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ABSTRACT

The utility of a range of computational chemistry approaches for the prediction of the regioselectivity for
hydroformylation processes and metal-ligand dissociation in a model organometallic system is considered
to provide insight about computational strategies for use in catalysis. The hydroformylation reactions
investigated are the Rh-catalyzed hydroformylation of terminal alkenes with triarylphosphine and chelating
diphosphine ligands. As well, the dissociation of water from a Pt complex is considered to probe method
effects on metal-ligand bonding. Several density functional theory (DFT) approaches and ab initio methods
are considered. We demonstrate that the quality of the basis set selected for the calculations can play a vital
role in the prediction of even the product distribution, and that correcting for basis set superposition error
(BSSE) can be very important. As well, the study demonstrates a broad range of predictions achievable
using a variety of DFT approaches, which is, as discussed, a manifestation of the challenges that are
encountered for calculations involving transition metal molecular species, illustrating the critical need to
gauge computational chemistry methods.

1. Introduction

Computational chemistry can provide a useful partner to experiment in the discovery, development,
and characterization of new possible catalysts and catalytic processes, and the refinement of existing
catalysts and catalytic processes. Key to the utility, however, are a number of factors including reliability,
reproducibility, and transferability. Gauging computational methods is just as important as it is to calibrate
instrumentation used in experiments, or insuring yield from a synthetic process, yet, an unfortunate practice
is to simply utilize the most popular computational method. Computational methods can vary widely in
their utility and their computational cost (amount of computer time, memory, and disk space required in a
calculation), particularly in the realm of transition metals or heavy elements, and as the bulkiness of the
catalyst of interest is increased.

For the prediction of thermodynamic information (i.e., enthalpies, free energies), reaction barriers,
HOMO-LUMO gaps, and other fundamental properties, density functional theory (DFT) approaches are
very commonly used for catalysis. For early main group chemistry (i.e., hydrocarbons), there are many
different forms of DFT — called density functionals — that can be used quite easily, with very little difference
in predicted property arising from the choice of functional to describe energetics, and with limited
exceptions, as demonstrated by Karton et al. [1] However, for transition metal species, the utility of each
functional can vary widely based upon choice of metal, choice of ligand, and property of interest. [2-8] To
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illustrate, for a set of ~20 3d transition metal species, B3LYP/CEP-31G(d) resulted in errors from
experiment from the predicted enthalpies of formation by ~100 kcal mol™. [2]

However, when the same functional is applied to a different set of the transition metal species — a set
that has the smallest reported experimental uncertainties in the enthalpy of formation — the error is ~6-7
kcal mol™. [4,5] So, indeed, extraordinarily large variances can occur depending upon metal and ligand.
However, for catalysis, where there may be interest in understanding the thermochemistry with much
smaller errors in energy, this magnitude of error may be of limited utility. Computational approaches have
been designed to improve upon the predictions possible by DFT for these benchmark thermochemical data
for transition metal species. With ab initio composite approaches like the correlation consistent Composite
Approach, ccCA, designed in our group, [9-13] differences of ~2-3 kcal mol™!, on average, can be achieved
in the prediction of enthalpies of formation for 3d transition metal species. [12,13] As well, ccCA targeted
4d transition metal chemistry by utilizing relativistic pseudopotentials, denoted as rp-ccCA, to model
relativistic contributions from core electrons and yielded differences of ~3 kcal mol! from experimental
enthalpies of formation. [10,13] This is useful, but more costly than DFT approaches. Strategies have
evolved that help to reduce the bottleneck in these calculations (e.g., DLPNO-ccCA) - computational cost
- while preserving the accuracy in the energetic predictions. And, thus, this approach can be quite useful
as a route to either gauge DFT approaches in the absence of experiment, or, as a means to provide
quantitative energy predictions for studies of homogeneous processes (or for problems that can be well-
representative by a homogeneous process).

So far, these comments have focused upon general trends in the prediction of thermodynamic properties
of molecular systems. However, a question is, what is the utility of computational approaches for an
important industrial process like hydroformylation? More specifically, how useful are computational
approaches, particularly new approaches like DLPNO-ccCA, a form of ccCA, for important properties like
regioselectivity and metal-ligand binding? And, is the qualitative or quantitative picture impacted by
computational method choice?

The mechanism for Rh-based hydroformylation was well-established by Wilkinson in the late 1960s to
early 1970s. [14] As the largest volume homogeneous chemical reaction conducted in industry for chemical
production, the process converts olefins to aldehydes in a syngas mixture. The advantage of Rh-based
hydroformylation as opposed to Co-based hydroformylation is the favorable reaction conditions (ambient
temperature and pressure). The efficacy of a catalyst designed for hydroformylation is the ratio of the linear
aldehyde to the branched aldehyde (Fig. 1), known as the linear-to-branched ratio. In hydroformylation, the
formation of the linear aldehyde is favored although there are studies targeting asymmetric
hydroformylation, i.e. the production of the branched aldehyde. [15,16] This is measured through the
kinetics of the migratory insertion of the olefin to the catalyst.
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Figure 1. Hydroformylation reaction converting olefins to linear and branched
aldehydes via a Rh catalyst.

Numerous computational studies have targeted modeling the regioselectivity of hydroformylation due
to its importance in chemical industry. [17-26] To account for the size of the catalysts and the limited
computing power at the time, earlier computational studies either substituted PPhs ligands with much



smaller PH; ligands or utilized multilevel computational chemistry methods, such as ONIOM, [27,28] to
model the bond breaking and formation region with DFT while relegating the sterically bulky ligands to a
computationally more affordable method, such as molecular mechanics (MM). [17-21] While more recent
studies also utilize multilevel approaches for hydroformylation, more rigorous ab initio methodologies are
used to model bond breaking and forming regions and use DFT to model the steric ligands. [22,23] Other
studies have only used DFT to model the olefin insertion step as well as the entire Wilkinson catalytic cycle.
[23-25,29,30] These studies provide insight into potential electronic contributions of the sterically bulky
ligands as well as the mechanism by identifying the rate-determining step, which can change based on the
type of ligand. Machine learning approaches have recently been developed to screen potential ligands
based on their regioselectivity and is a rising trend in computational catalysis. [26,31]
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Figure 2. A model of the two reaction pathways for hydroformylation where AE/* and AE,} are the
reaction barrier for forming the linear and branched product, respectively. AAE! is the difference in
energy between the two reaction barriers.

The kinetics of hydroformylation is very sensitive energetically, i.e. the differences in energy
between competing pathways (AAE?), illustrated in Fig. 2, can be less than 1 kcal mol™. [17] With such
small differences in energy for the competing pathways, calculating the correct linear-to-branched ratio can
be difficult to predict with computational methods. For example, as shown in Table 1, if AAE*= 0 (reaction
barriers are equivalent), the 1:b ratio is 50:50. However, lowering the barrier for the linear product by 1 kcal
mol! (AAE* = -1 kcal mol™') results in a product ratio increase to approximately 84:16 and lowering the
barrier for the formation of the linear product by an additional 2 kcal mol™! (AAE*= -3 kcal mol™!) indicates
that the reaction highly favors the linear product (100:0 ratio). Therefore, to investigate the regioselectivity
of hydroformylation, a [Rh(H)(CO)] backbone was considered with both mono- and bidentate phosphine
ligands.

Table 1. Summary of the effect of AAE? in kcal mol! on the linear-to-branched ratio (1:b) ratio for hydroformylation.

AAE* (kcal mol™) Linear-to-branched ratio (1:b)
0to-1 50:50 to 84:16
1to-2 84:16t0 97:3
-2to -3 97:3 to 100:0

Basically, considering the challenges mentioned earlier about the prediction of thermochemistry
properties for transition metal species, achieving the level of accuracy needed to even predict the correct
product distributions seems unsurmountable. Cancellation of errors that can occur from comparing energy
differences is helpful, though the errors from experiment are not necessarily the same across a reaction
pathway, and, thus, gauging method utility for each problem, considering metal, ligand, and property, is
essential. Thus, in this study, the impact of method and basis set choice — the route to describe the molecular
orbitals — are considered to determine the impact of these choices upon the prediction of linear-to-branched



ligand ratio, as well as the ligand dissociation energy. The hydroformylation reactions investigated are the
Rh-catalyzed hydroformylation of terminal alkenes using a [Rh(H)(CO)] backbone with mono- (PPhs3) and
bidentate phosphine ligands (TBDCP, DIOP, DIPHOS) as shown in Figures 3 and 4.

Another aspect that is important in catalysis is the description of metal-ligand dissociation, as it is a
primary step in all homogeneous catalytic reactions, e.g. product dissociation from Rh-catalyzed
hydroformylation and solvent interactions with olefin hydrogenation, as well as gas phase ligand
dissociation for organometallic reactions targeting C-H activation. Here, to gain understanding about the
utility of the ab initio composite strategy, DLPNO-ccCA, a cationic (diimine)(aquo)Pt"! complex was
examined. This Pt" complex was chosen since Pt" complexes with ligands containing aromatic and aliphatic
C-H bonds are involved in the oxidative addition of alkanes and have been a focus in C-H activation studies
where the ligand substitution step is rate-determining. [32—-35]

2. Computational Methods

2.1 Computational methods for hydroformylation. DFT and ab initio calculations were done in this
study. Several density functionals were utilized, selecting a number of widely used functionals varying in
complexity: B3LYP, [36,37] B3P86, [36,38] BLYP, [37,39] BP86, [38,39] PBE, [40,41] and PBEO. [40-
42] (It should be noted that while increased complexity often means better property predictions, this is not
necessarily guaranteed.) Grimme’s dispersion correction with Becke-Johnson dampening (D3BJ) was
included for B3LYP and PBEO to correct for long-range intramolecular interactions. [43] The
Stuttgart/Dresden basis set, and pseudopotential (SDD) was used for all DFT calculations. [44,45] Though
it is commonly believed that a triple-£ quality basis set is sufficient for DFT calculations, earlier work has
demonstrated that for the predictions of energetic properties of transition metal species, quadruple-¢ level
basis sets can have an impact on the energies, and, thus, this level of basis set was considered.[3,4] As well,
this choice of basis set followed earlier work done by Kumar et al. [24], and all structures for the DFT and
ab initio calculations were based on this prior work. DFT calculations in the present work were done with
Gaussianl16. [46]

Several ab initio correlated methods also were used including domain-based pair natural orbital
(DLPNO) methods, [47-52] DLPNO-MP2 and DLPNO-CCSD(T)), the MP2 and CCSD(T) varieties of the
DLPNO approach. The DLPNO approach enables computational cost reductions from typical MP2 and
CCSD(T) calculations. And, CCSD(T) is of particular interest, as this method is known for its utility in
energy predictions when paired with a high-quality (which typically means large) basis set. The DLPNO
calculations were done with the ORCA program suite. [53] Calculations were done using Dunning’s
correlation consistent polarized valence-n-§ (“zeta”) basis sets (aug-cc-pVnZ, where n=D (double), T
(triple), Q (quadruple)), and considering augmented (aug-cc-pVnZ) and augmented core-valence (aug-cc-
pCVnZ) forms of the sets. [54,55] For P and Cl, the recommended tight d versions of the correlation
consistent basis sets, denoted as cc-pV(n+d)Z, aug-cc-pV(n+d)Z, and aug-cc-pCV(n+d)Z were used. [55]
The correlation consistent pseudopotentials (cc-pVnZ-PP) were used for Rh and Pt atoms. [56,57] The
correlation consistent Composite Approach (ccCA) for 4d transition metals was also considered, [10]
utilizing the DLPNO methods for the composite steps to reduce the computational resources associated
with the size of the compound, denoted as DLPNO-rp-ccCA. [58]

To calculate the regioselectivity for hydroformylation, the following equation was used for the linear-
to-branched ratio

1:b = ki:ky = exp(-AGH/kT)/exp((-AGv/kT) = exp(-AAG*/kT) = exp(-AAE*/KT) (1)



where AG? is the free energy barrier, AAG* is the energy difference between the two reaction pathways, k
is the Boltzmann constant, and T is the temperature. This equation assumes the olefin insertion step is
irreversible. The Rh-catalyst-olefin complex examined with the DLPNO methods is ee-
[Rh(H)(CO)(DIPHOS)(propene)] where the bis-phosphine DIPHOS ligand is in the equatorial-equatorial
(ee) coordination mode (shown in Figure 3). The ligands examined with DFT include (PPhs),, and more
structurally complex bis-phosphine ligands, TBDCP, DIOP, and DIPHOS. All ligands are attached to a
[Rh(H)(CO)] backbone as indicated in the Wilkinson catalytic cycle for Rh-based hydroformylation. The
ligands are shown in Figure 4. Olefins examined with (PPh;), include pentene, hexene, heptene, octene,
decene, dodecene, styrene, and vinyl acetate. Propene is coordinated with all bisphosphine ligands. The
ligands are considered in both the equatorial-equatorial (ee) and equatorial-axial (ea) conformations relative
to the Rh center. As the experiments were carried out in toluene, the SMD implicit solvent model [59] was
used to mimic the long-range solvent effects of toluene on the Rh catalyst.

Figure 3. Computationally determined 3D structures (left) and 2D structures (right) of ee-
[Rh(H)(CO)(DIPHOS)(propene)] catalyst complex (top) and dissociation reaction of H,O from the cationic
(diimine)(aquo)Pt" complex (bottom). Ph=Phenyl and Ar=2,6-dichlorobenzene. Pt=Silver, N=Blue, O=Red, C=Dark
Gray, H=Light Gray, Cl=Green, P=Orange, Rh=Teal.
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Figure 4. 2D structures of the monodentate and bidentate ligands for hydroformylation as well as the equatorial-
equatorial (ee) and equatorial-axial (ea) conformations of the [Rh(H)(CO)] backbone. All ligands are bound to a
[Rh(H)(CO)] backbone.



2.2 Computational methods for ligand dissociation. The gas phase ligand dissociation energy was
evaluated by the difference between the complex and the respective fragments.

AEdissoc = Eap - Eat E (2)

where Eap is the electronic energy of the complex, E4 is the electronic energy of fragment A, and Eg is the
electronic energy of fragment B. A4b initio calculations, in particular, are susceptible to basis set
superposition error (BSSE), which can result in overbinding of the ligands, and is applied to all DLPNO
calculations for metal-ligand dissociation energy. [60]

To study fundamental organometallic reactions that occur in the gas phase, a cationic
(diimine)(aquo)Pt!! complex prevalent in C-H activation and oxidative addition of alkanes was chosen (see
Fig 3). This molecule was chosen due to computational feasibility based on the molecule size. The
calculated zero point energy (ZPE) of the reaction obtained with a frequency calculation at the BP86 level
and the PBEO optimized structures were obtained from Weymuth et al. [61] This choice of functional for
frequency calculations was selected since the ZPE of the reaction did not significantly change with respect
to functional choice. [61] PBEO structures were utilized based on their success for heavier elements. A few
density functionals, PBEO, B3LYP, and TPSSh [62] utilizing cost-saving techniques, i.e the resolution-of-
the-identity or RI approximation, were paired with the augmented correlation consistent basis sets and
pseudopotentials of triple- and quadruple-£ level quality (aug-cc-pVnZ, n=T, Q), as well as DLPNO-rp-
ccCA to determine ligand dissociation energies. All ligand dissociation calculations were done in the ORCA
program suite.

3. Results and Discussion

3.1 Regioselectivity in hydroformylation. The DFT 1:b ratios for all Rh catalysts are shown in Table 2.
The corresponding AAE*s for all DFT results are shown in Table 3. The DLPNO results for
hydroformylation are shown in Table 4 for the 1:b ratios, including the 1:b determined for calculations that
have been corrected for BSSE. With DFT, qualitatively correct I:b ratios are obtained for most of the
examined catalyst-olefin complexes as shown in Table 2. However, this largely depends on which type of
functional is used. For example, using BLYP, BP86, and PBE generally predicted 1:b ratios that are in
disagreement with experiment for (PPhs), ligands, particularly for hexene, heptene, octene, dodecene, and
styrene, which produced 1:b ratios of 2:98, 26:74, 11:89, 84:16, and 87:13, respectively, for BLYP, and
similar ratios for BP86 and PBE (Table 2). With an increase in complexity in the functionals, i.e. B3LYP,
B3P86, and PBEQO, I:b ratios of 67:33 47:53 and 76:24 for B3LYP, 71:29, 67:33, 68:32 for B3P86, and
75:25, 73:27, 71:29 for PBEO, were predicted for the conversion of heptane, octene, and dodecane with
(PPhs), ligands, respectively. And for ee-[Rh(H)(CO)(PPh;),(pentene)], the linear product is predicted.
However, the inclusion of Grimme’s dispersion correction for BALYP and PBEO predicted 1:b ratios that
predicted the more favorable produce, in agreement with experiment for all examined catalyst-olefin
complexes with the exception of ee-[Rh(H)(CO) (PPhs)>(decene)] (1:b ratios of 0:100 and 3:97 for B3LYP-
D3 and PBEO-D3, respectively) and ee-[Rh(H)(CO) (DIPHOS)(propene)] (1:b ratios of 17:83 and 11:89 for
B3LYP-D3 and PBE0-D3, respectively). Based on the calculated 1:b ratios, predicting regioselectivity with
DFT can, but not always, be improved by increasing the complexity of the functional.



Table 2. Comparison of several density functionals to linear-to-branched ratios from experiment for ee-
[Rh(H)(CO)(L)(olefin)] complexes

B3LYP-  PBEO- Exp
BLYP BP86 PBE B3LYP B3P86 PBEO D3 D3 [63-70]
L=(PPhs),
Pentene 83:17 81:19 79:21 95:5 95:5 95:5 100:0 99:1 95:5
Hexene 298  3:97 6:94 10:90  19:81 23:77 100:0 99:1 92:8
Heptene 26:74 28:72 33:67 67:33  71:29 75:25 100:0 99:1 86:14
Octene 11:89 20:80 31:69 47:53  67:33 73:27 100:0 100:0 81:19
Decene 84:16 93:7 89:11 53:47 6931 64:36 0:100 3:97 74:26
Dodecene 45:55 33:67 41:59 76:24  68:32 71:29 100:0 99:1 87:12
Styrene 87:13  92:8 79:21 83:17  84:16 90:10 0:100 1:99 11:89
Vinyl acetate | 0:100 0:100 0:100 0:100  0:100 0:100 0:100 0:100 9:91
L=TBDCP
Propene 90:10 88:12 8&9:11 96:4 95:5 96:4 92:8 95:5 92:8
L=DIOP
Propene 99:1  99:1 100:0 100:0 100:0 100:0 100:0 100:0 90:10
L=ee-DIPHOS
propene 3:97  3:97 3:97 5:95 5:95 5:95 17:83 11:89 69:31°¢
L=ea-DIPHOS
propene 83:17 73:27 71:29 86:14  T77:23 76:24 88:12 81:19 69:31°

2The data references the ea isomer of DIPHOS.



Table 3. Comparison of the approximate AAE*s based on the calculated I:b ratios for ee-[Rh(H)(CO)(L)(olefin)]
complexes. Experimental AAE®s are an approximation of experimental 1:b ratios. All AAE?s are in kcal mol™'.

B3LYP- PBEO- Exp?
BLYP BP8 PBE B3LYP B3P8 PBEO D3 D3 [63-70]
L = (PPhs),
Pentene -0.96 -0.88 -0.80 -1.78 -1.74 -1.74 -3.67 -3.05 -1.74
Hexene 2.44 2.07 1.65 1.29 0.87 0.71 -3.93 -2.70 -1.44
Heptene 0.62 056 041 -0.42 -0.53  -0.66 -3.74 -2.87 -1.07
Octene 1.26 0.81 0.47 0.06 -042 -0.60 -4.87 -3.85 -0.85
Decene -098 -149 -1.23 -0.08 -047 -0.34 3.36 2.05 -0.62
Dodecene 0.11 043 0.21 -0.68 -043  -0.54 -3.92 -2.91 -1.13
Styrene -1.10  -1.44 -0.78 -0.94 -1.00 -1.29 5.62 2.87 1.24
Vinyl acetate | 6.24 6.55 6.59 6.02 6.35 6.27 5.06 542 1.36
L =TBDCP
Propene -1.31  -1.16 -1.23 -1.86 -1.71 -1.92 -1.45 -1.70 -1.44
L = DIOP
Propene -2.57 312 -3.22 -3.28 -3.76  -4.02 -3.59 -4.22 -1.30
L=ce-
DIPHOS
propene 2.00 2.10 2.08 1.70 1.80 1.75 0.93 1.25 -0.47°
L =eca-
DIPHOS
propene -096 -0.58 -0.54 -1.05 -0.72  -0.69 -1.17 -0.86 -0.47°

*The AAE's shown are based on the experimental 1:b ratios shown in Table 2. °The data references the ea isomer of
DIPHOS.

For ee-[Rh(H)(CO) (PPhs),(vinyl acetate)], the predicted AAE* was ~ 6 kcal mol™! for each functional
considered as shown in Table 3, indicating the branched isomer is favored. Overall, the dispersion-corrected
functionals resulted in a lowering of the AAE* for ee-[Rh(H)(CO) (PPhs),(vinyl acetate)] by approximately
1 kcal mol!, however, this did not impact the product distribution. Similarly, for
ee[Rh(H)(CO)(DIOP)(propene)], the dispersion correction functionals resulted in a lowered the predicted
AAE*by ~0.3 kcal mol! and did not impact the product distribution as the predicted AAE* was ~4 kcal mol-
!. However, for ee-[Rh(H)(CO) (PPhs),(styrene)] and ee-[Rh(H)(CO) (PPh;s)(decene)], the dispersion-
corrected functionals predicted the AAE* to be ~6 kcal/mol and ~3 kcal mol! greater than the AAE*
predicted with non-dispersion-corrected functionals. While this change in AAE* predicted product ratios of
0:100 and 1:99 for B3LYP-D3 and PBEO0-D3, respectively, with styrene as the olefin, with decene as the
olefin, the predicted product ratios were 0:100 and 3:97 for B3LYP-D3 and PBE0-D3, respectively.

For the DIPHOS ligand, the relative orientation of the Rh-H and Rh-CO bond to the DIPHOS ligand
was a major factor in predicted l:b ratios with DFT. In the ee coordination mode, all predicted 1:b ratios
with DFT predicted the branched product whereas the linear product is predicted for the ea coordination
mode, in qualitative agreement with experiment. This is to be noted for any calculation. The small geometric
changes from the ee to the ea coordination mode led to lowering of the AAE* by ~2-3 kcal mol™! for all
functionals, changing the product ratio to favor the linear product over the branched ratio. This exhibits the
high sensitivity of AAE*, which can greatly affect product formation ratios with changes as small as a few
tenths of a kcal mol™!, as exhibited by the AAE®s of -0.54 and -1.05 kcal mol™! that yielded product ratios of



71:29 and 86:14 for PBE and B3LYP, respectively. Ergo, based on the observed trends from the DFT
calculations, there remains a need to investigate hydroformylation with electron correlation methods.

Table 4. Results using DLPNO methods to predict the linear-to-branched ratio for ee-
[Rh(H)(CO)(DIPHOS)(propene)]

1:b
DLPNO-MP2/aug-cc-pVDZ-PP 25:75
DLPNO-MP2/aug-cc-pVTZ-PP 29:71
DLPNO-MP2/aug-cc-pVQZ-PP 16:84
DLPNO-MP2/cc-pVTZ-PP 18:82
DLPNO-CCSD(T)/cc-pVTZ-PP 1:99
DLPNO-CCSD(T)/aug-cc-pCVDZ-PP 100:0
DLPNO-CCSD(T,FC1)/aug-cc-pCVDZ-PP 100:0
DLPNO-rp-ccCA 100:0
Experiment® 69:31

aThe data references the equatorial-axial (ea) isomer of DIPHOS.

Here, the ee-[Rh(H)(CO)(DIPHOS)(propene)] catalyst-olefin complex is considered, as DFT was
unable to address the regioselectivity of this reaction correctly in any case. For the DLPNO methods, the
1:b ratio is predicted to favor the branched isomer except for DLPNO-CCSD(T) calculations involving the
aug-cc-pCVDZ basis set. This is primarily due to the interactions between the electrons from core orbitals
with electrons in valence orbitals as DLPNO-CCSD(T)/aug-cc-pCVDZ and DLPNO-CCSD(T,FC1)/aug-
cc-pCVDZ, which includes sub-valence electron (FC1) excitations within the molecular orbital space, both
favored the linear isomer with product ratios of 100:0. The results from implementing the DLPNO methods
indicate that electronic effects from including core electrons within the valence basis set are significant in
determining AAE?* given the large magnitude relative to other calculated AAE*s with ab initio methods.

Even for qualitative predictions, DLPNO-rp-ccCA is useful. By utilizing a well-described molecular
orbital space — DLPNO-rp-ccCA does predict the proper regioselectivity; DFT either does not predict the
correct regioselectivity, such as for ee-[Rh(H)(CO) (PPh;).(styrene)] and ee-[Rh(H)(CO) (PPhs).(hexene)],
which predicted qualitatively inconsistent product ratios for most of the functionals examined. In addition,
the regioselectivity is highly sensitive to functional choice, as the performance is not consistent as the ligand
type and olefin changes. However, for the ab initio methods considered, simply improving the description
of the molecular orbital space by including sub-valence electrons in the molecular orbital space for
interactions.

3.2 Metal-ligand dissociation in _organometallics. The gas phase ligand dissociation energies are
shown in Table 5 with DLPNO-rp-ccCA compared to both experiment and several density functionals
utilizing the resolution-of-the-identity approximation. For gas-phase ligand dissociation, DLPNO-rp-ccCA
yields an error of 1.7 kcal mol! relative to experiment. When utilizing the resolution-of-the-identity
approximation within DFT calculations, RI-PBEO/aug-cc-pVTZ, RI-B3LYP/aug-cc-pVTZ, and RI-TPSSh
yields dissociation energies of 20.7, 20.2, and 19.6 kcal mol™!, respectively. However, increasing the quality
of the molecular orbital space, i.e. using aug-cc-pVQZ, increased the error by 0.4, 0.5, and 0.5 kcal mol!
for RI-PBEO, RI-B3LYP, and RI-TPSSh, causing concern for utilizing DFT with higher quality basis sets.
Regardless of functional and basis set choice, the predicted dissociation energy was greater than 5 kcal mol
! lower than the experimental value. With the dispersion correction included for RI-PBE0/aug-cc-pVTZ,
the predicted dissociation energy increased to 23.6 kcal mol™!. This would suggest that accounting for
dispersion is necessary for DFT predictions of gas-phase properties. DLPNO-rp-ccCA calculations yielded
favorable results for ligand dissociation energy in comparison to DFT, but there are factors that can
contribute to computationally predicted dissociation energies. For example, as density functionals are
primarily used to generate structures for large organometallic complexes, the choice of functional for




optimization must be considered. The predicted dissociation energies can change by a few kcal mol™! based
on slight structural change (root mean square deviation of ~20 pm) between functionals and by 10’s of kcal
mol™! for significant structural changes such as ligand reorientation. Also, the basis set choice can affect the
quality of predictions as indicated from the lowering of predicted dissociation energy by increasing basis
set quality.

Table 5. A comparison of the gas-phase ligand dissociation energy of H>O from the Pt complex calculated with
DLPNO-rp-ccCA and RI-DFT/aug-cc-pVnZ. All energies are in kcal mol! and are BSSE-corrected.

RI-PBEO/aug-cc-pVTZ 20.7
RI-B3LYP/aug-cc-pVTZ 20.2
RI-TPSSh/aug-cc-pVTZ 19.6
RI-PBE(/aug-cc-pVQZ 20.3
RI-B3LYP/aug-cc-pVQZ 19.7
RI-TPSSh/aug-cc-pVQZ 19.1

RI-PBEO-D3/aug-cc-pVTZ 23.6
DLPNO-rp-ccCA 24.2
Experiment 259+0.7

4. Conclusion

There are numerous challenges in the prediction of thermochemistry properties for transition metal
species as illustrated in this examination of regioselectivity and ligand dissociation energy. And, thus,
gauging the utility of computational method, considering metal, ligand, and property, is essential. A typical
method choice for the study of transition metal species is DFT. Unfortunately, there is no “magic”
computational approach to use for all problems. While ab initio methods like CCSD(T) or composite
methods that try to replicate it like ccCA can be quite useful and are more dependable from system to
system and, generally, across a reaction pathway, they are more costly, and may require additional measures
to ensure quality results are obtained sometimes reaching near saturation of the orbital space (even more
costly!). DFT can be very useful, but properly gauging it is important, as illustrated by this study.
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Table

Table 1. A summary of the effect of AAE* in kcal mol” on the linear-to-branched ratio (I:b) ratio for

hydroformylation.
AAE* (kcal mol™) Linear-to-branched ratio (1:b)
0to-1 50:50 to 84:16
1to-2 84:16t0 97:3

-2to-3 97:3 to 100:0




Table

Table 2. A comparison of several density functionals to linear-to-branched ratios from experiment for ee-
[Rh(H)(CO)(L)(olefin)] complexes

B3LYP-  PBEO- Exp
BLYP BP8 PBE B3LYP B3P86 PBEO D3 D3 [63-70]
L=(PPhs),
Pentene 83:17 81:19 79:21 95:5 95:5 95:5 100:0 99:1 95:5
Hexene 2:98 3:97 6:94 10:90 19:81 23:77 100:0 99:1 92:8
Heptene 26:74 28:72 33:67 67:33 71:29  75:25 100:0 99:1 86:14
Octene 11:89 20:80 31:69 47:53 67:33  73:27 100:0 100:0 81:19
Decene 84:16  93:7 89:11  53:47 69:31 64:36 0:100 3:97 74:26
Dodecene 45:55 33:67 41:59 76:24  68:32  71:29 100:0 99:1 87:12
Styrene 87:13  92:8 79:21 83:17  84:16 90:10 0:100 1:99 11:89
Vinyl acetate | 0:100 0:100 0:100 0:100  0:100 0:100 0:100 0:100 9:91
L=TBDCP
Propene 90:10 88:12 89:11 96:4 95:5 96:4 92:8 95:5 92:8
L=DIOP
Propene 99:1 99:1 100:0 100:0 100:0 100:0 100:0 100:0 90:10
L=ee-DIPHOS
propene 3:97 3:97  3:97 5:95 5:95 5:95 17:83 11:89 69:31°
L=ea-DIPHOS
propene 83:17 73:27 71:29 86:14  T77:23  76:24 88:12 81:19 69:31°

*The data references the ea conformer of DIPHOS.



Table

Table 3. A comparison of the approximate AAE*s based on the calculated 1:b ratios for ee-[Rh(H)(CO)(L)(olefin)]
complexes. Experimental AAE®s are an approximation of experimental 1:b ratios. All AAE*s are in kcal mol™.

B3LYP- PBEO- Exp®
BLYP BP8 PBE B3LYP B3P8 PBEO D3 D3 [63-70]
L = (PPhs),
Pentene -0.96 -0.88 -0.80 -1.78 -1.74 -1.74 -3.67 -3.05 -1.74
Hexene 2.44 2.07 1.65 1.29 0.87 0.71 -3.93 -2.70 -1.44
Heptene 0.62 0.56 041 -0.42 -0.53 -0.66 -3.74 -2.87 -1.07
Octene 1.26 0.81 0.47 0.06 -0.42 -0.60 -4.87 -3.85 -0.85
Decene -0.98 -149 -1.23 -0.08 -0.47 -0.34 3.36 2.05 -0.62
Dodecene 0.11 043 0.21 -0.68 -0.43 -0.54 -3.92 -2.91 -1.13
Styrene -1.10 -1.44 -0.78 -0.94 -1.00 -1.29 5.62 2.87 1.24
Vinyl acetate 6.24 6.55 6.59 6.02 6.35 6.27 5.06 5.42 1.36
L =TBDCP
Propene -1.31  -1.16 -1.23 -1.86 -1.71 -1.92 -1.45 -1.70 -1.44
L = DIOP
Propene -2.57  -3.12  -3.22 -3.28 -3.76 -4.02 -3.59 -4.22 -1.30
L=ce-
DIPHOS
propene 2.00 2.10 2.08 1.70 1.80 1.75 0.93 1.25 -0.47°
L =ca-
DIPHOS
propene -096 -0.58 -0.54 -1.05 -0.72 -0.69 -1.17 -0.86 -0.47°

*The AAE*s shown are based on the experimental I:b ratios shown in Table 2. "The data references the ea conformer
of DIPHOS.



Table

Table 4. Results using DLPNO methods to predict the linear-to-branched ratio for ee-
[Rh(H)(CO)(DIPHOS)(propene)]
1:b
DLPNO-MP2/aug-cc-pVDZ-PP 25:75
DLPNO-MP2/aug-cc-pVTZ-PP 29:71
DLPNO-MP2/aug-cc-pVQZ-PP 16:84
DLPNO-MP2/cc-pVTZ-PP 18:82
DLPNO-CCSD(T)/cc-pVTZ-PP 1:99
DLPNO-CCSD(T)/aug-cc-pCVDZ-PP 100:0
DLPNO-CCSD(T,FC1)/aug-cc-pCVDZ-PP 100:0
DLPNO-rp-ccCA 100:0
Experiment 69:31

*The data references the equatorial-axial (ea) isomer of DIPHOS.



Table

Table 5. A comparison of the gas-phase ligand dissociation energy of H,O from the Pt complex calculated with
DLPNO-rp-ccCA and RI-DFT/aug-cc-pVnZ. All energies are in kcal mol™' and are BSSE-corrected.

RI-PBE(/aug-cc-pVTZ 20.7
RI-B3LYP/aug-cc-pVTZ 20.2
RI-TPSSh/aug-cc-pVTZ 19.6
RI-PBEO/aug-cc-pVQZ 20.3
RI-B3LYP/aug-cc-pVQZ 19.7
RI-TPSSh/aug-cc-pVQZ 19.1

RI-PBE(O-D3/aug-cc-pVTZ 23.6
DLPNO-rp-ccCA 24.2
Experiment 259+0.7
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Figure 1. The hydroformylation reaction converting olefins to linear and branched aldehydes via a Rh catalyst.
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Figure 2. A model of the two reaction pathways for hydroformylation where AE;* and AE,* are the reaction barrier
for forming the linear and branched product, respectively. AAE* is the difference in energy between the two reaction

barriers.
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Figure 3. Computationally determined 3D structures (left) and 2D structures (right) of ee-
[Rh(H)(CO)(DIPHOS)(propene)] catalyst complex (top) and dissociation reaction of H>O from the cationic
(diimine)(aquo)Pt" complex (bottom). Ph=Phenyl and Ar=2,6-dichlorobenzene. Pt=Silver, N=Blue, O=Red, C=Dark
Gray, H=Light Gray, Cl=Green, P=Orange, Rh=Teal.
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Figure 4. 2D structures of the monodentate and bidentate ligands for hydroformylation as well as the equatorial-
equatorial (ee) and equatorial-axial (ea) conformations of the [Rh(H)(CO)] backbone. All ligands are bound to a
[Rh(H)(CO)] backbone.
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