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Bayesian Restricted Likelihood Methods:
Conditioning on Insufficient Statistics in

Bayesian Regression∗

John R. Lewis†, Steven N. MacEachern‡, and Yoonkyung Lee§

Abstract. Bayesian methods have proven themselves to be successful across a
wide range of scientific problems and have many well-documented advantages
over competing methods. However, these methods run into difficulties for two ma-
jor and prevalent classes of problems: handling data sets with outliers and dealing
with model misspecification. We outline the drawbacks of previous solutions to
both of these problems and propose a new method as an alternative. When work-
ing with the new method, the data is summarized through a set of insufficient
statistics, targeting inferential quantities of interest, and the prior distribution is
updated with the summary statistics rather than the complete data. By careful
choice of conditioning statistics, we retain the main benefits of Bayesian methods
while reducing the sensitivity of the analysis to features of the data not cap-
tured by the conditioning statistics. For reducing sensitivity to outliers, classical
robust estimators (e.g., M-estimators) are natural choices for conditioning statis-
tics. A major contribution of this work is the development of a data augmented
Markov chain Monte Carlo (MCMC) algorithm for the linear model and a large
class of summary statistics. We demonstrate the method on simulated and real
data sets containing outliers and subject to model misspecification. Success is
manifested in better predictive performance for data points of interest as com-
pared to competing methods.

Keywords: Markov chain Monte Carlo, M-estimation, robust regression.

1 Introduction

Bayesian methods have provided successful solutions to a wide range of scientific prob-
lems, with their value having been demonstrated both empirically and theoretically.
Bayesian inference relies on a model consisting of three elements: the prior distribution,
the loss function, and the likelihood or sampling density. While formal optimality of
Bayesian methods is unquestioned if one accepts the validity of all three of these ele-
ments, a healthy skepticism encourages us to question each of them. Concern about the
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2 Bayesian Restricted Likelihood Methods

prior distribution has been addressed through the development of techniques for subjec-
tive elicitation (Garthwaite et al., 2005; O’Hagan et al., 2006) and objective Bayesian
methods (Berger, 2006). Concern about the loss function is reflected in, for example,
the extensive literature on Bayesian hypothesis tests (Kass and Raftery, 1995). The
focus of this work is the development of techniques to handle imperfections in the likeli-
hood f(y|θ) = L(θ|y). Concern for imperfections in the likelihood are reflected in work
considering minimally informative likelihoods (Yuan and Clarke, 1999), sensitivities of
inferences to perturbations in the model (Zhu et al., 2011), the specification of a class
of models and the use of Bayesian model averaging over the class (Clyde and George,
2004), and considerations of such averaging when the specified class may not contain
the so-called true data generating model (Bernardo and Smith, 2000; Clyde and Iversen,
2013; Clarke et al., 2013).

Imperfection in the likelihood has also been widely discussed in the classical ro-
bustness literature. Hampel (1971), writing on the motivation for studies of robustness,
provides a concise description of three mismatches between data and the model that
purportedly gives rise to the data: “(i) rounding of the observations; (ii) the occurrence
of gross errors; (iii) the model itself may only be an approximation to the underlying
chance mechanism”. In a Bayesian setting, the first is easily handled with MCMC meth-
ods through the introduction of a latent, unrounded variable into the model. We do not
consider it here. The second and third are duals. Misspecification of the model (iii) will
often make observations appear to be outliers (ii). The literature on robust methods
is replete with examples described in terms of “outliers” where the central problem is
model misspecification. In the sequel, we follow the tradition of referring to cases that
are discordant with the stated model as “outliers”, whether this discordance is due to
gross error or a consequence of model misspecification.

In practice, the imperfections in a proposed likelihood often show themselves through
the presence of outliers – whether due to local misspecification of the model or due to
gross error. There are three main solutions to Bayesian outlier-handling. The first is to
replace the basic sampling density with a mixture model which includes one component
for the “good” data and a second component for the “bad” data. With this approach,
the good component of the sampling density is used for prediction of future good data.
The second approach replaces the basic sampling density with a thick-tailed density in
an attempt to discount outliers, yielding techniques that often provide solid estimates
of the center of the distribution but do not easily translate to predictive densities for
further good data. The third approach fits a flexible (typically nonparametric) model
to the data, producing a Bayesian version of a density estimate for both good and
bad data. In recent development, inference is made through the use of robust inference
functions (Lee and MacEachern, 2014).

These traditional strategies all have their drawbacks. The outlier-generating pro-
cesses may be transitory in nature, constantly shifting as the source of bad data changes.
This prevents us from appealing to large-sample arguments to claim that, with enough
data, we can nail down a model for both good and bad data combined. Instead of at-
tempting to model both good and bad data, we propose a novel strategy for handling
outliers. In a nutshell, we begin with a complete model as if all of the data are good.
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Rather than driving the move from prior to posterior by the full likelihood, we use
only the likelihood driven by a few summary statistics which typically target inferential
quantities of interest. We call this likelihood a restricted likelihood because condition-
ing is done on a restricted set of data; the set which satisfies the observed summary
statistics. This restricted likelihood leads to a formal update of the prior distribution
based on the sampling density of the summary statistics.

The advantages and disadvantages of the method are detailed throughout the pa-
per using simulated and real data. One conceptual advantage of our method is that
inferences and predictions are less sensitive to features of the data not captured by the
conditioning statistics than are methods based on the complete likelihood. Choosing
statistics targeting the main features of interest allows for inference that focuses on
these features. The analysis can help to better understand other features which may
not be captured by the conditioning statistics, such as outliers.

The examples in the paper provide a Bayesian analog of classical robust estimators.
The main disadvantage of our methods relative to the classical estimators is computa-
tional. In Section 3 we detail a data-augmentation MCMC algorithm to fit the models
proposed in this paper. The advantages are those of Bayesian methods. As is standard for
Bayes-classical comparisons, the Bayesian method requires greater computational effort
while providing better inference. As a referee notes, asymptotically, the Bayesian and
classical parameter estimates are often very close and have the same limiting posterior
variance / sampling variance. In situations where asymptotic approximation suffices,
there is no need to use the computational techniques developed in this paper.

The remainder of the paper is as follows: Section 2 introduces the Bayesian restricted
likelihood, provides context with previous work, and demonstrates some advantages of
the methods on simple examples. Section 3 details an MCMC algorithm to apply the
method to Bayesian linear models. This computational strategy is a major contribution
to the work, providing an approach to apply the method on realistic examples. Many
of the technical proofs are in the Supplementary Material (Lewis et al., 2021) with R

code available from the authors. Sections 4 and 5 illustrate the method with simulated
data and a real insurance industry data set containing many outliers with a novel twist
on model evaluation. A discussion (Section 6) provides some final commentary on the
new method. An R package brlm to implement our methods is available at github.

com/jrlewi/brlm. Additionally all data and code for the examples in this paper are
available at https://github.com/jrlewi/brlm_paper/.

2 Restricted Likelihood

2.1 Examples

To describe the use of the restricted likelihood, we begin with a pair of simple examples
for the one-sample problem. For both, the model takes the data y = (y1, . . . , yn) to be a
random sample of size n from a continuous distribution indexed by a parameter vector
θ, with pdf f(y|θ). The standard, or full, likelihood is L(θ|y) =

∏n
i=1 f(yi|θ).

github.com/jrlewi/brlm
github.com/jrlewi/brlm
https://github.com/jrlewi/brlm_paper/
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The first example considers the case where a known subset of the data is known to be
bad in the sense of not informing us about θ. This case mimics the setting where outliers
are identified and discarded before doing a formal analysis. Without loss of generality,
we label the good cases 1 through n − k and the bad cases n − k + 1 through n. The
relevant likelihood to be used to move from prior distribution to posterior distribution
is clearly L(θ|y1, . . . , yn−k) =

∏n−k
i=1 f(yi|θ). For an equivalent analysis, we rewrite the

full likelihood as the product of two pieces:

L(θ|y) =
(

n−k∏
i=1

f(yi|θ)
)(

n∏
i=n−k+1

f(yi|θ)
)
, (1)

where the second factor may not actually depend on θ. We wish to keep the first factor
and drop the second for better inference on θ.

The second example involves deliberate censoring of small and large observations.
This is sometimes done as a precursor to the analysis of reaction time experiments (e.g.,
Ratcliff, 1993) where very small and large reaction times are physiologically implausible;
explained by either anticipation or lack of attention of the subject. With lower and upper
censoring times at t1 and t2, the post-censoring sampling distribution is of mixed form,
with masses F (t1|θ) at t1 and 1− F (t2|θ) at t2, and density f(y|θ) for y ∈ (t1, t2). We
adjust the original data yi, producing c(yi) by defining c(yi) = t1 if yi ≤ t1, c(yi) = t2
if yi ≥ t2, and c(yi) = yi otherwise. The adjusted update is performed with L(θ|c(y)).
Letting g(t1|θ) = F (t1|θ), g(t2|θ) = 1 − F (t2|θ), and g(y|θ) = f(y|θ) for y ∈ (t1, t2),
we may rewrite the full likelihood as the product of two pieces

L(θ|y) =
(

n∏
i=1

g(c(yi)|θ)
)(

n∏
i=1

f(yi|θ, c(yi)).
)
, (2)

∏n
i=1 f(yi|θ, c(yi)) is the likelihood of the data conditioned on parameters and the sum-

mary statistic c(·) and recovers the piece of the full likelihood not in
∏n

i=1 g(c(yi)|θ).
Only the first part is retained in the analysis. Several more examples are detailed in
Lewis (2014).

2.2 Generalization

To generalize the approach in (1) and (2), we write the full likelihood in two pieces with
a conditioning statistic T (y), as indicated below:

L(θ|y) = f(T (y)|θ) f(y|θ, T (y)). (3)

Here, f(T (y)|θ) is the conditional pdf of T (y) given θ and f(y|θ, T (y)) is the con-
ditional pdf of y given θ and T (y). In the dropped case example, the conditioning
statistic is T (y) = (y1, . . . , yn−k). In the censoring example, the conditioning statis-
tic is T (y) = (c(y1), . . . , c(yn)). We refer to f(T (y)|θ) as the restricted likelihood and
L(θ|y) = f(y|θ) as the full likelihood.
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Bayesian methods can make use of a restricted likelihood since T (y) is a well-defined
random variable with a probability distribution indexed by θ. This leads to the restricted
likelihood posterior

π(θ|T (y)) =
π(θ)f(T (y)|θ)

m(T (y))
, (4)

where m(T (y)) is the marginal distribution of T (y) under the prior distribution. Pre-
dictive statements for further (good) data rely on the model. For another observation,
say yn+1, we would have the predictive density

f(yn+1|T (y)) =
∫

f(yn+1|θ)π(θ|T (y)) dθ. (5)

2.3 Literature Review

Our motivation for the use of summary statistics in Bayesian inference is concern about
outliers or, more generally, model misspecification. Specifically, the likelihood is not
specified correctly and concentrating on using well chosen parts of the data can help
improve the analysis (e.g., Wong and Clarke, 2004). Direct use of restricted likelihood
for this reason appears in many areas of the literature. For example, the use of rank
likelihoods is discussed by Savage (1969), Pettitt (1983, 1982), and more recently by
Hoff et al. (2013). Lewis et al. (2012) make use of order statistics and robust estimators
as choices for T (y) in the location-scale setting. Asymptotic properties of restricted
posteriors are studied by Doksum and Lo (1990), Clarke and Ghosh (1995), Yuan and
Clarke (2004), and Hwang et al. (2005). The tenor of these asymptotic results is that,
for a variety of conditioning statistics with non-trivial regularity conditions on prior,
model, and likelihood, the posterior distribution resembles the asymptotic sampling
distribution of the conditioning statistic.

Restricted likelihoods have also been used as practical approximations to a full likeli-
hood. For example, Pratt (1965) appeals to heuristic arguments regarding approximate
sufficiency to justify the use of the restricted likelihood of the sample mean and stan-
dard deviation. Approximate sufficiency is also appealed to in the use of Approximate
Bayesian Computation (ABC), which is related to our method. ABC is a collection
of posterior approximation methods which has recently experienced success in appli-
cations to epidemiology, genetics, and quality control (see, for example, Tavaré et al.,
1997; Pritchard et al., 1999; Beaumont et al., 2002; Marjoram et al., 2003; Fearnhead
and Prangle, 2012; Drovandi et al., 2015). Interest typically lies in the full data poste-
rior and ABC is used for computational convenience as an approximation. Consequently,
effort is made to choose an approximately sufficient T (y) and update to the ABC pos-
terior by using the likelihood L(θ|B(y)), where B(y) = {y∗|ρ(T (y), T (y∗)) ≤ ε}, ρ is a
metric, and ε is a tolerance level. This is the likelihood conditioned on the collection of
data sets that result in a T (·) within ε of the observed T (y). With an approximately
sufficient T (·) and a small enough ε, heuristically L(θ|B(y)) ≈ L(θ|T (y)) ≈ L(θ|y).
Consequently, the ABC posterior approximates the full data posterior and efforts have
been made to formalize what is meant by approximate sufficiency (e.g., Joyce and Mar-
joram, 2008).
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Our method can be viewed as ABC with ε = 0 and it is natural to compare it
to ABC. This paper develops sampling methods for fitting Bayesian linear models
conditioning exactly on a set of summary statistics (ε = 0), even when the statis-
tics follow a continuous distribution. Traditional ABC sampling methods are flexible
and will, in general, apply to a broader class of models. The basic sampling method
for ABC is the rejection sampling algorithm (Pritchard et al., 1999) which proposes
a sample θ∗ from the prior, then new data y∗ from the data-model given θ∗. The
value θ∗ is accepted as a draw from the ABC posterior if ρ(T (y), T (y∗)) ≤ ε. Ac-
ceptance rates of this algorithm can be intolerably low and several extensions have
been proposed to improve efficiency (see, for example, Beaumont et al., 2009; Turner
and Van Zandt, 2012). The inefficiency of ABC algorithms is especially problematic
in high-dimensional settings since generating high-dimensional statistics that are close
to the observed values is difficult. Recently, Turner and Van Zandt (2014) developed
the Gibbs ABC method which improves efficiency in the hierarchical setting by making
use of conditional independence of the model to make accept/reject decisions at the
individual group-level, effectively reducing the dimension of the problem to the number
of parameters within each group. We revisit this approach in our comparisons to ABC
in Section 5.2, finding that, for a modest increase in computational cost, we obtain
an algorithm with better convergence and mixing properties. We also retain the de-
sired posterior distribution – the posterior, having conditioned exactly on the summary
statistics.

This work extends the development of Bayesian restricted likelihood by arguing that
deliberate choice of an insufficient statistic T (y) guided by targeted inference is sound
practice. We also expand the class of conditioning statistics for which a formal Bayesian
update can be achieved. Our methods do not rely on asymptotic properties, nor do they
rely on approximate conditioning.

2.4 Illustrative Examples

Before discussing computational details, the method is applied to two simple examples
on well known data sets to demonstrate its effectiveness in situations where outliers are
a major concern. The full model in each case fits into the Bayesian linear regression
framework discussed in Section 3. The first is an example (so far as we know) of gross
error; the second is an example of model misspecification for a subset of the observations.
The first example is an analysis of Simon Newcomb’s 66 measurements of the passage
time of light (Stigler, 1977); two of which are significant outliers in the lower tail. The
full model is a standard location-scale Bayesian model also used in Lee and MacEachern
(2014):

β ∼ N(23.6, 2.042), σ2 ∼ IG(5, 10), yi
iid∼ N(β, σ2), i = 1, 2, . . . , n = 66, (6)

where yi denotes the ith (recorded) measurement of the passage time of light. β is
interpreted as the passage time of light with the deviations yi−β representing measure-
ment error. Four versions of the restricted likelihood are fit with conditioning statistics:
1) Huber’s M-estimator for location with Huber’s ‘proposal 2’ for scale 2) Tukey’s M-
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estimator for location with Huber’s ‘proposal 2’ for scale 3) LMS (least median squares)
for location with associated estimator of scale and 4) LTS (least trimmed squares) for
location with associated estimator of scale. Details of these estimators can be found in
many places, including (Huber and Ronchetti, 2009). We return to the two M-estimators
throughout this paper as we have found them to offer good default choices for prac-
titioners dealing with outliers. A short review of these estimators is provided in the
Supplementary Material. The tuning parameters for the M-estimators are chosen to
achieve 95% efficiency under normality (Huber and Ronchetti, 2009) and, for compa-
rability, roughly 5% of the residuals are trimmed for LTS. Two additional approaches
to outlier handling are considered: 1) the normal distribution is replaced with a t-
distribution and, 2) the normal distribution is replaced with a mixture of two normals.

The t-model assumes yi
iid∼ tν(β, σ

2) with ν = 5. The prior on σ2 is IG(5, ν−2
ν 10) and

ensures that the prior on the variance is the same as the other models. The mixture

takes the form: yi
iid∼ pN(β, σ2) + (1 − p)N(β, 10σ2) with the prior p ∼ beta(20, 1) on

the probability of belonging to the ‘good’ component.

The posterior of β under each model appears in Figure 1. The posteriors group
into two batches. The normal model and restricted likelihood with LMS do not dis-
count the outliers and have posteriors centered at low values of β. These posteriors
are also quite diffuse. In contrast, the t-model, mixture model, and the other restricted
likelihood methods discount the outliers and have posteriors centered at higher val-
ues. There is modest variation among these centers. Posteriors in this second group
have less dispersion than those in the first group. The pattern for predictive distribu-
tions differs (see bottom plot in Figure 1). The normal and t-models have widely dis-
persed predictive distributions. The other predictive distributions show much greater
concentration. The restricted likelihood fits based on M-estimators (Tukey’s and Hu-
ber’s) are centered appropriately and are concentrated. The restricted likelihood based
on LTS and the mixture model results are also centered appropriately, but compar-
atively less concentrated. The LMS predictive is concentrated, but it is poorly cen-
tered.

As a second example, a data set measuring the number of telephone calls in Belgium
from 1950–1973 is analyzed. The outliers in this case are due to a change in measurement
units on which calls were recorded for part of the data set. Specifically, for years 1964–
1969 and parts of 1963 and 1970, the length of calls in minutes were recorded rather
than the number of calls (Rousseeuw and Leroy, 1987). The full model is a standard
normal Bayesian linear regression:

β ∼ N2(μ0,Σ0), σ2 ∼ IG(a, b), y ∼ N(Xβ, σ2I), (7)

where β = (β0, β1)
�, y is the vector of the logarithm of the number of calls, and X is the

n×2 design matrix with a vector of 1’s in the first column and the year covariate in the
second. In reality, the model should include a different piece for the part of the data with
different units. The outliers are really just a manifestation of model misspecification.
Prior parameters are fixed via a maximum likelihood fit to the first 3 data points. In
particular, the prior covariance for β is set to Σ0 = gσ2

0(X
�
p Xp)

−1, with Xp the 3 × 2
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Figure 1: Results from the analysis of the speed of light data. Top: Posterior distributions
of β under each model. Bottom: Log posterior predictive distributions under each model.
The differences in the tails are emphasized in the bottom plot. The horizontal axis is
strategically labeled to help compare the centers of the distributions in each of the plots.

design matrix for the first 3 data points, g = n = 21, σ0 = 0.03 and μ0 = (1.87, 0.03)�.
This has the spirit of a unit information prior (Kass and Wasserman, 1995) but uses a
design matrix for data not used in the fit. Finally a = 2 and b = 1.

Four models are compared: 1) the normal theory base model 2) a two component
normal mixture model, 3) a t-model, and 4) a restricted likelihood model conditioning
on Tukey’s M-estimator for the slope and intercept with Huber’s ‘proposal 2’ for scale.
Each model is fit to the remaining 21 data points. The normal theory model is also
fit a second time after removing observations 14–21 (years 1963–1970). The omitted
cases consist of the obvious large outliers as well as the two smaller outliers at the
beginning and end of this sequence of points caused by the change in measurement units.
The mixture model allows different mean regression functions and variances for each
component. Both components have the same, relatively vague priors. The probability
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of belonging to the first component is given a beta(5, 1) prior. The heavy-tailed model
fixes the degrees of freedom at 5 and uses the same prior on β. The prior on σ2 is
adjusted by a scale factor of 3/5 to provide the same prior on the variance.

The data and 95% credible bands for the posterior predictive distribution under
each model are displayed in Figure 2. The normal model fit to all cases results in a
very wide posterior predictive distribution due to an inflated estimate of the variance.
The t-model provides a similar predictive distribution. The pocket of outliers from 1963
to 1970 overwhelms the natural robustness of the model and leads to wide prediction
bands. The outliers, falling toward the end of the time period, lead to a relatively high
slope for the regression. In contrast, the normal theory model fit to only the good data
results in a smaller slope and narrower prediction bands. The predictive distribution
under the restricted likelihood approach is much more precise and is close to that of
the normal theory fit to the non-outlying cases. The two component mixture model
provides similar results, where the predictive distribution is formulated using only the
good component. For these data, the large outliers are easily identified as following a
distinct regression, leaving the primary component of the mixture for non-outlying data.
In a more complex situation where the outlier generating mechanism is transient (i.e.,
ever changing and more complex than for these data), modeling the outliers is more
difficult. As in classical robust estimation, the restricted likelihood approach avoids
explicitly modeling the outliers.

3 Restricted Likelihood for the Linear Model

The simple examples in the previous section highlight the beneficial impact of a good
choice of T (y) with the use of the restricted likelihood. This work focuses on robustness
in linear models where natural choices include many used above: M-estimators in the
tradition of Huber (1964), least median squares (LMS), and least trimmed squares
(LTS). For these choices the restricted likelihood is not available in closed form, making
computation of the restricted posterior a challenge. For low-dimensional statistics T (y)
and parameters θ, the direct computational strategies described in Lewis (2014) can be
used to estimate the restricted posterior conditioned on essentially any statistic. These
strategies rely on estimation of the density of f(T (y)|θ) using samples of T (y) for many
values of θ; a strategy which breaks down in higher dimensions. This section outlines
a data augmented MCMC algorithm that can be applied to the Bayesian linear model
when T (y) consists of estimates of the regression coefficients and scale parameter.

3.1 The Bayesian Linear Model

We focus on the use of restricted likelihood for the Bayesian linear model with a standard
formulation:

θ = (β, σ2) ∼ π(θ)

yi = x�
i β + εi, for i = 1, . . . , n (8)

where xi and β ∈ R
p, σ2 ∈ R

+, and the εi are independent draws from a distri-
bution with center 0 and scale σ. X denotes the design matrix whose rows are x�

i .
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Figure 2: Pointwise posterior predictive intervals of log(calls) under the normal theory
model fit to the non-outliers, the restricted likelihood model with Tukey’s M-estimator
for the slope and intercept with Huber’s ‘proposal 2’ for scale, and a heavy-tailed t-
distribution model. The first three data points were used to specify the prior with each
model using the remaining 21 for fitting. The normal theory model was also fit after
removing observations 14–20 (years 1963–1970).

For the restricted likelihood model, conditioning statistics are assumed to be of the
form T (y) = (b(X,y), s(X,y)) where b(X,y) = (b1(X,y), . . . , bp(X,y))� ∈ R

p is an
estimator for the regression coefficients and s(X,y) ∈ {0} ∪ R

+ is an estimator of
the scale. Throughout, observed data and summary statistic is denoted by yobs and
T (yobs) = (b(X,yobs), s(X,yobs)), respectively. Several conditions are imposed on the
model and statistic to ensure validity of the MCMC algorithm:

C1. The n× p design matrix, X, whose ith row is x�
i , is of full column rank.

C2. The εi are a random sample from some distribution which has a density with
respect to Lebesgue measure on the real line and for which the support is the real
line.

C3. b(X,y) is almost surely continuous and differentiable with respect to y.

C4. s(X,y) is almost surely positive, continuous, and differentiable with respect to y.

C5. b(X,y +Xv) = b(X,y) + v for all v ∈ R
p.

C6. b(X, ay) = ab(X,y) for all constants a.

C7. s(X,y +Xv) = s(X,y) for all v ∈ R
p.
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C8. s(X, ay) = |a|s(X,y) for all constants a.

Properties C5 and C6 of b are called regression and scale equivariance, respectively.
Properties C7 and C8 of s are called regression invariance and scale equivariance. Many
estimators satisfy the above properties, including several traditional simultaneous M-
estimators (Huber and Ronchetti, 2009; Maronna et al., 2006) for which the R package
brlm (github.com/jrlewi/brlm) is available to implement the MCMC described here.
These M-estimators satisfy C3 and C4 since they are optimizers of continuous and
differentiable objective functions. Constraints C5–C8 are often satisfied by location
and scale estimators but should be checked on a case by case basis. More software
development is required to extend the MCMC implementation beyond the M-estimators
discussed here. The current version of the R package also implements the direct methods
described in Lewis (2014). These methods are effective in lower dimensional problems
and were used in both examples in Section 2.4.

3.2 Computational Strategy

The general style of algorithm we present is a data augmented MCMC targeting
f(θ,y|T (y) = T (yobs)), the joint distribution of θ and the full data given the summary
statistic T (yobs). The Gibbs sampler (Gelfand and Smith, 1990) iteratively samples
from the full conditionals 1) π(θ|y, T (y) = T (yobs)) and 2) f(y|θ, T (y) = T (yobs)).
When y has the summary statistic T (y) = T (yobs), the first full conditional is the same
as the full data posterior π(θ|y). In this case, the condition T (y) = T (yobs) is redun-
dant. This allows us to make use of conventional MCMC steps for generation of θ from
the first full conditional. For typical regression models, algorithms abound. Details of
the recommended algorithms depend on details of the prior distribution and sampling
density and we assume this can be done (see e.g., Liu, 1994; Liang et al., 2008).

For a typical model and conditioning statistic, the second full conditional
f(y|θ, T (y) = T (yobs)) is not available in closed form. We turn to Metropolis-Hastings
(Hastings, 1970), using the strategy of proposing full data y ∈ A := {y ∈ R

n|T (y) =
T (yobs)} from a well defined distribution with support A and either accepting or re-
jecting the proposal. Let yp,yc ∈ A represent the proposed and current full data,
respectively. Denote the proposal distribution for yp by p(yp|θ, T (yp) = T (yobs)) =
p(yp|θ,yp ∈ A) = p(yp|θ). The last equality follows from the fact that our p(·|θ) as-
signs probability one to the event {yp ∈ A}. These equalities still hold if the dummy
argument yp is replaced with yc. The conditional density is

f(y|θ,y ∈ A) =
f(y|θ)I(y ∈ A)∫

A f(y|θ)dy =
f(y|θ)∫

A f(y|θ)dy

for y ∈ A and I(·) the indicator function. This includes both yp and yc. The Metropolis-
Hastings acceptance probability is the minimum of 1 and R, where

R =
f(yp|θ,yp ∈ A)

f(yc|θ,yc ∈ A)

p(yc|θ,yc ∈ A)

p(yp|θ,yp ∈ A)
(9)

github.com/jrlewi/brlm
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=
f(yp|θ)∫

A f(y|θ)dy

∫
A f(y|θ)dy
f(yc|θ)

p(yc|θ)
p(yp|θ)

(10)

=
f(yp|θ)
f(yc|θ)

p(yc|θ)
p(yp|θ)

. (11)

For the models we consider, evaluation of f(y|θ) is straightforward. Therefore, the
difficulty in implementing this Metropolis-Hastings step manifests itself in the ability to
both simulate from and evaluate p(yp|θ) – the well defined distribution with support A.
We now discuss such an implementation method for the linear model in (8).

Construction of the Proposal

Our computational strategy relies on proposing y such that T (y) = T (yobs) where
T (·) = (b(X, ·), s(X, ·)) satisfies the conditions C3–C8. It is not a simple matter to
do this directly, but with the specified conditions, it is possible to scale and shift any
z∗ ∈ R

n which generates a positive scale estimate to such a y via the following theorem,
whose proof is in the Supplementary Material.

Theorem 3.1. Assume that conditions C4–C8 hold. Then, any vector z∗ ∈ R
n with

conditioning statistic T (z∗) for which s(X, z∗) > 0 can be transformed into y with
conditioning statistic T (y) = T (yobs) through the transformation

y = h(z∗) :=
s(X,yobs)

s(X, z∗)
z∗ +X

(
b(X,yobs)− b(X,

s(X,yobs)

s(X, z∗)
z∗)

)
.

Using the theorem, the general idea is to first start with an initial vector z∗ drawn
from a known distribution, say p(z∗), and transform via h(·) to y ∈ A. The proposal
density p(y|θ) is then a change-of-variables adjustment on p(z∗) derived from h(·). In
general however, the mapping h(·) is many-to-one: for any v ∈ R

n and any c ∈ R
+,

cz∗ +Xv map to the same y. This makes the change-of-variables adjustment difficult.
We handle this by first noticing that the set A is an n−p−1 dimensional space: there are
p constraints imposed by the regression coefficients and one further constraint imposed
by the scale. Hence, we restrict the initial z∗ to an easily understood n−p−1 dimensional
space. Specifically, this space is the unit sphere in the orthogonal complement of the
column space of the design matrix: S := {z∗ ∈ C⊥(X) | ||z∗|| = 1}, where C(X) and
C⊥(X) are the column space of X and its orthogonal complement, respectively. The
mapping h : S → A is one-to-one and onto. A proof is provided by Theorem 1.1 of
the Supplementary Material. The one-to-one property makes the change of variables
more feasible. The onto property is important so that the support of the proposal
distribution (i.e. the range of h(·)) contains the support of the target f(y|θ, y ∈ A), a
necessary condition for convergence of the Metropolis-Hastings algorithm (in this case
the supports are both A).

Given the one-to-one and onto mapping h : S → A, the general proposal strategy is
summarized as follows:
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1. Sample z∗ from a distribution with known density whose support is the entirety
of S.

2. Set y = h(z∗) and calculate the Jacobian of this transformation in two steps.

(a) Scale from S to the set Π(A) := {z ∈ R
n| ∃ y ∈ A s.t. z = Qy} with Q = I−

XX�.1 Π(A) is the projection of A onto C⊥(X) and, by condition C7, every

element of this set has s(X, z) = s(X,yobs). Specifically, set z = s(X,yobs)
s(X,z∗) z∗.

There are two pieces of this Jacobian: one for the scaling and one for the
mapping of the sphere onto Π(A). The latter piece is given in equation (12).

(b) Shift from Π(A) to A: y = z +X (b(X,yobs)− b(X, z)). This shift is along
the column space of X to the unique element in A. The Jacobian of this
transformation is given by equation (13).

The final proposal distribution including the complete Jacobian is given in equa-
tion (14) with details in the next section. Before giving these details we provide a
visualization in Figure 3 of each of the sets described above using a notional example
to aid in the understanding of the strategy we take. In the figure, n = 3, p = 1, and the
conditioning statistic is T (y) = (min(y),

∑
(yi − min(y))2). The set A is depicted for

T (yobs) = (0, 1) which we describe as a “warped triangle” in light blue, with each side
corresponding to a particular coordinate of y being the minimum value of zero. The
other two coordinates are restricted by the scale statistic to lie on the quarter circle of
radius one in the positive orthant. In this example, the column vector X = 1 (shown as
a reference) spans C(X) and S is a unit circle on the orthogonal plane (shown in red).
Π(A) is depicted as the bowed triangle in dark blue. We will come back to this artificial
example in the next section in an attempt to visualize the Jacobian calculations.

Evaluation of the Proposal Density

We now explain each step in computing the Jacobian described above.

Scale from S to Π(A) The first step is constrained to C⊥(X) and scales the initial z∗

to z = s(X,yobs)
s(X,z∗) z∗. For the Jacobian, we consider two substeps: first, the distribution

on S is transformed to that along a sphere of radius r = ‖z‖ = s(X,yobs)/s(X, z∗). By
comparison of the volumes of these spheres, this transformation contributes a factor of
r−(n−p−1) to the Jacobian. For the second substep, the sphere of radius r is deformed
onto Π(A). This deformation contributes an attenuation to the Jacobian equal to the
ratio of infinitesimal volumes in the tangent spaces of the sphere and Π(A) at z. Re-
stricting to C⊥(X), this ratio is the cosine of the angle between the normal vectors of
the two sets at z. The normal to the sphere is its radius vector z. The normal to Π(A)
is given in the following lemma with proof provided in the Supplementary Material.
Gradients denoted by ∇ are with respect to the data vector.

1We have used condition C1 to assume without loss of generality that the columns of X form an
orthonormal basis for C(X) (i.e., X�X = I).
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Figure 3: A depiction of A, Π(A), and the unit circle for the illustrative example where
b1(1,y) = min(y) = 0 and s(1,y) =

∑
(yi−b1(1,y))

2 = 1. A is the combination of three
quarter circles, one on each plane defined by yi = 0. The projection of this manifold
onto the deviation space is depicted by the bowed triangular shape in the plane defined
by

∑
yi = 0. The circle in this plane represents the sample space for the intermediate

sample z∗. Also depicted is the vector 1, the design matrix for the location and scale
setting.

Lemma 3.2. Assume that conditions C1–C2, C4, and C7 hold and y ∈ A. Let ∇s(X,y)
denote the gradient of the scale statistic with respect to the data vector evaluated at y.
Then ∇s(X,y) ∈ C⊥(X) and is normal to Π(A) at z = Qy in C⊥(X).

As a result of the lemma, the contribution to the Jacobian of this attenuation is

cos(γ) =
∇s(X,y)�z

‖∇s(X,y)‖‖z‖ , (12)

where γ is the angle between the two normal vectors. This step is visualized in Figure 4
for the notional location-scale example. The figure pictures only C⊥(X), which in this
case is a plane. The unit sphere (here, the solid circle) is stretched to the dashed sphere,
contributing r−(n−p−1) to the Jacobian as seen in panel (a). In panel (b), the dashed
circle is transformed onto Π(A), contributing cos(γ) to the Jacobian. The normal vectors
in panel (b) are orthogonal to the tangent vectors of Π(A) and the circle.

Shift from Π(A) to A The final piece of the Jacobian comes from the transformation
from Π(A) to A. This step involves a shift of z to y along the column space of X.
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Figure 4: Visualization of the scaling from z∗ to z. Top: the first substep scales z∗ on
the unit circle to the circle of radius r = ||z||, resulting in a change-of-variables trans-
formation for the unit circle to a circle of radius r. The contribution to the Jacobian of
this transformation is r−(n−p−1). Bottom: The second substep accounts for the change-
of-variables transformation from the circle of radius r to Π(A). The normal vectors to
these two sets are used to calculate the contribution to the Jacobian of this part of the
transformation are shown in the figure.

Since the shift depends on z, the density on the set Π(A) is deformed by the shift. The

contribution of this deformation to the Jacobian is, again, the ratio of the infinitesimal

volumes along Π(A) at z to the corresponding volume along A at y. The ratio is

calculated by considering the volume of the projection of a unit hypercube in the tangent

space of A at y onto C⊥(X). Computational details are given in the following lemmas

and subsequent theorem. Proofs of the lemmas are given in the Supplementary Material.
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The theorem is a direct result of the lemmas. Throughout, let Ty(A) and T ⊥
y (A) denote

the tangent space to A at y and its orthogonal complement, respectively.

Lemma 3.3. Assume that conditions C1–C5 and C7–C8 hold. Then the p+1 gradient
vectors ∇s(X,y),∇b1(X,y), . . . ,∇bp(X,y) form a basis for T ⊥

y (A) with probability one.

The lemma describes construction of a basis for T ⊥
y (A), leading to a basis for

Ty(A). Both of these bases can be orthonormalized. Let A = [a1, . . . , an−p−1] and
B = [b1, . . . , bp+1] denote the matrices whose columns contain the orthonormal bases
for Ty(A) and T ⊥

y (A), respectively. The columns in A define a unit hypercube in Ty(A)

and their projections onto C⊥(X) define a parallelepiped. We defer construction of A
until later.

Lemma 3.4. Assume that conditions C1–C5 and C7–C8 hold. Then the n× (n−p−1)
dimensional matrix P = QA is of full column rank.

As a consequence of this lemma, the parallelepiped spanned by the columns of P is
not degenerate (it is n− p− 1 dimensional), and its volume is given by

Vol(P ) :=
√
det(P�P ) =

r∏
i=1

σi (13)

where r = rank(P ) = n − p − 1 and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of
P (e.g., Miao and Ben-Israel (1992)). Combining Lemmas 3.3 and 3.4 above leaves us
with the following result concerning the calculation of the desired Jacobian.

Theorem 3.5. Assume that conditions C1–C5 and C7–C8 hold. Then the Jacobian
of the transformation from the distribution along Π(A) to that along A is equal to the
volume given in (13).

The Proposal Density Putting all the pieces of the Jacobian together we have the
following result. Any dependence on other variables, including current states in the
Markov chain, is made implicit.

Theorem 3.6. Assume that conditions C1–C8 hold. Let z∗ be sampled on the unit
sphere in C⊥(X) with density p(z∗). Using the transformation of z∗ to y ∈ A described
in Theorem 3.1, the density of y is

p(y) = p(z∗)r−(n−p−1) cos(γ)Vol(P ) (14)

where r = s(X,yobs)/s(X, z∗), and cos(γ) and Vol(P ) are as in equations (12) and (13),
respectively.

The proposal is governed by the choice of p(z∗) and a poor choice could lead to an
inefficient MCMC algorithm. For all examples in this paper we defined p(z∗) to be the
uniform distribution on S. The advantage of this choice is that it requires no further
tuning parameters. We have noticed good mixing in terms of the ability of the chain
to generate new data y that is accepted with a reasonable probability. To implement
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the method in practice, we generate an n-dimensional independent standard normal y∗

for the proposal and transform this via h(·). Theoretically, the random normal vector
would be projected onto C⊥(X) and scaled to unit norm to generate the uniform on S.
Using simple algebra and conditions C5–C8, one can show that h(·) is invariant to this
projection and scaling. Another option for the proposal suggested by a reviewer that
the authors have yet to study is generating a random walk. As we are proposing values
on a complicated manifold, it might be possible to implement this by conducting the
random walk on y∗ before transforming via h(·). This could provide advantages in some
situations, though we have yet to run into any serious issues with convergence using the
independence proposal we utilize here.

Some details for computing the needed quantities are worth further explanation.
Computing Vol(P ) involves finding an orthornormal matrix A whose columns span
Ty(A). This matrix can be found by supplementing B with a set of n linearly inde-
pendent columns on the right, and applying Gram-Schmidt orthonormalization. The
computational complexity of this step is O(n3). This is infeasibly slow when n is large
because it must be repeated at each iterate of the MCMC when a complete data set
is drawn. However, using results related to principal angles found in Miao and Ben-
Israel (1992) the volume (13) can be computed using only B. B is constructed by
Gram-Schmidt orthogonalization of ∇s(X,y),∇b1(X,y), . . . ,∇bp(X,y), reducing the
computational complexity to O(np2) – a considerable reduction in computational bur-
den when n 
 p. The following corollary formally states how computation of A can be
circumvented.

Corollary 3.7. Let U be a matrix whose columns form an orthonormal basis for C(X)
and set Q = WW� where the columns of W form an orthonormal basis for C⊥(X).
Then the non-unit singular values of U�B are the same as the non-unit singular values
of W�A.

The lemma implies that Vol(P ) is the product of the singular values of U�B.

Second, the gradients of ∇s(X,y),∇b1(X,y), . . . ,∇bp(X,y) are easily computed in
many cases. For example, below we consider M-estimators defined by the estimating
equations:

n∑
i=1

ψ

(
yi − x�

i b(y, X)

s(y, X)

)
xij = 0,

n∑
i=1

χ

(
yi − x�

i b(y, X)

s(y, X)

)
= 0, (15)

for j = 1, 2, . . . , p, xij are the components of xj and ψ and χ are almost surely differ-
entiable. The gradients can be found by differentiating this system of equations with
respect to each yi. In theory, finite differences could also be used as an approximation
if needed.

Finally, it is clear the estimators themselves must be computed for every iteration of
the Markov Chain. We have found this burden to be marginal relative to computation
of the needed Jacobian. In the simulations and real data analyses presented below, we
will see that the additional computational expense needed to fit the Bayesian model is
often worthwhile, leading to better performance compared to traditional, non-Bayesian
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robust regression estimators. This is most evident when substantive prior information
is available and information in the data is limited.

4 Simulated Data

We study the performance of restricted likelihood methods in two simulation settings.
The first is a hierarchical setting. The second is a variable selection setting where there
are several potential covariates but only a few have non-zero effect sizes.

4.1 Simulation 1

The first is a hierarchical setting where the data are contaminated with outliers. Specif-
ically, simulated data come from the following model:

θi ∼ N(μ, τ2), i = 1, 2, . . . , 90

yij ∼ (1− pi)N(θi, σ
2) + piN(θi,miσ

2), j = 1, 2, . . . , ni

(16)

with μ = 0, τ2 = 1, σ2 = 4. The values of pi,mi, and ni depend on the group and are
formed using 5 replicates of the full factorial design over factors pi,mi, ni with levels
pi = .1, .2, .3, mi = 9, 25, and ni = 25, 50, 100. This results in 90 groups that have
varying levels of outlier contamination and sample size. We wish to build models that
offer good prediction for the good portion of data within each group. The full model for
fitting is a corresponding normal model without contamination:

θi ∼ N(μ, τ2), σ2
i ∼ IG(as, bs), i = 1, 2, . . . , 90,

yij ∼ N(θi, σ
2
i ), j = 1, 2, . . . , ni.

(17)

For the restricted likelihood versions we condition on robust M-estimators of location
and scale in each group: Ti(yi1, . . . , yini) = (θ̂i, σ̂

2
i ), i = 1, 2, . . . , 90. These estimators are

solutions to equation (15) (where xi ≡ 1) with user specified ψ and χ functions designed
to discount outliers. The two versions use Huber’s and Tukey’s ψ function, while both
versions use Huber’s χ function. The tuning parameters associated with these functions
are chosen so that the estimators are 95% efficient under normally distributed data.
These classical M-estimators are commonly used in robust regression settings (Huber
and Ronchetti, 2009).

To complete the specification of model (17), the hyperparameters μ, τ2, as, and bs
must be given priors or fixed. The joint prior density for μ and τ2 is improper and
proportional to τ−2. The pair as and bs are fixed to a variety of values representing
different levels of prior knowledge. For each pair, we set bs = 4asc resulting in a prior

mean for each σ2
i of 4cas

as−1 , as > 1. The precision is (as−1)2(as−2)
(4cas)2

, meaning larger as and

smaller c result in a more informative prior. With c = 1 the shrinkage (for large as) is
to the true value of σ2 = 4. We consider as = 1.25, 5, 10 and c = 0.5, 1, 2 for a total of
nine different priors.

K = 30 data sets are generated from (16). For each data set and each pair (as, c),
the Bayesian models are fit using MCMC. The MCMC for the restricted likelihood
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version requires no computational details other than those described for the traditional
Bayesian model in Section 3. This is because there are conditioning statistics for each
group and the model’s conditional independence between the groups allows the data
augmentation described earlier to be performed independently within each group. That
is, there is a separate Gibbs step for each group to generate the group level data matching
the statistics for that group. The acceptance rates for newly generated data across all
groups and simulations ranged from 0.57 to 0.68.

Figure 5: Average MSE plus/minus one standard error for each value of as and c. Smaller
values represent better fits. The panels correspond to c = 0.5 (left), c = 1 (middle), and
c = 2 (right), with the values of as on the horizontal axis. The average MSE for the
normal theory model ranges from 0.24 to 0.25 and is left out of the figure.

The performance of the methods can be evaluated in many ways. For these simula-
tions, we know the true data generating mechanism, and this allows us to make direct
comparisons between the fitted model and the truth. The Bayesian methods provide a
full predictive distribution for the response, given group, while the classical methods
provide only point estimates of parameters. Our comparisons have focused on two main
summaries. One summary, not presented here, is the average Kullback-Liebler diver-
gence from the good portion of the true distribution of Y given group to the predictive
distribution (Bayes) or to the distribution with point estimates plugged in (classical).
For the Bayesian models, the divergence does not have a closed form and must be eval-
uated numerically. The second summary, preferred by a referee, is the mean squared
error (MSE), averaged across groups. Results are presented in Figures 5 and 6. Formally,
with the superscript M indicating the method and the additional subscript k indexing
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the data set,

MSE
(M)
ik = (θ̂

(M)
ik − θik)

2, (18)

MSE(M) =
1

90K

K∑
k=1

90∑
i=1

MSE
(M)
ik . (19)

The Bayesian restricted likelihood methods show superior performance under both
summaries, but especially for MSE. Figure 5 displays the MSE grouped by pairs as and
c with error bars plus/minus one standard error within the group. The values of as and c
do not affect the classical robust linear models. The average MSEs for the normal theory
models ranges from 0.24 to 0.25 and are left out of the figure. The results uniformly
favor the Bayesian restricted likelihood methods, as seen by substantially lower values
of MSE. For both classical and restricted likelihood methods, Tukey’s ψ function leads
to better performance than does Huber’s ψ function.

Figure 6: Average MSE plus/minus one standard error grouped by the factors m (left),
n (middle), and p (right). These results are for the single prior with as = 5 and c = 1.

It is also interesting to consider the effects of factors n, p, and m. We present the
results for a single prior (as = 5 and c = 1). For each simulation k, the main effect
average MSE is found for each factor n, p, and m. Figure 6 displays the average MSE
over the K = 30 simulations along with error bars plus/minus one standard error. For
each group n, p, and m, the Bayesian restricted likelihood versions have better average
loss than do the classical methods. As expected, the average MSE gets larger as the
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contamination gets more severe (larger m or larger p) and tends to get smaller as the
sample size n grows. The advantage of the Bayesian methods is greater for smaller
sample sizes and for more severe contamination.

This simulation shows the potential of the restricted likelihood methods to dramati-
cally improve estimation. The simulation also conveys some cautions that are apparent
from consideration of KL divergence but not MSE. Specifically, the choice of summary
statistic along with the corresponding tuning parameters is important. For the tuning
parameters for the ψ functions, we applied the default choice of 95% efficiency at the
normal. Under the simulation model here, this choice results in bias in the scale esti-
mation which affects the performance of the method. Tuning parameters must be set
when using both classical and Bayesian methods. The Bayesian approach encourages
use of a hierarchical model structure and allows one to incorporate prior information in
the analysis. These features can improve predictive performance substantially. If poorly
handled, they can, of course, harm performance.

4.2 Simulation 2

In this simulation the data are generated from the following mechanism: y = β�x +
ε with β = (β1, β2, β3)

� and the error ε ∼ N(0, σ2) with probability 0.8 and ε ∼
Half-Normal(0, 25σ2) with probability 0.2 (i.e., there is a relatively large amount of
one-sided outlier contamination). The components of x = (x1, x2, x3) are correlated
with x1 ∼ N(0, 1) and xj = x1 + ηj with ηj ∼ N(0, 4) for j = 2, 3. This results in a
theoretical correlation of 1/

√
5 ≈ 0.44 between x1 and both xj , j = 2, 3. The model

used for fitting contains an additional 27 covariates, some of which are also correlated
with x1, x2, and x3. Specifically the fitting model is y = β�x + β∗�x∗ + ε where x∗

and β∗ are 27 dimensional vectors of extra covariates and slope parameters. Of these
27 covariates, 21 are generated independently from standard normal distributions. Of
the remaining 6, two each are generated by adding standard normal noise to x1, x2,
and x3. This represents a common situation where several covariates with various levels
of correlation amongst them are available for fitting, but only a few govern the data
generating mechanism.

For the simulation, K = 30 data sets (including the additional covariates) of size
n = 500 are generated from the true model with true values β = (1, 1, 1)� and σ2 = 2.
We fit the model including all 30 covariates and consider the following methods for the fit
1) classical robust regression with Tukey’s estimator of location and Huber’s estimator of
scale, 2) the corresponding restricted likelihood version 3) a heavy-tailed Bayesian model
with a Student-t likelihood with ν = 5 degrees of freedom. For the Bayesian models we
take βall ∼ N20(0, σ

2
βI) with βall = (β,β∗)� and σ2 ∼ IG(5, 8) under the restricted

model and σ2 ∼ IG(5, ν−2
ν 8) under the Student-t model. For each data set, we fit the

models for σβ = 0.4, 0.6, 0.8, . . . , 1.4. The acceptance rates for the restricted likelihood
MCMC data-augmentation step range from 0.3 to 0.36 across all the data sets and values

of σβ . To compare performance we first consider the MSE = (||β − β̂||2 + ||β̂∗||2)/30
for each simulation where β̂ and β̂

∗
are point estimates for the fitted model. For the

Bayesian models, we use posterior means. The average MSEs plus/minus one standard
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Figure 7: Average MSE plus/minus one standard error over the K = 30 simulations
for each value of the prior standard deviation (σβ) and each of the fitting methods.
‘Restricted’ is our method conditioning on Tukey’s estimator of location and Huber’s
estimator of scale. ‘rlm’ refers to the classical robust linear model fit with the same
estimators and ‘t’ is the heavy-tailed Bayesian model with a Student-t likelihood. The
‘rlm’ results are the same for each σβ .

error over the simulations for each σ2
β are displayed in Figure 7. The classical fit is

labeled ‘rlm’ and is the same for each value of the prior standard deviation σ2
β . We

see for most values of the prior standard deviation, the Bayesian models (‘restricted’
and ‘t’) outperform the classical fit. The correlation amongst the covariates causes
a certain level of confounding and the prior shrinkage helps to improve estimation.
However, too much shrinkage can be detrimental as demonstrated for σβ = 0.4. While
this will help for estimation of β∗ = 0, the estimation of the active parameters β can
be hindered. The t model seems more sensitive to this effect than the restricted model.
The restricted model also has an additional advantage when it comes to prediction of
the non-outlying data. To see this, for each simulation we consider the mean negative

log-likelihood of the non-outlying data: MNLL = − 1
N

∑
log f(yi|β̂, β̂

∗
, σ̂) where f is

the assumed likelihood and the average is taken over the N non-outlying points yi.
For the classical and restricted fits, f is the normal likelihood and for the ‘t’ it is the
heavy-tailed Student-t likelihood. The average MNLL plus/minus one standard error
over the simulations for each σ2

β are displayed in Figure 8. First, the restricted version
has a small but consistent improvement over the classical method. Second, it is clear
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Figure 8: Average MNLL plus/minus one standard error over the K = 30 simulations
for each value of the prior standard deviation (σβ) and each of the fitting methods.
‘Restricted’ is our method conditioning on Tukey’s estimator of location and Huber’s
estimator of scale. ‘rlm’ refers to the classical robust linear model fit with the same
estimators and ‘t’ is the heavy-tailed Bayesian model with a Student-t likelihood. The
‘rlm’ results are the same for each σβ .

that the heavy-tailed model suffers when trying to predict the non-outlying data since
it assumes the entire data generating mechanism is heavy-tailed.

5 Real Data

We illustrate our methods with a pair of regression models for data from Nationwide
Insurance Company that concern prediction of the performance of insurance agencies.

Nationwide sells many of its insurance policies through agencies which provide di-
rect service to policy holders. The contractual agreements between Nationwide and
these agencies vary. Our interest is the prediction of future performance of agencies
where performance is measured by the total number of households an agency services
(‘household count’).

The data are grouped by states with a varying number of agencies by state. Identi-
fiers such as agency/agent names are removed. Likewise, state labels and agency types
(identifying the varying contractual agreements) have been made generic to protect the
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Figure 9: The square root of (scaled) count in 2012 versus that in 2010 for four states.
The colors represent the varying contractual agreements as they stood in 2010 (‘Type’).
Agencies that closed during the 2010–2012 period are represented by the zero counts
for 2012.

proprietary nature of the data. Additionally, the counts were scaled to have standard
deviation one before analysis.

As an exploratory view, a plot of the square root of (scaled) household count in
2012, against that in 2010 is shown in Figure 9 for four states. The states have varying
numbers of agencies and the different colors represent the varying types of contractual
agreements as they stood in 2010 (‘Type’). A significant number of agencies closed
sometime before 2012, as represented by the 0 counts for 2012. Among the open agencies,
linear correlations exists with strength depending on agency type and state. ‘Type 1’
agencies open in 2012 are of special interest. One could easily subset the analysis to
only these agencies, removing the others. However, we leave them and use the data as a
test bed for our techniques by fitting models that do not account for agency closures or
contract type. Our expectation is that the restricted likelihood will facilitate prediction
for the ‘good’ part of the data (i.e., open, ‘Type 1’ agencies). It is of concern to the
company to predict closures and future performance for agencies that remain open. It
is important for planning purposes that the predictions are not overly influenced by a
handful of over/underperforming agencies. Our analysis focuses on one aspect of the
business problem – the prediction of future performance for agencies, given they remain
open.
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5.1 State Level Regression Model

The first analysis is based on individual regressions fit separately within states. The
following normal theory regression model is used as the full model for a single state:

β ∼ N(μ0,Σ0); σ2 ∼ IG(a0, b0); yi = x�
i β + εi, εi

iid∼ N(0, σ2), i = 1, . . . , n, (20)

where β is a three dimensional vector (p = 3) of regression coefficients for the covariate
vector xi consisting of the square root of household count in 2010, and two different
size/experience measures related to the number of employees associated with the agency.
The response, yi is the square root of household count in 2012. The hyper-parameters
a0, b0, μ0 and σ2

0 are all fixed and set from a robust regression fit to the corresponding

state’s data from the time period two years before. Specifically, let β̂ and σ̂2 be estimates
from the robust linear regression of 2010 counts on 2008 counts. We fix a0 = 5 and set
b0 = σ̂2(a0 − 1) so the prior mean is σ̂2. We set μ0 = β̂ and Σ0 = npΣ̂0 where np is

the number of agencies in the prior data set and Σ̂0 is the estimated covariance matrix
of β̂ derived from the robust regression. This prior is in the spirit of the Zellner’s g-
prior (Zellner, 1986; Liang et al., 2008). In general, scaling the prior variance by a factor
g = np is analogous to the unit-information prior (Kass and Wasserman, 1995), with the
difference that we are using a prior data set, not the current data set, to set the prior.
The obvious reason why this model is misspecified is due to omission of the contract
type and agency closure information. Closing our eyes to these variables, many of the
cases appear as outliers. Additionally, the model assumes equal variance within each
state, an assumption whose worth is arguable (see Figure 9).

We compare four Bayesian models: the standard Bayesian normal theory model, two
restricted likelihood models, both with simultaneous M-estimators, and a heavy-tailed
model. For the restricted likelihood methods we use the same simultaneous M-estimators
as in the simulation of Section 4 adapted to linear regression. The heavy-tailed model
replaces the normal sampling density in (20) with a t-distribution with ν = 5 degrees
of freedom. The Bayesian models are all fit using MCMC, with the restricted versions
using the algorithm presented in Section 3.2. We also fit the corresponding classical
robust regressions and a least squares regression.

Method of Model Comparison

We wish to examine the performance of the models in a fashion that preserves the
essential features of the problem. Since we are concerned with outliers and model mis-
specification, we understand that our models are imperfect and prefer to use an out-of-
sample measure of fit. This leads us to cross-validation. We repeatedly split the data
into training and holdout data sets; fitting the model to the training data and assessing
performance on the holdout data.

The presence of numerous outliers in the data implies that both training and val-
idation data will contain outliers. For this reason, the evaluation must be robust to a
certain fraction of bad data. The two main strategies are to robustify the evaluation
function (e.g., Ronchetti et al., 1997) or to retain the desired evaluation function and
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trim cases (Jung et al., 2014). Here, we pursue the trimming approach with log predic-
tive density for the Bayesian models and log density from plug-in maximum likelihood
for the classical fits used as the evaluation function.

The trimmed evaluation proceeds as follows in our context. The evaluation function
for case i in the holdout data is the log predictive density, say log(f(yi)), with the
conditioning on the summary statistic suppressed. The trimming fraction is set at 0 ≤
α < 1. To score a method, we first identify a base method. Denote the predictive density
under this method by fb(y). Under the base method, log(fb(yi)) is computed for each
case in the holdout sample, say i = 1, . . . ,M . Order the holdout sample according to
the ordering of log(fb(yi)) and denote this ordering by yb(1), y

b
(2), . . . , y

b
(M). That is, for

i < j log(fb(y
b
(i))) < log(fb(y

b
(j))). All of the methods are then scored on the holdout

sample with the mean trimmed log marginal pseudo likelihood,

TLMb(A) = (M − [αM ])−1
M∑

i=[αM ]+1

log(fA(y
b
(i))),

where fA corresponds to the predictive distribution under the method “A” being scored.
In other words, the [αM ] observations with the smallest values of log(fb(y)) are removed
from the validation sample and all of the methods are scored using only the remaining
M − [αM ] observations. Larger values of TLMb(A) indicate better predictive perfor-
mance. This process is advantageous to the base method since the smallest scores from
this method are guaranteed to be trimmed. A method that performs poorly when it is
the base method is discredited.

Comparison of Predictive Performance

‘Type 1’ agencies are of special interest to the company and so the evaluation of the TLM
is done on only holdout samples of ‘Type 1’, whereas the training is done on agencies of
all types. This is intended to demonstrate the robustness properties of the various meth-
ods. Models are fit to four states labelled State 2, 15, 27, and 36, with n = 222, 40, 117,
and 46, representing a range of sample sizes. Fitting is done on K = 50 training sam-
ples with training sample sizes taken to be 0.25n and 0.50n. Holdout evaluation is done
on the remaining (‘Type 1’) samples. The acceptance rates for the data augmentation
step, for all but one training set, range from 0.10 to 0.8 across the states, repetitions,
and two versions of the model. The exception was a single training set from State 15
resulting in an usually small acceptance rate under Tukey’s version. This case didn’t
effect the overall results of the simulations but emphasizes the need to check conver-
gence on a case by case basis. The average TLMb(A) over the K = 50 training/holdout
samples for the four states and seven methods are shown in Figure 10 where the base
model is the Student-t model and α = 0.3. Similar results are observed for other base
models. The error bars are plus/minus one standard deviation of the average TLMb(A)
over the K = 50 training/holdout samples. It is clear that the normal Bayesian model
used as the full model (Normal) and the classical ordinary least squares fits (OLS) have
poor performance due to the significant amount of outlier contamination in the data.
In comparing our restricted methods to their corresponding classical methods, there
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Figure 10: Average TLM plus/minus one standard deviation over K = 50 splits into
training and holdout samples. The panels are for the different states 2, 15, 27, and 36,
with n = 222, 40, 117, and 46, respectively. The horizontal axis is the percent of n used
in each training set. The color corresponds to the fitting model. Larger values of TLM
are better.

is small, but consistent improvement across the states and training sample size. Addi-
tionally, variance reduction for the Bayesian versions is evident, especially in State 15,
highlighted by the smaller error bars. For state 2, the largest state with n = 222, the
restricted and classical robust methods have similar performance especially for larger
training sample size. This reflects the diminishing effect of the prior as the sample size
grows. Notably, the Student-t model performs poorly in comparison for this state. The
predictive distribution explicitly accounts for heavy-tailed values, resulting in poorer
predictions of the ‘good’ data (i.e., the ‘Type 1’ agencies). Likewise, for State 27, an-
other larger state, the Student-t model is outperformed by our restricted methods. For
the other states (State 15 and 36), the Student-t performs better than our restricted
methods for smaller training sample size (25% of the sample). However, this advantage
goes away for the larger training sample size (50% of the sample). Intuitively, as more
data is available for fitting, more outliers appear and the heavy-tailed model compen-
sates for them by assuming they come from the tails of the model; an assumption which
is detrimental for prediction. Comparisons of the models depend on α as seen in Fig-
ure 11 which shows results for different α for training sample size 0.5n. For smaller α
(in this case α = 0.1), many outliers are left untrimmed resulting in lower TLM for
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Figure 11: Average TLM plus/minus one standard deviation over K = 50 splits into
training and holdout samples for several values of the trimming fraction α. The training
sample size used is 0.5n. Larger values of TLM are better.

all methods and noticeably larger standard deviation for the classical robust methods
and our restricted likelihood. Larger values of α ensure that the predictive performance
assessment excludes the majority of outliers. The proportion of 0 counts in the data is
roughly 0.14, suggesting that α should be at least this large.

5.2 Hierarchical Regression Model

The previous analysis treated states independently. A natural extension is to reflect sim-
ilar business environments between states using a hierarchical regression. The proposed
model is:

β ∼ Np(μ0, aΣ0); βj
iid∼ Np(β, bΣ0); σ2

j ∼ IG(a0, b0); (21)

yij = x�
ijβj + εij , εij

iid∼ N(0, σ2
j ), i = 1, . . . , nj , j = 1, . . . , J (22)

where yij is the i
th observation of square rooted household count in 2012 in the jth state,

nj is the total number of agencies in state j, and J is the number of states. xij is same
three-dimensional covariate vector as before and βj represents the individual regression
coefficient vector for state j. The parameters μ0, Σ0, a0, and b0 are fixed by fitting the
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regression yij = x�
ijβ + εij using Huber’s M-estimators to the prior data set from two

years before. Using the estimates from this model, we set μ0 = β̂, Σ0 = npΣ̂0 (np = 2996
is the number of observations in the prior data set), a0 = 5 and b0 = σ̂2(a0 − 1). We
constrain a+ b = 1 in an attempt to partition the total variance between the individual
βj ’s and the overall β and take b ∼ beta(v1, v2). Using the prior data set, we assess
the variation between individual estimates of the βj to set v1 and v2 to allow for a
reasonable amount of shrinkage. To allow for dependence across the σ2

j we first take

(z1, . . . , zJ) ∼ NJ(0,Σρ) with Σρ = (1 − ρ)I + ρ11�. Then we set σ2
j = H−1(Φ(zj))

where H is the cdf of an IG(a0, b0) and Φ is the cdf of a standard normal. This results
in the specified marginal distribution, while introducing correlation via ρ. We assume
ρ ∼ beta(aρ, bρ) with mean μρ = aρ/(aρ+bρ) and precision ψρ = aρ+bρ. The parameters
μρ and ψρ are given beta and gamma distributions, with fixed hyperparameters. More
details on setting prior parameters are given in the Supplementary Material.

Using the same techniques as in the previous section, we fit the normal theory
hierarchical model above, a thick-tailed t version with ν = 5 d.f., and two restricted
likelihood versions (Huber’s and Tukey’s) of the model. For the restricted methods,
we condition on robust regression estimates fit separately within each state. We also
fit classical robust regression counterparts and a least squares regression separately
within each state. Additionally, we compare our method to an ABC fit. The ABC
version conditions on the Tukey statistics used in our restricted likelihood version. We
choose the Tukey version for comparison to ABC since it naturally trims outliers and
we expect it to perform the best in this situation. Recall, ABC will approximate the
restricted posterior using π(θ|ρ(T (yobs), T (y

∗)) < ε). Due to the high-dimension of
the parameters and statistics we use the MCMC method called Gibbs ABC developed
by Turner and Van Zandt (2014) to obtain samples from the ABC posterior. A brief
description of this algorithm is as follows with theoretical details provided by Turner and
Van Zandt (2014). Let yj,obs denote the observed data for state j = 1, . . . , J . The shared
higher-level parameters are sampled as before since they are, a posteriori conditionally
independent of the data. The state-level parameters θj = (βj , σj), j = 1, 2, . . . , J , are
sampled using Gibbs ABC. For each iterate of the chain, denote the current state-level
parameters and data for state j by θj,curr and yj,curr. A single update for the state-level
parameters loops over j as follows. Propose θj,prop from the prior and then propose new
data yj,prop from the normal model conditional on θj,prop. The proposed parameters
are accepted with Metropolis-Hastings acceptance probability

αmh = min{1,
φ(ρ(T (yj,prop), T (yj,obs))/δabc)

φ(ρ(T (yj,curr), T (yj,obs))/δabc)
} (23)

with φ(·) the standard normal pdf and δabc a tolerance parameter. Here, we use ρ(·) for
the standard Euclidean distance metric to conform to common ABC notation (this is
not the ρ of M-estimation). This method makes use of kernel-based ABC (Wilkinson,
2013). Instead of checking whether the distance between the sampled and observed
statistics is strictly below some threshold, this method computes the kernel value of the
distance which offers a smoother transition between acceptance and rejection. We use a
standard Gaussian kernel for this application. The smaller δabc, the closer the statistics
must be for acceptance.
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A few notes on our implementation are warranted. First, we are not restricted to
sampling the parameters from their prior. A more general proposal distribution can
be applied with standard adjustments to αmh to adjust for the proposal (Turner and
Van Zandt, 2014). We tried a few different options, including sampling from the full-
conditional distributions, but found proposing from the priors was both the easiest to
implement and provided the most satisfactory convergence results for this problem.
Additionally, the choice of δabc is important and can be different for each state. For this
we started with a small value for each state (δabc = 0.01) and iteratively checked the
within-state acceptance rate. After each check, if the rate was below 0.1 we increased the
δabc for that state by a factor of 1.2. These choices were based on some experimentation
in order to reach satisfactory convergence in a reasonable number of iterations. To
reach satisfactory convergence we had to run the chains for a total of 40, 000 iterations
which was 10-fold more than were needed for the restricted likelihood algorithm. In our
experimentation, our method takes only about 1.6 times as long as ABC per iteration.
We believe that this modest increase in per-iteration computational time is outweighed
by apparently better convergence and mixing of the Markov chain. It is quite possible
that better choices for the ABC algorithm could help improve its convergence, but we
leave this for further research as computational efficiency is not the main focus of this
paper.

Hierarchical models naturally require more data and so we include states having at
least 25 agencies with sufficient variation within each covariate, resulting in 20 states in
total and n =

∑
j nj = 3094 total agencies. For training data we take a stratified (by

state) sample of size 3094/2 = 1547 where the strata sizes are nj/2 (rounded to the near-
est integer). The remaining data is used for a holdout evaluation using TLM computed

separately within each state: TLMb(A)j = (Mj − [αMj ])
−1

∑Mj

i=[αMj ]+1 log(fA(y
b
(i)j))

where yb(1)j , y
b
(2)j , . . . , y

b
(Mj)j

is the ordering of the Mj holdout observations within state

j according to the log marginals under the base model b. For the non-Bayesian models,
fA(y

b
(i)j) is estimated using plug-in estimators for the parameters for state j. TLMb(A)j

is computed for each state for K = 50 splits of training and holdout sets. The Bayesian
models are fit using MCMC, with the restricted versions applying the algorithm laid
out in Section 3 and adapted to the hierarchical setting as described in Section 4. For
the MH-step proposing augmented data, the acceptance rates for the two restricted
likelihood models across all states and repetitions ranged from 0.01 to 0.75, with only
7 cases (out of 50 ∗ 20 ∗ 2 = 2000 chains) with rates below 0.1.

The average over states, TLM b(A)· =
1
22

∑22
j=1 TLMb(A)j for each of the K repeti-

tions is summarized in Figure 12 for several trimming fractions using the Student-t as
the base model. The points are the average of the TLM b(A)· over theK repetitions with
error bars plus/minus one standard deviation over K with larger values representing
better predictive performance. As the trimming fraction used for the TLM increases,
so does TLM since more outliers are being trimmed. Similar patterns were seen in the
individual state level regressions in Section 5.1. Despite being used as the base model
to compute TLM, the Student-t doesn’t perform well in comparison to the robust re-
gressions. We attribute this to the assumption of heavier tails resulting in smaller log
marginal values on average; emphasizing again that the t-model will do well to discount



J. R. Lewis, S. N. MacEachern, and Y. Lee 31

Figure 12: Hierarchical model results: TLM b(A)· plus/minus one standard deviation
over K = 50 splits into training and holdout sets with the Student-t as the base model
and several values of the trimming fraction α. Larger values of TLM are better.

outlying observations but does not provide a natural mechanism for predicting non-
outlying data. For each trimming fraction, our restricted likelihood hierarchical models
outperform the classical robust regressions fit separately within each state. The hierar-
chical model also reduces variance in predictions resulting in smaller error bars. On the
surface, ABC performs quite well in comparison to the restricted likelihood. A table of
the mean and standard deviation values for trimming fraction 0.3 is provided in Table 1
where we see that the average TLM for ABC is larger than that for restricted likelihood
by 0.03. Additionally, the standard deviation of TLM for ABC is half the size of that
for restricted likelihood. A closer look at the results shows that the difference in average
TLM can be attributed entirely to a single state with a relatively small sample size (see
next paragraph).

Model Trimming Fraction mean std. deviation
Restricted - Tukey 0.3 1.87 0.06

ABC - Tukey 0.3 1.90 0.03

Table 1: Comparison of the average TLM over all states for Restricted and ABC methods
with trimming fraction 0.3.
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Figure 13: Hierarchical model results: TLM b(A)j plus/minus one standard deviation
over K = 50 repetitions for each state and α = 0.3. The states are ordered along the
x-axis according to number of agencies within the state (shown in parentheses). Results
displayed are for the robust models using Tukey’s M-estimators. Larger values of TLM
are better.

It is also interesting to examine the results within each state. Figure 13 summarizes
TLM b(A)j with α = 0.3 for each state where the points and error bars are the averages
plus/minus one standard deviation of TLM b(A)j over the K = 50 repetitions. The
results are only given for the models using Tukey’s M-estimators (Huber’s version is
qualitatively similar). The states are ordered along the x-axis according to number of
agencies within the state (shown in parentheses). State 28 is removed from the figure
as the error bars for the classical robust regression are excessively large and distort the
comparison. In several of the smaller states, the restricted hierarchical model performs
better than the classical method, with similar performance between the models in most
of the larger states, a reflection of the decreased influence of the prior. The hierarchical
structure pools information across states, improving performance in the smaller states.
The standard deviations are smaller for the hierarchical model in smaller states than
they are for the corresponding classical model. In larger states, the standard deviations
are virtually identical. Similar benefits are often seen for hierarchical models (e.g., Gel-
man, 2006). Restricted likelihood performs better when considering the metric at the
individual state-level. While there are a few small states that perform much better un-
der ABC (especially state 31), the restricted likelihood average TLM is larger in 14 of
the 20 states with a median difference (restricted minus ABC) of 0.04.
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6 Discussion

This paper develops a Bayesian version of restricted likelihood where posterior inference
is conducted by conditioning on a summary statistic rather than the complete data. The
framework blends classical estimation with Bayesian methods. Here, we concentrate on
outlier-prone settings where natural choices for the conditioning statistic are classical
robust estimators targeting the mean of the non-outlying data (e.g., M-estimators).
The likelihood conditioned on these estimators is used to move from prior to posterior.
The update follows Bayes’ Theorem, conditioning on the observed estimators exactly.
Computation is driven by MCMC methods, requiring only a supplement to existing
algorithms by adding a Gibbs step to sample from the space of data sets satisfying
the observed statistic. This step has additional computation costs arising from the
need to compute the estimator and an orthonormal basis derived from gradients of the
estimator at each iteration. The cost of finding the basis can be reduced by exploiting
properties of the geometric space from which the samples are drawn as described in
Section 3.2. We have seen good mixing of the MCMC chains across a wide-variety of
examples. We have found the benefits of using our Bayesian technique to outweigh
the additional computational burden (relative to a classical estimator) in the situation
where substantive prior information that will impact the results is available.

The Bayesian restricted likelihood framework can be used to address model mis-
specification, of which the presence of outliers is but one example. The traditional view
is that, if the model is inadequate, one should build a better model. In our empirical
work, as data sets have become larger and more complex, we have bumped into set-
tings where we cannot realistically build the perfect model. We ask the question “by
attempting to improve our model through elaboration, will the overall performance of
the model suffer?” If yes, we avoid the elaboration, retaining a model with some level of
misspecification. Acknowledging that the model is misspecified implies acknowledging
that the sampling density is incorrect, exactly as we do when outliers are present. In
this sense, misspecified models and outliers are reflections of the same phenomenon, and
we see restricted likelihood as a method for dealing with this more general problem.

Outside of outlier-prone settings, we might condition on the results of a set of es-
timating equations designed to enforce a lexical preference for those features of the
analysis considered most important, yet still producing inferences for secondary as-
pects of the problem. This leads to questions regarding the choice of summary statistic
to apply. In the literature, great ingenuity has been used to create a wide variety of
estimators designed to handle specific manifestations of a misspecified model. The es-
timators are typically accompanied by asymptotic results on consistency and limiting
distribution. These results can be used as a starting point to choose appropriate condi-
tioning statistics in specific settings. For example, a set of regression quantiles may be
judged the most important feature of a model. It would then be natural to condition on
the estimated regression quantiles and to use a flexible prior distribution to allow for
nonlinearities in the quantiles. The computational strategies we have devised allow us
to apply our methods in this setting and to make full predictive inference. In general,
we recommend a choice of conditioning statistic based on the analyst’s understanding
of the problem, model, reality, deficiencies in the model, inferences to be made, and the
relative importance of various inferences.
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The framework we develop here allows us to retain many benefits of Bayesian meth-
ods: it requires a complete model for the data; it lets us combine various sources of
information both through the use of a prior distribution and through creation of a hier-
archical model; it guarantees admissibility of our decision rules among the class based
on the summary statistic T (y); and it naturally leads us to focus on predictive inference.
The work does open a number of questions for further work, including a need to inves-
tigate restricted likelihood methods as they relate to model selection, model averaging
for predictive performance, and model diagnostics.

Supplementary Material

Bayesian Restricted Likelihood Methods: Conditioning on Insufficient Statistics in
Bayesian Regression – Supplementary Materials (DOI: 10.1214/21-BA1257SUPP; .pdf).

References
Beaumont, M. A., Cornuet, J.-M., Marin, J.-M., and Robert, C. P. (2009). “Adap-
tive Approximate Bayesian Computation.” Biometrika, 96(4): 983–990. MR2767283.
doi: https://doi.org/10.1093/biomet/asp052. 6

Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). “Approximate Bayesian Com-
putation in Population Genetics.” Genetics, 162: 2025–2035. 5

Berger, J. (2006). “The Case for Objective Bayesian Analysis.” Bayesian Analysis, 1:
385–402. MR2221271. doi: https://doi.org/10.1214/06-BA115. 2

Bernardo, J. M. and Smith, A. (2000). Bayesian Theory . John Wiley & Sons Ltd.
MR1274699. doi: https://doi.org/10.1002/9780470316870. 2

Clarke, B. and Ghosh, J. K. (1995). “Posterior Convergence Given the Mean.” The
Annals of Statistics, 23: 2116–2144. MR1389868. doi: https://doi.org/10.1214/
aos/1034713650. 5

Clarke, J. L., Clarke, B., Yu, C.-W., et al. (2013). “Prediction in M-complete Prob-
lems with Limited Sample Size.” Bayesian Analysis, 8(3): 647–690. MR3102229.
doi: https://doi.org/10.1214/13-BA826. 2

Clyde, M. and George, E. I. (2004). “Model Uncertainty.” Statistical Science, 81–94.
MR2082148. doi: https://doi.org/10.1214/088342304000000035. 2

Clyde, M. A. and Iversen, E. S. (2013). “Bayesian Model Averaging in the M-open
Framework.” Bayesian Theory and applications. MR3221178. doi: https://doi.org/
10.1093/acprof:oso/9780199695607.003.0024. 2

Doksum, K. A. and Lo, A. Y. (1990). “Consistent and Robust Bayes Procedures for
Location Based on Partial Information.” The Annals of Statistics, 18: 443–453.
MR1041403. doi: https://doi.org/10.1214/aos/1176347510. 5

Drovandi, C., Pettitt, A., and Lee, A. (2015). “Bayesian Indirect Inference Using a Para-

https://doi.org/10.1214/21-BA1257SUPP
https://www.ams.org/mathscinet-getitem?mr=2767283
https://doi.org/10.1093/biomet/asp052
https://www.ams.org/mathscinet-getitem?mr=2221271
https://doi.org/10.1214/06-BA115
https://www.ams.org/mathscinet-getitem?mr=1274699
https://doi.org/10.1002/9780470316870
https://www.ams.org/mathscinet-getitem?mr=1389868
https://doi.org/10.1214/aos/1034713650
https://doi.org/10.1214/aos/1034713650
https://www.ams.org/mathscinet-getitem?mr=3102229
https://doi.org/10.1214/13-BA826
https://www.ams.org/mathscinet-getitem?mr=2082148
https://doi.org/10.1214/088342304000000035
https://www.ams.org/mathscinet-getitem?mr=3221178
https://doi.org/10.1093/acprof:oso/9780199695607.003.0024
https://doi.org/10.1093/acprof:oso/9780199695607.003.0024
https://www.ams.org/mathscinet-getitem?mr=1041403
https://doi.org/10.1214/aos/1176347510


J. R. Lewis, S. N. MacEachern, and Y. Lee 35

metric Auxiliary Model.” Statistical Science, 30: 72–95. MR3317755. doi: https://
doi.org/10.1214/14-STS498. 5

Fearnhead, P. and Prangle, D. (2012). “Constructing Summary Statistics for Ap-
proximate Bayesian Computation: Semi-Automatic Approximate Bayesian Compu-
tation.” Journal of the Royal Statistical Society: Series B , 74: 419–474. MR2925370.
doi: https://doi.org/10.1111/j.1467-9868.2011.01010.x. 5

Garthwaite, P. H., Kadane, J. B., and O’Hagan, A. (2005). “Statistical Methods for
Eliciting Probability Distributions.” Journal of the American Statistical Association,
100: 680–701. MR2170464. doi: https://doi.org/10.1198/016214505000000105.
2

Gelfand, A. E. and Smith, A. F. M. (1990). “Sampling-Based Approaches to Calculating
Marginal Densities.” Journal of the American Statistical Association, 85: 398–409.
MR1141740. 11

Gelman, A. (2006). “Multilevel (Hierarchical) Modeling: What It Can and Cannot
Do.” Technometrics, 48(3): 432–435. MR2252307. doi: https://doi.org/10.1198/
004017005000000661. 32

Hampel, F. R. (1971). “A General Qualitative Definition of Robustness.” The Annals
of Mathematical Statistics, 42: 1887–1896. MR0301858. doi: https://doi.org/10.
1214/aoms/1177693054. 2

Hastings, W. K. (1970). “Monte Carlo Sampling Methods Using Markov Chains and
Their Applications.” Biometrika, 57: 97–109. MR3363437. doi: https://doi.org/
10.1093/biomet/57.1.97. 11

Hoff, P., Fosdick, B., Volfovsky, A., and Stovel, K. (2013). “Likelihoods for Fixed Rank
Nomination Networks.” Network Science, 1: 253–277. 5

Huber, P. and Ronchetti, E. (2009). Robust Statistics. Wiley Series in Probability and
Statistics. Hoboken, New Jersey: John Wiley & Sons, Inc, 2nd edition. MR2488795.
doi: https://doi.org/10.1002/9780470434697. 7, 11, 18

Huber, P. J. (1964). “Robust Estimation of a Location Parameter.” The Annals of Math-
ematical Statistics, 35(1): 73–101. MR0161415. doi: https://doi.org/10.1214/

aoms/1177703732. 9

Hwang, H., So, B., and Kim, Y. (2005). “On Limiting Posterior Distributions.” Test ,
14: 567–580. MR2211395. doi: https://doi.org/10.1007/BF02595418. 5

Joyce, P. and Marjoram, P. (2008). “Approximately Sufficient Statistics and Bayesian
Computation.” Statistical Applications in Genetics and Molecular Biology , 7(1).
MR2438407. doi: https://doi.org/10.2202/1544-6115.1389. 5

Jung, Y., MacEachern, S., and Lee, Y. (2014). “Cross-validation via Outlier Trimming.”
In preparation. 26

Kass, R. E. and Raftery, A. E. (1995). “Bayes Factors.” Journal of the American
Statistical Association, 90: 773–795. MR3363402. doi: https://doi.org/10.1080/
01621459.1995.10476572. 2

https://www.ams.org/mathscinet-getitem?mr=3317755
https://doi.org/10.1214/14-STS498
https://doi.org/10.1214/14-STS498
https://www.ams.org/mathscinet-getitem?mr=2925370
https://doi.org/10.1111/j.1467-9868.2011.01010.x
https://www.ams.org/mathscinet-getitem?mr=2170464
https://doi.org/10.1198/016214505000000105
https://www.ams.org/mathscinet-getitem?mr=1141740
https://www.ams.org/mathscinet-getitem?mr=2252307
https://doi.org/10.1198/004017005000000661
https://doi.org/10.1198/004017005000000661
https://www.ams.org/mathscinet-getitem?mr=0301858
https://doi.org/10.1214/aoms/1177693054
https://doi.org/10.1214/aoms/1177693054
https://www.ams.org/mathscinet-getitem?mr=3363437
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://www.ams.org/mathscinet-getitem?mr=2488795
https://doi.org/10.1002/9780470434697
https://www.ams.org/mathscinet-getitem?mr=0161415
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://www.ams.org/mathscinet-getitem?mr=2211395
https://doi.org/10.1007/BF02595418
https://www.ams.org/mathscinet-getitem?mr=2438407
https://doi.org/10.2202/1544-6115.1389
https://www.ams.org/mathscinet-getitem?mr=3363402
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476572


36 Bayesian Restricted Likelihood Methods

Kass, R. E. and Wasserman, L. (1995). “A Reference Bayesian Test for Nested Hy-
potheses and Its Relationship to the Schwarz Criterion.” Journal of the American
Statistical Association, 90(431): 928–934. MR1354008. 8, 25

Lee, J. and MacEachern, S. N. (2014). “Inference Functions in High Dimen-
sional Bayesian Inference.” Statistics and Its Interface, 7(4): 477–486. MR3302376.
doi: https://doi.org/10.4310/SII.2014.v7.n4.a5. 2, 6

Lewis, J. (2014). “Bayesian Restricted Likelihood Methods.” Ph.D. thesis, The Ohio
State University. MR3337628. 4, 9, 11

Lewis, J., Lee, Y., and MacEachern, S. (2012). “Robust Inference via the Blended
Paradigm.” In JSM Proceedings, Section on Bayesian Statistical Science, 1773–1786.
American Statistical Association. 5

Lewis, J. R., MacEachern, S. N., and Lee, Y. (2021). “Supplementary Material
of “Bayesian Restricted Likelihood Methods: Conditioning on Insufficient Statis-
tics in Bayesian Regression”.” Bayesian Analysis. doi: https://doi.org/10.1214/
21-BA1257SUPP. 3

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). “Mix-
tures of g Priors for Bayesian Variable Selection.” Journal of the American Sta-
tistical Association, 103: 410–423. MR2420243. doi: https://doi.org/10.1198/

016214507000001337. 11, 25

Liu, J. S. (1994). “The Collapsed Gibbs Sampler in Bayesian Computations with Ap-
plications to a Gene Regulation Problem.” Journal of the American Statistical Asso-
ciation, 89: 958–966. MR1294740. 11

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). “Markov Chain Monte
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