) is desired to be adaptive to a wide range of spar-
sity levels and signal sizes, so that the Bayes estimator can have robust performances
in various scenarios.

For achieving the scale invariance property, we follow the common practice and let
vi=0%? i=1,....p (3)

where o2 is the sampling variance of X; in (1) and A2’ are the local scale parameters. In
this way, the prior belief about 8 is calibrated by the scale of measurement of X. As o can be
regarded as a scale parameter, the distribution of A? plays an important role in determining
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Table 1. Priors for Af andk; = 1/(1 + lf} under several common scale mixtures
of normal priors.

Prior for 6, Density for Af Density for k;
Normal-HIB(a,b,T = 1,5 = 0) (AHET(1 + a2y~ k! a- x)*'-‘
Horseshoe (=211 422! 21— )~ :
Strawderman-Berger 1+ lf]_‘f' I(J_T

NEG(y, 8 = 1) (142D~ +D K
Double-exponential exp{—lf /2) x,_g exp[—(1 — &) /(2K)]

Note: The densities are given up to constants.

the shape of the probability density function p(6;). For example, when o = 1,

p(0;) = f mN(ef 10, A))p(A7) dAf.
0

Table 1 summarizes a collection of popular scale mixtures of normal priors. Note that
the mixing densities p(1?) in the horseshoe prior, the Strawderman-Berger prior and the
normal-exponential-gamma (NEG) priors have a common form Af(b_ll (1 4+ 22)~@D for
some constants a and b. They can be encompassed by the hypergeometric inverted-Beta
distribution HIB(a, b, T, s) with the density

-1
2y _ 1y 2061 2—ath) o S 1 _1y
pO2) = CLOHP 1+ 22) eXp[ 1+A§]Ir2+(1 )1“2 (@)

where a, b, T > 0 and s € R. The normalizing constant C can be expressed as
C = exp(—s)Beta(a, b)®,(b,1,a + b,s,1 — 1/1%),

where Beta(a, b) is the beta function and @ is the degenerate hypergeometric function of
two variables [20, 9.261], that is,

D (a,B,y,x,y) = Z Z (a)m-l—n(ﬁ)n

! |
=0 1—0 (¥)mynmlin!

where (c), is the rising factorial. The hypergeometric inverted-Beta distribution
HIB(a, b, t,5) is also known as Pearson’s Type VI distribution, and is contained in the
class of compound confluent hypergeometric distributions [21]. Whent = 1ands = 0, it
reduces to an inverted-Beta distribution. In addition, as both a and b approach 0, this prior
converges to the Jeffreys prior. The normal scale mixtures with HIB(a, b, 7, s) as mixing
distribution can be called the normal-hypergeometric-inverted-Beta prior.

Polson and Scott [22,23] studied the effects of the four hyper-parameters a, b, T and s on
p(#) in details. The parameters a and b control the shape of the distribution. Smaller values
of a encourage heavier tails of p(#), and smaller values of b encourage p(#) to place more
prior mass around the origin. Specifically, a = 1/2 leads to p(#) with Cauchy-like tails, and
b < 1/2 leads to p(8) with an unbounded peak at the origin. Figure 1 shows the effects of a
and b on the shape of p(1%) and p(6) when T = 1ands = 0. The upper two panels illustrate
the role of a when b is fixed at 2. Smaller values of a yield less mass of p(1?) near the origin,
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Figure 1. Effects of a and b on p(A?) and p(#) with T = 1 and s = 0. The upper two compare p(1?)
and p(#) at tails when b is fixed and a varies. The lower two compare p(12) and p(#) around the origin
when a is fixed and b varies.

which encourages heavier tails of p(8). The bottom two panels present the role of b when
a is fixed at 2. Smaller values of b encourage more mass of p(1%) near the origin, which
leads to more prior mass of p(#) around the origin. The parameters T and s are global scale
parameters. As discussed in [22,23], it is hard to separate their roles, because similar global
shrinkage behaviours can be obtained through tuning either t or s.

We consider constructing a class of flexible and adaptive priors based on the hyperge-
ometric inverted-Beta distribution (4). Without sacrificing much flexibility, we set s = 0
and adopt the hypergeometric inverted-Beta distributions with 7 as the only global scale
parameter. To allow the shape of the prior p(f) to be adaptive to various sparsity levels
and signal sizes in the data, we place another layer of priors on these hyper-parameters
in HIB(a, b, 7, 0). Ideally, these hyper-priors should reflect our belief about the data spar-
sity and signal sizes. Under the likelihood function (1) and the scale mixtures of normal
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prior (2), the posterior mean of 6; is

1
E@; | Xi) = (1 —E ( T2 Xi)) Xi= (1 — E(xi| Xi)Xi,

i

and thusk; = 1/(1 + l%)’s can be viewed as the shrinkage coefficients. It is desirable to have
large «; values for noises and little x; for signals. When 12 ~ HIB(a, b, 7, 0), the implied
density for k; takes the form

a—1 b—1 1 1 -
pli) ok (L — ki) t_g—l_ l_ﬁ Kit >

and as 72 = 1, this is reduced to a Beta(a, b) distribution with mean a/(a + b) and variance
ab/(a + b)*(a + b+ 1). The existing priors such as the horseshoe prior and the Straw-
derman-Berger prior with the HIB distribution as mixing distribution have fixed a and
b values, which determine fixed shrinkage profiles of the prior, so that the corresponding
Bayesian estimators have good performance for certain sparsity levels and signal sizes. To
make the prior adaptive to various sparsity levels and signal sizes, instead of choosing fixed
values for a and b, we let them be estimated from the data by placing hyper-priors on a and
b. The roles of a and b can be better reflected through the transformation form M = a+ b
and N = a/(a + b). The parameter N reflects the mean of the shrinkage coefficients ;.
The more sparse the data is, the larger N should be to provide substantial shrinkage to the
dominating noises; on the other hand, the less sparse the data is, the smaller N should be
to provide little shrinkage to the signals. The parameter M helps to control the variance of
the shrinkage coefficients ;’s, and thus the separation of the Bayes estimators for different
coordinates. We assume

M = a + b ~ Gamma(ay, by),

a
N= m ~ Beta(ao, ,BD): (5)

where ag, by, ag and By are pre-specified constants. Finally, to complete the prior specifi-
cation, we follow the suggestion from [24] and use the following priors for the sampling
variance o2 and the global scale parameter t

1
P(Uz) & Pl
T~ C"(0,1), (6)

where CT represents a half-Cauchy distribution. We call the class of hierarchical prior
defined jointly by (2), (3), (4), (5) and (6) the adaptive normal-hypergeometric-inverted-
Beta (ANHIB) prior and denote it by ANHIB(ay, by, e, Bp)-

Under the ANHIB prior, the marginal density of 8; is symmetric and has the peak at 0.
Since the hyper-prior (5) places positive prior mass on b < 1/2, this peak is unbounded,
which allows strong shrinkage for small noises close to 0. Moreover, the hyper-prior (5)
also places positive prior mass on small a values, which leads to heavy tails at large 8 values
and provides little shrinkage for large signals.
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For the default values of the hyper-parameters ap, by, ap and By, to allow for reason-
able shrinkage profiles, noting that most of the common priors in Table 1 have M values
between 1/2 and 3/2, and therefore we recommend using ap = by = 20 as the default val-
ues, so that most of the prior mass for M falls in that range. Also, when there is no strong
information about the data sparsity a priori, we use oy = By = 1, which indicates that N
follows a uniform distribution between 0 and 1.

2.2. Marginal density and shrinkage profile

As many of scale mixtures of normal priors, our ANHIB prior does not have a closed
form representation for the marginal density. However, we can provide tight bounds for
the density function through the following theorem.

Theorem 2.1: Assume 0> = 1> = 1. Then the marginal density of the ANHIB prior
panuiB(f) satisfies:

(1) Foro #0,

4 C
C;log (1 + ?) < panuIB(f) < |?1| (7)

where C1 = [ [ C(a,b)d7n(a,b), C; = (1/2v/27) * [\12 [/2 C(a, b) dn(a, b),
C(a,b) = Beta(a,b)®1(b,1,a + b,0,0) and 7 (a, b) is the joint distribution of a and b.

(2) As6 — 0, for any constant 0 < §p < 1/2,

panuis(8) > C3|01%°~! + 0(1) — oo, (8)

where C3 = 270T(1/2 — 80) //7 * [y [, C(a, b) dre(a, b).

Proof: See Section A.1 in the Appendix. [

Remark: For comparison, recall that the marginal density of the horseshoe prior satisfies

the bounds

K 4 2

Elog (1 + ﬁ) < pus(@) < Klog (1 + 9—2) ,
where K = 1/(2m>)/2. Theorem 2.1 reveals our ANHIB prior decreases at a compara-
ble rate as the horseshoe prior at the tails, while goes to infinity at a faster rate than the
horseshoe prior as & — 0. This is because in the construction of the ANHIB prior, a posi-
tive probability is placed on the hyper-parameter values b < 1/2, which encourages more
prior mass around the origin. Therefore, the ANHIB prior implies that it could provide
more suppression for noises.

To visually compare the priors for all # values, we approximate them using a Monte Carlo
method that averages the normal priors on 6; given a set of k; values, which are sampled
from the corresponding hyper priors.

The upper left panel of Figure 2 illustrates the central parts of the marginal priors of
6;’s under ANHIB(20, 20, 1, 1) and the priors listed in Table 1 with 6> = 1, and the upper
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Figure 2. Comparison of the densities p(#) and p(x) in the one-dimensional case under the
ANHIB(20, 20, 1, 1) prior, the horseshoe prior, the Strawderman—Berger prior, the NEG(1/4,1) prior, the
NEG(3/4,1) prior and the double-exponential prior. The upper left panel compares the densities of 6
around 0, the upper right panel compares the densities of & at tails, and the bottom panel compares the
densities of k.

right panel shows the tails of the marginal priors. It can be easily seen that the marginal
prior densities of ;s under ANHIB(20, 20,1, 1) and horseshoe have unbounded peaks
at the origin, while those under Strawderman-Berger, normal-exponential-gamma(1/4,
1), normal-exponential-gamma(3/4, 1) and double-exponential are bounded. Also, the
marginal prior densities under ANHIB(20,20,1,1), horseshoe, Strawderman-Berger,
normal-exponential-gamma(1/4, 1) and normal-exponential-gamma(3/4, 1) all have
heavy tails. In particular, it is worth noting that ANHIB(20, 20, 1, 1) places more prior
mass than horseshoe in a small neighbourhood around the origin and has heavier tails.
This suggests that the ANHIB(20, 20, 1, 1) prior favours the case where the signals and the
noises are separated. It is consistent with our simulation results in Section 4.

The bottom panel of Figure 2 illustrates the shrinkage profiles under these pri-
ors through the densities of «;’s. Those under ANHIB(20, 20, 1, 1) and horseshoe have
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unbounded peaks near 1, allowing strong shrinkage for noises close to 0, while those
under Strawderman-Berger, normal-exponential-gamma(1/4, 1), normal-exponential-
gamma(3/4, 1) and double-exponential tend to have fixed constants around 1 and thus
limit the shrinkage power. The heavy-tailed priors, including the ANHIB(20, 20,1, 1),
horseshoe, normal-exponential-gamma(1/4, 1), normal-exponential-gamma(3/4, 1) and
Strawderman-Berger have unbounded peaks near k; = 0, which provides essentially no
shrinkage to large signals. Furthermore, the double-exponential prior has vanishing
prior mass around ; = 0 that can lead to biased estimates of signals. Note that the
ANHIB(20, 20, 1, 1) prior has higher peaks near x; = 0 and 1 compared to the horseshoe
prior, reflecting the higher peak at ; = 0 and heavier tails at large 6; values, and still leaves
sizable mass in other regions.

3. Theoretical properties of the Bayes estimator under the ANHIB prior

In this section, we investigate the theoretical properties of the Bayes estimator under the
ANHIB prior. We show that its Kullback-Leibler risk is bounded and converges to 0 as the
sample size grows. In particular, it converges to the true distribution at a super-efficient
rate at the origin, while provides little shrinkage for large signals.

3.1. Kullback-Leibler risk bounds

We study the risk of the Bayes estimator under the ANHIB prior measured by the Kull-
back-Leibler divergence. Let fy = f(x | #) be a sampling model of X with parameter 6, and

let f,, be the Bayes estimator of fg, based on a sample of size n, that is,ﬁ, = [ forra(d0 | X),
where 1,,(df | X) is the posterior distribution. The estimation performance of the Bayes
estimator is measured by the Cesaro-average risk

Ry(00) = n~" Y L{faps fj)s
j=1

where 6 is the true value of the parameter and L(fy,, f}) = Ef, log(fa /}?) is the Kull-

back-Leibler divergence of f} from fy,.
The following result from [25] provides a useful upper bound for the Cesaro-average
risk of a Bayes estimator.

Lemma 3.1 ([25]): Let A, = {6 : L(fg.fp) < €} C R denote the Kullback-Leibler infor-
mation neighbourhood of size &, centred at 6y and assume that the prior probability of this
neighbourhood v(A,) > 0 foralle > 0. Then the Cesaro-average risk of the Bayesian density

estimator fn is bounded by
Rn(60) < € —n"log v(Ac),
foralle > 0.

By this lemma, the larger the prior probability v(A,) is, the smaller the Cesaro-average
risk bound would be. The next theorem establishes the Cesaro-average risk bound of the
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Bayesian density estimator under the ANHIB prior at any 6 value where the prior p(6p) is
bounded, that is, at 6y # 0.

Theorem 3.2: Suppose that the true sampling model fy, is X ~ N(6o,0?%). At any 6p value
where the prior p(6p) is bounded in a neighbourhood, the Cesaro-average risk of the Bayesian
density estimator under the ANHIB prior satisfies

logn 1
Ry, anniB(fo) < g +0 (—) .
2n n

Proof: See Section A.2 in the Appendix. |

3.2. Super-efficiency for sparsity

When the true parameter value 6, = 0, according to Lemma 3.1, the unbounded density
around 0 under the ANHIB prior induces large prior probabilities in the neighbourhoods
Ag. Therefore, as shown in the next theorem, the corresponding Bayes estimator has a
super-efficient rate of convergence and yields more shrinkage power at the origin.

Theorem 3.3: Suppose that the true sampling model f, is X ~ N(6,0?2). At 6y = 0, the
Cesaro-average risk of the Bayesian density estimator under the ANHIB prior satisfies

dologn 1
Ry, anmB(0) < 0 ng +0 (;) , 9)

for any constant 0 < §y < 1/2.
Proof: See Section A.3 in the Appendix. [

The above result shows that at the origin, the Bayes estimator under the ANHIB prior
has the Cesaro-average risk converging to 0 at a faster rate than that of the MLE, which has
the rate O(n~! log 1), and so is super-efficient in this sense. Moreover, Carvalho et al. [13]

showed that the horseshoe estimator is also super-efficient at the origin with the following
risk bound:

logn loglogn 1
R 0) < - 0O .
nis(0) < 2n + n
Comparing this bound with (9) suggests that as n — 00, the bound for the ANHIB

estimator is smaller for 0 < §p < 1/2, which is due to its higher concentration around 0.

3.3. Robustness to large signals

In the presence of large signals, that is, when the observations would be very different from
the prior mean, it is important that the prior has bounded influence on these estimates, so
that the signals are not over-shrunk by the prior.
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Let p(]X — 6]) be the standard normal density and p() be a zero-mean scale mixture
of normals with a proper mixing distribution, the posterior mean of 6 can be represented

by

d
E@|x) =x+ alog m(x),

where m(x) is the marginal density of X [13]. Therefore, the shrinkage of the Bayes esti-
mator is controlled by the derivative of the log marginal likelihood. By Theorem 2.1, the
ANHIB prior has polynomially heavy tails. The next result shows that its posterior mean
achieves asymptotic tail robustness, in the sense that the impact of the prior vanishes as
the observations go to infinity.

Theorem 3.4: Assume that X ~ N(0,1) and 6 ~ ANHIB(ag, b, &0, o). Then the
marginal density of X satisfies limy|— o dlog manus(x)/ dx = 0, where mannis(x) is the
marginal likelihood of X under the ANHIB prior. Therefore, the Bayes estimator

Oants = Eanuis(6 | x) — x,  as|x] — oo.
Proof: See Section A.4 in the Appendix. [

There are two more remarks for the above theorem. First, Carvalho et al. [13] provided
similar tail robustness results for the horseshoe estimator. However, their results were based
on a fixed scale parameter t. But in Theorem 3.4, t is integrated out, as well as the hyper-
parameters a and b, in the marginal density. Second, the above theorem is not restricted
to the ANHIB prior. In fact, the proof holds for all priors with a hypergeometric inverted-
Beta distribution on # and a hyper prior on (a, b, 7) such that the marginal density m(x)
and its derivative are finite.

4. Simulation studies

To investigate the risk properties of the Bayes estimator under the ANHIB prior, we con-
duct simulation studies with a wide variety of sparsity levels and signal sizes. We consider
the maximum likelihood estimator (MLE) as well as the Bayesian estimators under the
following common priors:

e The ANHIB prior defined jointly by (2)-(6) with M ~ Gamma(20,20) and N ~
Beta(1,1) (ANHIB(20, 20, 1, 1));

The Horseshoe (HS) prior;

The Strawderman-Berger (SB) prior;

The Normal-Exponential-Gamma(y = 1/4,8 = 1) prior (NEG(1/4,1));

The Normal-Exponential-Gamma(y = 3/4,8 = 1) prior (NEG(3/4,1)); and

The Double-Exponential (DE) prior.

As mentioned in Section 2.1, this ANHIB(20, 20, 1, 1) prior is a good default choice
because its hyper-prior on M places most of the mass between 1/2 and 3/2, which is the
range of M values in most common priors, and its hyper-prior on N is a noninforma-
tive uniform distribution between 0 and 1. Also note that the SB prior can be viewed
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as a Normal-Exponential-Gamma prior NEG(y = 1/2,8 = 1). In general the smaller the
parameter y is, the flatter the NEG prior is. All the above priors include a scale variance
o? in the normal kernels.

For each scenario, we generate 100 replicates of samples and run MCMC for 20,000 iter-
ations with a burn-in of the first 10,000 iterations. Then we calculate the posterior means
and report the averages and standard errors of the sum of squared error (SSE)

P
SSE=) (6; — 6’

i=1

over the 100 data sets.

We first investigate performances of these estimators across various combinations of
sparsity levels and signal sizes. The observations X are generated from a normal distribu-
tion N1go(#, L100). To reflect different sparsity levels, we set the proportion of signals in #
to be g = 5%, 10% and 20%, respectively. Moreover, following the simulation setting in
[16,17], we assume that all the non-zero signals are of the same size, which is set to be 2, 5
and 8, respectively, reflecting small, medium and large signals. These fixed signal sizes help
to verify the theoretical results in Section 3. The super-efficiency property in Section 3.2 can
be verified by the simulation analysis at small signal sizes (e.g. 2), and the tail-robustness
property in Section 3.3 can be verified by the simulation analysis at large signal sizes (e.g.
8). The averaged SSEs of the estimates and their standard errors are reported in Table 2. The
best methods (accounting for the standard errors) are highlighted in bold. Our simulation
results suggest:

(1) For sparse data with g = 5% or 10%, no matter how large the signal sizes are, the
Bayesian estimates under the ANHIB and horseshoe priors perform the best, because
they provide the most suppression of noises.

(2) For non-sparse data with g = 20%:

e When the signal sizes are small, the observations of signals and noises are mixed.
The double-exponential prior, which places the most prior mass at small non-zero
values, has the smallest SSEs, but the ANHIB prior still yields much smaller SSEs
than the NEG(1/4, 1) prior and the MLE;

e When the signal sizes are medium or large, the double-exponential prior tends
to over-shrink the large signals and thus yields inferior estimation performance,
while the ANHIB prior yields the lowest SSEs (accounting for the standard errors).
Furthermore, it is worth noting that the ANHIB estimator also outperforms the
horseshoe estimator in these scenarios. In particular, when g = 20% and the signal
size is 8, it could reduce the SSE of the horseshoe estimator by as much as 22%!

The theoretical properties in Section 3 suggest that the ANHIB estimator is super-
efficient at suppressing noises and robust for large signals. Therefore, at small signal sizes
(e.g. 2) and high sparsity levels (5-10%), a large number of noises are effectively suppressed
while the shrinkage of small signals does not incur large errors. The small SSEs of the
ANHIB estimator in these situations help to verify that it effectively suppresses the noises
around 0. Similarly, at large signal sizes (e.g. 8) and medium sparsity levels (10-20%), the
large signals are robustly identified and estimated, while the noises are separated from the
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Table 2. Average SSEs and their standard errors of the MLEs and Bayesian estimates under the ANHIB,
HS, SB, NEG(1/4, 1), NEG(3/4, 1) and DE priors with various sparsity levels and signal sizes.

Signal size Small (2) Medium (5) Large (8)
Signal percentage 5% 10% 20% 5% 10% 20% 5% 10% 20%
ANHIB 16.49 30.64 64.14 23.14 36.00 55.31 21.49 31.40 51.15
032 0.49 0.88 0.86 0.90 1.05 1.01 0.97 1.28
HS 16.30 29.85 61.87 23.03 36.75 59.09 22,59 36.91 65.73
0.34 049 0.71 0.85 0.90 1.09 0.99 0.98 1.19
SB 65.93 66.96 68.00 67.05 64.79 63.12 68.14 64.11 63.95
0.98 0.96 0.99 0.98 0.98 0.97 1.1 0.96 1.01
NEG(1/4,1) 83.33 84.27 84.20 85.15 82.99 80.38 86.92 83.08 82.46
1.15 1.1 117 1.14 1.18 1.15 1.33 1.22 1.24
NEG(3/4,1) 5269 54.16 57.09 53.18 51.50 53.36 53.71 50.20 51.59
0.83 0.83 0.87 0.84 0.84 0.93 0.95 0.79 0.91
DE 39.60 44.82 50.98 70.73 79.52 83.96 83.97 87.84 91.28
117 1.06 091 1.18 1.08 1.10 1.25 1.22 1.31
MLE 98.73 99.54 99.53 100.98 99.16 97.12 102.82 99.96 99.86
1.29 1.21 1.39 1.27 1.38 1.40 152 1.49 1.48

Notes: The data are generated from Nqgg(@, l1gp). where all the non-zero signals are set to be of the same size. For each
estimator, we use 100 replicates of samples. The upper row reports the averaged S5Es and the lower row reports their
standard errors. The lowest SS5Es (accounting for the standard errors) for each scenario are highlighted in bold.

signals and shrunk to zero by small local scale parameters. The superior performance of
the ANHIB estimator with small SSEs in these situations also helps to verify that it pro-
vides robust estimation to the large signals with little shrinkage. On the other hand, when
the signals are medium-sized (e.g. 5), the observations of the signals and noises tend to be
mixed together. It is not as easy to distinguish the signals from noises as in the large signal
situation, and the costs of over-shrinking the signals are not as negligible as in the small
signal situation. Therefore, the relatively large SSEs at medium signals are consistent with
the theoretical properties of the ANHIB estimator.

The Bayesian estimates under the three NEG(y, 1) priors (including the Strawderman-
Berger prior as a special case) have quite stable SSEs across various configurations of
sparsity levels and signal sizes, and the performance improves as the shape parameter y
increases, which is consistent with the results in [13].

Next, we study the performance of the ANHIB estimator, compared with those of the
competing Bayesian estimators and the MLE, in very high dimensional setups. Following
the simulation setup of [16], we generate the observations X from Ny (8, I1000), where
the mean @ has 900 components set to be 0, 10 components set to be 10, and 90 compo-
nents set to be a constant A. That is, the signal percentage is 10%. We let the constant A
vary from 2 to 7, representing a range of signal sizes. Table 3 summarizes the averaged
squared error losses and their standard errors of the estimates in this study. The best meth-
ods (accounting for the standard errors) are highlighted in bold. It is clear that the ANHIB
and the horseshoe estimators provide substantially smaller risks than the other estima-
tors in all considered scenarios. Furthermore, the ANHIB estimator is even better than the
horseshoe estimator when the signal sizes are large (i.e. A = 6, 7), which is evidence of its
adaptivity. As explained for Table 2, when A is small (e.g. 2), the SSEs of the ANHIB estima-
tor are small because of its super-efficiency property; when A is large (e.g. 6, 7), the SSEs of
the ANHIB estimator are small because of its tail-robustness property; when A is medium
(e.g. 3-5), the SSEs are relatively large, which is due to mixing of the observations at the
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Table 3. Average SSEs and their standard errors of the competing Bayesian estimators and the MLE in
very high-dimensional setups.

A 2 3 4 5 6 7
ANHIB 265.86 351.07 393.86 338.72 293.90 258.38
1.71 2.95 5.04 4.84 545 5.67
HS 276.30 345.05 334.69 355.48 368.88 356.48
1.50 348 277 3.30 3.39 3.34
SB 671.54 673.20 661.52 661.21 660.92 643.73
3.58 3.27 3.38 3.27 3.03 299
NEG(1/4,1) 845.11 851.20 842.32 845.77 845.25 827.30
431 3.85 4.07 3.94 3.56 3.54
NEG(3/4,1) 541.94 544.89 530.77 525.79 523.69 506.44
295 2.83 2.83 2.80 252 2.56
DE 694.43 828.57 907.35 954.57 968.26 957.76
715 6.55 5.96 4.95 4.33 3.90
MLE 994.60 1007.61 998.76 1004.45 1003.93 984.79
4381 4.40 441 457 3.98 3.96

Notes: The data are generated from N1gpo (, l1000), where the mean 8 has 900 components set to be 0, 10 components set to
be 10, and 90 components set to be a constant A. The averages are over 100 replicates. For each estimator, the upper row
reports the averaged SSEs and the lower row reports their standard errors. The lowest SSEs (accounting for the standard
errors) for each scenario are highlighted in bold.

signals and noises. Similar patterns have been found in [16], where the Dirichlet-Laplace
priors also yield larger SSEs when A = 3, 4.

Lastly, we conducted simulations where the signals of # are randomly drawn from a
heavy-tailed Student’s ¢-distribution with 3 degrees of freedom and scale parameter ¢, and
then the observations X are generated from a normal distribution N1gg(@, I100). Six config-
urations are investigated with various signal percentages (g = 5%, 10% and 20%) and scale
parameters (¢ = 3, 6). Table 4 summarizes the averaged squared error losses and their stan-
dard errors of the estimates in this study. The best methods (accounting for the standard
errors) are highlighted in bold. It can be seen that the ANHIB and the horseshoe estimators

Table 4. Average SSEs and their standard errors of the MLEs and Bayesian estimates under the ANHIB,
HS, SB, NEG(1/4, 1), NEG(3/4, 1) and DE priors with various sparsity levels and signal sizes.

Scale parameter 3 6
Signal percentage 5% 10% 20% 5% 10% 209
ANHIB 13.72 2390 3955 15.55 27.22 46.22
0.67 0.81 0.91 0.71 0.80 1.18
HS 13.62 23.83 39.85 15.76 28.28 4974
0.66 0.81 0.94 0.73 081 1.25
SB 65.22 66.18 66.37 66.40 66.10 66.31
1.02 0.98 1.17 1.05 1.04 1.07
NEG(1/4,1) 83.26 83.80 83.69 85.08 84.64 84.61
1.25 1.16 1.37 1.32 1.28 1.27
NEG(3/4,1) 51.42 52.85 54.10 52.34 52.28 54.24
0.85 0.83 1.02 0.86 0.85 0.94
DE 54.63 68.43 79.66 68.56 83.73 91.65
1.88 1.34 1.36 1.81 133 1.31
MLE 98.90 99.44 99.12 101.10 100.78 102.39
147 1.34 1.55 1.53 1.44 1.50

Notes: The data are generated from Nygg(#, l1go), where all the non-zero signals are randomly drawn from a Student’s t-
distribution with 3 degrees of freedom. For each estimator, we use 100 replicates of samples. The upper row reports the
averaged 5S5Es and the lower row reports their standard errors. The lowest SSEs (accounting for the standard errors) for
each scenario are highlighted in bold.
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provide substantially smaller risks than the other estimators in all considered scenarios.
Furthermore, the ANHIB estimator is better than the horseshoe estimator when the scale
parameter ¢ = 6 and signal percentage g = 20%, because there are a considerable number
of large signals and the ANHIB estimator is more robust to large signals due to the heavier
tails in the prior. These results are consistent with those in Tables 2 and 3.

In summary, the ANHIB estimator consistently provides accurate estimation across var-
ious sparsity levels and signal sizes. In particular, it substantially improves many common
Bayesian shrinkage estimators when the sparsity level is high (e.g. 5% and 10% non-zero
signals), or the signal size is reasonably large (e.g. > 6).

5. Applications

In this section, we demonstrate the usage of the ANHIB prior in wavelet de-noising as
well as in linear regression. The essential model setup for the wavelet de-noising case is
equivalent to the normal model (1), while the inference of the regularized linear regression
model is an extension of the normal mean estimation problem.

5.1. Wavelet de-noising

We first demonstrate the usage of the ANHIB prior in wavelet de-noising through the anal-
ysis of an electrocardiogram data set, which is available in the R package wavelets. It
is a time series object of electrocardiogram measurements for an individual with arhyth-
mia. Observations were made over an 11.37 second interval at a rate of 180 samples per
second. There are in total 2, 048 millivolt readings. For more details of the data, see [26].
Polson and Scott [22,27] analysed the first 256 readings, which have been re-scaled to have
a mean of zero. The standard deviation of the readings is approximately 0.2. Figure 3 shows
the 256 millivolt readings against time. Only few absolute values of the data exceed 0.4 (two
standard deviations of the data), which indicates that the data is highly sparse.

Following the framework in [22,27], we regard these data points as the ‘true’ function f
sampled at equi-spaced intervals, and simulate noisy observations of f via y; = f; + €;,¢; ~
N(0,0%) fori=1,...,256. We construct 100 simulated data sets each for three different
noise levels: 0 = 0.1, 0 = 0.2 and o = 0.4. These three different ¢’s reflect low, medium
and high noise level, respectively. Then both the true values f;’s and the observations y;’s
are re-scaled as in [27]. In our case, the scaling factor is 3. For convenience, we keep the
notation f; and y; for the re-scaled data in the following.

The discrete wavelet transform (DWT) of the ECG data f;’s and the noisy observations
yi's yields Bjx’s and dj;’s, where Bjx and dji represents the kth coefficient of the DWT at
resolution level j of the true vales f;’s and noisy observations y;s, respectively. Following the
practice in [28], we assume the model for the data in the wavelet domain is dj = Bj + vjx.
where vji’s are independent and identically distributed normal noises. We place shrinkage
priors on Bjk, and obtain the posterior mean estimate ﬁjk of Bjx. Then we can also get the
estimates f; of f; through the inverse discrete wavelet transform (IDWT) of the estimated
coefficients ,B}k's.

Our goal is to assess the performance of the ANHIB estimator against the other shrink-
age estimators and the DWT method. Performance is evaluated by the sum of squared error
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Figure 3. The 256 electrocardiogram readings against time.

Table 5. Average SSEs and their standard errors for the wavelet-denoising experiment under three
different noise levels among different methods.

ANHIB HS SB NEG(1/4,1) NEG(3/4,1) DE DWT
o = 0.1 7.78 7.64 15.06 18.93 12.28 18.44 2240
0.1 0.Mm 0.14 017 0.12 0.20 0.19
o=02 20.22 20.08 59.83 75.53 48.03 52.59 89.03
0.34 0.35 0.58 0.67 0.51 0.83 0.75
o =04 48.79 49.08 240.36 304.75 190.72 120.75 358.89
0.95 0.98 2.20 2.78 1.77 314 3.30

Notes: The upper row reports the averaged SSEs and the lower row reports their standard errors. The lowest SSEs
(accounting for the standard errors) for each scenario are highlighted in bold.

(SSE) in the data domain: SSE = 3228 (f; — f;)2. Table 5 shows the averages and standard
errors of the SSEs over the 100 data sets under three different noise levels among different
methods. These results are consistent with those of the highly sparse cases in Section 4. We
can see that the ANHIB estimator and the HS estimator outperform the others in all these
settings. The SSE of the ANHIB estimator is slightly smaller than that of the HS estimator
when the noise level is high. In the high noise level scenario, the observations tend to have
large values, and the ANHIB estimator provides little shrinkage to large observations of

the signals.

5.2. Linear regression

We further demonstrate the usage of the ANHIB prior in linear regression through
the analysis of a prostate cancer data set, which is available in the R package
ElemStatLearn. It has been investigated by Stamey et al. [29], Zou and Hastie [5] and Li
and Lin [30]. The response variable of interest is lpsa (prostate specific antigen), and there
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Figure 4. The comparisons of the ANHIB estimator (+), the HS estimator (L), the SB estimator (°), the
NEG(1/4,1) estimator (o), the NEG(3/4,1) estimator (\/), the DE estimator (/\), the LASSO estimator (&),
and the OLS estimator () for the prostate cancer data. The horizontal axis represents the coefficients
and the vertical axis represents the variable number.

are 8 predictors of clinical measures - lcavol (log of the cancer volume), lweight (log of the
prostate weight), age, lbph (log of the benign prostatic hyperplasia amount), svi (seminal
vesicle invasion), Icp (log of the capsular penetration), gleason (Gleason score) and pgg45
(percentage Gleason scores 4 or 5). In total, we have 97 observations.

Following the practice in [5,30], we divide the data into a training set with 67 obser-
vations and a test set with 30 observations. Seven estimators are calculated based on the
training set — the Bayesian estimates under the ANHIB, HS, SB, NEG(1/4,1), NEG(3/4,1)
priors, as well as the LASSO and OLS estimates.

The coefficient estimates for the eight predictors are plotted in Figure 4. These estimates
range between —0.3 and 0.7. The OLS estimates are always the furthest from 0, while the
LASSO estimates are exactly 0 for three coefficients, and the Bayesian estimates have mag-
nitudes between the OLS and LASSO ones. The ANHIB and the horseshoe estimates are
very close for most of the coefficients.

Table 6 details the values of the coefficient estimates and uses * to mark those sig-
nificantly different from 0 based on the 95% posterior credible intervals. The results
suggest that only two predictors, lcavol and Iweight, are significant under the ANHIB
and horseshoe priors, while more are significant under the other methods. Further-
more, the table reports the predictive mean squared errors (PMSEs) under these
models over the 30 test observations. The Bayesian models under the ANHIB and
horseshoe priors and the LASSO model provide substantially smaller PMSEs than
the other methods, which is a consequence of their shrinkage of the coefficient
estimates.
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Table 6. The coefficient estimates and PMSEs under different methods for the prostate cancer data
based on a linear regression model.

ANHIB HS SB NEG(1/4,1) NEG(3/4,1) DE LASSO 0oLs
intercept 2470 2470 2.467 2.465 2468 2467 2464 2465
Icavol 0.632% 0.630* 0.653* 0.658* 0.647* 0.638* 0.550* 0.680
Iweight 0.234% 0.238* 0.256% 0.259* 0.257% 0.255% 0.220% 0.263
age —0.046 —0.056 —0.120 —0.124 —0.116 011 0.000 —0.141
Ibph 0.140 0.149 0.198% 0.200* 0.195% 0.192 0.141% 0.210
svi 0.188 0.204 0.282% 0.285* 0.277* 0.272* 0.197% 0.305
lcp —0.066 —0.087 —0.225 —0.236 —0.21 —0.196 0.000 —0.288
gleason 0.012 0.013 —0.005 —0.007 —0.002 —0.001 0.000 —0.021
pgg45 0.102 0.120 0.223 0.230 0.214 0.208 0.086% 0.267
PMSE 0.452 0.457 0.499 0.503 0.495 0.491 0.459 0.521

6. Discussion

Bayesian regularization methods provide powerful tools for high dimensional estimation
in sparsity settings. However, many shrinkage priors are based on certain assumptions of
sparsity levels, which could be hard to verify in practice. Violation of these assumptions
might lead to unsatisfactory estimation performances. The major thrust of this paper is to
propose a class of adaptive normal-hypergeometric-inverted-Beta (ANHIB) priors, which
include many common shrinkage priors as special cases and provide accurate and robust
estimation under various sparsity levels and signal sizes.

We establish the super-efficiency and tail-robustness properties of the Bayes esti-
mator under the ANHIB priors, and recommend using the ANHIB prior with M ~
Gamma(20,20) and N ~ Beta(1, 1) asa default choice. Through extensive simulation stud-
ies, we show that this ANHIB estimator substantially improves many common Bayesian
shrinkage estimators when the sparsity level is high or the signal size is reasonably large.

The implications of this work will extend beyond the normal mean estimation prob-
lem. For example, as shown in the real data analysis in Section 5, the ANHIB priors can
be readily applied to linear regression models, or even nonparametric regression models
in the future. Datta and Ghosh [18] and Ghosh et al. [31] proposed asymptotically optimal
hypothesis testing rules under sparsity for multivariate normal means with the horseshoe
prior or the generalized double Pareto priors. Similar thresholding rules can be developed
for the ANHIB priors to shrink small coefficient estimates to 0, and will be particularly
useful for variable selection in regression models to produce robust and parsimonious
models.
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Appendix. Proofs of the main theorems

In this Appendix, we provide the proofs of the main theorems in the paper.

A.1 Proofof Theorem 1

The ANHIB prior is a scale mixture of normals. Conditional on the variance 22, the distribution of
6 has the density

©12%) : o

=————exp| ——|.
P amn 2 TP\ T2
With s = 0 and 72 = 1, the prior of A can be represented by

p(2a,b) = Cla, b)) 011 (1 + 21 ~6+D),

where the normalizing constant C(a, b) = Beta(a, b)®;(b, 1,a + b,0,0) and @, is the degenerate
hypergeometric function of two variables [20, 9.261]. The hyper-parameters

a,b ~ m(a,b),

where 7 (a, b) can be obtained from the representation (5) through re-parameterization. Therefore,
the marginal density of 8 is

(o8] o0 o8]
pANHIB(0) = f f @ | 3H)p(A? | a,b) dA? dr (a, b)
a=0 Jb=0 J32=0

1 Rl 2.b-3 2, —(a+b) 6* 2
= _231 j‘;zoﬁzoﬁi’:u Cla,b)(A)" " 2(1 419 exp (—ﬁ)dk drm(a, b),

Letting u = 1/A2, we get

] o0 oo e 4] 1 +b 92u
panmn(®) = —== f . fb . f . C(a, b)u""7(1 4 u)~ P exp (_T) du dn(a, b).
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To derive the upper bound, we rewrite the density as

©) = — fmfmfwa b) —%( 4 )( - )b ( gzu)dd( b)
= — a,b)u exp | ——— ) dudn(a,
Paes V21 Ja=o Jb=0 Ju=0 1+u 14u d 2
1 [® (o [ 1 6%u
< — Cla,b)u 7 ex (——) dudm(a, b)
«;231' fa:(]./;:l]./;:(] p 2

r'(1/2) foo foo Ci
Sl A — C(a,b)dm(a,b) = —,
V2w (027212 Jo—o Jb=0 (@b dr(@b) €]

where C; = f ;:u f ;:0 C(a, b) dm(a,b) and the inequality follows from the fact that 0 < u/(1 +
u) < 1forany u > 0.

For the lower bound, we restrict the values of @ and b to the subregion A = {0 <a <1/2,0 <
b < 1/2}, that is,

02y
PANHIB(8) = «/E[ 0[ [ uC(ﬂ b)u2 (14 u)~ (”ME‘XP( )dudﬂ(ﬂ b)

1/2 p1/2 02u
f f f C(a, b)u““(l + y)~(@th) exp (_T) dudm(a, b).
a= b=

Moreover, noting that f(a, b) = u““ 7(1 + u)~@+Hh) jg decreasing in both a and b, we have f(a, b) =
u"_% (1 4 uy—lath) 5 f(1/2,1/2) = 1/(1 + u) on this subregion A. Therefore,

12 p1/2
7} C(a, b
panmB(O) > — «/E l; ﬁ f (a )

> Cglog(l—l— )

where C; = (1/242m)  [./2 [\/2 C(a, b) dn (a, b).
To study the behaviour of panuis(9) as & — 0, note that the above strategy can also be applied
to the subregion A(00,8p) = {0 < a < 00,0 < b < §p} with any §p > 0, which leads to

1 o0 oo o0 b u
panuB(©) = ../__f—o fb_o f_o Cla, by 1(1 + u)~ @+ )exp( )dudn’(a,b)
6%u
Ff f f C(a,b}u“_T(l—l—u) —(a+b) exp( )dudn’(a,b)
a=0 Jb=0 Ju=0
= C(a,b)T U 13 b i dm(a, b)
_J__fa—oj;— “ (‘HE) (a+5 2 ’7) ®

f f C(ab)l"(a—l—l) (—|— 3 5 Gz)d:r(ab)
T 27 Jamo Jomo 2 27 ’

where U(a,b,z) = W fu e 419 1(1 + )b—9-1d¢ is the confluent hypergeometric function.
Using the following fact from formula 13.5.8 of [32]: as [z] — 0,forany 1 <b <2

0y
exp( 3 )dud:rr(a b)

L1
I'(a)

and letting 0 < 8y < 1/2, we obtain that as |6| — 0,

o(artdos ﬁ)_w(ﬁ)‘“’“ﬂoa)
T TS ) T Tante \2 :

Ula, b,z) = + 0O(1),
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Then we have that the marginal density under the ANHIB prior satisfies

1 [ 1\ [ r/2 =5 (62> "2
panuis(8) > E ﬁ:o .[b:(] C(a,b)r (ﬂ‘l‘ E) [m (7) + 0O(1) | dm(a, b)

= G|61%~ 4 0(1),

where C3 = 27507 (1/2 — 8o) /T % [, [, C(a, b) dn(a, b).

A.2 Proof of Theorem 2
At any 8 value where the ANHIB prior is bounded, it is easy to see that

9+71; 1
Hde =0 —|.
j; panuB(0)do > ( ﬁ)

Setting ¢ = 1/mn in Lemma 1 yields that when the prior is bounded around 6y,

1 1 1 1 1
Ry, AN (fo) < i log (v(Af)) < i, [_E logn + log (0(1})]

_ logn +o(l).
2n H

A.3 Proofof Theorem3
Under the ANHIB prior, at 6y = 0, by part (2) of Theorem 1,

1 1
o N
f mmmmwzf [Cslo1P~! 4 4] do
0 0

s 1 280 1
== (= Cy—
m(Jﬂ MRV

1 24p
(&) o

for any constant 0 < §p < 1/2. Setting & = 1/n in Lemma 1 yields that when 65 = 0,

1 1 1 1
Ry, anaip(0) < ~ — = log (v(A¢)) < = — ~[~d logn + log (O(1))]

o o (1),
H H
A.4 Proof of Theorem 4

Integrating out 6 in the likelihood with respect to a hypergeometric inverted-Beta prior
HIB(a, b, 7,5 = 0), we obtain

x2

C—l
Zf SamA iz F {_2(1 +12)

1 1 1)t
—4+(1-=)—=! a2
{ﬂ+( rJ1+ﬂ}

where C = Beta(a, b)®(b,1,a+ b,0,1 — 1/ 72) is the normalizing constant of the hypergeometric
inverted-Beta prior and @ is the degenerate hypergeometric function of two variables [20, 9.261].

m(x | a,b,t) } (lz}b_l(] + 12)—(514—8)
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Lettingk = 1/(1 + A?2), this distribution can be rewritten as

c! Sl PP b1 | 1 1 -
m(x|a,b,1:}:ﬁfexp{—7}k“ 2(1—k) [§+(1—?)k} dk
C_lBt(—l—lb) (xz)cl:r(bl P 5)
= etala+ =,b)exp| —— ,1,a -—1—=].
Nors 27) P 7)™ 272 7
Taking the derivative with respect to x, we obtain
a+1/2 p—1) 1 1 -
k (1—k) S +|1-=]k dk
2 2

(on x* 3 i« 1
:_EBeta r.z+ ,b | exp -3 @ b,l,a+b+5,?,l—§ .

Under the ANHIB prior, the hyper-parameters follow a prior m(a, b, r). Therefore, the marginal
density of x is

d
—mix|a,b,T) =

dx

€Xp

M ANHIB(X) zfm(xla, b,t)dm(a, b, 1)

and the score function can be represented by

f %m(x |a,b,T)dm(a,b,T)

d
e log manHIB(X) =
f mix|a,b,t)dn(a, b, 1)

%m(x |a, b, 1)
=fmd”(“’b”"‘)

(bl b2 1)
a + == 1——=
1/2 2
_ (a4 /}xf 2 " in(abrln, (Al
1 x
2’

b+1/2
atb+l/ G]a+b

where 7 (a, b, T | x) is the posterior distribution of a, b and 7, and the second line follows from the
Bayes theorem.
Gordy [21] showed

o 4]
exz (‘I()n(}ﬁ)ni_jl
‘Dl(ﬂﬂsﬁ,y’,x,y) = n=0 Vin '
ex(l _’V}_ﬁcbl (}} —a, -8.1 V,—X

Fi(y —a,y +n,—x), for0<y<land0<a <y

}'1), fory<O0and0 <o <y,

where (a),, is the rising factorial and ; F; (w, 8, x) is Kummer’s function of the first kind. Moreover,
Chapter 4 of [33] showed that for any real number x,

ll:(‘;) &1+ 07N}, x>0
Fi@b =1 TQ
T(—a)

(=) 1+0xH)L x<o.
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Thus, fort = 1,

/

D, (b,Lﬂ—l—b-F )
dm(a,b, 7| x)

i 1
3 rz

00 2\n 2~ —(a+3/2)
E( B)n(Dn (1 —=1/)"T(a+3/2) (%) (1+O(x_2))

D, (b,l,ﬂ—l—b—l—

=0 a+b+3/2), n' T(b+n)
== dr(a,b,t|x)
f X (D A =1/t T(a+ 1/2) (22 @2 + o2
g @+b+1/2)n ! T(b+n) (z) (1+0G7)
Exz_z[(“+]/2)dﬂ(a,b,r|x) a2)

where the inequality comes from the fact that1/(a + b+ 3/2),, < 1/(a + b + 1/2), for any positive
a, b and n. On the other hand, for0 < 7 < 1,

3 x2 1
®(blatrbtr=,—1— —
1( a—+ —|—2 > 1_2)

. (bl X lﬁ ) i)dj‘r(ﬂ,!‘»,r|.vc}
1 ] :ﬂ+ + 2: 2 » - _[2
i(wsmnmn (-1  T@+1 (f)“"*"”“’{l o)
Z@rbt3/2, n  T@tbtnt/z)\2 o
_f &\ (@4 1/2)n(1)s (1 — 12" () (xz)“‘”"“"”{l 0t)
;(a+b—l—1/2)n n T@atbtnti2)\2 + Ol
x dm(a, b, T|x)
2
where the inequality follows from the relationship
i (@+3/2)n(1)y (1 — )" I'(a+1)
L@t b+i3/2, nm  T@tbtnis2)
B i @+ 1/2)n(1) (1 — 2y ['(a) a(a+n+1/D@+b+1/2)
T & @tbi1/2), m T@ibtnt1/2) (@+1/2)@+btnt1/2)?

and that the last fraction on the right is obviously smaller than 1 for any positive a, b and n. Com-
bining (A1), (A2) and (A3) yields that for all T > 0, the score function is a polynomial of the order
x~1, which converges to 0 as x — 0.



