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ABSTRACT

The Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectra of the OH-stretch band
in aqueous solutions of inorganic salts and organic materials; Na,;SO4, NaCl, NaClO,4, NaSCN, trimethy-
lamine N-oxide, urea, poly(ethylene glycol), polyvinylpyrrolidone, and copolymer of ethylene glycol
and propylene glycol (Ucon) were studied at various concentrations. The decomposition of the band into
four Gaussian components peaking at 3080, 3230, 3400, and 3550 cm™! fits every compound examined
here with essentially flat residuals. These components were viewed as representing four different sub-
populations of water with different H-bond arrangements. The experimentally estimated relative contri-
butions of these components depend on solute type and concentration, and correlate strongly with
previously reported experimentally measured solvent features of water such as solvent dipolarity/polar-
izability, *, solvent H-bond donor acidity, o, and solvent H-bond acceptor basicity, B. We suggest that
water includes an ensemble of four different subpopulations of molecules with various hydrogen bond
strengths, geometry, and bond defects depending on the solute. This assumption is obviously oversimpli-
fied, but for the wide range of solutes examined here we find that a given solute changes the relative
amounts of these subpopulations and hence the above solvent features of water. The solvent features,
n* and a, in particular, describe a variety of physicochemical properties, such as water activity, osmotic
coefficient, relative viscosity, permittivity, and surface tension, of aqueous solutions of various com-
pounds. It follows therefore that all these physicochemical properties of aqueous solutions are deter-
mined by the relative amounts of the above subpopulations of water molecules.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

nonionic and ionized organic compounds in water is affected by
the presence of inorganic salts - the so-called salting-out and

Physicochemical properties of aqueous solutions depend on the salting-in phenomena [1]. Solubility of N-acetyl ethyl esters of
nature and concentration of the solute. Solubility of multiple phenylalanine, tyrosine, and tryptophan in aqueous solutions of

glucose and sucrose have been reported to differ significantly [2].
Solubilities of amino acids in aqueous solutions of ethylene glycol

Abbreviations: ATR-FTIR, Attenuated Total Reflection Fourier Transform Infrared. [3], urea [4], ethanol and dioxane [5] have also shown significant
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differences. As an example, water activities of aqueous solutions
of Na,SO4 and MgSO, at the same concentrations of 1 mol/L are
quite different [6] as are those in aqueous solutions of
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polyethylene glycols of molecular weight 200 Da and 20,000 Da at
the same concentrations of ~ 15 %wt. [7]. The osmotic coefficients
for aqueous solutions of NaF, NaCl, and MgS0O, at the same concen-
tration of 0.5 mol/kg are also very different, being 0.886, 0.923, and
0.522 respectively [8]. Differences between the relative viscosity of
aqueous solutions of various salts [9] or nonionic compounds, such
as urea and guanidine chloride [10], and permittivity of aqueous
solution of various compounds are known [11] to be quite different
depending on the amount and nature of the solute. All these data
imply that the solvent properties of aqueous media are changed
in specific ways by the solute and its concentration.

Various solvents are commonly classified by their polarity,
whose current definition represents the sum of all possible speci-
fic and non-specific interactions between the solvent and any
potential solute, but excludes interactions leading to chemical
transformations of the solute [12,13]. The many types of solute-
solvent interactions include electrostatic, dipole-dipole, dipole-
induced dipole, hydrogen bonding, and electron pair donor-
acceptor. We emphasize here that the dispersion interactions that
are directly dependent on the polarizability of the intervening
species are commonly neglected in such considerations. Although
these interactions between two induced dipole (or multipole)
moments are ubiquitous, regardless of whether the interacting
entities possess permanent dipole moments, they are typically
ignored probably because of the lack of any suitable technique
to quantify the weak effects of such solute-solvent interactions.
Polarity describes the potential behavior of the solvent in a rela-
tionship with the solute, which depends on the solute structure
as well as on the properties of the solvent [13]. Different polarity
scales are based on different probes and spectroscopic techniques
(NMR, IR, UV/Visible absorption and emission spectroscopy, etc.)
[14]. According to Ab Rani et al. [13], measurements of polarity
at different scales gives different estimates for the same solvent,
and such differently described scales cannot be usefully com-
pared. The test of an empirical polarity scale is its usefulness in
explaining and/or predicting other solvent-dependent phenomena
[13]. No single-parameter polarity scale can represent the many
possible solute-solvent interactions. Therefore Kamlet, Taft, and
co-workers developed three scales accommodating relative sol-
vent ability to serve as a donor of hydrogen bond - hydrogen
bond donor acidity (o) [15], the scale of relative solvent ability
to serve as an acceptor of hydrogen bond - hydrogen bond accep-
tor basicity (B) [16], and the relative solvent ability to participate
in dipole-dipole and dipole-induced dipole interactions — dipolar-
ity/polarizability (7*) [17].

As the probes for each scale, Kamlet and Taft [15-17] used var-
ious solvatochromic dyes, whose spectra change with the solvents.
In this context, the dielectric constant and hydrogen bonding
capacity are the most important properties of the solvent. Different
solvents affect the electronic ground and excited states of the dye,
with the energy gap dependent on the solvent, and change the
position, intensity, and shape of the spectroscopic bands of the
absorption (or emission) spectrum of the dye. When the spectro-
scopic band occurs in the visible part of the spectrum, solva-
tochromism is observed as a change of color. Each scale
introduced by Kamlet and Taft [15-17] was generated using sev-
eral solvatochromic dyes with strong and symmetric solva-
tochromic absorption spectra. As an example, for the relative
dipolarity/polarizabiity m* scale [17] the m*-values were averaged
from those obtained for seven different dyes. In total, 45 dyes were
used to generate m*-values for over 200 solvents [13]. The purpose
of using multiple dyes was to avoid dye-specific w*-value. How-
ever, Ab Rani et al. [13] showed that for similar solvents (a set of
ionic liquids), a single dye is sufficient to measure the m*-values
to characterize the effect of the solvent on the solute species sen-
sitive to dipole-dipole interactions.
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Combinations of the above three scales describe the relative
ability of a given organic solvent or water to participate in
solute-solvent interactions, i.e. solvent polarity, much better than
any single parameter polarity scale. The Linear Solvation Energy
Relationship (LSER) model used by Kamlet, Taft, and their cowork-
ers [18] may be described as:

(XYZ) = (XYZ), + ST+ +ac + b (1)

where (XYZ) is the solute property (solubility, reaction rate, equilib-
rium constant, the logarithm of a gas/solvent or solvent/solvent par-
tition coefficient, etc.) in a given solvent; (XYZ), is the same solute
property in a reference state, e.g., in the solute-free state, s, a, and b
are the solute-dependent coefficients characterizing the respective
influence of the m* o, and B terms on the (XYZ) property under
study. Once again, such important and ubiquitous intermolecular
forces as dispersion forces directly depending on the polarizability
of the interacting molecules are completely neglected in the LSER
model. We emphasize that dispersion forces and polarizability
effects likely play significant roles in all molecular interactions.
While these forces and effects cannot be measured directly by exist-
ing techniques, we think that the properties that we can measure
likely include their effects.

Previously, we examined the solvent properties of water in
aqueous solutions of various nonionic organic compounds [19-
21], amino acids [20,22], inorganic salts [20,23], polymers
[20,21,24,25], and several proteins [26,27] using the solva-
tochromic comparison method [15-17]. The same solvatochromic
dyes have been used in all our studies [19-27]. A study [23] of
the influence of the Hofmeister series of sodium salts on the sol-
vent properties of water showed that the relative effects of exam-
ined salts (Na,SO4, NaF, CH3COONa, NaCl, NaBr, Nal, NaClO4 and
NaSCN) were strongly correlated with the linear combination of
the ionic water structural entropy and anion static polarizability.

Different physicochemical properties, such as water activity,
osmotic coefficient, relative viscosity, relative permittivity, surface
tension, etc., of aqueous solutions of various compounds may be
described in terms of the relative solvent dipolarity/polarizability,
m*, and/or relative solvent H-bond donor acidity, o, over many
compounds and a large range of concentration [28]. Several exam-
ples not reported previously are shown in Supplementary Material,
Figs. A.1-A.7 for water activity in solutions of NaCl and Na,SOy,
permittivity in solutions of NaClO,, relative viscosity of solutions
of NaClO4, NaCl, and NaSCN, and surface tension in solutions of
polyvinylpyrrolidone (PVP). Note that sometimes only one or a
maximum of two properties, solvent dipolarity/polarizability, m*,
and solvent H-bond donor acidity, o, are sufficient to describe
important physicochemical properties of aqueous solutions of
many different compounds [28].

Two solvent characteristics are typically sufficient for describ-
ing various physicochemical properties of aqueous solutions
because of the linear relationship observed empirically between
the three solvent characteristics [19-27]:

Tk = Kno + Kol + Kpfpy 2

where subscript i denotes the solute concentration, and K-, ky, and
kg are solute-specific constants.

Equation (2) was established and has so far been confirmed for
aqueous solutions of over 60 individual compounds, ranging from
inorganic salts and amino acids to nonionic polymers and proteins
[19-27]. This empirical relationship seems to be generally applica-
ble, and it seems to imply that dipole-dipole interactions in water
depend on the hydrogen bonding. Water is known to have a per-
manent dipole moment 1.85 D in the gas phase, increasing to
2.9 + 0.6 D [29] in its liquid phase. This dipole moment increase
is generally attributed to polarization of water molecules induced
by the hydrogen bonding in liquid water. According to Kemp and
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Gordon [30] the dipole moment of a water molecule either isolated
or in a cluster is derived primarily from the water lone pairs, atten-
uated by opposing OH dipole vectors. The increase of the dipole
moment of a water molecule in the presence of other water mole-
cules is further suggested [30] to arise predominantly from
decreases in the angles between the lone pair dipole vectors. The
angular decrease arises in turn from the increased participation
of these lone pairs in hydrogen bonds when a water molecule is
surrounded by other water molecules. Thus, it seems reasonable
to suggest that all three solvent features, ¥, o, and B, in water
depend on properties of hydrogen bonds, and that they already
embody dispersion forces.

ATR-FTIR is one of the most readily available experimental
methods for analysis of rearrangement of H-bonds in aqueous
solutions of various compounds [31-33]. The results of the
exploratory study [34] also corroborate that the solvent features
of water in the solutions are controlled by the arrangement of H-
bonds.

The main purpose of this study was to explore rearrangements
of hydrogen bonds in aqueous solutions of several compounds
using ATR-FTIR spectroscopy. By comparing the relationship of dif-
ferent components of the OH stretching band with previously
reported solvent features of water we have confirmed that such
relationships may describe the origin of the solute effects on the
solvent properties of water.

2. Materials

Polyethylene glycol (PEG-4000, Lot#BCBG9026V) with molecu-
lar weight (Mw) of 4000 Da was purchased from Fluka Analytical,
and polyvinylpyrrolidone 40 (PVP-40, Batch#094 K0100) with Mw
of 40,000 Da was obtained from Sigma-Aldrich (St. Louis, MO, USA).
Ucon 50-HB-5100 (Ucon-4000), a random copolymer of 50% ethy-
lene oxide and 50% propylene oxide, Lot#S]J1955S3D2, with Mw
3930, was purchased from Dow-Chemical (Midland, MI, USA).
Trimethylamine N-oxide (TMAO) and urea were obtained from
Sigma-Aldrich and used without further purification. Sodium chlo-
ride, sodium sulfate, sodium perchlorate, and sodium thiocyanate
of analytical reagent grade were purchased from Sigma-Aldrich
and used without further purification. HPLC grade water was used
for preparation of all solutions.

3. Methods
3.1. ATR-FTIR measurements

ATR-FTIR spectra for each sample were measured in two sepa-
rately prepared solutions using an Alpha II FT-IR spectrometer
(Bruker) equipped with diamond ATR (platinum T Diamond, Bru-
ker). All measurements were performed at about 25 °C using 20
scans for each sample, 24 scans for background in the spectral
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range of 4000-1000 cm™! with resolution of 4 cm™'. The spectra

were reproducible to within + 1 cm™.

3.2. Analysis of spectra

ATR-FTIR spectra were analyzed with custom software written
in Wolfram Mathematica (version 9). The software performed peak
analysis by fitting the data using ‘NonlinearModelFit’ function, the
model function being a sum of two, three, four, and five Gaussians
with floated central frequencies. We found that the best and most
reliable fits are obtained with four Gaussians with peak locations
close to the values from literature [33] (3080 cm™!, 3230 cm™’,
3400 cm™!, and 3550 cm™!). The program displays the results
graphically (raw data, model function fit, and individual Gaus-
sians), and reports the calculated parameter values for each indi-
vidual peak with metrics of each fit quality.

4. Results

Fig. 1 shows typical examples of ATR-FTIR spectra of OH
stretching bands in pure water and aqueous solutions of 2.0 M
TMAO and 2.0 M NaSCN. The OH stretching band is typically made
up of several components, each assigned to water molecules exist-
ing in different H-bonded environments (see Supplementary Mate-
rial, Table A.1). All the assignments in the literature shown in
Table A.1 are based on rather questionable models of water struc-
ture. The assignment of the Gaussian components to water struc-
tures is ambiguous. Components at lower optical frequencies are
generally assigned to water molecules forming strong, ice-like,
hydrogen bonds, while those at higher frequencies are assigned
to water molecules in an environment with weaker and/or dis-
torted hydrogen bonds. Fitting the OH stretching band in water
and all the aqueous solutions of various compounds with one,
two, three, four, and five Gaussian components showed that the
satisfactory fit was always obtained with exactly four components
positioned at 3080 cm™!, 3230 cm~}, 3400 cm™!, and 3550 cm™! in
agreement with the data obtained by Kitadali, et al. [31]. From anal-
ysis of different assignments of these and other differently posi-
tioned components used in the literature (see Table A.1) we
suggest assigning these components as: (I) 3080 cm™! - water
molecules with four tetrahedrally arranged hydrogen bonds, (II)
3230 cm~! - water molecules with four distorted hydrogen bonds,
(1II) 3400 cm™!- water molecules with loosely arranged four and
three hydrogen bonds, and (IV) 3500 cm~! - water molecules with
three, two and single hydrogen bonds. This assignment is only a
rough approximation of the complex hydrogen-bond network
existing in water [35], plausibly based on the internally consistent
empirical measurements. We conjecture that these subpopulations
or clusters of water with different properties may be distributed
throughout, and the ratio of these subpopulations/clusters, which
exist in pure water, may vary in solutions of different solutes.

Fig. 1. ATR-FTIR spectra of water, 2 M TMAO and 2 M NaSCN.

3
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Fig. 2. Contribution of each Gaussian component of water into overall ATR-FTIR spectra of OH-stretch band for the solutes examined as a function of the solute concentration.

(1(3080 cm™1), 11 (3230 cm™1), 111 (3400 cm™ ') and IV (3550 cm™1)).

Analysis of the OH stretching band in aqueous solutions was
continued by decomposition of the spectral band into four Gaus-
sian components, and the estimates of the relative percentage area
for each component as the function of the solute concentration.
These estimates are plotted as functions of the solute concentra-
tion in Fig. 2 a-i (see Supplementary Material, Table A.2). The data
obtained for Na,SO4 and NaCl agree with those published by Kuta-
dai et al. [31].

These dependencies in Fig. 2 are shown in more detail in
Figs. A.8-A.15, where the trends are quite convincing. The relative
intensities of the component I (3080 cm™!) decrease with the
solute concentration in solutions of NaCl, NaClO4 and NaSCN, but
increase for all the other compounds, including Na,SO,4. The rela-
tive intensities of the component II (3230 cm™!) decrease with
the solute concentration in solutions of all examined compounds.
The relative intensities of the component III (3400 cm ') decrease
with the solute concentration only in solutions of Na,SO,4 (slightly)
and TMAO (significantly), but increase with the solute concentra-
tion for all other examined compounds. The relative intensities of
the component IV (3550 cm™!) increase with the solute concentra-
tion in solutions of NaClO4 and NaSCN, and decrease in solutions of
all other examined compounds. The area sum of all four Gaussian
distributions is normalized to unity to better indicate their relative
contributions.

5. Discussion

The relative contributions of the four components estimated
from analysis of ATR-FTIR spectra and the solvent features of aque-
ous solutions under consideration show that these features are
strongly correlated with the relative intensities of certain solute-
specific FTIR determined water components. Each correlation
may be described in the general form as:

SF(TC*i, o, ﬂl) = ko + 1(1 [f\l + kz[?/l (3)

where SF is a solvent feature (dipolarity/polarizability, *, solvent
H-bond donor acidity, o, solvent H-bond acceptor basicity, p); IN
and IM are relative intensities of water components N and M (I, II,
III, or IV) correspondingly, subscript i denotes the solute concentra-
tion; and k,, kq, and k, are constants. While the relative contribu-
tions of Gaussian components may not be totally independent, an
analysis of the cross-terms in the covariance matrix suggests that
this set of four appears to be both necessary and sufficient, and is
demonstrated to be superior to a fit with either three or five Gaus-
sian components.

The observed correlations described by Eq. (3) imply that the
water components assigned to particular subpopulations or clus-
ters cannot be localized within the hydration layer of a solute
because solvatochromic probes are too big to fit in such a layer.
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The only other reasonable explanation seems to be that the relative
amounts of the water subpopulations/clusters in bulk water
change in the presence of a solute.

Note that typically all three solvent features for solutions of a
given solute may be described by Eq. (3) with both IY and IM, or
with either IN or IM. As an example, the solvent dipolarity/polariz-
ability, ¥, in aqueous solutions of TMAO is correlated with the rel-
ative intensity of component IV (3550 cm™!) as:
7% = 1.106.0,002 — 0.09:00217°*° (3a)
where I?>°? is the relative intensity of water component IV; sub-
script i denoted the TMAO concentration.

The solvent hydrogen bond donor acidity, o, in the TMAO solu-
tions is correlated with the relative intensities of component III
(3400 cm ') and component IV (3550 cm™!) as:

o = 0.65.:002 + 0.99.00974° + 2.51.9 03> (3b)
as well as the solvent hydrogen bond acceptor basicity, B:
Bi =0.98-001 — 0.55:0041; " — 1.89:0 041> (3¢)

where 2% is the relative intensity of water component III; all other
parameters are as defined above.

Qualitatively similar relationships were observed for all the
compounds examined here. Several examples of the correlations
described by Eq. (3) are illustrated graphically in Fig. 3 i-iii. The
coefficients of Eq. (3) describing the relationships between differ-
ent solvent features and relative contributions of water compo-
nents [, II, IIl, or IV for aqueous solutions of various compounds
examined here are presented in Table 1 together with all statistical
characteristics of the observed relationships.
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Analysis of the data in Table 1 shows, first, that the relative
intensities of different water components control the observed
relationships for various solutes. Second, the same water compo-
nent(s) correlate with all solvent features for a given solute (see
in Table 1, e.g., for Na;SO,4, urea and Ucon). When two water com-
ponents are involved, one component may be common to all three
features, whereas the other component may affect only some of
the solvent features (see, e.g., in Table 1 for NaCl, NaClO,4, NaSCN
and TMAO). The two components IIl and IV are found in correla-
tions for most of the solutes examined here. As an example, com-
ponent IV (3550 cm™') representing the  water
subpopulation/cluster with the least number of H-bonds affects
17 out of 27 relationships, and component III (3400 cm™!) repre-
senting subpopulation/cluster of water molecules with three and
four hydrogen bonds affects 14 relationships out of the 27
relationships.

From our measurements we conjecture that water comprises
four different subpopulations/clusters of water molecules with
various strength, geometry, and defects of hydrogen bonds, the
contributions of which are affected by the solute. This assumption
is oversimplified (see e.g., in [35]) but in this case, it seems that the
three solvent features of water respond in the aqueous solutions of
a given solute to changes in the relative amounts of the subpopu-
lations. The solvent features, m* and o, in particular, describe a
variety of physicochemical properties, such as water activity,
osmotic coefficient, relative viscosity, permittivity, and surface
tension, of aqueous solution of various compounds. Therefore, all
these physicochemical properties of aqueous solutions are gov-

erned by the relative amounts of the subpopulations of water
molecules.

Questions remain as to which structural features of solutes gov-
ern the solvent properties of water. While it is known that shape,
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compounds: (i) solvent dipolarity/polarizability, 7*, as a function of (a) relative contributions of water Gaussian component IV in solutions of NaClO,4, NaSCN, and PVP-40; (b)
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Table 1

Coefficients and statistical characteristics of Eq. (3) (N - number of experimental points; r? - correlation coefficient; SD - standard deviation; F - variation ratio).
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Solute Solvent feature ko kq I ko I N r SD F
Na,SO4 T n/a 237417 3080 —2.3407 3230 5 0.9932 0.002 146.1
o 3.6:01 —27905 3080 1.1402 3230 5 0.9995 0.0006 2161
B n/a 132,18 3080 —2.0507 3230 5 0.9788 0.002 46.3
NaCl T 0.69.0.04 1.3401 3400 n/a n/a 6 0.9651 0.006 110.6
o 26109 —1.6407 3400 —8.3.59 3550 6 0.9755 0.001 59.8
B 0.62640.001 —0.097 0,003 3400 n/a n/a 6 0.9969 0.0001 1278
NaClO4 * 0.86.0.01 2.2.01 3550 n/a n/a 6 0.9921 0.005 500.2
o 04404 35405 3400 —2.4.03 3550 6 0.9832 0.001 87.7
B 0.569:0.003 0.088.0.009 3400 n/a n/a 6 0.9564 0.0003 87.7
NaSCN n* 2.34.003 —2.6240.06 3230 n/a n/a 7 0.9975 0.004 1973
o 251457 —19.8452 3230 —130.2429.1 3550 7 0.9901 0.006 199
B 0.48.0.01 1.08.0.08 3550 n/a n/a 7 0.9709 0.001 167
TMAO T 1.119.0,003 —0.074+0.009 3400 n/a n/a 5 0.9018 0.0005 184
o 0. 42,4001 2.640.04 3400 n/a n/a 5 0.9996 0.001 1324
B 1174002 —1.85.4007 3400 n/a n/a 5 0.9998 0.0007 2712
Urea T —1.1:02 71407 3400 n/a n/a 5 0.9702 0.006 97.6
o 4.0403 —8.74009 3400 n/a n/a 5 0.9693 0.008 94.8
B n/a 2.0402 3400 n/a n/a 5 0.9740 0.002 1124
PVP-40000 T 1.94.0.05 ~7.5404 3550 n/a n/a 5 0.9896 0.005 286.6
o —5.1407 54,13 3080 51.5:55 3550 5 0.9993 0.002 1452
B 1.49.0.06 ~7.9.06 3550 n/a n/a 5 0.9857 0.006 206.7
Ucon-3930 * 2.8.03 —1.2403 3400 11740 3550 5 0.9954 0.004 2183
o —6.3:12 57:13 3400 51.8:75 3550 5 0.9980 0.004 507.6
B 2.5:04 —1.4404 3400 —13.2425 3550 5 0.9948 0.004 191.6
PEG-4000 T 1.8:01 —0.540.1 3400 ~4.7406 3550 5 0.9974 0.0008 384.2
o —1.6:02 25417 3550 n/a n/a 5 0.9866 0.024 220.5
B +663003 —425%53 3550 nfa e 4 0:9924 0:004 2619

 Data for 0.5 M concentration was not used in the regression analysis.

anisotropy, charge delocalization, polarizability, etc. of a solute do
significantly affect the microscopic properties of water in solutions,
it remains unknown why some solutes influence certain solvent
features of water more strongly than others. This is a subject for
further research.

6. Conclusions

Analysis of the ATR-FTIR spectra of the OH-stretch band in
aqueous solutions of different compounds at various concentra-
tions shows that the decomposition of the band into four Gaussian
components at 3080, 3230, 3400, and 3550 cm™! provides highly
satisfactory fits for all compounds examined here. These compo-
nents represented four different subpopulations/clusters of water
with different H-bond arrangements from water molecules with
four tetrahedrally arranged hydrogen bonds to water molecules
with two and single hydrogen bonds. The experimentally esti-
mated relative contributions of these components appear to
depend on solute type and concentration. Comparison of these dif-
ferences in the relative intensity of the water components with
changes in the experimentally measured solvent features of water
(solvent dipolarity/polarizability, m*, solvent H-bond donor acidity,
o, and solvent H-bond acceptor basicity, B) reported previously
shows a strong solute-specific correlation between each solvent
feature and the relative contribution(s) of either one or two differ-
ent components. A theoretical model explaining the relationships
established between two independently estimated empirical prop-
erties of water is currently under development.
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