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Abstract—This article considers resilient cooperative
state estimation in unreliable multiagent networks. A net-
work of agents aim to collaboratively estimate the value of
an unknown vector parameter, while an unknown subset
of agents suffer Byzantine faults. We refer to the faulty
agents as Byzantine agents. Byzantine agents malfunction
arbitrarily and may send out highly unsiructured messages
to other agents in the network. As opposed to fault-free
networks, reaching agreement in the presence of Byzan-
tine agents is far from trivial. In this article, we propose a
computationally efficient algorithm that is provably robust
to Byzantine agents. At each iteration of the algorithm, a
good agent performs a gradient descent update based on
noisy local measurements, exchanges its update with other
agents in its neighborhood, and robustly aggregates the
received messages using coordinate-wise trimmed means.
Under mild technical assumptions, we establish that good
agents learn the true parameter asymptotically in almost
sure sense. We further complement our analysis by proving
(high probability) finite-time convergence rate, encapsulat-
ing network characteristics.

Index Terms—Agents and autonomous systems, coop-
erative control, parameter estimation, secure distributed
state estimation.

|. INTRODUCTION

OLLABORATIVE state/parameter estimation has at-
C tracted a considerable attention due to a wide range of
applications in Internet of Things (IoT), wireless networks,
power grids, sensor networks, and robotic networks [1]-[7].
In these applications, a network of (connected) agents collect
information in a distributed fashion and share an overarching
goal to learn the common unknown truth #* € R%. Local mea-
surements obtained by each individual agent contain only noisy
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and even highly incomplete information about #*. Nevertheless,
the network of agents might be able to collaboratively learn #* by
effectively fusing the information scattered across the network
in agents’ local measurements.

In the absence of system adversary, the distributed state esti-
mation problem is well studied [5], [8]. However, some practical
scenarios such as IoT, microgrids, and Federated Learning are
vulnerable to unstructured faults or even adversarial attacks [9].
In particular, in large distributed systems, individual computing
devices/sensors may exhibit abnormal behaviors due to unre-
liable devices and communication channels, and even external
adversarial attacks. Such abnormal behaviors are often unstruc-
tured because of the heterogeneity in hardware, software, im-
plementation environments, and the unpredictability of external
adversarial attacks.

Motivated by that, we are interested in addressing collabo-
rative estimation in the presence of adversarial agents. Despite
the wealth of literature on collaborative estimation with random
failures (e.g., [10]), perhaps less well known is estimation in
the presence of adversarial agents, especially in the finife-time
domain.

In this article, we adopt a Byzantine fault/adversary
model [11]—a canonical fault/adversary model in distributed
computing. In this model, there exists a system adversary that
can choose up to a constant fraction of agents to compromise
and control. An agent suffering Byzantine fault (referred to as
a Byzantine agent) behaves arbitrarily badly by sending out
unstructured malicious messages to the good agents. In addition,
Byzantine agents may give conflicting messages to different
agents in the system. Tolerating Byzantine agents is highly
nontrivial (see, e.g., [12] and [13]). For example, it is well known
that in complete graphs, no consensus algorithms can tolerate
more than one-third of the agents to be Byzantine [13]. This
difficulty arises partially from the system asymmetry caused by
the conflicting messages sent by the Byzantine agents. In fact,
Byzantine consensus with vector multidimensional inputs in the
complete graphs had not been solved until only recently [14],
[15].

Despite intensive efforts on securing distributed learning (see
Section I-B for details), to the best of the authors’ knowledge,
efficient algorithms that are provably resilient to Byzantine
agents without stringent assumptions on the local measurements
are still lacking. In particular, the literature has mostly focused
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on the asymptotic analysis, leaving the finife-time guarantees for
such algorithms a complementary direction to pursue, which is
the main focal point of this article.

A. Our Contributions

We propose a computationally efficient algorithm that is
provably robust to Byzantine faults. At each iteration of our
algorithm, a good agent performs a gradient descent update
based on local measurements only, exchanges its update with
other agents in its neighborhood, and robustly aggregates the
received messages using coordinate-wise trimmed means.

We establish that every good agent learns the true parameter
asymptotically in the almost sure sense. Most importantly, we
characterize the finite-time convergence rate (in high-probability
sense), encapsulating network characteristics. To the best of our
knowledge, this is the first finite-time fast convergence guarantee
of Byzantine-resilient distributed state estimation for the case
that the good agents can only collect noisy measurements and
their local observation matrices might not be of full rank.

For ease of exposition, we first present our results for fully
connected networks (complete graphs) and then generalize the
obtained results to general networks (incomplete graphs). We
finally provide numerical simulations for our method to verify
our theoretical results.

B. Related Literature

Resilient estimation, detection, and learning has attracted a
great deal of attention in the past few years, and many researchers
in the fields of control, signal processing, and network science
have addressed the problem by adopting different notions of
resilience or robustness.

1) Adversary-Resilient State Estimation: There is a rich
line of work on adversary-resilient state estimation problem,
wherein the existence of a fusion center is assumed. In [16]-[18],
resilience has been discussed in the context of smart power grid
systems using cardinality minimization and its ¢; relaxations. On
the other hand, the focus of [19] and [20] is on estimation in linear
time-invariant (LTI) systems. In [19], an interesting approach is
proposed for fault detection using monitors, and fundamental
monitoring limitations have been characterized using tools from
system theory and game theory. Furthermore, the approach
of [20] is inspired from the areas of error correction over the
reals and compressed sensing. In [21], robust Kalman filtering
is discussed, where the estimate updates are derived using a
convex {1 optimization problem. Shoukry and Tabuada [22]
consider a model, where the observation noise is sparse, in the
sense that the faulty sensors have noisy measurements, while
other sensors’ measurements are noiseless. An event-triggered
projected gradient descent is then proposed to reconstruct the
state. Secure remote estimation of a linear Gaussian process is
considered in [23], which focuses on malicious sensor detection
and secure estimation in the fusion center. Interested readers are
referred to [24] for a comprehensive survey on security control
in industrial cyber-physical systems. In contrast, in our setting
(multiagent networks), no fusion center exists, and transmitting
the locally collected measurements to one designated agent is

forbidden; the state estimation problem must be solved in a
decentralized manner.

2) Adversary-Resilient Distributed State Estimation: In
parallel to advancements on resilient centralized estimation,
recent years have witnessed intensive interest in securing dis-
tributed estimation. Sundaram and Hadjicostis [25] discuss the
problem of adversary-resilient consensus. Chen ef al. [26] pro-
pose a novel adversary detection strategy under which good
agents either asymptotically learn the true state or detect the
existence of a system adversary. If an adversary is flagged, the
system goes through some external procedure to “repair” itself.
This method is satisfactory as long as the system barely needs
to go through the external procedure, which is often expen-
sive. However, for scenarios where the existence of a system
adversary is the norm, which may be the case for large-scale
distributed systems, instead of such an adversary detection strat-
egy, we need to seek for securing strategies that can folerate the
existence of a system adversary so that the good agents can learn
the true state even in the presence of Byzantine agents. Several
adversary-resilient algorithms have been proposed [27]-[33]
with different assumptions and performance guarantees. Chen
et al. [27], [32] propose an algorithm, under which all of the
agents’ estimates converge to the true state as long as less than
one half of the agents are adversarial. The correctness of their
algorithm is shown under the assumption that an agent can fully
observe the true state [27, Sec. II.A] and [32, eq. (1)], as opposed
to our model, which deals with both observability and noisy
measurement issues. Exponential convergence is proved in [33]
but under the above full observation assumption [33, eq. (1)].
Mitra and Sundaram [28] consider the more general LTI systems
and characterize the fundamental limits on adversary-resilient
algorithms. Under a different adversarial model,' a concurrent
work [34] presents a method, whose correctness does not de-
pend on the network topology. However, neither [28] nor [34]
considers nonasymptotic convergence.

3) Adversary-Resilient Distributed Optimization: Xu
et al. [29] study the general dynamic optimization problem
and propose a total variation norm regularization technique
to mitigate the effect of malfunctioning agents. However,
even in the static case, the good agents cannot learn the
true minimizer (see [29, Corollary 1]). Our algorithm is
similar to [31] in that we combine local gradient descent with
coordinatewise message trimming. For their algorithm to work,
the optimization problem needs to be separable; otherwise,
[31, Lemma 1] does not hold, and the proof in [35] cannot be
applied. The algorithm Byz-Ifer (proposed in [30] originally
for distributed hypothesis testing problem) works for the state
estimation problem, but its performance scales poorly in d.
Shahrampour and Jadbabaie [36] consider a tracking problem
in the presence of adversarial noise. In their work, all of the
agents are assumed to be cooperative, i.e., they truthfully report
their (partial) observations. Gupta and Vaidya propose a robust
distributed gradient descent method, whose convergence does
not depend on any distributional assumption [37]. However, the
system architecture is a master—slave architecture rather than

!See the second last paragraph in [34, Sec. L.B] for details.
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a multiagent network considered here. The same master—slave
architecture is considered in a new line of work on distributed
statistical learning [9], [38], [39], where the training data
are assumed to be independent identically distributed (i.i.d.)
generated from some unknown distribution. In contrast, in our
distributed state estimation problem, the local measurements
across different agents might follow different distributions.

Il. PROBLEM FORMULATION

Notation: We represent by trace(-) the trace operator, by || - ||
the norm operator, and by E[-] the expectation operator. P{A}
denotes the probability of an event A, I denotes the identity
matrix, and ey captures the kth standard basis in a Euclidean
space. The vectors are all in column form.

A. Network Model

We consider a multiagent network, which is a collection of
n agents communicating with each other through a network
G(V,€),where V = {1,...,n} and £ denote the set of agents
and communication links, respectively. We denote by A/; the set
of incoming neighbors of agent i. An unknown subset of agents
of size at most b, denoted by A, might be bad (i.e., adversarial).
The set A is chosen by the system adversary. We assume that
n > 2b+ 1. For ease of exposition, let

[V/A| = ¢.

Clearly, ¢ > n —b.

Good agents (agents in V/.4) aim to estimate the unknown
parameter collaboratively, but Byzantine agents (agents in 4)
can adversarially affect the estimation procedure by sending
arbitrary, malicious, and possibly conflicting messages to the
good agents; see Section II-C for details.

B. Observation Model

In this article, we focus on a linear observation model. Let
y;(t) denote the local measurement of agent i at time ¢, i.e.,

yi(t) := Hi0* + w;(t) (D

where 6* € R? is the true state, H; € R™*? is the local ob-
servation matrix, and w; () is the observation noise. In partic-
ular, the noise sequence {w;(t)};>, are i.i.d. with E[w,(t)] =
0 € R™, Efw;(t)w;(t)"] = Xi € R™>™ and P{||w;(¢)]]2 <
C} = 1 for some absolute constant C' > 0. Moreover, the noise
sequences across agents are independent, that is, (w;(t),t > 1)
and (w;(t),t > 1) for 72 # j are independent. In practice, the
observation matrix H; is often fat, i.e., n; < d. Thus, to correctly
estimate 6, each agent ¢ must obtain information from others.

Notably, though a Byzantine agent might send out malicious
messages, its local observation is still well defined.

C. Fauli/Adversary Model

To formally capture the unstructured abnormal behav-
iors of the adversarial agents, we adopt the Byzantine fault
model [11]—a canonical fault model in distributed computing.
In this model, there exists a system adversary that can choose up

to b of the n agents to compromise and control. Recall that this
set of agents is denoted by .A. An agent suffering Byzantine fault
is referred to as a Byzantine agent. While the set A is unknown
to good agents, a standard assumption in the literature is that the
value of b is common knowledge [11].

The system adversary is very powerful in the sense that it has
complete knowledge of the network, including the true state 6*,
the local program that each good agent is supposed to run, the
current status and the running history of the multiagent network
system, etc. Hence, the Byzantine agents can behave adaptively
and collude with each other to arbitrarily misrepresent infor-
mation to the good agents. In particular, Byzantine agents can
mislead each of the good agents in a unique fashion, i.e., letting
m;;(t) € R? be the message sent from agent i € A to agent
JEV\ A at time ¢, it is possible that m;(t) # m;;(t) for
J#ieV\A

Remark 1: Due to the exfreme freedom given to Byzantine
agents and the system asymmetry caused by them, a resilient
distributed solution to the estimation problem is highly nontrivial
even in complete graphs. In particular, it is well known that in
complete graphs, no consensus algorithms can tolerate more
than one-third of the agents to be Byzantine [13].

D. Finite-Time Versus Asymptotic Local Functions

The Byzantine-resilient state estimation problem can be
viewed through the lens of distributed online optimization,
where each good agent would only asymptotically know its
local function. For each agent 7 € V, define its asymptotic local
function f; : R? — R as

]
fu(z) = 5E [ Hiz — wil3] @

where y; = H;0* + w; [as per (1)], and the expectation of f;(x)
is taken over the randomness of w;. Note that f; is well defined
for each agent regardless of whether it is a good agent or a
Byzantine agent. Since the distribution of w; is unknown to
agent 7, at any finite ¢, function f; is not accessible to agent 1.
However, the agent has access to the finite-time/empirical local
function f; ; defined as

1 t
fu@) = = 3 Hiz — (o)l 3)
#=t

whose gradient at = is

Vfiele) =3 3 HI (Hiz — w(s))
8=1

1 t
=H{H;(z—0")—H] ) wi(s) (@

s=1

where the last equality follows from (1).

[ll. BYZANTINE-RESILIENT STATE ESTIMATION

To robustify distributed state estimation against Byzantine
agents, one approach is to combine the local gradient descent
with multidimensional Byzantine-resilient consensus [14], [15],
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[30]. However, the performance of multidimensional Byzantine-
resilient consensus itself is proved to scale poorly in the dimen-
sion of the parameter d [14], [15]. This is because that different
dimensions of the inputs strongly interfere with each other, and
the Byzantine agents can inject wrong information with both ex-
treme magnitudes and directions. To improve the scalability with
respect to d and to reduce the computation complexity, instead
of using multidimensional Byzantine-resilient consensus, we
robustly aggregate the received messages using coordinatewise
trimmed means.

We propose an algorithm, named Byzantine-resilient state
estimation, under which each good agent iteratively aggregates
the received messages by, for each coordinate, discarding the
largest b and the smallest b values, and averaging the remaining.
In particular, in each iteration, an agent performs the following
three steps.

1) Local gradient descent: Agent i first computes the noisy
local gradient V f; ;(x;(t — 1)) and performs local gradi-
ent descent to obtain z;(¢), i.e.,

zi(t) = zi(t — 1) — V fi o (z:(t — 1)). ®)

Note that the step size used is 1.

2) Information exchange: It exchanges z;(¢) with other
agents in its local neighborhood. Recall that m;;(¢) € R®
is the message sent from agent ¢ to agent j at time ¢. It
relates to z;(¢) as follows:

g {z,;(t), ifi € (V/A)

%, IEEEA

where * denotes an arbitrary value. Byzantine agents can
mislead good agents differently, i.e., if ¢ € A, it might
hold that m;(t) # my;(t) forj # ' € V\ A
3) Robust aggregation: Agent i computes the trimmed mean
for each coordinate k = 1,...,d and uses the obtained d
trimmed means to obtain x;(t).
The formal description of the algorithm for a good agent (i.e.,
i € V\ A)is given in Algorithm 1.

IV. FINITE-TIME GUARANTEE FOR COMPLETE NETWORKS

In this section, we focus on complete networks in order to
build some intuitions for the resilience of the proposed algorithm
without forcing the readers to worry about the complication
caused by the network topologies. In fact, even complete net-
works themselves are of practical interests: many computer
networks can be viewed as complete networks, wherein effi-
cient communication protocols are implemented, and any two
computers are logically connected.

Recall that a Byzantine agent has full knowledge of the system
and can send out arbitrarily adversarial messages to the good
agents.? Clearly, if a good agent is not equipped with any security
strategy, even a single Byzantine agent might be able to control
the evolutions of the local estimates x; at the good agents.
Fortunately, it can be shown that if the good agents use the

2Recall that a Byzantine agent can even send differently-valued messages to
different good agents.

| Algorithm 1: Byzantine-resilient state estimation.
Input: b and T
Initialization: Set x;(0) to an arbitrary value;
fort=1,...,T do
- Obtain a new measurement y;(t);
- Compute the local noisy gradient
V fit(z:i(t — 1)) according to (4);
- Compute
zi(t) = zi(t — 1) — Vi e(zi(t — 1));
- Send z;(t) to its outgoing neighbors;
for k=1,...,ddo
- Sort the k—th coordinate of the received
messages my;(t) for j e M;U{i} ina
non-decreasing (increasing) order;
- Remove the largest b values and the
smallest b values;
- Denote the remained “agent” indices set
as RF(t) and set

k(1) =

Z (mﬁ(f,), Ek) "

JERE(L)

[RE ()]

end
- Set (2:(2))" = (z}(2);...,2¢(@)).
end

Output: z;(7T).

coordinatewise trimming strategy in Algorithm 1, the evolutions
of z; use the information provided by the good agents only. More
importantly, each of the good agent has only limited impact on
x;, formally stated next.

Lemma 1: At each good agent ¢ € V/ A, for each iteration ¢
and each coordinate k € {1,...,d}, there exist convex coeffi-
cients (8f(t), j € V/.A) such that

1) 2{(t) = X jev/a Bis(t) (2 (2), ex);

2) 0<BE(t) < g forall jeV/Aand Y,y 4 BE (1) =1.

Lemma 1 is proved in Appendix A. Notice that the sets of con-
vex coefficients for different coordinates might be different, i.e.,
(BE(t), 5 € V/A) # (BX(t), § € V/A) for k # k'. Moreover,
even for the same coordinate, the convex coefficients might be
different for different good agents, i.e., (8f(t), j € V/A) #
(B, (t), € V/A) for i This stems from the freedom
of Byzantine agents in sending differently valued messages to
different neighbors, i.e., m,; # m,y fora € Aand j # j'.

Remark 2: The first item in Lemma 1 implies that the mes-
sages sent by the Byzantine agents are not used by the good
agents. As a result, the Byzantine agents cannot have arbitrary
control over the local estimates at the good agents, and they can at
most influence the “choice” of the convex combination weights
Bg‘:,, Furthermore, the second item in Lemma 1 implies that
Byzantine agents cannot significantly manipulate these weights.

Recall that a good agent can only get noisy local measure-
ments of the true state. By standard concentration argument, we
know for sufficiently large ¢, the gradient of the empirical local
function V f; ;, which is defined in (4), is close to the gradient
of the asymptotic local function. However, it is unclear whether
the overall impacts of the measurement noises at all the agents
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in the network can be controlled or not. This is because that
agents perform local gradient descent as a subroutine only, and
agents exchange messages with their neighbors in each iteration.
As aresult of message exchange, the observation noises quickly
get mixed among the agents—losing independence—and their
impacts might cumulative over iterations. Moreover, the impact
of the random observation noises interplays with the adversarial
behaviors of the Byzantine agents.

It turns out that the following quantity is crucial in bounding
the overall impacts of observation noises.

For a given A € (0, 1), let

Zl’“

for all j € V/A and t > 1. The following two concentration
results are two key auxiliary lemmas for our main theorem.
Lemma 2: Givena A € (0,1), it is true that
lim R;(A,t) = 0 almost surely ¥j € V/ A, andt > 1.

t—oo

'r 1 103 (T)
—m

Rj(A,t) == (6)

In addition, we characterize the finife-time convergence rate
of R;(A, -) for any fixed A.
Lemma 3: Givena i € (0,1), for any € > 0, it holds that

t—1
P {Rj(x, t) > y/trace(x;) Y A \/tl—_m - e}
m=1

- —e2(1— )%t
e —
. 3202

Recall that trace(X;) is the sum of all the diagonal entries
of ¥;. Lemmas 2 and 3 are proved in Appendixes B and C,
respectively. The following corollary follows immediately from
Lemma 3; thus, its proof is omitted.

CoroHary 1: For any given 6 € (0,1) and € >0, if ¢ >

=257 (log  +log ¢), then with probability at least 1 — 4, it

T-—n)ZeZ
holds that

R;(A,t) < y/trace(X;) Z A

To prove the convergence of Algorithm 1, we use the follow-
ing assumption.

Assumption 1: 215370/ 4 [|(T—
k= 15d

Assumption 1 is a sufficient condition that might not be neces-
sary for general Byzantine-resilient distributed state estimation.
We present a high-level intuition of Assumption 1 as follows: e,
can be viewed as one unit estimation error in the kth coordinate.
After the local gradient descent update (right before averag-
ing) at agent j, this one unit error becomes (I — H;Hj)ek.
In a sense, |(I— H; H;)ex||; quantifies agent j’s capability
in reducing the estimation error in the kth coordinate of the
previous iteration via local gradient descent update. Similarly,
755 L jevya X — H] Hj)ex||1 is the modified average of such
capability across all the good agents.> Assumption 1 implies that

) YjeV/A, andt > 1.

S teVieV/A

HHj)exlly <1, for

*Notably, (I — H;—HJ-} also rotates ej,.

the good agents can collectively reduce the estimation errors in
each coordinate. Now, let

Ejev/all @~ HH;) exll,
= 7
P k:]il}g%:id o—b &
Clearly, p < 1 under Assumption 1.
Theorem 1: Suppose that Assumption 1 holds, and the graph

G(V, &) is complete. Then, we have
0", =0

%&/ﬁllza( )

Moreover, for any e >0, with probability at least 1—
2 2
¢ exp(—S2=#%), it holds that

i t) — 9* < L I 0 _8*
Zo [|lz:(t) loo <P fux [|z:(0) lloo
C{) = pm ¢CQE
trace(X;)
53 ngV ( 2 Ji—m ' $—b

where Cp 1= max;cy 4 | Hil|2-

The following corollary follows
Theorem 1.

Corollary 2: For any given § € (0,1) and € >0, if ¢ >
Y%C;?(]Og 3 + log ¢), then with probability at least 1 — 4, it
holds that

immediately from

I; t) — 9‘ < ‘ Si 0 - 9‘
max |7i(t) — 0"l < p* ma 12:(0) — 6"l
+ Ch Y y/trace(%;) " ¢CDE
¢ b ieV/A m=1 qz') b

Theorem 1 indicates that all good agents (in a complete graph)
are able to learn the true parameter #* almost surely. Also,
with high probability, the rate can be characterized as above,
providing a finite-time guarantee for resilient estimation. The
finite-time bound captures the performance, in terms of X;, the
noise covariance for agent j € V/ A, as well as p, which can
crudely serve as a measure of observability in view of (7).

V. FINITE-TIME GUARANTEES FOR INCOMPLETE NETWORKS

In this section, we extend our results to incomplete networks.
Two types of communication are discussed.

A. Incomplete Graphs: Multihop Communication

So far, our analysis of Algorithm 1 has been focused on
complete graphs. For computer networks, this is a reasonable
assumption as computers are connected to each other through
some communication (routing) protocols. Our results are also
applicable to wireless networks under some implementation
assumptions. Concretely, let G(V, &) be the physical network
that is not fully connected. Suppose that the networked agents
are allowed to relay the messages sent by others such that
multihop communication can be implemented. We can adopt
cryptographic solutions to force the Byzantine agents to either
refuse to relay information or faithfully relay the messages
without alternation [12]. Thus, as long as the node connectivity
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of G(V, £) isatleast b + 1, each good agent can reliably receive
messages from other good agents in the network, and essentially,
all-to-all communication is ensured. We can use our algorithm
to robust aggregate the received messages and perform one-step
update. Similar analysis applies.

B. Incomplete Graphs: Local Communication

Message forwarding might be costly or even infeasible for
some wireless networks. Algorithms that rely solely on local
communication are still highly desirable. Fortunately, with rea-
sonable assumptions, Algorithm 1 works. Our algorithm is a
consensus-based algorithm. To make this article self-contained,
we briefly review relevant existing results on Byzantine consen-
sus.

1) Byzantine Consensus With Scalar Inputs: Note that,
in contrast to fault-free consensus, Byzantine-resilient consen-
sus with scalar inputs and with multidimensional inputs is
fundamentally different [14], [15], [40]. In particular, it has
been shown that any Byzantine consensus algorithm scales
poorly in the input dimension [14], [15]. Our algorithm relies
on Byzantine-resilient consensus with scalar inputs—though
6* € R? is multidimensional.

Tight topological conditions are characterized in [40], where
the conditions are stated in terms of a family of subgraphs of
G(V, ), referred to as reduced graphs.

Definition 1 (see [40]): A reduced graph G of G(V,€) is
obtained by 1) removing all nodes in .4, and all the links incident
on set A, and 2) for each node in V/.A, removing up to b
additional incoming links.

It is easy to see that the reduced graphs of a given graph
G(V, £) are notunique. This nonuniqueness arises partially from
the fact that the Byzantine agents can behave adaptively and
arbitrarily. In a sense, reduced graphs capture the “real” infor-
mation flow under the message trimming strategy; informally
speaking, trimming certain messages can be viewed as ignoring
(or removing) incoming links that carry the outliers.

It is important to note that the good agents do nof know the
identities of the Byzantine agents. Let G be the collection of all
reduced graphs of G(V, £), and let

£:=1G|.

Definition 2: A source componentin a givenreduced graphis
astrongly connected component that does not have any incoming
links from outside of that component.

The tight network topology condition for scalar-valued con-
sensus to be achievable is characterized in [40].

Theorem 2 (see [40]): For scalar inputs, iterative approxi-
mate Byzantine consensus is achievable among good agents if
and only if every reduced graph of G(V, £) contains only one
source component.

The tight condition stated in Theorem 2 is on every reduced
graph. Intuitively, this is because that the abnormal behaviors of
Byzantine agents might be time varying, and consequently, the
corresponding “effective” communication network is potentially
time varying. In addition, we do not know which sequence of

reduced graphs is “picked” by the Byzantine agents throughout
an execution.

Under the condition in Theorem 2, in any reduced graph, a
node in the source component can reach every other node.

2) Correctness of Algorithm 1 for Incomplete Graphs:
We will show the correctness of our Algorithm 1 assuming
that Byzantine consensus with scalar inputs is achievable over
G(V, £), and that an assumption that is analogous to Assumption
1 holds.

Similar to the analysis for the complete graphs, it can be shown
that the update of x; uses the information provided by its good
incoming neighbors only.

Lemma 4 (see [41, Claim 2]): Suppose that Byzantine con-
sensus can be achieved on graph G(V, £). Then, for each itera-
tion ¢, each good agent ¢ € V/.A, and each coordinate k, there
exist convex coefficients (5f;(t), j € N; U {i}) such that

D) 23 (8) = X jenuey/a B (#) (24(2), ex);

2) there exists a subset of B;(t) CN; U{:}/A such that

Bi(t)| > NV; U {i}/A| — band B;(t) > m
for each j € B;(1).

Different from Lemma 1, wherein an uniform upper bound
on ,8{,,. for all 4, 7, and k is derived, an analogous upper bound
is lacking in Lemma 4. Unfortunately, for incomplete networks
such a uniform upper bound, if exists at all, might be hard to
characterize. Nevertheless, we are able to show that when the
network satisfies the tight condition for Byzantine consensus to
be reachable, then a good agent will “assign™ nontrivial weights
to sufficiently many good incoming neighbors. As aresult of this,
if a good agent together with these good incoming neighbors
collectively has enough information, then this agent is able to
gradually reduce its local estimation error. Furthermore, if this
agent is a node in the source component, then it is able to
“propagate” the locally learned estimate to other good agents.
These conditions are formally summarized in the following
assumption.

Assumption 2: For each good node j € V/ A,

I(1— Hy Hy) ex|, <1

holds for each coordinate k = 1, . . ., d. In addition, any reduced
graph G contains a node 7 in its unique source component such
that

We Ui/ A) 0 {i s || (T B Hy) ex, <1} 2 b+ 1

fork=1,...,4d.

Note that in Assumption 2, N includes the incoming neigh-
bors of node 7 in the original graph G(V, £). Next, we present
a high-level intuition of Assumption 2 as follows: Assumption
2 requires that ||(I — H;Hj)ek"l < 1 for each good agent 7,
i.e., a good agent would not increase the one unit error via local
gradient descent update. Assumption 2 additionally requires that
any reduced graph contains a node in its source component that
satisfies the stated condition, which ensures that such a node
can learn the true state #* based on its own local measurements
and the information aggregated from its neighbors. Since such a
node is in the source component, it can reach every good agent
in the reduced graph. Thus, all the good agents in the end can
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learn 6. Despite the possibility that the Byzantine agents might
“choose” different reduced graphs across iterations, as can be
seen in the proof of Theorem 3, the sufficiency of Assumption
2 still holds.

For each coordinate k, let

Doi={i: (0= B ) en, <1, &5 ¢ A}
Define pg as
(8)

e T

po = max max || (I — Hj Hy) e, .

In the next theorem, we establish that (under the assumption

above) the estimates of all agents are consistent almost surely,

and furthermore, we characterize the (high probability) finite-
time convergence rate of these estimates.

Theorem 3: Suppose that every reduced graph of G(V,€)

contains a single source component, and that Assumption 2

holds. Then, we have

zi(t) — 0|, —> 0.
max |lz:(t) — 0"l
Let y := 1 — =85 With probability at least
1
1 — pexp(==U7)™) it holds that

i(t) — @* < ~TF z;(0) — 8*
max |[2:(t) — 6llo, < 7% max [l2:(0) — 6"l

+Co Z,;trace(Ej) ;

ieV/A

=+

L B

l\ft—m

-+ CoQSE.

3
II

V1. NUMERICAL EXAMPLE: ENERGY EFFICIENCY DATASET

We now provide empirical evidence in support of our algo-
rithm by applying it to a regression dataset on UCI Machine
Learning Repository.* In this dataset, the state §* € R® includes
eight features: relative compactness, surface area, wall area, roof
area, overall height, orientation, glazing area, and glazing area
distribution. The regression model aims at representing heating
load of residential buildings in terms of these features [42].
Since this dataset is real world and the ground truth value #*
is unknown, we consider the solution of the centralized problem
as the baseline. Then, we consider a network of [V \ A| = 160
agents. Each agent 7 observes only one feature corrupted by a
Gaussian noise A/ (0,0.25). Also, each agent  is connected to
40 agents 7 — 20,2 — 19,...,7+ 19,7 4 20.

We consider inserting |A| € {1,...,5} Byzantine agents in
the network. Throughout, the Byzantine agents can send out
completely arbitrary messages in lieu of true gradients. We gen-
erate these arbitrary messages using a random eight-dimensional
vector, each component of which is sampled from A/ (0, 9).

Let us now define the network performance metric as

Error(t) := % Z 16" — z:(B)|
ieV\A

and plot in Fig. 1 the error for various values |.4|. We observe
that increasing the number of Byzantine agents degrades the

“https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

Performance on Energy Efficiency Data Set

—No adversarial agent
—1 adversarial agent | |
-2 adversarial agents
—3 adversarial agents | |
—4 adversarial agents
—5 adversarial agents | |

n - e A 1 A L L
0 100 200 300 400 500 600 700 BOO 900 1000

Tteration (1)
Fig. 1. Plot of error decay versus time for different number of Byzantine
agents.

performance. This observation is in consistent with the result of
Theorem 3, because by increasing b, the value of  decreases,
slowing down the convergence.

VII. CoNcLUSION

We studied resilient distributed estimation, where a network
of agents want to learn the value of an unknown parameter in
the presence of Byzantine agents. The main challenges in the
problem are as follows: 1) Byzantine agents send out arbitrary
messages to other agents; 2) good agents need to deal with noisy
measurements; and 3) the parameter is not locally observable.
We proposed an algorithm that allows agents to collectively
learn the true parameter asymptotically in almost sure sense, and
we further complemented our results with finite-time analysis.
Future directions include resilient estimation and learning in a
more general setting, where agents’ observations can be a non-
linear function of the unknown parameter. Another interesting
direction is to investigate the minimal condition needed on the
local observation matrices of the good agents for the problem to
be solvable. For example, Assumptions 1 and 2 are imposed in
terms of £; norm. It would be interesting to know whether it is
possible to replace £; norm by £ norm.

APPENDIX A
PROOF OF LEMMA 1

We prove this lemma by construction. Note that this con-
struction is only used in the algorithm analysis rather than an
algorithm input. That is, to run the algorithm, each agent (either
good or Byzantine) does not need to know S3.

For ease of exposition, let [R¥(¢)]T and [R¥(¢)]~ be the
nonoverlapping subsets of V, whose gradient’s kth entry are
trimmed away by agent :. Precisely, we have the following.

@ |[RE®)]-[ = b= [[RE@®)]H.

(®) [RE(#)]~, [RE(t)]" and R¥(¢) partition set V.

(© VY j € [R¥()]~,7 € RE(t), and " € [RE(t)]T, it holds
that

(mya(t), ex) < (myi(t), ex) < (myni(t),ex).  (9)

We consider two cases.
1) Case 1: RE(t)n A= 0.
2) Case 2: RE(t)n A # 0.
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Case 1: Suppose that R¥(t) N A = (. We construct the con-
vex coefficients as follows.

Case 1-1: When |A|=Db, we have ¢ —b=mn—2b. We
choose the convex coefficients as

£ () = L Vj e RE®)
% 0 Vj ¢ RE®).

Clearly, in this construction, 35 (¢) < ﬁ
Case 1-2: When | A| < b, it holds that

|[RE®]/A] 2 b—|4] (10)
and
[[RE@TH/A| > b—|Al. (11
By (9), we have
1
= DL (zi(t)ex)
[RE@I-/A] JE[RE(D)] /A
1
S > () ex)
JERE(D)
Il
= ﬁ Z (z;(t), ex) -
I[R @] /Al JE[RE(D)IH/A
Thus, there exists a € [0, 1] such that
’ ek)
jERE(D)
= m > (zi(®)ex)
: JERE(D)]-/A
1l—«a
—_— (z;(t), ex) - (12)
" TREOT /A JE[R%W :
Note that
1 ek)
" gERE(t)

= d,ib(l 'A') ;{) (25(t), ex)

— X (5.

JERE(L)
b—|A
JERE(2)
Q= ¥ @
JERE(2)
a(b—|A|) e
(t;') b)l Rk(t)] /A| JERth}] /A< J(tJ: k)
(1-a)(b—|A) -
(6B [REETT/A] JE{R% g

where equality (a) follows from (12). Choose the convex coef-
ficients for the good agents as follows:
- Vi eRE()
alb—|A
(@-B)|[RE@)] /A
1—a)(b—|4]
(¢—b)|[RE(1)]* /A

vj € [RE(®] /A
Vi € [RE(®]/A.

Bt =

The fact that « is unknown does not affect the correctness of
our proof, because our algorithm does not use these coefficients
as its input. We use the existence of « for analysis. It is easy
to see that the above coefficients are valid convex coefficients.
It remains to check that BU (t) < 4= forall j € V/.A. For all
good in RE(t), clearly, 57 (t) <25 For;I € [RE(t)]- /A, by
(11) and the fact that o < 1 we have

)< alh— A4 o 1
(¢—b)(b—|A]) ~ ¢—b

Similarly, we can show Sf5(t) < 4 for j € [Rf(1)] T/ A.
Case 2 can be proved similarly.

18!'3(

APPENDIX B
PROOF OF LEMMA 2

Let w be any sample path such  that
limy 400 + 3% _; wj(r,w) = 0. Note that for any such fixed
w, w;(t,w) for t =1,... is a standard sequence of vectors.
Suppose

Z o || et s ()
t—»oo t—m
Then, by the strong law of large numbers, which says that
P{w e Q: limg oo £ Y00 wj(r,w) =0} = 1, we conclude
the lemma.

Next, we show (13). It is enough to show that for any € > 0,
there exists ¢ > #(e,w) such that

= 0. (13)

i-1
>,

m=0

t—m

ﬁ > wy(r)

r=1

<€
2

(14)

Since lim; . % Z::I w;(r,w) = 0, forany “—‘;E, there exists
to(e,w) such that for any ¢ > tg(e, w),

(1—2)e

<
- 2

2

In addition, for any ¢ > #p(e, w), it holds that

t—1
Z ym Z =1 w;(*‘)
m=0 b 2
t—to(€,w) t—1
I A
m=t—ta{£,w)+1
N Af—tolew)+1
<-4+ (C—
~ 2 L 1—2A
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There exists a sufficiently large ¢(e, w) such that C % < APPENDIX D
5. Thus, it holds that for this fixed sample path w, for any € > 0, PROOF OF THEOREM 1
there exists t(€, w) such that for all £ > #(e, w) For each ¢, z;(t) can be uniquely rewritten as
i—1 1 t—m d
DA ——=2 wy(r) () = 0"+ 3 af(t)ex
m=0 r=1 1 1
proving (14). where
APPENDIX C ai(t) = |’R:( Dl D (myilt),ex) — (6%, ex) .
PROOF OF LEMMA 3 JERE(2)
Our proof uses McDiarmid’s inequality. We first bound It follows from Lemma I that
s of(t)= D BE® (), ex) — (0" ). (1)
-1 j =m JjeV/A
E[B;(2,)] = ZU A"E l = Z; w;(r) ] Recall from (4) and (5) that
m= =

(zi(t), ex) = (6", ex) + <HT% 2 w;(r), ek>

1 t—m 2
=D wj(r)
r=1 92

(a) t—1

<> " |E
m=0 d

3 <Za§“’(t—1) (I- H'H;) ew, ek>.

where inequality (a) follows from Jensen’s inequality. Recall )

that w; (r)s are i.i.d. with zero mean. For any j € V/.A, we have T

t—m 2
1 1
mzwj(r) = 7——trace (3;). af(t)= Y BE(t) <H ij r), ek>
r=1 JeV/A
Thus, we have d ; _
+ Yy ,ng(t)<za§;(t—1) (I—Hj‘Hj)ekf,ek>.
k'=1

-1
E(R;(1,1)] < \firace (85) 3 am———. A
m=1 v

By Lemma 1, we have

We can choose c,. as Yieval(HT 1 X5 wir), e

g (t)] < :
1 ¢ —
c,zQCZAmt—'v’rzl,...:t. G . ~
. + .

Let mg = lo—g?-. It is easy to see that mg < E unless ¢ is ¢—b
For the second term, we have

extremely small. For simplicity, assume that 7 is an integer.

We have

d
<Za§’(t—1) (I—H;Hj)ek,,ek>
m m SO =t
cl—QC(ZA —+ZA i )g(l_m. ((

K T T
e o (6= 1)) ef (1= 1)
It is easy to see that ¢, < ¢; forallT =1,...,%. So, we have
= (;gva/x =56 — 1) — e*nm) |(L— H; Hy) ex],

: 8@ N* 1
Z cstis(i93) ¢

r=1 N where the last equality follows from the fact that (I — H, H;)
is symmetric. For the first term, we have

By McDiarmid’s inequality, we have
Iy 1
(13 mone)| < |4 3w
r=1

t—1
1 max
; > : e
]P{Rj(l,t) > ,/trace(EJ)mz::ll MH} i<k<d =
1 i
;ZWJ(T)
r=1 2

—2¢? —e2(1—A)%t <C
M . Sl g <Co
‘e’q’(zizlc%) <o (o)
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By Assumption 1, we have

— 0"l

max ||z; (%)
Imax lizilt)
= max max ai—‘(t)'
JjeV/Al=k<d

w; ('r)

< pmax ||z;(t—1) — 6% ..
< p ma (e — 1) — 0 + 53

Y s
icV/A

C
¢—_Db Y Rilp.).

JEV/A

<p max llz:(0) — 6", +

By Lemmas 2 and 3 with A = p, we complete the proof.

APPENDIX E
PROOF OF THEOREM 3

We first show that the evolutions of ||z, (t) — 6*||,, for all
i € V/ A—their £, norm of the estimation errors—collectively
have a matrix representation. With this representation, to show
the convergence of ||x;(f) — 6* ||, it is enough to focus on the
convergence of the obtained matrix product.

For ease of exposition, let

Ni= (N Ui} \ A

Similar to the proof of Theorem 1, for any 7 € V/.A and any
coordinate k, we have

k@ < |3 85 @) <H ij(r) >

JeN;
d
<(I - § (Z af (t— 1).3,‘,) ,ek> 2
k=1

For the second term, we have

d
Z k(1) <1 H]H;) (Zag’(t—1)ek,),ek>
k=1

JEN:

< Y BE@[|(T— H Hy) e, =it —1) — 6"l
JeN;

+ ) BE(®)

ieN:

Recalling that 0 < 8f(t) < 1 and Cy = max ey 4 || Hjl|2, for
the first term, we have

Z ﬁt}(t) <HT ZwJ(T) ek>

JeN;
<3 a0 |73 S w0 )
jeks r=1
< Z ﬁlj t) HT Zw.?(t)
JeN;

1 i
<Co ) B 7 > w(t)
jeNs r=1 2
1 t
= = j
< COJ% . gwj(r)
Thus, we get
li(6) = 'l = max, Ik (8)
1<k~<d Z 'B‘J(t) ” ek“l llzj (¢ —1) — 6%l
+Co sy |l ij (r)

Let E(t) € R? be the vector that stacks the ||z;(¢) — 6%||« for
alli € V/A, with

E;(t) = [lz(t) — 0"[|o-

Define matrix M (¢) as follows: for each row ¢ € V/.A, we have

Miy(0) = B3 |1~ H] Hy) exgol,  (16)
where £} (¢) maximizes (over K= d)
3 S50 (1= I Hy) ex], hayte— 1)~ 7l
JEN;

Notably, k() might not be unique. In that case, k() is an
arbitrary such maximizer. We have

E(t) < M()B(t 1) + Co max

‘ Z wJ{T)

4 i
1
< ||M (0) + C —E 16}l |
a (1‘:1 (T)) ) ; mi)a})fq r=1 wj(T) 2
t—1
Zr 1 w,?
+ C || M
Om:IJEV'/A t—m r=t—m-+1 (T)

where the product

[T M)
r=1

is a backward product. Note that M (¢) is random, and its realiza-
tion is determined by both the noises of the good agents’ local
observations and the Byzantine agents’ adversarial behaviors.
Nevertheless, our analysis works for every realization of M (t).
Henceforth, with a little abuse of notation, we use M (t) to denote
both the random matrix and its realization.

By Lemma 4 and Assumption 2, we know that for every t,
the matrix M (¢) is a strict substochastic matrix. That is, there
exists a row, say g, such that

Z M;, ;(t) < 1.

jeV\A

= M@EM@E—1)--- M(1)

In particular, under the assumptions in Theorem 3, the following
claim is true.
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Claim 1: For any tp and for any sequence of realization of
the matrices M (¢) for t =t +1,...,% + £¢, the following

holds:
to+Ed R po
M(t) |1 <91, wherey=1— ————.
(;:1;11 ) (2(¢ — b))*?

For ease of exposition, the proof of Claim 1 is deferred to the
end of this article.
With Claim 1, for any fixed t; and for sufficiently large t — £,

we have
t
( 11 M(r))l
r=tg+1

I Mo

to+Ed
( 11 M(r)) 1

r=to+£¢+1 r=to+1
i
Ly I Me |1
r=to+€p+1
t—1t £
<4l II M|
r=| 2 |ge+1
<Al

Thus, we have

(H M(T)) E(0) < (H M(T)) max |[4(0) — " lo

r—1 r=1

< 7:(0) — 0% vlesl1.
_Ig)a/ﬁllx() lloo

In addition, we have

t—1 t
ij(ir 11 M('r)) 1
m:l:lJEV\J‘i 2 (r:t—m—i—l
t—1 1 t—m
o S I : &1y
o Z_:jev\ﬁ. t—mz_:wj(r) 7
m=0 r=1 2
t—1 1 t—m
=, ; Erd
<Y 3 |2 we| v
m=0jeW\A r=1 2

For ease of exposition, we assume that | 2% | is an integer for
any m. Note that this simplification does not affect the order of
convergence

E(t) < z;(0) — ¢* 1
(0= ((m 10) ||m)a«

t—m
P o 3] R 5 ) pES
jomam=o||* T = 2
< z;(0) — 6* @1
< (s 400 ||m) .

+Co Y Ri(7%,1).
JEVVA

Applying Lemma 2 with A = 731?, we have
0< z]j—fn E(t) <0+ 0+ 0 =0, almost surely.
E—+ 00

In addition, by applying Lemma 3 with A = fy'él& , we complete
the proof.

APPENDIX F
PROOF OF CLAIM 1

Recall from (16) that M (t) (for each ¢ > 1) is defined as
k t
My;(t) = 850 || (1— B Hj) exss|), -

For any sequence of reahzatlon of the matrices M(#) for
t=1tg+1,...,t0 + &¢, we construct a sequence of auxiliary
stochastic matrices, denoted by M (¢), as follows:

Mi;(t) = 85 vi,j e V/A.

By Lemma 4, ﬁ(t) is row stochastic for t =¢p+1,...,t0+

£¢. By Definition 1 and Lemma 4, for each ¢, there exists a

reduced graph in G such that
M(t) >

= C(1) (17)

N (¢5 b)
where G/(t) is the adjacency matrix of the corresponding reduced
graph. For ease of exposition, with a little abuse of notation, we
use G(t) to denote both the adjacency matrix and the reduced
graph.’ We refer to G(t) as the shadow graph at time t.

Since the matrix product Hi":ﬁf] M (t) consists of £¢
shadow graphs and |G| = £, there exists at least one reduced
graph in G that appears at least ¢ times in the sequence of the
shadow graphs. Let G* be one such reduced graph. Without loss
of generality, let i be the node in the unique source component
of G* such that

Wio 0 {3+ 11— B ) e, < 1}
>b+1.

Since i is in the unique source component of G*, it follows that
node ip can reach every other good agents within ¢ — 1 hops
using the edges in G~ only.

For any given realization of M (to + 1),..., M (to + &¢), let

T1,..., Ty be the first ¢ time indices at which G* is the shadow
graph. In addition, let
Ai=1 —7d V=200 0.

For ease of exposition, in the remainder of this proof, we as-
sume tp = 0. The proof can be easily generalized to an arbitrary
to. Let

n(t) := (H M(T)) 1 Vi

r=1

Slts meaning should be clear from the context.
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with n;(¢) being the ith entry of n(¢). Note that n(t) < 1 as
M (r) is substochastic for all .

To show Claim 1, it is enough to show the following three
claims.

A) Forany j =1,...,¢, we have

]_—pu
2(¢—b)

B) If 7 is an outgoing neighbor of 7 in the shadow graph G,
then forany j = 2,..., ¢, we have

mo(’rj) <l

1—po
2(¢—b)*

C) Forany j = 3,..., ¢, if ig can reach node i in the shadow
graph G* with k hops, where 2 < h < j — 1, then

L7
(26— b)) " Ersrzn s

ni(15) <1—

ni(m;) <1—

Suppose Claims (A)—(C) hold. Recall that i; is in the unique
source component of G*. At time 74, at all i € V' \ A, it holds
that

Ni(7s) <1 — l—ng 7

(2(¢ — b)) >r-0 2
i TR
(2(¢ —b))**
where the last inequality follows from the fact that
¢ ¢
2—1—ZAJ» <n +A2+ZA_;E’ =74 < £
j'=3 j'=3

Therefore, we conclude that

b
née)=| [ M) ] n(rs)
r=T4+1
(1 1= /o ) ﬁ M(r) |1
g | l——— s
B CICE )i N e

l—pu
DI . 2 )
S( (2(¢—b))£¢')

proving Claim 1.

In the remainder of the proof, we prove Claims (A)—C),
individually.

a) We first show (A) Forany j = 1,..., ¢, we have
Thus, we have

o(13) < Y, Migi(ry)

iEViA

— Z ,Btm (75)

e\ A

(1- BT H) ey o),

ki (75)
< Z 181:05 Po
z‘EV\A&:”(I—HiTHi)ek«_ (,j)‘ <1
o 1
ki (73)
ig
* Z ’B‘iu‘i
ieW\A& “(I—HJHg)Ek; tra |l =1
g T |l

By Lemma 4, Assumption 2, and the choice of iy, we know that

k3, (75)
E , ot

iEV\A & “{I—H;Hi)ekguw, ‘1{1
1
b -
2(|Ni, U{io} \ A| —b)
1
b
2(¢ —b)
Thus, we have 7, (;) <1— %.
b) Next we show (B) Forany j = 2, ..., v, we have

n(r5) = M(7;)n(m; — 1)
= Z M (m5)me (5 — 1).

i'eV\A

(18)

Recall from (16) that
Misy(73) = By || (T — HLHio) exsry | -

We consider two cases.

) (I — Hy Hi, )exs(rylln < 1.

2) (I — H; Hy,Jex: (|l = 1.

1) Suppose that ||(I — H, Hi,)eg:(r,)|l1 < 1. Since (ﬂj;io =
1, it follows by (17) that

Mii, (75) = }8:“;(1—;) > m
Recall the definition of py in (8). We have by (18) and 0 <
ne(r; — 1) < 1 that
D,

e\ Akzi'#Eig

D

' eEV\Akri' #ig

=1-B{ (1 - po)
L—po
17350

2) Suppose that ||(I — H;E}H,—,o)ek:_(fj)lh = 1. Inthis case, we
have

7i(15) < Mgy (73) + My (15)

k* ('rj

k3 (75)
< 3110 IS &

i1’

Mg, () = Mgy (15) >

2(¢’> b)
Thus, we have from (18) that
ni(75) = Miiy (7)1, (75 — 1)
+ Y. M(m)me(r—1)

eV A, &i'#£ig
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< Mo (15) (1 B %)

= Z M (5)
PeV\Aki'#ig
Z M; i (75) — Mii, (1)
PeV\A 2((?5 )
1—po

T ED)E

¢) Finally, we show (C): We prove this by induction.

Base case. j = 3: Let i be a second-order neighbor of node
ig in the shadow graph G, i.e., there exists a directed path of
length 2 such that ip — 77 — 7 in G*.

If ||(I — H, H;, )ek: (ry)|l1 < 1, similar to the proof of Claim
(B), we have that

_1-p
2(¢—b)

Now, suppose ||(I — H,\ Hi, )eg: (r)ll1 = 1.
If there exists r, where 79 + 1 < r < 79 — 1, such that

M;, i, (r) < J\ﬂfj};m (7). Let r* be the latest time index. Note that

ni(13) <1

(I - H{ Hi,) ex; (r)

<1
1

Bfi(t) > 573 forany i € V'\ A, t and k. We have
AT

T,-',:l(?" Z Mhl'(r ) <
e\ A 2(¢ b)

In addition, by the choice of r*, we have

Ta—1 1
H M(F) 2 Ta—1*—1
= P I CTP )
So, we get
1'3—1
m(s—1)=| [ M@)| ()
r=r*+1 111
T3—1
+ > | IT M@)|  m)
PeEV\A Lr=r*+1 iy
o 1_—'02_4“_
(2(¢—b))"
As||(I — H{ H;,)egs(ry)ll1 = 1and 8, [(3) 5 357> We get
that
1—po 1—po
mi(rs) <1 N T . W
26 —b)= " 206 —b)>

To finish the proof of the base case, it remains to consider the
case that

H(f —H Hy) ex; (r)

-+
1

ie, M (r) = Em(r) forall rsuchthats +1 <r <713 —
1. Thus, we get
Tﬁl M(r) = N "
r=7z+1 i1 - (2(d) B b))&a_l
So
1'3—1
ma(s—1)= > | JI M@)| me(r)
feV\A Lr=2+1 i1,1
T3—1 1
. M) —
AL . C@-D)
_ 1
(2(¢ — )=+
and
(r3) <1 1
il73) = 1 — )
T R n)T

Induction step: Suppose that the following holds for any j =

3,...,0—1:
Po
() <1— ;

B e
for all the hth-order neighbors of node ig in the shadow graph
G*,where h=2,...,7— 1.

Inductive step: The proof of the inductive step is similar to
the proof of the base case and, thus, is omitted.
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