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Bijective Proofs of Monk’s rule for Schubert and
Double Schubert Polynomials with Bumpless Pipe
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Abstract. We give bijective proofs of Monk’s rule for Schubert and double Schubert
polynomials computed with bumpless pipe dreams. In particular, they specialize to bi-
jective proofs of transition and cotransition formulas of Schubert and double Schubert
polynomials, which can be used to establish bijections with ordinary pipe dreams.

Keywords: Schubert polynomials, bumpless pipe dreams

1 Introduction

Bumpless pipe dreams are introduced in the context of back stable Schubert calcu-
lus by Lam, Lee, and Shimozono [5]. In that paper, the authors introduced bumpless
pipe dream polynomials and proved that they agree with double Schubert polynomials.
Subsequently, Weigandt [7] expressed Lascoux’s transition formula with bumpless pipe
dream polynomials and gave a bijective proof with bumpless pipe dreams. In a recent
paper, Knutson [4] gave several proofs of the cotransition formula of double Schubert
polynomials, including a combinatorial proof with ordinary pipe dreams. Both tran-
sition and cotransition formulas are specializations of (an equivalent formulation of)
Monk’s rule for double Schubert polynomials, which is an expansion formula of the
product of a linear double Schubert polynomial and a double Schubert polynomial. The
original Monk’s rule is a geometric version for single Schubert polynomials, studied first
in [6]. A combinatorial proof of it with ordinary pipe dreams (called RC-graphs there) is
given in [1]. In this paper, we give a new bijective proof of Monk’s rule for single Schu-
bert polynomials with bumpless pipe dreams, and show that a slight modification of the
construction gives us a bijective proof of Monk’s rule for double Schubert polynomials
using decorated bumpless pipe dreams, which are bumpless pipe dreams with a binary
label on each blank tile. Combinatorial proofs of Monk’s rule for double Schubert poly-
nomials were not known before. We also remark that with the cotransition bijections on
bumpless pipe dreams, together with similar known results on ordinary pipe dreams,
one can establish bijections between ordinary pipe dreams and bumpless pipe dreams.
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Definition 1. A (reduced) bumpless pipe dream is a tiling of the n x n grid with the six
kinds of tiles shown below

/

A

such that

(a) there are n pipes total,

(b) travelling from south to east, each pipe starts vertically at the south edge of the grid,
and ends horizontally at the east edge of the grid, and

(c) no two pipes cross twice.

Condition (c) is the reducedness condition. In this paper we only consider reduced
bumpless pipe dreams. For convenience, we call these tiles [I-tile, U-tile, “+"-tile, blank
tile, “—"-tile, and “|”-tile. (1 is pronounced “r” and ] is pronounced “j”.) The term
“bumpless” comes from the fact that the tiling disallows the “bump tile” shown below.

ofa

We index the tiles in a bumpless pipe dream with matrix coordinates. Given a bump-
less pipe dream, one can read off a permutation by labeling the pipes from 1 to n along
the south edge, follow the pipes from south to east, and read the labels top-down along
the east edge. Given a permutation 77 € S;;, we denote the set of bumpless pipe dreams
associated to 7t by BPD(r).
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Figure 1: A bumpless pipe dream for 7 = 23514

For example, in Figure 1, the U-tile at (3,4) belongs to pipe 7(2) = 3.
Definition 2. For D € BPD(n), let blank(D) C [n] x [n] denote the set of blank tiles in
the bumpless pipe dream D. For 7t € S, let

67-[(X,—Y) = Z H (xl_y]) EZ[xll"'/xn/yll"'/yn]-
DeBPD(n) (i,j)eblank(D)
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Lam, Lee, and Shimozono showed that that G, (x, —y) is the double Schubert poly-
nomial for 7t € S [5, Theorem 5.13]. Setting all the y variables to 0, we get the expression
for single Schubert polynomials

Sr(x):= 2 H X; € Z[x1, -+, Xn).

DeBPD(n) (i,)eblank(D)

2 Monk’s Rule with Bumpless Pipe Dreams

Theorem 1 (Monk’s rule). Let Tt € S;;, 1 < a < n, such that there exists some [ > a such
that 7t t,; > 71, where > denotes the covering relation in Bruhat order, and ¢, denotes
transposition of 2 and b in S;,. Then

Gu(X)Gr(x) = ) Srt, (%)

k<a<l
7'[tk,1>71'

Remark 1. Note that we can remove the conditions on « and the existence of / such that
Tty > 70 if we consider 71 € S := U, >1 Sn, and this is how the rule is usually stated.
For convenience of our combinatorial proofs we choose to work with the version stated
for m € S,, but this does not lose the level of generality. This is due to the stability
property of (double) Schubert polynomials: for every n let 1, : S, < 5,41 be the usual
embedding, then &(x, —y) = &, ()(x, —y) for any 7w € S,.

Subtracting S,_1(x)S(x) from it and rearranging, we get

X2 &r(x) + Z 67{1‘;{/,,((7(): Z 67{1‘%1(7() (2.1)
k<wa a<l
Tt o >7T Tty 1 >TC

The goal of this section is to give a bijective proof of formula (2.1) with bumpless
pipe dreams, as stated in the following theorem.

Theorem 2. Given 77 € S, and 1 < a < n such that there exists [ > « where 7tt,; > 7,
there exists a bijection

@, :BPD(m)U [ BPD(mt,) — [] BPD(mty,),

k<wa a<l
T b o > 70 TTE o >TT

such that for any D € BPD(r), the number of blank tiles on each row other than row «
is preserved under ®,, the number of blank tiles on row a increases by 1, and for any

D el k<a BPD(mty,) the number of blank tiles on each row is preserved.
T o >TT
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We start by preparing a few technical lemmas. In [5, Section 5.2], the authors defined
droop moves on bumpless pipe dreams. We use the same language here. Define an
almost bumpless pipe dream of 7 at (i, j) by allowing a bumpless pipe dream diagram
to have exactly one bump tile at position (i, ). (Double crossing of two pipes is still not
allowed.) Note that an almost bumpless pipe dream may be created from a bumpless
pipe dream by drooping a pipe into an [J-tile (or undrooping into a l-tile), or replacing
a “+”-tile with a bump tile without creating a double crossing. We also introduce the
terminology r/j-shaped turn to refer to the corresponding pipe segments in an [d/F-tile
or bump tile.

Lemma 1. Let (7, ) be the position of an r-shaped turn of pipe p = m(x). If there exists
y > x such that 7ty > 71, then there exist a,b > 0 such that (i, j +b) and (i + 4, j) are not
“+"-tiles. Pick the smallest such possible 4, b, then p is allowed to droop into (i +a, j+b)
with the possibility of creating a bump in (i + a,j+ b) (but not a double crossing).

7]

RN
[

[

g
(|

Figure 2: Droop to the closest tile (light purple indicates possibilities)

Proof. Suppose for all j' > j, (i,]) is a “4"-tile. Then since all pipes need to exit from the
east edge, the only way to fill the region (i/,j') with i’ > i, j’ > j, (i,j) # (i,j') is with
“+”-tiles. This implies that there is no y > x such that 7ty , > 7. The same reasoning
applies if for all i’ > i, (7',j) is a “+"-tile.

Now pick the smallest 4, b as stated in the lemma. Observe that in this case (i,j + b)
is either a “—"-tile or a F-tile, (i + 4, ) is either a “|”-tile or a -tile, and all tiles (7', ')
withi < i <i4aandj < j < j+ b must be “+”-tiles. This means that all (7/,j + b)
fori < i’ <i+a mustbe “—"-tiles, and all (i +4,j") for j < j' < j+ b must be “|”-tiles.
Therefore, the tile at (i +4,j + b) has a “—"-tile above and a “|”-tile to the left, so it can
only be a blank or [Z-tile. It is then easy to see p may droop into (i + a,j + b), with the
possibility of creating a bump but not a double crossing. O

Intuitively, Lemma 1 is about finding the closest tile an r-shaped corner can droop
into. It is not hard to see that the droop move described in this lemma has an inverse
operation.

Lemma 2. Let (7, ) be the position of a j-shaped turn of pipe p = 7r(x). Pick the largest
a,b > 0 such that the tiles on row i strictly between (i,j — b) and (i, j) are “+"-tiles and
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the tiles on column j strictly between (i — 4, ) and (i, j) are “+"-tiles. Then p is allowed
to undroop to (i —a,j — b), with the possibility of creating a bump in (i —a,j — b).

Proof. Note that a, b always exist since bumpless pipe dreams cannot have crosses on the
north or west border. The rest of the proof is symmetric to the proof of the second half
of Lemma 1. O

Lemma 3. Suppose p = 71(x) and g = 7t(y) are two pipes that cross once and bump once,
and that the j-shaped corner in the bump tile belongs to p. If we swap the positions of
the cross and the bump, then in the new bump tile, the r-shaped turn belongs to p.

Proof. Suppose p and g cross at (i, j) before the swap. Consider the pipes travelling from
south to east. If the bump is after the cross, we must have p = 7t(x) > g = n(y) and
x < y, namely the “|” in the cross at (i, j) must belong to p. After the swap, p still enters
from the bottom of (i, j), and therefore it makes an r-shaped turn. If the bump is before
the cross, we must have ¢ = 71(y) > p = m(x) and y < x, namely the “—" in the cross at
(i,j) must belong to p. After the swap, p still exits from the right, and therefore makes
an r-shaped turn at (i, j). O

Figure 3: A case of bump-cross swap

Again, we have the opposite version of this statement, whose proof we omit.

Lemma 4. Suppose p = 71(x) and g = 7t(y) are two pipes that cross once and bump once,
and that the r-shaped corner in the bump tile belongs to p. If we swap the positions of
the cross and the bump, then in the new bump tile, the j-shaped turn belongs to p.

Figure 4 shows a walk-through of the algorithm below that inserts a blank tile on row
4 for a bumpless pipe dream. The reader is invited to guess the the algorithm before
reading the description. The shaded square in each diagram denotes the [J-tile at which
a blank tile is about to be inserted, or a bump tile that needs to be resolved.
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Figure 4: Insertion of a blank tile at (i,j) = (4,5)

We now describe an algorithm for inserting a blank tile at position (i, j) where there is
an [2-tile or, as will be made clear below, to resolve a conflict where there is temporarily
a bump tile. Suppose this r-shaped corner belongs to pipe p = 7t(x). Let (i +a,j+b),
a,b > 0, be the tile southeast to (i,j) such that the tiles on the ith row strictly between
(i,j) and (i,j + b) are all “+"-tiles, and the tiles in the jth column between (i,j) and
(i+a,j) are all “+”"-tiles. By Lemma 1, p may droop into (i + 4, j + b) with the possibility
of creating a bump. We let the pipe p droop into (i +a,j+b). If (i+4a,j+ b) used to be
a blank tile (now a “j”), we have newly occupied a blank tile on row i 4 a, so we find the
[2-tile on row i + a that belongs to p and repeat the same algorithm for inserting a blank
tile at an [J-tile, as before. (Note that such an [J-tile always exists.) The other possibility
is that (i +a,j + b) used to be an [I-tile (now a bump). Suppose the bump is with pipe
q = nt(y). If wty, > 71, or in other words, p and g do not cross, we replace the bump tile
with a “+”-tile, and terminate the algorithm. If p and g cross each other, we find the tile
(i',j') where the crossing is, replace the existing bump tile in (i + a,j + b) with a cross,
and replace the cross in (i’,j') with a bump tile. After this, by Lemma 3, the r-shaped
turn in (i, /') must belong to p. We resolve this bump by going back to the beginning of
the algorithm and repeat the process.

We give the pseudocode of the algorithm below. Let BPDQ,]»(n) denote the set of
bumpless pipe dreams of 7t that have an [-tile at (i,j), plus the almost bumpless pipe
dreams of 7t which have exactly one bump at position (i,j). For D € BPD;/]-(r[), let
D(m,n) denote the tile in D at position (m, n).
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Algorithm 1:

1 insert_blank_or_resolve_bump_at_r(D,i)

Data: D € BPDf,]-(rc), where the r-shaped turn in D(i, j) belongs to pipe
p = m(x), which satisfies Jy > x such that 77 t,, > 7.
2 a,b<+1,1;
3 | whileD(i+a,j)="+"doa<+ a+1;
4 | whileD(i,j+b)="+"dob <+ b+1;
5 | Droop pinto (i+a,j+b);
6 | if D(i+a,j+0b)="j"then
7 (i+a,j') + position of [Z-tile of p on row i + 4;
8 insert_blank_or_resolve_bump_at_r (D,i+4,]’)
9 else
10 Let ¢ = 7t(y) be the pipe that p bumps into at (i + a,j + b);
11 if 71ty > 7t then
12 D(i4a,j+b) <+ “+7;
13 return D
14 else
15 (',j') < position of existing cross of p and g;
16 D(i',j") < bump tile;
17 D(i+a,j+0b) < “+7;
18 insert_blank_or_resolve_bump_at_r (D, i,

Proposition 1. The algorithm insert_blank_or_resolve_bump_at_r terminates and pro-
duces a bumpless pipe dream of 7ty for some y > x such that 7ty > 7.

Proof. The well-definedness of the algorithm follows from Lemmas 1 and 3, as explained
in the construction. For termination, observe that we modify the pipe p either by droop
moves or cross-bump-swap moves. The area under the pipe p (as a curve) in the n x n
square strictly decreases after each of these moves. Since the modification to the diagram
in each iteration of the function before the final modification at line 12 right before it
returns preserves the property that the diagram is a BPD or an almost BPD of 7, there is
a finite set of possible areas under the pipe p. Therefore, the algorithm must terminate,
and by the terminating condition, p must have bumped into q after drooping, therefore
occupying the j-shaped corner at this bump. This means p < g, so x < y. Therefore, it
produces a bumpless pipe dream of 7ty for some y > x such that 7t t,, > 7. O

Now, the algorithm has an opposite version which inserts a blank tile at a position
where there is a [-tile, or resolves a conflict where there is a bump tile.
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Algorithm 2:

1 insert_blank_or_resolve_bump_at_j(D,i)

Data: D € BPDf,]-(rc), where the j-shaped turn in D(i, j) belongs to pipe
p=r(x)

2 a,b<+1,1;

3 | whileD(i—a,j)="+"doa <+ a+1;

4 | whileD(i,j—b)="+"dob <+ b+1;

5 | Undroop pinto (i —a,j—0);

6 | if D(i—a,j—b)="r"then

7 if Vj' > j—b, D(i — a,j') does not have a F-tile then
8 return D

9 (i —a,j") < position of F-tile of p on row i — a;

10 insert_blank_or_resolve_bump_at_j (D,i —a,j’)
11 else

12 Let g = 7(y) be the pipe that p bumps into at (i —a,j — b);
13 if 7tt, > 7t then

14 D(i—a,j—0b) < “+7;

15 return D

16 else

17 (',j') < position of existing cross of p and g;
18 D(7,j") < bump tile;

19 D(i+a,j+b) < “+";

20 insert_blank_or_resolve_bump_at_j (D,,]’)

Proposition 2. The algorithm insert_blank_or_resolve_bump_at_j terminates and pro-
duces a either a bumpless pipe dream of 7t t, x for some y < x, or a bumpless pipe dream
of 71 with one fewer blank tile on row x, compared to the input.

Proof. By Lemmas 2 and 4, this algorithm is well-defined. By similar reasoning as in
Proposition 1, this algorithm terminates.

If it terminates by triggering the condition on line 7, p only turns once on row i — g,
so this must also be the row in which p exits, which means i — a = x. This entire process
does not change the permutation, so the output is a bumpless pipe dream of 7r. The last
undrooping step ate a blank tile on row x and did not give it back, so this bumpless pipe
dream has one fewer blank tile on row x.

If the algorithm terminates by triggering the condition on line 13, p must have
bumped into g after undrooping, therefore occupying the r-shaped corner at this bump.
This means p > ¢, and therefore x > y. O

We are now ready to describe the bijection @ .
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Proof of Theorem 2. Let D € BPD(7), p = mt(a). Pipe p exits on row a. Let (a, j) be the po-
sition of the [3-tile of p on row a. Run the function insert_blank_or_resolve_bump_at_r
on (D, a,j). By Proposition 1, the output is a bumpless pipe dream D’ € BPD(7tt, ;) for
some | > a and 7t,; > 7. By construction of the algorithm, the number of blank tiles
on each row stays the same, except for row a« where D’ has one more blank tile than D.

Let D € BPD(mty,) for some k < a such that 7wt;, > m. Let g = mt,(a) and
p = 7ty (k) be pipes. Since 7ty , > 7, p and q must cross. Let (i, j) be the position of the
tile where they cross. Notice that since g < p, the “|” segment in this cross must belong
to p. We now replace this “+4” tile with a bump tile. Notice that by doing so we have
uncrossed p and g, therefore creating an almost bumpless pipe dream, D’ € BPDf,j(n).
Also, now p = 7t(a), g = 7t(k), and the r-shaped corner in this new bump tile belongs to
pipe p.

We run the function insert_blank_or_resolve_bump_at_r on (D’,i,j). Again by
Proposition 1, the output is a bumpless pipe dream D" € BPD(rtt, ;) for some I > a and
mt,; > 1. The number of blank tiles on each row remains constant during this process.

To go the opposite direction, let E € BPD(7tt;,) for some & < [ such that 7 f,; > 7.
Letg=rmt,;(a«) and p = 1t t,;(I) be pipes. Since 7 t,; > 71, p and g must cross. Let (i, )
be the position of the tile where they cross. Notice that since g > p, the “|” segment in
this cross must belong to g. We now replace this “+4” tile with a bump tile. Again this
uncrosses p and ¢, creating an almost bumpless pipe dream E’ € BPD;J(TC), and making
p = mt(a) and g = 7t(I). The j-shaped corner in this new bump tile belongs to p.

We run the function insert_blank_or_resolve_bump_at_j on (E’,i,j). By Proposi-
tion 2, there are two possible outcomes. The output is either some E” € BPD(7 ty ) for
some k < a, in which case the number of blank tiles on each row stays invariant, or some
E” € BPD() that occupies one more blank tile on row « as compared to E'.

By the construction of the two algorithmes, it is easy to see that the processes described
above are inverses of each other, giving the bijection ®. O

3 Monk’s Rule for Double Schubert Polynomials

The version of Monk’s rule for double Schubert polynomials states that

Theorem 3 (Monk’s rule for double Schuberts). Let t € S;;,, 1 < a < n, such that there
exists some | > a with 7t,; > 71. Then

o

Su(x, —y)&r(x, —y) = Z Gﬂfk,l(x/ —-y) + Z(yn(i) —¥1)Gx(x, —y).

k<a<l i=1
7Ttk,1>7'[
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Computing Sy (x, —y)Sx(x, —y) — Sp_1(x, —y)Sx(x, —y), we find

(xﬂé - yﬂ(zx))Gﬂ(X/ _Y) + Z 67Ttk,a(x’ _Y) = Z Gﬂta,z(xf _Y)' 3.1)

k<wa a<l
Tt o >TT Tty >0

We give a bijective proof of formula (3.1) in this section.

We introduce decorations on blank tiles of bumpless pipe dreams. A decorated
bumpless pipe dream of 7 is a bumpless pipe dream together with a decoration on
the blank tiles, where each blank tile must be decorated with either an x or a —y label.
Let BPD(7) be the set of decorated bumpless pipe dreams of 7. In other words,

BPD(7) = {(D, f) : D € BPD(n), f : blank(D) — {x, —y}}.

Note that [BPD(7)| = | BPD(7)| x 2/t/k(D)l for any D € BPD(7t). Expand the double
Schubert polynomial as a sum of monomials, we get the following expression

Sr(x,—y) = Z mon(D, f),
(D,f)€BPD(r)

where

mon(D, f) = [T = TII (v
(i,j)eblank(D)  (i,j)eblank(D)
flij)=x flij)==y

Similarly, we define
BPD;; (1) := {(D, f) : D € BPD);(r1), f : blank(D) — {x,—y}}.
The combinatorial version of formula (3.1) is stated as follows.

Theorem 4. Let T € S,,, 1 < a < n, such that there exists some [ > a with Tty > T
Then there exists a bijection

@y ({x,—y} xBPD(n))U [] BPD(mty,) — [] BPD(rty,),
k<wa a<l
T b (> 70 TCE o >TT

such that given any (D, f) € BPD(7), we have mon(®(x, D,f)) = x4mon(D, f) and

mon(®,(—y, D, f)) = —Yn(ay mon(D, f), and for any (D, f) € BPD(7ty,) where k < a
and 7ty , > 71, we have mon(®,(D, f)) = mon(D, f).

Proof. We will modify the algorithms given in the previous section slightly to get the bi-

jection ®,;. The algorithms in both directions will now take as input (D, f) € B/lsf);,j(n),
as well as a label u € {x,—y} in the case when D(i,]) is an [-tile in the forward direction,
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and when D(i,]) is a E-tile in the backward direction. The outputs will also be decorated
bumpless pipe dreams, as well as a label v € {x, —y} in certain cases.

In Algorithm 1, before the droop of p on line 5, if D(i +a,j + b) is a blank tile (in
which case the condition on line 6 will be true), we remember its label v. If the input
D(i,j) = “r”, after the droop on line 5, D(i, j) will become a blank tile. We decorate it
with the label specified by input. Now instead of always choosing the position of the [J-
tile of p on row i + a, we check the label v. If v = x, we choose the position of the [J-tile of
p on row i+ a as before, but if v = —y, we choose the position (7, j + b) of the [3-tile of p
on column j + b. Note that this construction guarantees that if the input is (D, f) where
D(i,j) = “r” and label u, and the output is (D’, '), then x;mon(D, f) = mon(D’, ')
if u = x, and —y;mon(D, f) = mon(D’, f') if u = —y. The backward direction can be
modified in a similar fashion, and the rest of the analysis for the modified algorithm is
the same as before. [

Figure 5: Insertion of a blank tile marked —y at (i,j) = (4,5) for a decorated BPD

Figure 5 shows an example of insertion with labelled tiles.

4 Transition and Cotransition Formulas

We discuss briefly the implication our results have on the transition and cotransition
formulas of (double) Schubert polynomials. Transition and cotransition formulas are
specializations of formula (3.1). If there is a unique / > « such that 77t,; > 71, namely
if the right side of formula (3.1) only has one summand, we get the transition formula
for &r¢,,. In terms of combinatorial bijections, this is the simplest case because only a
single droop/undroop move is required to go between the bijection, and each move only
modifies four tiles locally. The details of this is given in [7]. Therefore, to establish the
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transition formula alone for double Schubert polynomials, we do not need to consider
decorated bumpless pipe dreams. Billey, Holroyd, and Young gave a bijective proof for
transition with ordinary pipe dreams [2]. There, the construction only works for single
Schubert polynomials.

If, on the other hand, there is no k < & such that 7t , > 71, we get the cotransition
formula. Unlike the transition formula, if we only work with bumpless pipe dreams
without decorations, we can only get the version for single Schubert polynomials. This
is analogous to the phenomenon in [2]. On the other hand, in [4] a simple bijective proof
of cotransition for double Schubert polynomials is given with ordinary pipe dreams,
which only requires changing one tile locally to go between the bijection. As a direct
consequence, using the cotransition bijections for ordinary and bumpless pipe dream:s,
we get a bijection of ordinary and bumpless pipe dreams by reverse induction on the
length of the permutation. This idea is similar to the approach in [3] where a shape
preserving bijection between reduced word tableaux for a permutation w and Edelman-
Greene pipe dreams of w is constructed.
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