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ABSTRACT 

The utility of a range of computational chemistry approaches for the prediction of the regioselectivity for 
hydroformylation processes and metal-ligand dissociation in a model organometallic system is considered 
to provide insight about computational strategies for use in catalysis.  The hydroformylation reactions 
investigated are the Rh-catalyzed hydroformylation of terminal alkenes with triarylphosphine and chelating 
diphosphine ligands. As well, the dissociation of water from a Pt complex is considered to probe method 
effects on metal-ligand bonding. Several density functional theory (DFT) approaches and ab initio methods 
are considered.  We demonstrate that the quality of the basis set selected for the calculations can play a vital 
role in the prediction of even the product distribution, and that correcting for basis set superposition error 
(BSSE) can be very important.  As well, the study demonstrates a broad range of predictions achievable 
using a variety of DFT approaches, which is, as discussed, a manifestation of the challenges that are 
encountered for calculations involving transition metal molecular species, illustrating the critical need to 
gauge computational chemistry methods. 

1. Introduction  

Computational chemistry can provide a useful partner to experiment in the discovery, development, 
and characterization of new possible catalysts and catalytic processes, and the refinement of existing 
catalysts and catalytic processes.  Key to the utility, however, are a number of factors including reliability, 
reproducibility, and transferability.  Gauging computational methods is just as important as it is to calibrate 
instrumentation used in experiments, or insuring yield from a synthetic process, yet, an unfortunate practice 
is to simply utilize the most popular computational method.   Computational methods can vary widely in 
their utility and their computational cost (amount of computer time, memory, and disk space required in a 
calculation), particularly in the realm of transition metals or heavy elements, and as the bulkiness of the 
catalyst of interest is increased.  

For the prediction of thermodynamic information (i.e., enthalpies, free energies), reaction barriers, 
HOMO-LUMO gaps, and other fundamental properties, density functional theory (DFT) approaches are 
very commonly used for catalysis.  For early main group chemistry (i.e., hydrocarbons), there are many 
different forms of DFT – called density functionals – that can be used quite easily, with very little difference 
in predicted property arising from the choice of functional to describe energetics, and with limited 
exceptions, as demonstrated by Karton et al. [1] However, for transition metal species, the utility of each 
functional can vary widely based upon choice of metal, choice of ligand, and property of interest. [2–8]   To 
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illustrate, for a set of ~20 3d transition metal species, B3LYP/CEP-31G(d) resulted in errors from 
experiment from the predicted enthalpies of formation by ~100 kcal mol-1. [2] 

   However, when the same functional is applied to a different set of the transition metal species – a set 
that has the smallest reported experimental uncertainties in the enthalpy of formation – the error is ~6-7 
kcal mol-1. [4,5]   So, indeed, extraordinarily large variances can occur depending upon metal and ligand. 
However, for catalysis, where there may be interest in understanding the thermochemistry with much 
smaller errors in energy, this magnitude of error may be of limited utility. Computational approaches have 
been designed to improve upon the predictions possible by DFT for these benchmark thermochemical data 
for transition metal species.  With ab initio composite approaches like the correlation consistent Composite 
Approach, ccCA, designed in our group, [9–13] differences of  ~2-3 kcal mol-1, on average, can be achieved 
in the prediction of enthalpies of formation for 3d transition metal species. [12,13] As well, ccCA targeted 
4d transition metal chemistry by utilizing relativistic pseudopotentials, denoted as rp-ccCA, to model 
relativistic contributions from core electrons and yielded differences of ~3 kcal mol-1 from experimental 
enthalpies of formation. [10,13] This is useful, but more costly than DFT approaches. Strategies have 
evolved that help to reduce the bottleneck in these calculations (e.g., DLPNO-ccCA) - computational cost 
- while preserving the accuracy in the energetic predictions.  And, thus, this approach can be quite useful 
as a route to either gauge DFT approaches in the absence of experiment, or, as a means to provide 
quantitative energy predictions for studies of homogeneous processes (or for problems that can be well-
representative by a homogeneous process). 

So far, these comments have focused upon general trends in the prediction of thermodynamic properties 
of molecular systems. However, a question is, what is the utility of computational approaches for an 
important industrial process like hydroformylation?  More specifically, how useful are computational 
approaches, particularly new approaches like DLPNO-ccCA, a form of ccCA, for important properties like 
regioselectivity and metal-ligand binding? And, is the qualitative or quantitative picture impacted by 
computational method choice?  

The mechanism for Rh-based hydroformylation was well-established by Wilkinson in the late 1960s to 
early 1970s. [14] As the largest volume homogeneous chemical reaction conducted in industry for chemical 
production, the process converts olefins to aldehydes in a syngas mixture. The advantage of Rh-based 
hydroformylation as opposed to Co-based hydroformylation is the favorable reaction conditions (ambient 
temperature and pressure). The efficacy of a catalyst designed for hydroformylation is the ratio of the linear 
aldehyde to the branched aldehyde (Fig. 1), known as the linear-to-branched ratio. In hydroformylation, the 
formation of the linear aldehyde is favored although there are studies targeting asymmetric 
hydroformylation, i.e. the production of the branched aldehyde. [15,16] This is measured through the 
kinetics of the migratory insertion of the olefin to the catalyst. 

 

 

 

 

Numerous computational studies have targeted modeling the regioselectivity of hydroformylation due 
to its importance in chemical industry. [17–26] To account for the size of the catalysts and the limited 
computing power at the time, earlier computational studies either substituted PPh3 ligands with much 

Figure 1. Hydroformylation reaction converting olefins to linear and branched 
aldehydes via a Rh catalyst. 
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smaller PH3 ligands or utilized multilevel computational chemistry methods, such as ONIOM, [27,28] to 
model the bond breaking and formation region with DFT while relegating the sterically bulky ligands to a 
computationally more affordable method, such as molecular mechanics (MM). [17–21] While more recent 
studies also utilize multilevel approaches for hydroformylation, more rigorous ab initio methodologies are 
used to model bond breaking and forming regions and use DFT to model the steric ligands. [22,23]  Other 
studies have only used DFT to model the olefin insertion step as well as the entire Wilkinson catalytic cycle. 
[23–25,29,30] These studies provide insight into potential electronic contributions of the sterically bulky 
ligands as well as the mechanism by identifying the rate-determining step, which can change based on the 
type of ligand.  Machine learning approaches have recently been developed to screen potential ligands 
based on their regioselectivity and is a rising trend in computational catalysis. [26,31]  

 
The kinetics of hydroformylation is very sensitive energetically, i.e. the differences in energy 

between competing pathways (E‡), illustrated in Fig. 2, can be less than 1 kcal mol-1. [17] With such 
small differences in energy for the competing pathways, calculating the correct linear-to-branched ratio can 
be difficult to predict with computational methods.  For example, as shown in Table 1, if E‡ = 0 (reaction 
barriers are equivalent), the l:b ratio is 50:50. However, lowering the barrier for the linear product by 1 kcal 
mol-1 (E‡ = -1 kcal mol-1) results in a product ratio increase to approximately 84:16 and lowering the 
barrier for the formation of the linear product by an additional 2 kcal mol-1 (E‡= -3 kcal mol-1) indicates 
that the reaction highly favors the linear product (100:0 ratio). Therefore, to investigate the regioselectivity 
of hydroformylation, a [Rh(H)(CO)] backbone was considered with both mono- and bidentate phosphine 
ligands.   

Table 1. Summary of the effect of E‡ in kcal mol-1 on the linear-to-branched ratio (l:b) ratio for hydroformylation. 
E‡ (kcal mol-1) Linear-to-branched ratio (l:b) 

0 to -1 50:50 to 84:16 
1 to -2 84:16 to 97:3 
-2 to -3 97:3 to 100:0 

Basically, considering the challenges mentioned earlier about the prediction of thermochemistry 
properties for transition metal species, achieving the level of accuracy needed to even predict the correct 
product distributions seems unsurmountable.  Cancellation of errors that can occur from comparing energy 
differences is helpful, though the errors from experiment are not necessarily the same across a reaction 
pathway, and, thus, gauging method utility for each problem, considering metal, ligand, and property, is 
essential.  Thus, in this study, the impact of method and basis set choice – the route to describe the molecular 
orbitals – are considered to determine the impact of these choices upon the prediction of linear-to-branched 

Figure 2. A model of the two reaction pathways for hydroformylation where El
‡ and Eb

‡ are the 
reaction barrier for forming the linear and branched product, respectively. E‡ is the difference in 
energy between the two reaction barriers. 
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ligand ratio, as well as the ligand dissociation energy. The hydroformylation reactions investigated are the 
Rh-catalyzed hydroformylation of terminal alkenes using a [Rh(H)(CO)] backbone with mono- (PPh3) and 
bidentate phosphine ligands (TBDCP, DIOP, DIPHOS) as shown in Figures 3 and 4. 

Another aspect that is important in catalysis is the description of metal-ligand dissociation, as it is a 
primary step in all homogeneous catalytic reactions, e.g. product dissociation from Rh-catalyzed 
hydroformylation and solvent interactions with olefin hydrogenation, as well as gas phase ligand 
dissociation for organometallic reactions targeting C-H activation. Here, to gain understanding about the 
utility of the ab initio composite strategy, DLPNO-ccCA, a cationic (diimine)(aquo)PtII complex was 
examined. This PtII complex was chosen since PtII complexes with ligands containing aromatic and aliphatic 
C-H bonds are involved in the oxidative addition of alkanes and have been a focus in C-H activation studies 
where the ligand substitution step is rate-determining. [32–35]  

2. Computational Methods 

2.1 Computational methods for hydroformylation. DFT and ab initio calculations were done in this 
study.  Several density functionals were utilized, selecting a number of widely used functionals varying in 
complexity: B3LYP, [36,37] B3P86, [36,38] BLYP, [37,39] BP86, [38,39] PBE, [40,41] and PBE0. [40–
42] (It should be noted that while increased complexity often means better property predictions, this is not 
necessarily guaranteed.) Grimme’s dispersion correction with Becke-Johnson dampening (D3BJ) was 
included for B3LYP and PBE0 to correct for long-range intramolecular interactions. [43] The 
Stuttgart/Dresden basis set, and pseudopotential (SDD) was used for all DFT calculations. [44,45]  Though 
it is commonly believed that a triple- quality basis set is sufficient for DFT calculations, earlier work has 
demonstrated that for the predictions of energetic properties of transition metal species, quadruple- level 
basis sets can have an impact on the energies, and, thus, this level of basis set was considered.[3,4] As well, 
this choice of basis set followed earlier work done by Kumar et al. [24], and all structures for the DFT and 
ab initio calculations were based on this prior work. DFT calculations in the present work were done with 
Gaussian16. [46]  

Several ab initio correlated methods also were used including domain-based pair natural orbital 
(DLPNO) methods, [47–52] DLPNO-MP2 and DLPNO-CCSD(T)), the MP2 and CCSD(T) varieties of the 
DLPNO approach. The DLPNO approach enables computational cost reductions from typical MP2 and 
CCSD(T) calculations.  And, CCSD(T) is of particular interest, as this method is known for its utility in 
energy predictions when paired with a high-quality (which typically means large) basis set.  The DLPNO 
calculations were done with the ORCA program suite. [53] Calculations were done using Dunning’s 
correlation consistent polarized valence-n- (“zeta”) basis sets (aug-cc-pVnZ, where n=D (double), T 
(triple), Q (quadruple)), and considering augmented (aug-cc-pVnZ) and augmented core-valence (aug-cc-
pCVnZ) forms of the sets. [54,55] For P and Cl, the recommended tight d versions of the correlation 
consistent basis sets, denoted as cc-pV(n+d)Z, aug-cc-pV(n+d)Z, and aug-cc-pCV(n+d)Z were used. [55] 
The correlation consistent pseudopotentials (cc-pVnZ-PP) were used for Rh and Pt atoms. [56,57] The 
correlation consistent Composite Approach (ccCA) for 4d transition metals was also considered, [10] 
utilizing the DLPNO methods for the composite steps to reduce the computational resources associated 
with the size of the compound, denoted as DLPNO-rp-ccCA. [58] 

To calculate the regioselectivity for hydroformylation, the following equation was used for the linear-
to-branched ratio 

l:b = kl:kb = exp(-Gl
‡/kT)/exp((-Gb

‡/kT) = exp(-G‡/kT)  exp(-E‡/kT) (1) 
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where G‡ is the free energy barrier, G‡ is the energy difference between the two reaction pathways, k 
is the Boltzmann constant, and T is the temperature. This equation assumes the olefin insertion step is 
irreversible. The Rh-catalyst-olefin complex examined with the DLPNO methods is ee-
[Rh(H)(CO)(DIPHOS)(propene)] where the bis-phosphine DIPHOS ligand is in the equatorial-equatorial 
(ee) coordination mode (shown in Figure 3). The ligands examined with DFT include (PPh3)2, and more 
structurally complex bis-phosphine ligands, TBDCP, DIOP, and DIPHOS. All ligands are attached to a 
[Rh(H)(CO)] backbone as indicated in the Wilkinson catalytic cycle for Rh-based hydroformylation. The 
ligands are shown in Figure 4. Olefins examined with (PPh3)2 include pentene, hexene, heptene, octene, 
decene, dodecene, styrene, and vinyl acetate. Propene is coordinated with all bisphosphine ligands. The 
ligands are considered in both the equatorial-equatorial (ee) and equatorial-axial (ea) conformations relative 
to the Rh center. As the experiments were carried out in toluene, the SMD implicit solvent model [59] was 
used to mimic the long-range solvent effects of toluene on the Rh catalyst. 

Figure 3. Computationally determined 3D structures (left) and 2D structures (right) of ee-
[Rh(H)(CO)(DIPHOS)(propene)] catalyst complex (top) and dissociation reaction of H2O from the cationic 
(diimine)(aquo)PtII complex (bottom). Ph=Phenyl and Ar=2,6-dichlorobenzene. Pt=Silver, N=Blue, O=Red, C=Dark 
Gray, H=Light Gray, Cl=Green, P=Orange, Rh=Teal. 

 

Figure 4.  2D structures of the monodentate and bidentate ligands for hydroformylation as well as the equatorial-
equatorial (ee) and equatorial-axial (ea) conformations of the [Rh(H)(CO)] backbone. All ligands are bound to a 
[Rh(H)(CO)] backbone.  
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2.2 Computational methods for ligand dissociation.  The gas phase ligand dissociation energy was 
evaluated by the difference between the complex and the respective fragments. 

Edissoc = EAB - EA+ EB (2) 

where EAB is the electronic energy of the complex, EA is the electronic energy of fragment A, and EB is the 
electronic energy of fragment B. Ab initio calculations, in particular, are susceptible to basis set 
superposition error (BSSE), which can result in overbinding of the ligands, and is applied to all DLPNO 
calculations for metal-ligand dissociation energy. [60]  

To study fundamental organometallic reactions that occur in the gas phase, a cationic 
(diimine)(aquo)PtII complex prevalent in C-H activation and oxidative addition of alkanes was chosen (see 
Fig 3). This molecule was chosen due to computational feasibility based on the molecule size. The 
calculated zero point energy (ZPE) of the reaction obtained with a frequency calculation at the BP86 level 
and the PBE0 optimized structures were obtained from Weymuth et al. [61] This choice of functional for 
frequency calculations was selected since the ZPE of the reaction did not significantly change with respect 
to functional choice. [61] PBE0 structures were utilized based on their success for heavier elements. A few 
density functionals, PBE0, B3LYP, and TPSSh [62] utilizing cost-saving techniques, i.e the resolution-of-
the-identity or RI approximation, were paired with the augmented correlation consistent basis sets and 
pseudopotentials of triple- and quadruple- level quality (aug-cc-pVnZ, n=T, Q), as well as DLPNO-rp-
ccCA to determine ligand dissociation energies. All ligand dissociation calculations were done in the ORCA 
program suite. 

 

3. Results and Discussion 

3.1 Regioselectivity in hydroformylation.  The DFT l:b ratios for all Rh catalysts are shown in Table 2. 
The corresponding ΔΔE‡s for all DFT results are shown in Table 3. The DLPNO results for 
hydroformylation are shown in Table 4 for the l:b ratios, including the l:b determined for calculations that 
have been corrected for BSSE. With DFT, qualitatively correct l:b ratios are obtained for most of the 
examined catalyst-olefin complexes as shown in Table 2. However, this largely depends on which type of 
functional is used. For example, using BLYP, BP86, and PBE generally predicted l:b ratios that are in 
disagreement with experiment for (PPh3)2 ligands, particularly for hexene, heptene, octene, dodecene, and 
styrene, which produced l:b ratios of 2:98, 26:74, 11:89, 84:16, and 87:13, respectively, for BLYP, and 
similar ratios for BP86 and PBE (Table 2). With an increase in complexity in the functionals, i.e. B3LYP, 
B3P86, and PBE0, l:b ratios of 67:33 47:53 and 76:24 for B3LYP, 71:29, 67:33, 68:32 for B3P86, and 
75:25, 73:27, 71:29 for PBE0, were predicted for the conversion of heptane, octene, and dodecane with 
(PPh3)2 ligands, respectively. And for ee-[Rh(H)(CO)(PPh3)2(pentene)], the linear product is predicted. 
However, the inclusion of Grimme’s dispersion correction for B3LYP and PBE0 predicted l:b ratios that 
predicted the more favorable produce, in agreement with experiment for all examined catalyst-olefin 
complexes with the exception of ee-[Rh(H)(CO) (PPh3)2(decene)] (l:b ratios of 0:100 and 3:97 for B3LYP-
D3 and PBE0-D3, respectively) and ee-[Rh(H)(CO) (DIPHOS)(propene)] (l:b ratios of 17:83 and 11:89 for 
B3LYP-D3 and PBE0-D3, respectively). Based on the calculated l:b ratios, predicting regioselectivity with 
DFT can, but not always, be improved by increasing the complexity of the functional. 
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Table 2. Comparison of several density functionals to linear-to-branched ratios from experiment for ee-
[Rh(H)(CO)(L)(olefin)] complexes 

 BLYP BP86 PBE B3LYP B3P86 PBE0 B3LYP-
D3 

PBE0-
D3 

Exp  
[63–70] 

L=(PPh3)2          
Pentene 83:17 81:19 79:21 95:5 95:5 95:5 100:0 99:1 95:5 
Hexene 2:98 3:97 6:94 10:90 19:81 23:77 100:0 99:1 92:8 
Heptene 26:74 28:72 33:67 67:33 71:29 75:25 100:0 99:1 86:14 
Octene 11:89 20:80 31:69 47:53 67:33 73:27 100:0 100:0 81:19 
Decene 84:16 93:7 89:11 53:47 69:31 64:36 0:100 3:97 74:26 

Dodecene 45:55 33:67 41:59 76:24 68:32 71:29 100:0 99:1 87:12 
Styrene 87:13 92:8 79:21 83:17 84:16 90:10 0:100 1:99 11:89 

Vinyl acetate 0:100 0:100 0:100 0:100 0:100 0:100 0:100 0:100 9:91 
          

L=TBDCP          
Propene 90:10 88:12 89:11 96:4 95:5 96:4 92:8 95:5 92:8 

          
L=DIOP          
Propene 99:1 99:1 100:0 100:0 100:0 100:0 100:0 100:0 90:10 

          
L=ee-DIPHOS          

propene 3:97 3:97 3:97 5:95 5:95 5:95 17:83 11:89 69:31a 
          

L=ea-DIPHOS          
propene 83:17 73:27 71:29 86:14 77:23 76:24 88:12 81:19 69:31a 

aThe data references the ea isomer of DIPHOS.    
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Table 3. Comparison of the approximate ΔΔE‡s based on the calculated l:b ratios for ee-[Rh(H)(CO)(L)(olefin)] 
complexes. Experimental ΔΔE‡s are an approximation of experimental l:b ratios. All ΔΔE‡s are in kcal mol-1. 

 BLYP BP86 PBE B3LYP B3P86 PBE0 B3LYP-
D3 

PBE0-
D3 

Expa  
[63–70] 

L = (PPh3)2          
Pentene -0.96 -0.88 -0.80 -1.78 -1.74 -1.74 -3.67 -3.05 -1.74 
Hexene 2.44 2.07 1.65 1.29 0.87 0.71 -3.93 -2.70 -1.44 
Heptene 0.62 0.56 0.41 -0.42 -0.53 -0.66 -3.74 -2.87 -1.07 
Octene 1.26 0.81 0.47 0.06 -0.42 -0.60 -4.87 -3.85 -0.85 
Decene -0.98 -1.49 -1.23 -0.08 -0.47 -0.34 3.36 2.05 -0.62 

Dodecene 0.11 0.43 0.21 -0.68 -0.43 -0.54 -3.92 -2.91 -1.13 
Styrene -1.10 -1.44 -0.78 -0.94 -1.00 -1.29 5.62 2.87 1.24 

Vinyl acetate 6.24 6.55 6.59 6.02 6.35 6.27 5.06 5.42 1.36 
          

L = TBDCP          
Propene -1.31 -1.16 -1.23 -1.86 -1.71 -1.92 -1.45 -1.70 -1.44 

          
L = DIOP          
Propene -2.57 -3.12 -3.22 -3.28 -3.76 -4.02 -3.59 -4.22 -1.30 

          
L = ee-

DIPHOS          

propene 2.00 2.10 2.08 1.70 1.80 1.75 0.93 1.25 -0.47b 

          
L = ea-

DIPHOS          

propene -0.96 -0.58 -0.54 -1.05 -0.72 -0.69 -1.17 -0.86 -0.47b 

aThe ΔΔE‡s shown are based on the experimental l:b ratios shown in Table 2. bThe data references the ea isomer of 
DIPHOS. 
 

For ee-[Rh(H)(CO) (PPh3)2(vinyl acetate)], the predicted ΔΔE‡ was ~ 6 kcal mol-1 for each functional 
considered as shown in Table 3, indicating the branched isomer is favored. Overall, the dispersion-corrected 
functionals resulted in a lowering of the ΔΔE‡ for ee-[Rh(H)(CO) (PPh3)2(vinyl acetate)] by approximately 
1 kcal mol-1, however, this did not impact the product distribution. Similarly, for 
ee[Rh(H)(CO)(DIOP)(propene)], the dispersion correction functionals resulted in a lowered the predicted 
ΔΔE‡ by ~0.3 kcal mol-1 and did not impact the product distribution as the predicted ΔΔE‡  was ~4 kcal mol-

1. However, for ee-[Rh(H)(CO) (PPh3)2(styrene)] and ee-[Rh(H)(CO) (PPh3)2(decene)], the dispersion-
corrected functionals predicted the ΔΔE‡ to be ~6 kcal/mol and ~3 kcal mol-1 greater than the ΔΔE‡ 
predicted with non-dispersion-corrected functionals. While this change in ΔΔE‡ predicted product ratios of 
0:100 and 1:99 for B3LYP-D3 and PBE0-D3, respectively, with styrene as the olefin, with decene as the 
olefin, the predicted product ratios were 0:100 and 3:97 for B3LYP-D3 and PBE0-D3, respectively.  

For the DIPHOS ligand, the relative orientation of the Rh-H and Rh-CO bond to the DIPHOS ligand 
was a major factor in predicted l:b ratios with DFT. In the ee coordination mode, all predicted l:b ratios 
with DFT predicted the branched product whereas the linear product is predicted for the ea coordination 
mode, in qualitative agreement with experiment. This is to be noted for any calculation. The small geometric 
changes from the ee to the ea coordination mode led to lowering of the ΔΔE‡ by ~2-3 kcal mol-1 for all 
functionals, changing the product ratio to favor the linear product over the branched ratio. This exhibits the 
high sensitivity of ΔΔE‡, which can greatly affect product formation ratios with changes as small as a few 
tenths of a kcal mol-1, as exhibited by the ΔΔE‡s of -0.54 and -1.05 kcal mol-1

 that yielded product ratios of 



 9 

71:29 and 86:14 for PBE and B3LYP, respectively. Ergo, based on the observed trends from the DFT 
calculations, there remains a need to investigate hydroformylation with electron correlation methods. 
 
Table 4. Results using DLPNO methods to predict the linear-to-branched ratio for ee-
[Rh(H)(CO)(DIPHOS)(propene)] 

 l:b  
DLPNO-MP2/aug-cc-pVDZ-PP 25:75 
DLPNO-MP2/aug-cc-pVTZ-PP 29:71 
DLPNO-MP2/aug-cc-pVQZ-PP 16:84 

DLPNO-MP2/cc-pVTZ-PP 18:82 
DLPNO-CCSD(T)/cc-pVTZ-PP 1:99 

DLPNO-CCSD(T)/aug-cc-pCVDZ-PP 100:0 
DLPNO-CCSD(T,FC1)/aug-cc-pCVDZ-PP 100:0 

DLPNO-rp-ccCA 100:0 
Experimenta 69:31 

aThe data references the equatorial-axial (ea) isomer of DIPHOS. 

Here, the ee-[Rh(H)(CO)(DIPHOS)(propene)] catalyst-olefin complex is considered, as DFT was 
unable to address the regioselectivity of this reaction correctly in any case. For the DLPNO methods, the 
l:b ratio is predicted to favor the branched isomer except for DLPNO-CCSD(T) calculations involving the 
aug-cc-pCVDZ basis set. This is primarily due to the interactions between the electrons from core orbitals 
with electrons in valence orbitals as DLPNO-CCSD(T)/aug-cc-pCVDZ and DLPNO-CCSD(T,FC1)/aug-
cc-pCVDZ, which includes sub-valence electron (FC1) excitations within the molecular orbital space, both 
favored the linear isomer with product ratios of 100:0. The results from implementing the DLPNO methods 
indicate that electronic effects from including core electrons within the valence basis set are significant in 
determining ΔΔE‡ given the large magnitude relative to other calculated E‡s with ab initio methods. 

Even for qualitative predictions, DLPNO-rp-ccCA is useful. By utilizing a well-described molecular 
orbital space – DLPNO-rp-ccCA does predict the proper regioselectivity; DFT either does not predict the 
correct regioselectivity, such as for ee-[Rh(H)(CO) (PPh3)2(styrene)] and ee-[Rh(H)(CO) (PPh3)2(hexene)], 
which predicted qualitatively inconsistent product ratios for most of the functionals examined. In addition, 
the regioselectivity is highly sensitive to functional choice, as the performance is not consistent as the ligand 
type and olefin changes. However, for the ab initio methods considered, simply improving the description 
of the molecular orbital space by including sub-valence electrons in the molecular orbital space for 
interactions. 

3.2 Metal-ligand dissociation in organometallics. The gas phase ligand dissociation energies are 
shown in Table 5 with DLPNO-rp-ccCA compared to both experiment and several density functionals 
utilizing the resolution-of-the-identity approximation. For gas-phase ligand dissociation, DLPNO-rp-ccCA 
yields an error of 1.7 kcal mol-1 relative to experiment. When utilizing the resolution-of-the-identity 
approximation within DFT calculations, RI-PBE0/aug-cc-pVTZ, RI-B3LYP/aug-cc-pVTZ, and RI-TPSSh 
yields dissociation energies of 20.7, 20.2, and 19.6 kcal mol-1, respectively. However, increasing the quality 
of the molecular orbital space, i.e. using aug-cc-pVQZ, increased the error by 0.4, 0.5, and 0.5 kcal mol-1 
for RI-PBE0, RI-B3LYP, and RI-TPSSh, causing concern for utilizing DFT with higher quality basis sets. 
Regardless of functional and basis set choice, the predicted dissociation energy was greater than 5 kcal mol-

1 lower than the experimental value. With the dispersion correction included for RI-PBE0/aug-cc-pVTZ, 
the predicted dissociation energy increased to 23.6 kcal mol-1. This would suggest that accounting for 
dispersion is necessary for DFT predictions of gas-phase properties. DLPNO-rp-ccCA calculations yielded 
favorable results for ligand dissociation energy in comparison to DFT, but there are factors that can 
contribute to computationally predicted dissociation energies. For example, as density functionals are 
primarily used to generate structures for large organometallic complexes, the choice of functional for 
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optimization must be considered. The predicted dissociation energies can change by a few kcal mol-1 based 
on slight structural change (root mean square deviation of ~20 pm) between functionals and by 10’s of kcal 
mol-1 for significant structural changes such as ligand reorientation. Also, the basis set choice can affect the 
quality of predictions as indicated from the lowering of predicted dissociation energy by increasing basis 
set quality. 
 
 

Table 5. A comparison of the gas-phase ligand dissociation energy of H2O from the Pt complex calculated with 
DLPNO-rp-ccCA and RI-DFT/aug-cc-pVnZ. All energies are in kcal mol-1 and are BSSE-corrected. 

RI-PBE0/aug-cc-pVTZ 20.7 
RI-B3LYP/aug-cc-pVTZ 20.2 
RI-TPSSh/aug-cc-pVTZ 19.6 
RI-PBE0/aug-cc-pVQZ 20.3 

RI-B3LYP/aug-cc-pVQZ 19.7 
RI-TPSSh/aug-cc-pVQZ 19.1 

RI-PBE0-D3/aug-cc-pVTZ 23.6 
DLPNO-rp-ccCA 24.2 

Experiment 25.9  0.7 
 
 
4. Conclusion 

There are numerous challenges in the prediction of thermochemistry properties for transition metal 
species as illustrated in this examination of regioselectivity and ligand dissociation energy.  And, thus, 
gauging the utility of computational method, considering metal, ligand, and property, is essential.  A typical 
method choice for the study of transition metal species is DFT.  Unfortunately, there is no “magic” 
computational approach to use for all problems.  While ab initio methods like CCSD(T) or composite 
methods that try to replicate it like ccCA can be quite useful and are more dependable from system to 
system and, generally, across a reaction pathway, they are more costly, and may require additional measures 
to ensure quality results are obtained sometimes reaching near saturation of the orbital space (even more 
costly!).  DFT can be very useful, but properly gauging it is important, as illustrated by this study. 
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Table 1. A summary of the effect of E‡ in kcal mol-1 on the linear-to-branched ratio (l:b) ratio for 
hydroformylation. 

E‡ (kcal mol-1) Linear-to-branched ratio (l:b) 
0 to -1 50:50 to 84:16 
1 to -2 84:16 to 97:3 
-2 to -3 97:3 to 100:0 

 

Table



Table 2. A comparison of several density functionals to linear-to-branched ratios from experiment for ee-
[Rh(H)(CO)(L)(olefin)] complexes 

 BLYP BP86 PBE B3LYP B3P86 PBE0 B3LYP-
D3 

PBE0-
D3 

Exp  
[63–70] 

L=(PPh3)2          
Pentene 83:17 81:19 79:21 95:5 95:5 95:5 100:0 99:1 95:5 
Hexene 2:98 3:97 6:94 10:90 19:81 23:77 100:0 99:1 92:8 
Heptene 26:74 28:72 33:67 67:33 71:29 75:25 100:0 99:1 86:14 
Octene 11:89 20:80 31:69 47:53 67:33 73:27 100:0 100:0 81:19 
Decene 84:16 93:7 89:11 53:47 69:31 64:36 0:100 3:97 74:26 

Dodecene 45:55 33:67 41:59 76:24 68:32 71:29 100:0 99:1 87:12 
Styrene 87:13 92:8 79:21 83:17 84:16 90:10 0:100 1:99 11:89 

Vinyl acetate 0:100 0:100 0:100 0:100 0:100 0:100 0:100 0:100 9:91 
          

L=TBDCP          
Propene 90:10 88:12 89:11 96:4 95:5 96:4 92:8 95:5 92:8 

          
L=DIOP          
Propene 99:1 99:1 100:0 100:0 100:0 100:0 100:0 100:0 90:10 

          
L=ee-DIPHOS          

propene 3:97 3:97 3:97 5:95 5:95 5:95 17:83 11:89 69:31a 
          

L=ea-DIPHOS          
propene 83:17 73:27 71:29 86:14 77:23 76:24 88:12 81:19 69:31a 

aThe data references the ea conformer of DIPHOS. 

 

Table



Table 3. A comparison of the approximate ΔΔE‡s based on the calculated l:b ratios for ee-[Rh(H)(CO)(L)(olefin)] 
complexes. Experimental ΔΔE‡s are an approximation of experimental l:b ratios. All ΔΔE‡s are in kcal mol-1. 

 BLYP BP86 PBE B3LYP B3P86 PBE0 B3LYP-
D3 

PBE0-
D3 

Expa  
[63–70] 

L = (PPh3)2          
Pentene -0.96 -0.88 -0.80 -1.78 -1.74 -1.74 -3.67 -3.05 -1.74 
Hexene 2.44 2.07 1.65 1.29 0.87 0.71 -3.93 -2.70 -1.44 
Heptene 0.62 0.56 0.41 -0.42 -0.53 -0.66 -3.74 -2.87 -1.07 
Octene 1.26 0.81 0.47 0.06 -0.42 -0.60 -4.87 -3.85 -0.85 
Decene -0.98 -1.49 -1.23 -0.08 -0.47 -0.34 3.36 2.05 -0.62 

Dodecene 0.11 0.43 0.21 -0.68 -0.43 -0.54 -3.92 -2.91 -1.13 
Styrene -1.10 -1.44 -0.78 -0.94 -1.00 -1.29 5.62 2.87 1.24 

Vinyl acetate 6.24 6.55 6.59 6.02 6.35 6.27 5.06 5.42 1.36 
          

L = TBDCP          
Propene -1.31 -1.16 -1.23 -1.86 -1.71 -1.92 -1.45 -1.70 -1.44 

          
L = DIOP          
Propene -2.57 -3.12 -3.22 -3.28 -3.76 -4.02 -3.59 -4.22 -1.30 

          
L = ee-

DIPHOS          

propene 2.00 2.10 2.08 1.70 1.80 1.75 0.93 1.25 -0.47b 

          
L = ea-

DIPHOS          

propene -0.96 -0.58 -0.54 -1.05 -0.72 -0.69 -1.17 -0.86 -0.47b 

aThe ΔΔE‡s  shown are based on the experimental l:b ratios shown in Table 2. bThe data references the ea conformer 
of DIPHOS. 
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Table 4. Results using DLPNO methods to predict the linear-to-branched ratio for ee-
[Rh(H)(CO)(DIPHOS)(propene)] 

 l:b  
DLPNO-MP2/aug-cc-pVDZ-PP 25:75 
DLPNO-MP2/aug-cc-pVTZ-PP 29:71 
DLPNO-MP2/aug-cc-pVQZ-PP 16:84 

DLPNO-MP2/cc-pVTZ-PP 18:82 
DLPNO-CCSD(T)/cc-pVTZ-PP 1:99 

DLPNO-CCSD(T)/aug-cc-pCVDZ-PP 100:0 
DLPNO-CCSD(T,FC1)/aug-cc-pCVDZ-PP 100:0 

DLPNO-rp-ccCA 100:0 
Experimenta 69:31 

aThe data references the equatorial-axial (ea) isomer of DIPHOS. 
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Table 5. A comparison of the gas-phase ligand dissociation energy of H2O from the Pt complex calculated with 
DLPNO-rp-ccCA and RI-DFT/aug-cc-pVnZ. All energies are in kcal mol-1 and are BSSE-corrected. 

RI-PBE0/aug-cc-pVTZ 20.7 
RI-B3LYP/aug-cc-pVTZ 20.2 
RI-TPSSh/aug-cc-pVTZ 19.6 
RI-PBE0/aug-cc-pVQZ 20.3 

RI-B3LYP/aug-cc-pVQZ 19.7 
RI-TPSSh/aug-cc-pVQZ 19.1 

RI-PBE0-D3/aug-cc-pVTZ 23.6 
DLPNO-rp-ccCA 24.2 

Experiment 25.9  0.7 
 

Table



Figure 1. The hydroformylation reaction converting olefins to linear and branched aldehydes via a Rh catalyst. 
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 Figure 2. A model of the two reaction pathways for hydroformylation where El
‡ and Eb

‡ are the reaction barrier 
for forming the linear and branched product, respectively. E‡ is the difference in energy between the two reaction 
barriers. 
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Figure 3. Computationally determined 3D structures (left) and 2D structures (right) of ee-
[Rh(H)(CO)(DIPHOS)(propene)] catalyst complex (top) and dissociation reaction of H2O from the cationic 
(diimine)(aquo)PtII complex (bottom). Ph=Phenyl and Ar=2,6-dichlorobenzene. Pt=Silver, N=Blue, O=Red, C=Dark 
Gray, H=Light Gray, Cl=Green, P=Orange, Rh=Teal. 
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Figure 4.  2D structures of the monodentate and bidentate ligands for hydroformylation as well as the equatorial-
equatorial (ee) and equatorial-axial (ea) conformations of the [Rh(H)(CO)] backbone. All ligands are bound to a 
[Rh(H)(CO)] backbone. 
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