Session 6A: Signatures

CCS 20, November 9-13, 2020, Virtual Event, USA

Verifiable Timed Signatures Made Practical

Sri Aravinda Krishnan Adithya Bhat Giulio Malavolta
Thyagarajan Purdue University UC Berkeley and CMU
Friedrich Alexander Universitiit bhat24@purdue.edu giulio.malavolta@hotmail.it
Erlangen-Niirnberg
thyagarajan@cs.fau.de
Nico Déttling Aniket Kate Dominique Schroder
CISPA Helmholtz Center for Purdue University Friedrich Alexander Universitit
Information Security aniket@purdue.edu Erlangen-Niirnberg

nico.doettling@gmail.com

ABSTRACT

A verifiable timed signature (VTS) scheme allows one to time-lock
a signature on a known message for a given amount of time T
such that after performing a sequential computation for time T
anyone can extract the signature from the time-lock. Verifiability
ensures that anyone can publicly check if a time-lock contains a
valid signature on the message without solving it first, and that the
signature can be obtained by solving the same for time T.

This work formalizes VTS, presents efficient constructions com-
patible with BLS, Schnorr, and ECDSA signatures, and experimen-
tally demonstrates that these constructions can be employed in
practice. On a technical level, we design an efficient cut-and-choose
protocol based on the homomorphic time-lock puzzles to prove the
validity of a signature encapsulated in a time-lock puzzle. We also
present a new efficient range proof protocol that significantly im-
proves upon existing proposals in terms of the proof size, and is
also of independent interest.

While VTS is a versatile tool with numerous existing applica-
tions, we demonstrate VTS’s applicability to resolve three novel
challenging issues in the space of cryptocurrencies. Specifically,
we show how VTS is the cryptographic cornerstone to construct:
(i) Payment channel networks with improved on-chain unlinkabil-
ity of users involved in a transaction, (ii) multi-party signing of
transactions for cryptocurrencies without any on-chain notion of
time and (iii) cryptocurrency-enabled fair multi-party computation
protocol.

CCS CONCEPTS

« Security and privacy — Digital signatures.

KEYWORDS

Timed signatures; Time lock puzzles; Payment Channel Network;
Multi-party signing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3417263

1733

dominique.schroeder@fau.de

ACM Reference Format:

Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico
Déttling, Aniket Kate, and Dominique Schréder. 2020. Verifiable Timed
Signatures Made Practical. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’20), November 9-13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.
1145/3372297.3417263

1 INTRODUCTION

Timed cryptography studies a general class of primitives that allows
a sender to send information to the future. After a pre-determined
amount of time, anyone (possibly at the end of a sequential compu-
tation) can learn the enclosed secret. Time-Lock puzzles [11, 41, 46],
Timed Commitment [15], and Timed release of Signatures [24]
are prominent primitives in this class with wide-ranging applica-
tions [4, 15, 30, 34].

For many applications, it is important that the receiver is con-
vinced that the message of the sender is well-formed (e.g., it contains
a valid signature on a certain message) before committing a large
amount of time and resources to solve the corresponding puzzle.
Therefore, it is natural to augment the above mentioned primitives
with the notion of verifiability. In this work we formally introduce
the notion of Verifiable Timed Signature Scheme (VTS), where a
sender commits to a signature ¢ on a known message in a verifi-
able and extractable way!. Verifiability refers to the property that
one can publicly check that a valid signature is contained in the
commitment, whereas extractability guarantees that the signature
o can be recovered from the commitment in time T.

1.1 Applications of VTS

Although the utility of VTS in classical applications such as fair
contract signing is already well known [15, 24], we observe that it
can further solve challenging privacy and compatibility problems
in the cryptocurrency (or blockchain) space. Concretely, we discuss
three new applications of VTS.

Applications I: Privacy-Preserving Payment Channels Net-
works. Bitcoin [43] and most permissionless blockchains are in-
herently limited in transaction throughput and typically have large
fees associated with each payment. Payment channels [2, 45] have

!In [15], the notion of verifiability for the timed signature is implicitly assumed to exist.
We explicitly formalize it and propose efficient protocols for real world applications.

https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263

Session 6A: Signatures

Figure 1: A multi-hop transaction over a payment channel
network. Dotted lines with two arrowheads indicate pay-
ment channels between successive users. In this example,
the Sender pays 90 coins to the Receiver through five inter-
mediate users, each collecting a fee of one coin. Each pay-
ment hop is associated with a decreasing expiry time (T +cA,
for c € {0,...,5}).

emerged as a prominent scalability solution to mitigate these is-
sues by allowing a pair of users to perform multiple payments
without committing every intermediate payment to the blockchain.
Abstractly, a payment channel consists of three phases: (i) Two
users Alice and Bob open a payment channel by adding a single
transaction to the blockchain. Intuitively, this transaction promises
that Alice may pay up to a certain amount of coins to Bob, which
he must claim before a certain time T; (ii) Within this time window,
Alice and Bob may send coins from the joint address to either of
them by sending a corresponding transaction to the other user; (iii)
The channel is considered closed when the latest of the payment
transactions is posted on the chain, thus spending coins from the
joint address.

An extension of payment channels is payment channel networks
(PCN) [45]. As shown in Figure 1, in a PCN, users can perform
multi-hop payments, i.e. coins can be transferred to other users in
the network without having a common payment channel, routing
the payment through a set of intermediate users. For Bitcoin, the
atomicity of these payments is ensured using multi-hop locks (in
particular, Hash Time Lock Contracts or HTLCs) which guarantee
the transfer of v coins if a certain condition is satisfied (e.g., for
HTLC, the knowledge of a pre-image x such that H(x) = y, where
H is a cryptographic hash function) before time T. PCNs are not
only well-studied in the academia [6, 19, 20, 39, 40, 49], but also in
industry and the Lightning Network (LN) [3, 45] has emerged as
the most prominent example.

PCNs are found to be no better than Bitcoin in terms of transac-
tion privacy. By using anonymous multi-hop locks (AMHL) [39, 40],
one can make HTLCs unlinkable from the perspective of an on-
chain observer, however these proposals do not achieve strong
unlinkability of hops as the time-lock information T is still present
in the contract: To avoid race conditions to redeem the coins, the
time-lock for the i-th hop is A larger than the time-lock for hop i +1
(see Figure 1). An attacker observing the on-chain contracts can
correlate this time-lock information and detect if certain payments
belong to the same multi-hop payment path.

We observe that VTS can solve this privacy issue, by completely
removing the time-lock information from the payment transactions.
At the time of opening a channel between Alice and Bob, Bob signs
an additional “steal” transaction for v coins (as in the HTLC) for Al-
ice using a VTS (with time parameter T 4). Alice is then guaranteed

1734

CCS 20, November 9-13, 2020, Virtual Event, USA

that she can redeem these coins after time T 4, by forcing the open-
ing of the VTS: If Bob tried to transfer the coins to his address after
time T 4, then Alice would immediately steal them, using the “steal”
transaction also signed by Bob. To avoid race conditions, we intro-
duce an artificial delay § to the payment to Bob. It is important to
observe that § is fixed and in particular is identical for all payment
channels. This time delay gives Alice a sufficient window to post
the steal transaction with Bob’s signature from the VTS (in case of
Bitcoin with a relative time-lock using checkSequenceVerify OP
CODE.

For PCNs, apart from Alice, Bob obtains a steal transaction and

a VTS (with timing hardness Tg) from Carol, who in turns is sent a
steal transaction and a VTS (with timing hardness T¢) from Dave.
The timing hardnesses of these VTS’s are structured similarly to the
time-locks for HTLC, i.e. T4 > Tg > T¢. The important difference
is that, even though the time-locks still have the correlation, they
are never posted on-chain.
Application II: Multisig Transactions. Computations involving
multiple parties in blockchains often rely on transactions with
multisig scripts, i.e. conditions that require multiple signatures in
order to authenticate transactions. Bitcoin offers ¢-out of-n multisig
scripts that accepts signed transactions from any t-sized subsets of
the n users. These have wide ranging applications including [12, 42].
This has motivated a large body of literature on improving security
and efficiency of multisig protocols [8, 12, 18, 42] and more efficient
constructions of threshold signature schemes [26, 35, 36, 52, 53].
All of these works however (implicitly) assume an expiration time
T for the multisig scripts. This is used to ensure that, even if a large
threshold of participants go offline, the coins of the few remaining
users are not locked indefinitely. Therefore the scope of multisig-
based protocol is limited to those cryptocurrencies that support
on-chain notion of time. Those blockchains that do not offer the
time-lock functionality are therefore not compatible with these
protocols.

We propose to use VTS to bypass this problem. Prior to transfer-
ring the funds to the multisig address, all users agree on a default
redeem transaction. The redeem transaction transfers the coins
from the multisig address back to the respective users. It is signed
using a VTS with time parameter T. Once the funds are transferred
to the multisig address, users can jointly spend coins by negoti-
ating new refund transactions for which a VTS is given, using a
progressively smaller time parameter. If at any point in time, less
then ¢ signatures are exchanged by the users, the VTSs exchanged
in the previous round make sure that the funds will be redistributed
consistently across all participants. Eventually all parties are going
to redeem the coins agreed on the previous “stable” state. As an
interesting byproduct of our solution, multisig transactions are also
indistinguishable from any other kind of transaction, to the eyes of
an external observer. This is because the expiration time is never
uploaded on-chain.

Application III: Fair Multi-party Computation. In the multi-
party computation (MPC) settings, a computation is fair if either
all parties involved receive the output or none of them does. Re-
cent efforts [10, 31, 32] have proposed leveraging blockchains as a
solution to achieve fairness. The general idea is to incentivize users
to complete the protocol execution by enforcing some financial
penalty in case they fail to do so. More concretely, the participants

Session 6A: Signatures

lock a certain amount of coins in addresses addr; from which funds
can be spent if user U; reveals a witness to some condition before
time T. Alternatively, if all participants sign the transaction, these
coins can be spent and redistributed among the other users after
time T. Intuitively, an adversary loses coins if he does not reveal
the witness, which in turn is crucial to learn the output of the com-
putation. As a compensation, the coins of the adversary are given
to the honest users involved in the computation, which incentivizes
publishing of such witness, thus ensuring that other users also learn
the output of the computation.

This alternate way of spending is negotiated in a payout phase
in the form of payout transactions, where all users generate signa-
tures and exchange them with each other. However, these payout
transactions are time-locked on chain and are only valid after time
T. This ensures that other users cannot take the coins and distribute
among themselves before the termination of the protocol.

One of the major shortcomings of this proposal (along with
similar privacy issues as described above) is that this solution is
incompatible with blockchains that do not offer the time-lock func-
tionality, such as Zcash [9] and Monero [33]. VTS? can be used to
solve such a limitation as follows: All participants sign their payout
transaction using a VTS, instead of sending signatures in plain. The
privacy of VTS ensures that no party learns the signatures on the
payout transaction before time T.

1.2 Our Contributions

In summary, in this work we define the notion of verifiable timed
signatures, propose a number of efficient constructions, and rigor-
ously design and analyze the various applications discussed above.
More concretely, our contributions are as follows.

Definitions. We formalize the notion of Verifiable Timed Signa-
tures (VTS) (Section 3.2) where the committer creates a commitment
to a signature that can be solved and opened after time T, along
with a proof that certifies that the embedded signature is a valid
signature on a message with respect to the correct public key. Any-
one can verify this proof and be convinced of the validity of the
commitment. In terms of security we require that the commitment
and the proof reveal no information about the embedded signature
to any PRAM adversary whose running time is bounded by T (pri-
vacy) and that an adversary should not be able to output a valid
proof to a commitment that does not embed a valid signature on a
message with respect to a public key (soundness).

Efficient Constructions. We offer three efficient constructions
for VTS (Section 4): VT-BLS, VT-Schnorr and VT-ECDSA where
the signatures being committed to are BLS, Schnorr and ECDSA
signatures, respectively. Our constructions do not require any mod-
ification to these signature schemes. Our constructions exploit the
group structure of these signature schemes and combine threshold
secret-sharing with a cut-and-choose type of argument to achieve
practical performance. We also leverage the recently introduced
linearly homomorphic time-lock puzzles [41] to reduce the number
of puzzles to solve to one (Section 4.4) puzzle. Apart from improving
efficiency by decreasing the computational resources needed, this

2In this work we actually solve the problem using a slightly relaxed variant of VTS,
i.e. Verifiable Timed Discrete Logarithm where, instead of the signature, the signing
key of signature scheme is committed to. This makes it compatible with Zcash and
Monero.

1735

CCS 20, November 9-13, 2020, Virtual Event, USA

improves security in applications where users may possess different
amounts of parallel processors: A user with n processors has no
advantage over a user with one processor as they both need to
solve only a single puzzle for time T. We also present a concretely
efficient construction of Verifiable Timed Commitments (VIC) (Ap-
pendix D), where the signing key is committed instead. Our VTC
scheme is applicable to any signature scheme where the secret key
is the discrete logarithm of the public key.

Range Proofs. Along the way, we present efficient range proofs
(Section 4.5) for proving that the solution of a time-lock puzzle
lies within some interval. In contrast with prior works, the proto-
col batch-proves well-formedness of ¢ time-lock puzzles and the
proof size is independent of £. The protocol is generically applica-
ble to all time-lock puzzles/ciphertexts that possess plaintext- and
randomness-homomorphism. Such a protocol might be of indepen-
dent interest.

New Applications. Apart from classical applications such as fair
contract signing [15], we identify several applications (as discussed
above, and in the full version [50] in formal detail) for VTS where
our constructions can be readily used. The primary focus of this
paper is on cryptocurrency-based applications where we wish to
improve privacy and compatibility of existing solutions. Specifically,
(i) we show how to construct privacy-preserving PCNs that prevent
de-anonymizing attacks based on on-chain timing correlations,
(ii) we construct single-hop payment channels without requiring
any time-lock functionality from the underlying blockchain, (iii)
we present solutions (with different efficiency tradeoffs) to realize
blockchain-based fair computation without requiring the time-lock
functionality from the blockchain, and (iv) we propose a new way
to construct multisig contracts from VTS which does not require
any time-lock functionality from the corresponding blockchain.
Implementation. We implement our proposed constructions by
building an LHTLP library, the range proof, and the other crypto-
graphic primitives. We find that all LHTLP operations are efficient.
The homomorphic batching adds a small overhead while outputting
a single puzzle to solve. As the most computationally relevant oper-
ation, we also estimate the cost of commit and verify operations of
our VTS constructions. Results (in an unoptimized implementation)
indicate that for practical purposes with a low powered machine,
setting the statistical security parameter n = 40, our VI-ECDSA
verifier takes 9.942s with a soundness error of 7.25 x 10712,

2 TECHNICAL OVERVIEW

On a high level, our VTS schemes are built by computing a standard
digital signature o on a message m and emcoding it into a time-lock
puzzle. Then a non-interactive zero-knowledge (NIZK) proof is
used to prove that the puzzle contains a valid signature on m. There
are several non-trivial components in our construction, such as en-
coding the signatures inside the puzzles that is compatible with our
efficient instantiation of a non-interactive zero-knowledge proof,
novel use of homomorphic operations on the puzzles to ensure
better security, all while ensuring that our construction can work
with a large class of signature schemes. Throughout the following
overview, we describe the VTS as an interactive protocol between a
committer and a verifier, which can be made non-interactive using
the Fiat-Shamir transformation [22].

Session 6A: Signatures

High-Level Overview. To illustrate our approach, let us consider
the BLS signature scheme [14], the other schemes follow a similar
blueprint. Recall that BLS public-secret key pair are of the form
(9§, @) and the signature on a message m is ¢ := H(m)%, where
go € Gy is a generator of Go, @ € Zg, and H : {0,1}* — Gy is
a full domain hash function. The verification algorithm checks if
e(go,0) = e(gy,H(m)). To generate a VTS on a message m, the
committer secret shares the signature o together with the public
using a t-out-of-n threshold sharing scheme: The first ¢ — 1 shares
are defined as o; := H(m)% for a uniformly sampled o; € Zj.
It is important to observe that such a signature o; is a valid BLS
signature on m under the public-key pk; = ggi. The rest of the
shares are sampled consistently using Lagrange interpolation in

the exponent, i.e., fori € {t,t +1,...,n} we set
4(0)7!
o
o; =
£;(0)
[Tjere-1 g

where ¢;(-) is the i-th Lagrange polynomial basis. Note that this is
a valid signature on m under the corresponding public-key defined

as
&(0)7!

pk
Hje[t—l] h? ©
This ensures that we can reconstruct (via Lagrange interpolation)
the valid signature o from any t-sized set of shares of the signature.
Analogously, we can reconstruct the public key pk from any set of
shares of size at least ¢.

The committer then computes a time-lock puzzle Z; with time
parameter T for each share separately. The first message consists of
all puzzles (Z1, .. ., Zy) together with all public keys (pk, ..., pk,)
as defined above. The verifier then chooses a random set I of size
(t — 1). For the challenge set, the committer opens the time-lock
puzzles {Z;};cr and reveals the underlying message o; (together
with the corresponding random coins) that it committed to. The
verifier accepts the commitment as legitimate if all of the following
conditions are satisfied:

pk;

(1) All {o;};es are consistent with the corresponding public-key
pk, ie., e(go, 07) = e(pk;, H(m)).
(2) All public keys {pk;} j¢r reconstruct to the public key of the
kfj(o)
= pk.
Taken together, these conditions ensure that, as long as at least one

of the partial signatures in the unopened puzzles is consistent with
respect to the corresponding partial public-key, then we can use it
to reconstruct o. This means that a malicious prover would need to
guess the set I ahead of time to pass the above checks without ac-
tually committing a valid signature o. Setting t and n appropriately
we can guarantee that this happens only with negligible probability.
We exploit similar structural features in the case of Schnorr and
ECDSA signatures. In case of Schnorr we additionally secret share
the randomness used in signing and in ECDSA we do not secret
share the public key but only the randomness and the signature.
Reducing the Work of the Verifier. As described above, our
protocol requires the verifier to solve 7i = (n—t+1) puzzles to force
the opening of a VTS. Ideally, we would like to reduce his workload
to the minimal one of solving a single puzzle. If this was not the case,

scheme, ie., Hielpk?(o) - p

1736

CCS 20, November 9-13, 2020, Virtual Event, USA

some applications may have users with 7 processors who can solve
fi puzzles in parallel and spending time T in total. While other users
with less number of processors will have to solve the puzzles one
by one thereby spending more time than T. This could drastically
affect security in the case of PCN for instance, where a honest user
with less number of processors may be still solving the VTS while
his steal transactions becomes invalid on the chain. Our observation
is that if the time-lock puzzle has some homomorphic properties,
then this can indeed be achieved. Specifically, if we instantiate the
time-lock puzzle with a recently introduced linearly homomorphic
construction [41], then we can use standard packing techniques
to compress fi puzzles into a single one Section 4.4. Concretely,
the verifier, on input (Z3, ..., Z;) homomorphically evaluates the
linear function

fi
flxq,.ooixp3) = Z 214, Xi

i=1

to obtain a single puzzle Z, which he can solve in time T. Ob-
serve that, once the puzzle is solved, all signatures can be decoded
from the bit-representations of the resulting message. However this
transformation comes with two caveats:

(1) The message space of the homomorphic time-lock puzzle must
be large enough to accommodate for all 7i signatures.

(2) The signatures o; encoded in the the input puzzles must not
exceed the maximum size of a signature (say A bits).

Condition (1) can be satisfied instantiating the linearly homomor-
phic time-lock puzzles with a large enough message space. On the
other hand, condition (2) is enforced by including a range NIZK,
which certifies that the message of each time-lock puzzles falls into
the range [0, 24].

Efficient Range Proofs. What is left to be discussed is how to
implement the range NIZK for homomorphic time-lock puzzle. In
the following we outline a protocol that allows us to prove the well-
formedness of ¢ puzzles with proof size logarithmic in ¢. The proof
is generically applicable to any homomorphic time-lock puzzle (or
even encryption scheme) that is linearly homomorphic over both
the plaintext space and the randomness space, i.e.

PGen(T,m;r) - PGen(T,m’;r’) = PGen(T,m+m’;r +r').

Our proof system uses similar ideas as the range proof system
of [37], but we are able to batch range proofs for a large number
¢ of homomorphic time-lock puzzles in a proof which has size
independent of ¢.

For the sake of this overview, let us assume that we want to make
sure that plaintexts lie in an interval [-L, L]. However, to prove
correctness and zero-knowledge we will need to require that honest
plaintexts actually lie in a much smaller range [—B, B], where B/L
is negligible. This will introduce a slack in the size of the time-lock
puzzles, which for practical purposes is roughly 50 bits.

We describe the protocol in its interactive form, although the
actual instantiation is going to be made non-interactive via the
standard Fiat-Shamir transformation. The prover is given ¢ puzzles
(Z1,...,Zp) together with each corresponding plaintext x; and
randomness r;. The prover samples a drowning term y uniformly
from the interval [-L/4, L/4], then computes time-lock puzzles
D = PGen(T,y;r’) for some randomness r’. The verifier is given

Session 6A: Signatures

all puzzles (including the one that contains the drowning term) and
returns a random subset I of these puzzles. The prover computes
the homomorphic sum of the selected puzzles

7 = l_[Zi .D= l—[PGen(T, x;;r;) - PGen(T, y; 7).
iel iel

By the plaintext and randomness homomorphism, this is equal to

Z = PGen T,in+y;2ri+r' .
iel iel

The prover computes the opening for Z, i.e. 3}y xi+y and X ;cr ri+
r’, and sends them to the verifier. The verifier accepts if (i) Z is cor-
rectly computed (which he can check since he is given the random
coins) and if (ii) the plaintext };c; x; + y lies within the interval
[-L/2,L/2]. Given that B is sufficiently smaller than L, specifically
B < L/(4¢) the protocol is correct. We can further show that, if
any of the input plaintexts is outside the range [-L, L], then the
above check fails with constant probability. Negligible soundness is
then achieved by repeating the above procedure k times in parallel.
For zero-knowledge it suffices to observe that the random term
m statistically hides any information about } ;< x; by a standard
drowning argument, given that B/L is negligible.

2.1 Related Work

Notice that VTS can also be seen as a “timed” variant of verifiably en-
crypted signatures [13, 27], with the difference that no trusted party
is needed to recover the signature. Boneh and Naor [15] give an
interactive protocol to prove that a time-lock puzzle is well-formed.
The verifier is convinced that the sequential squaring is correctly
performed. They identify several applications of time-lock puzzles.
Garay and Jakobsson [24] and later Garay and Pomerance [25]
proposed constructions where they construct special-purpose zero-
knowledge proofs to convince a verifier that the time-lock puzzle
indeed has a valid signature embedded. However their construction
requires both the prover and the verifier to locally store a list of
group elements as a “time-line” whose length is equal to the number
of timed checkpoints. For instance, the time-line consists of T group
elements if the largest timing hardness is 2T. And in a multi-user
system, a single user may have to store several time-lines of several
other users with whom he has interaction. If they run a one-time
setup for the whole system, it needs to be accompanied by a proof
of well-formedness of the time-line. To the best of our knowledge,
these protocols have never been implemented and in contrast, with
our construction, the setup consist of an RSA modulus N and can
be shared across all users in the system or sampled by the signer,
depending on the application.

Banasik, Dziembowski and Malinowski [7] propose a cut and
choose technique to prove that a time-lock puzzle has a valid signing
key embedded. The prover sends a puzzles with signing keys for a
public keys and the verifier asks to open a — b of them. The verifier
checks if the opened puzzles are well-formed and solves the rest
of the puzzles. The verifier can finally post a transaction spending
from a ’b-out of-2b — 1" multisig script where b — 1 of the keys
are verifier’s keys. For a 2748 security they require b = 8 which
means the spending transaction consists of 8 signatures and 15
public keys. Our VTS and VTC constructions would only require
the solver to solve a single puzzle after homomorphic evaluation

1737

CCS 20, November 9-13, 2020, Virtual Event, USA

and post a transaction with single signature for a corresponding
public key. As stated before, given that they require b puzzles to
be solved, this could lead problems in applications such as PCN
if users have different parallel processing power. Moreover, since
signing keys are embedded, parties in their protocol can learn the
signing keys of other parties after a given time, contrary to our
VTS where parties only learn signatures. There may be scenarios
where parties may not wish to share their signing keys: Learning a
single signing key could compromise security of the entire wallet
of the party [1] (especially in cases of hierarchical wallets).

3 PRELIMINARIES

We denote by A € N the security parameter and by x « A(in)
the output of the algorithm A on input in. We denote by A(in;r)
if algorithm A is randomized with r « {0, 1}* as its randomness.
We omit this randomness where it is obvious and only mention it
explicitly when required. We denote the set {1, ...,n} by [n].

3.1 Cryptographic Building Blocks

We recall the cryptographic primitives used in our protocol and
refer to Appendix A for formal definitions and security.

Digital Signatures. A digital signature scheme consists of the
following triple of efficient algorithms: A key generation algo-
rithm KGen (1%) that takes as input the security parameter 1* and
outputs the public/secret key pair (pk, sk). The signing algorithm
Sign(sk, m) inputs a secret key and a message m € {0, 1}* and out-
puts a signature o. The verification algorithm Vf(pk, m, o) outputs
1if o is a valid signature on m under the public key pk, and out-
puts 0 otherwise. We require standard notions of correctness and
unforgeability for the signature scheme [29].

Time-Lock Puzzles. A time-lock puzzle (PGen, PSolve) allows
one to conceal a value for a certain amount of time [46]. Intu-
itively, time-lock puzzles guarantee that a puzzle can be solved
in polynomial time, but strictly higher than T € N. The only ef-
ficient candidate construction of time-lock puzzles was given by
Rivest, Shamir, and Wagner and is based on the sequential squar-
ing assumption [46]. The puzzle generation PGen is a probabilistic
algorithm that takes as input a hardness-parameter T, a solution
s € {0, 1}* and some random coins r, and outputs a puzzle Z. The
solving algorithm PSolve takes as input a puzzle Z and outputs
a solution s. In this context, we refer to Parallel Random Access
Machines (PRAM): which is a model considered for most of the
parallel algorithms. Multiple processors are attached to a single
block of memory and n number of processors can perform indepen-
dent operations on n number of data in a particular unit of time.
The security requirement is that for every PRAM adversary A of
running time < T?(A), and every pair of solutions (s, s1) € {0, 1},
it cannot distinguish a puzzle Z that is generated with solution sy
from a puzzle generated with solution s; where the timing hardness
of the puzzle is T except with negligible probability.
Homomorphic Time-Lock Puzzles. Homomorphic Time-Lock
Puzzles (HTLPs) were proposed by Malavolta and Thyagarajan [41].
An HTLP is a tuple of four algorithms (HTLP.PSetup, HTLP.PGen,
HTLP.PSolve, HTLP.PEval) that lets one perform homomorphic op-
erations over different time-lock puzzles. Apart from the two al-
gorithms for a time-lock puzzle, HTLPs additionally have a setup

Session 6A: Signatures

algorithm PSetup and a homomorphic evaluation algorithm PEval:
PSetup takes as input a security parameter 14 and a time hardness
parameter T, and outputs public parameters pp, and PEval takes as
input acircuit C : {0,1}" — {0, 1}, public parameters pp and a set of
npuzzles Z1, . . ., Z, and outputs a puzzle Z’. The puzzle generation
and solving algorithms also take the public parameters pp as input.
The homomorphism property for computing a circuit C states that
Pr [HTLP.PSolve(pp, Z) # C(sl,...,sn)] < p(Ad), where Z/ «
HTLP.PEval(C, pp, Z1, ..., Zn) and Z; < HTLP.PGen(pp,s;) for
(s1,...,8n) € {0, 1}

In their work, they show an efficient construction that is linearly
homomorphic over the ring Zys, where N is an RSA modulus and
s is an arbitrary constant. The scheme is perfectly correct and it
satisfies the notion of randomness homomorphism, which is needed
for our purposes.

Non-Interactive Zero-Knowledge. Let R : {0,1}* x {0,1}* —
{0, 1} be a n NP-witness-relation with corresponding NP-language
L :={x: 3w s.t. R(x, w) = 1}. A non-interactive zero-knowledge
proof (NIZK) [17] system for R is initialized with a setup algo-
rithm ZKsetup(1%) that, on input the security parameter, outputs
a common reference string crs. A prover can show the validity
of a statement x with a witness w by invoking ZKprove(crs, x, w),
which outputs a proof . The proof 7 can be efficiently checked by
the verification algorithm ZKverify(crs, x, 7). We require a NIZK
system to be (1) zero-knowledge, where the verifier does not learn
more than the validity of the statement x, and (2) simulation sound,
where it is hard for any prover to convince a verifier of an invalid
statement (chosen by the prover) even after having access to poly-
nomially many simulated proofs for statements of his choosing.
Threshold Secret Sharing. Secret sharing is a method of creating
shares of a given secret and later reconstructing the secret itself
only if given a threshold number of shares. Shamir [48] proposed
a threshold secret sharing scheme where the SS.share algorithm
takes a secret s € Zg and generates shares (s1,...,Sn) each belong-
ing to Zg4. The SS.reconstruct algorithm takes as input at least ¢
shares and outputs a secret s. The security of the secret sharing
scheme demands that knowing only a set of shares smaller than
the threshold size does not help in learning any information about
the choice of the secret s.

3.2 Verifiable Timed Signatures

A timed signature [15] is a scheme when a committer commits to a
signature on a message and shares it with some user. After some
time T has passed, the committer reveals the committed signature
to the user. If he fails to reveal the signature, then the user is guaran-
teed to forcibly retrieve the signature from the timed commitment
given initially. We explicitly state the notion of verifiability for
a timed signature, and therefore refer to it as a Verifiable Timed
Signature (VTS), which lets the user verify if the signature o com-
mitted to in C can be obtained by ForceOp in time T and is indeed
a valid signature on the message m, that is, if Vf(pk,m,0) = 1 in
a non-interactive manner. This verifiability ensures that the user
is guaranteed to obtain a valid signature from the commitment C
which he can retrieve using ForceOp. For the sake of clarity, we let
Commit additionally output a proof 7 for the embedded signature

1738

CCS 20, November 9-13, 2020, Virtual Event, USA

to be a valid signature on the message m with respect to pk and we
have a Vrfy algorithm that is defined below.

DEFINITION 1 (VERIFIABLE TIMED SIGNATURES). A VTS for a
signature scheme II = (KGen, Sign, Vf) is a tuple of four algorithms
(Commit, Vrfy, Open, ForceOp) where:

o (C,) « Commit(o, T): the commit algorithm (randomized)
takes as input a signature o (generated using I1.Sign(sk, m))
and a hiding time T and outputs a commitment C and a proof
TT.

0/1 « Vrfy(pk, m, C, rr): the verify algorithm takes as input a
public key pk, a message m, a commitment C of hardness T and
a proof w and accepts the proof by outputting 1 if and only if,
the value o embedded in c is a valid signature on the message
m with respect to the public key pk (i.e., ILVf(pk,m,o) = 1).
Otherwise it outputs 0.

(0,7r) < Open(C): the open phase where the committer takes
as input a commitment C and outputs the committed signature
o and the randomness r used in generating C.

o <« ForceOp(C): the force open algorithm takes as input the
commitment C and outputs a signature o.

The security requirements for a VTS are that (soundness) the
user is convinced that, given C, the ForceOp algorithm will produce
the committed signature ¢ in time T and that (privacy) all PRAM
algorithms whose running time is at most ¢ (where ¢ < T) succeed in
extracting o from the commitment C and 7 with at most negligible
probability. We formalize the definition of soundness below.

DEFINITION 2 (SOUNDNESS). A VTS scheme VTS = (Commit,
Vrfy, Open, ForceOp) for a signature scheme IT = (KGen, Sign, Vf)
is sound if there is a negligible function negl such that for all proba-
bilistic polynomial time adversaries A and all A € N, we have:

(pk,m, C, m, T) — A%
(o,1) « ForceOp(C)
by = Vrfy(pk,m,C,)

by =TI1L.Vf(pk, m, o)

Pribj=1Aby=0: < negl(}).

We say that a VTS is simulation-sound if it is sound even when the
prover has access to simulated proofs for (possibly false) statements
of his choice; i.e., the prover must not be able to compute a valid
proof for a fresh false statement of his choice. In the following
definition we present the definition of privacy.

DEFINITION 3 (PRIvacy). A VTS scheme VTS = (Commit, Vrfy,
Open, ForceOp) for a signature scheme II = (KGen, Sign, Vf) is pri-
vate if there exists a PPT simulator S, a negligible function negl,
and apolynomial'i" such that for all polynomials T > T, all PRAM
algorithms A whose running time is at most t < T, all messages
m € {0,1}*, and all A € N it holds that

(pk, sk) « I1.KGen(1%)
o « IL.Sign(sk, m)

(C,) « Commit(o, T)

- _ . (pk sk) « ILKGen(1%)

Pr|A(pk,m,C,m) =1: Cnm) — S(pk.T)

Pr|A(pk,m,C,m)=1:
< negl(1).

Session 6A: Signatures

Setup: On input 14 the setup algorithm does the following.

- Run ZKsetup(l’l) to generate crsrange

- Generate the public parameters pp «— LHTLP.PSetup(1%, T)
- Output crs := (crSrange, pp)

Commit and Prove: On input (crs, wit) the Commit algorithm
does the following.

Parse wit := o, crs := (crsrange,pp), pk as the BLS public key,
and m as the message to be signed
For all i € [t — 1] sample a uniform @; < Zq and set
o; = H(m)% h; := g
Foralli € {t,...,n} compute

6(0)7! (07"
o pk
[Tjere-1) h?(o)
where #;(+) is the i-th Lagrange polynomial basis.
For i € [n], generate puzzles with corresponding range proofs

as shown below

ri — {0,1}}, Z; — LHTLP.PGen(pp, 0i; i)

v hi =

o _
(0
Hje[t—l] ij()

Trange,i < ZKprove(crsiange, (Z;, 0, 24, T), (04, 1))
Compute I < H’ (pk, (h1, Z1, Trange,1): - - - » (An, Zn, Trange,n))
Output C := (Z1,...,Z,,T) and
7= ({hs, ﬂrange,i}ie[n]sL {oi,ritier)

Verification: On input (crs, pk, m, C, rr) the Vrfy algorithm does

the following.

- Parse C = (Z1,...,Zp,T), m == ({hi, ﬂrange,i}ie[n],l) {oi,ri}ier)
and crs := (crSrange, PP)

— If any of the following conditions is satisfied output 0, else
return 1:

(1) There exists some j ¢ I such that [];¢c1h
(2) There exists some i € [n] such that
ZKverify(crsrange, (Zi, 0, 24, 7T), Trange,i) # 1
(3) There exists some i € I such that
Z; # LHTLP.PGen(pp, oi; ;) or e(go, i) # e(h;, H(m))
(4) 1+ H (Pk, (h, 24, ”range,l)a ooy (hn, Zn, ”range,n))

Open: The Open algorithm outputs (o, {ri}ie[n])-

Force Open: The ForceOp algorithm take as input

C:=(Zy,...,Zp,T) and works as follows:

- Runs o; « LHTLP.PSolve(pp, Z;) for i € [n] to obtain all
signatures. Notice that since t — 1 puzzles are already opened by
the committer, this only means that ForceOp has to solve only
(n—t+1) puzzles.

- Output o := [] ¢4 (aj)ff(o) where wlog., the first t signatures
are valid shares.

£ (0)
i

hij(o) + pk

Figure 2: VI-BLS Signatures

4 EFFICIENT VTS CONSTRUCTIONS

In the following sections we construct VTS for BLS, Schnorr and
ECDSA signatures. The key ingredients for constructing VTS are
time-lock puzzles, specifically we consider the Linearly-HTLP [41]
(LHTLP.PSetup, LHTLP.PGen, LHTLP.PSolve, LHTLP.PEval) and
public coin interactive zero-knowledge proofs for the language £

1739

CCS 20, November 9-13, 2020, Virtual Event, USA

described as follows.
e stmt = (pk,m, Z,T) : Awit = (o, 7) s.t.
~ |(Vf(pk,m,0) =1) A (Z « LHTLP.PGen(T, 0;7))

The Commit algorithm embeds the signatures inside time-lock puz-
zles and uses the zero-knowledge proof system for £ to prove the
validity of the time-locked signature. In practice all of the schemes
will be made non-interactive using the Fiat-Shamir transforma-
tion [22]. We additionally make use of a zero-knowledge proof
system (ZKsetup, ZKprove, ZKverify) for the language Lyange as
defined below. Intuitively, the language consists of all puzzles whose
solution lies in some range [a, b]. We give an efficient instantiation
of this proof system in Section 4.5.

stmt = (Z,a,b,T) : wit = (o,r) s.t.
(Z « LHTLP.PGen(T, 0;r)) A (o € [a,b])

In all protocols described in Figures 2 to 4 we let n be a statisti-
cal security parameter and set ¢ := n/2 + 1. We let |o| = A is the
max number of bits of the signature ¢. Define a hash function
H’:{0,1}* — I c [n] with |I| = t — 1 modeled as a random oracle.
Throughout the following description, we make the simplifying as-
sumption that the ForceOp algorithm solves 7i = (n —t + 1) puzzles
in parallel. In Section 4.4 we show how to reduce the number of puz-
zles to solve to a single puzzle exploiting the (linear) homomorphic
evaluation algorithm of time-lock puzzles.

Lrange = {

4.1 Verifiable Timed BLS Signatures (VT-BLS)

Let (Go, G1, G;) be a bilinear group of prime order g, where q is
a A bit prime. Let e be an efficiently computable bilinear pairing
e : Go X G; — Gr, where go and g; are generators of Gy and G
respectively. Let H be a hash function H : {0, 1}* — G modeled as
a random oracle. We briefly recall here the BLS construction [14]
and our VT-BLS protocol is described in Figure 2.
o (pk,sk) « KGen(11): Choose a « Zg, set h «— g¢ € Gy and
output pk := h and sk := a.
e o « Sign(sk, m): Output o := H(m)* € Gy.
e 0/1 « Vf(pk,m,0):If e(go, o) = e(pk, H(m)), then output 1 and
otherwise output 0.
The following theorems show that our construction from Figure 2
satisfies privacy and soundness. The formal proofs are deferred
to Appendix B.1.

THEOREM 1 (PRIvAcy). Let (ZKsetup, ZKprove, ZKverify) be a
NIZK for Liange and let LHTLP. be a secure time-lock puzzle. Then
the protocol as described in Figure 2 satisfies privacy as in Definition 3
in the random oracle model.

THEOREM 2 (SOUNDNESS). Let (ZKsetup, ZKprove, ZKverify) be
a NIZK for Lyange and let LHTLP. be a time-lock puzzle with per-
fect correctness. Then the protocol as described in Figure 2 satisfies
soundness as in Definition 2 in the random oracle model.

4.2 Verifiable Timed Schnorr Signatures
(VT-Schnorr)

The Schnorr signature scheme [47] is defined over a cyclic group
G of prime order g with generator g, and use a hash function H
modeled as a random oracle. We briefly recall the construction here
and VT-Schnorr protocol is given in Figure 3.

Session 6A: Signatures

o (pk,sk) — KGen(l’l): Choose x < Zg and set sk := x and
pk = g*.

® o « Sign(sk,m;r): Sample a randomness r « Zg to compute
R:=¢",c:=H(g% R m),s := r+cx and output o := (R, s).

e 0/1 « Vf(pk,m,o): Parse o0 := (R,s) and then compute ¢
H(pk,R,m) and if g° = R - pk® output 1, otherwise output 0.

In the following theorems we show that our construction of VT-
Schnorr from Figure 3 satisfies privacy and soundness. The formal
proofs are deferred to Appendix B.2.

THEOREM 3 (PRIvAcY). Let (ZKsetup, ZKprove, ZKverify) be a
NIZK for Lyiange and let LHTLP. be a secure time-lock puzzle. Then
the protocol as described in Figure 3 satisfies privacy as in Definition 3
in the random oracle model.

THEOREM 4 (SOUNDNESS). Let (ZKsetup, ZKprove, ZKverify) be
a NIZK for Lrange and let LHTLP. be a time-lock puzzle with per-
fect correctness. Then the protocol as described in Figure 3 satisfies
soundness as in Definition 2 in the random oracle model.

4.3 Verifiable Timed ECDSA Signatures
(VT-ECDSA)

The ECDSA signature scheme [28] is defined over an elliptic curve
group G of prime order g with base point (generator) g. The con-
struction assumes the existence of a hash function H : {0, 1}* — Z4
and is given in the following. Our VIT-ECDSA protocol is given in
Figure 4.

o (pk,sk) KGen(11): Choose x «— Zg and set sk := x and
pk = g*.

® o « Sign(sk,m;r): Sample an integer k < Z4 and compute
¢ < H(m).Let (rx,ry) =R = gk, then set r := ry mod q and
s:=(c+rx)/k mod gq.Output o := (r,s).

e 0/1 « Vf(pk,m, o): Parse o := (r,s) and compute ¢ := H(m)
and return 1 if and only if (x, y) = (¢¢ - h’)f1 and x =r mod q.
Otherwise output 0.

Notice that ECDSA signature has a non-linear verification un-
like in Schnorr. Consequently, notice that unlike VT-BLS and VT-
Schnorr, the public key is not secret shared in VT-ECDSA.

The theorems below are for privacy and soundness of our VT-
ECDSA protocol. The formal proofs are deferred to Appendix B.3.

THEOREM 5 (PRIvAcY). Let (ZKsetup, ZKprove, ZKverify) be a
NIZK for Lyiange and let LHTLP. be a secure time-lock puzzle. Then
the protocol as described in Figure 4 satisfies privacy as in Definition 3
in the random oracle model.

THEOREM 6 (SOUNDNESS). Let (ZKsetup, ZKprove, ZKverify) be
a NIZK for Lyiange and let LHTLP. be a time-lock puzzle with per-
fect correctness. Then the protocol as described in Figure 4 satisfies
soundness as in Definition 2 in the random oracle model.

4.4 Batching Puzzle Solving

As described above, our protocols require the verifier to solve i1 =
(n—t+1) puzzles in the forced opening phase. In the following we
show how to leverage the homomorphic properties of the time-lock
puzzles to ensure that the computation is reduced to the solution
of a single puzzle, regardless of the parameters n and ¢t. This is

1740

CCS 20, November 9-13, 2020, Virtual Event, USA

Setup: Same as Figure 2.

Commit and Prove: On input (crs, wit) the Commit algorithm

does the following.

— Parse wit := 0 = (R,s), crs == (crsrange,pp), pk as the Schnorr
public key, and m as the message to be signed

- Forall i € [t — 1] sample a uniform pair (x;, k;) < Zg and set
hi :=g*, R; := gki, and s; := k; + cx; where ¢ = H(pk, R, m)

- Foralli € {t,...,n} compute

£(0)7!

si=|s— Z sj - 4j(0) ~fi(0)_1, hi =

pk
jelz=1] b

Hje[t—l] hJ
4(0)7!

R
Ri £(0)
[jere-1 R/
where ¢;(-) is the i-th Lagrange polynomial basis
- For i € [n], generate puzzles with corresponding range proofs

as shown below (|o| = A is the max number of bits of o)
ri — {0,1}*, Z; « LHTLP.PGen(pp, si; ri)

Trange,i < ZKprove(crsrange, (Zi,0, 2/1, T), (si,71))

- Compute
I—H (Pk, R, (hl, Ry, 74, ﬂ'range,l)» s (hn, Rn, Zy, ﬂ'range,n))

- Output C:= (R, Z3,...,2Z,,T) and
7= ({hi, Ry, ”range,i}ie[n]’ls {si,ritier)

Verification: On input (crs, pk, m, C,) the Vrfy algorithm does

the following.

- Parse C:= (R, Z1,...,Z,,T),

7 = ({hi, Ri, mrange,i }ie[n]> I {Si- ritier), and
crs := (Crsrange, PP)

— If any of the following conditions is satisfied output 0, else
return 1:

. : 6(0) 1 ¢(0)
(1) There exists some j ¢ I such that [T;cr b, - hj # pk or
Mier R -9 2 R
(2) There exists some i € [n] such that
ZKverify(crsranges (Zi, 0, 24 T), Trange,i) # 1
(3) There exists some i € I such that
Z; # LHTLP.PGen(pp, si;ri) or g # R; - h{
(4) I+H (Pk) R, (hl, Ri, 74, ”range,l)a s (hn)Rn’ Zn, ”range,n))

Open: The Open algorithm outputs ((R, s), {ri}ic[n])-

Force Open: The ForceOp algorithm take as input

C:=(RZy,...,Z,,T) and works as follows:

- Runss; « LHTLP.PSolve(pp, Z;) for i € [n] to obtain all
signatures. ForceOp has to solve only (n —t + 1) puzzles, as t — 1
puzzles are already opened.

- Output (R;s = []jes] (sj)ff(o)) where wlog., the first ¢ are
valid shares.

Figure 3: VI-Schnorr Signatures

crucial for our real world applications as without HTLP, users with
different degrees of parallelisms can solve 7 puzzles in different
times: A user with several computers can solve 7 puzzles in parallel

Session 6A: Signatures

Setup: Same as Figure 2.
Commit and Prove: On input (crs, wit) the Commit algorithm
does the following.
~ Parse wit := o = (7,5), crs := (crsrange, pp), pk as the ECDSA
public key, and m as the message to be signed
- Define R := (x,y) = (¢°- hr)f1 and B = ¢° - h", where ¢ = H(m)
- Forall i € [t — 1] sample a uniform pair s; < Zg4 and set
R; := B
- Foralli e {t,...,n} compute

si=|[st - Z sj - £(0) - £;(0)7!, and
jele-1]
6(0)7!
R

[Tjere-13 Rj-’(o)

where ¢;(+) is the i-th Lagrange polynomial basis
- For i € [n], generate puzzles with corresponding range proofs

as shown below (|o| = A is the max number of bits of o)

ri « {0, l}A,Z,- < LHTLP.PGen(pp, si; i)

R;

Trange,i < ZKprove(crsrange, (Zi, 0, 24, T), (si, i)

- Compute

I—H (Pka r R (Ry, Zy, ”range,1)> ooy (Rn, Zp, ”range,n))
- Output C:= (r,R, Z3,...,Z,,T) and

7= ({R;, ”range,i}ie[n]’la {sis7i}ier)
Verification: On input (crs, pk, m, C, rr) the Vrfy algorithm does
the following.
- Parse C:= (r,R, Z1,...,Z,,T),

m = ({Ri, ”range,i}ie[n])L {si,ri}ier), and crs := (crsrange, pp)
- If any of the following conditions is satisfied output 0, else

return 1:

(1) It holds that x # r mod g where (x,y) :=R

(2) There exists some j ¢ I such that []; R4 ~R€.j(0) #R
J iel Iy 'j

(3) There exists some i € [n] such that
ZKverify(crsrange, (Zi, 0, 2’1,T), Trange,i) # 1

(4) There exists some i € I such that
Z; # LHTLP.PGen(pp, si;r;) or R; # (¢ - hT)%

(5) I+H (Pk= IR, (Rl, Z1, ”range,l)» s (Rn, Zn, ”range,n))
Open: The Open algorithm outputs ((r,), {*i}ie[n])-
Force Open: The ForceOp algorithm take as input
C:=(r,R Zy,...,Z,,T) and works as follows:

- Obtain s; «— LHTLP.PSolve(pp, Z;) for i € [n] same as
in Figure 3.

- Output (r,s =[] e[(Sj)[j(o)) where wlog., the first ¢ are valid
shares.

Figure 4: VI-ECDSA Signatures

effectively spending time T, and a user with a single computer
solves one puzzle after the other sequentially thus spending 7i - T.

The high-level idea of exploiting the homomorphism of LHTLP
is to pack all partial signatures into a single puzzle, provided that
the message space is large enough.

1741

CCS 20, November 9-13, 2020, Virtual Event, USA

Concretely, the solver, given 7 puzzles Z, . . ., Z; encoding A-bits
signatures, homomorphically evaluates the linear function

n
flxq,.oooxp3) = Z 214, Xi
i=1

to obtain the puzzle 7. which can be solved in time T. Observe that,
once the puzzle is solved, all signatures can be decoded from the
bit-representations of the resulting plaintext. Note that in order for
this transformation to work we need two conditions to be satisfied:

(1) The signatures o; encoded in the the input puzzles must not
exceed the maximum size of a signature (which we fix to A bits)

(2) The message space of the homomorphic time-lock puzzle must
be large enough to accommodate for all 7 signatures.

Condition (1) is enforced by including a range NIZK, which
certifies that the message of each time-lock puzzles falls into the
range [0, 2]. On the other hand we can satisfy condition (2) by
instantiating the linearly homomorphic time-lock puzzles with
modulus N3, instead of N2, for a large enough s. This is reminiscent
of the Damgard-Jurik [16] extension of Paillier’s cryptosystem [44]
and was already suggested in [41].

We stress that, even though we can increase the message space
arbitrarily, the squaring operations are still performed modulo N,
which is important to reduce the gap between the honest and the
malicious solver: While squaring is conjectured to be a sequential
operation (in groups of unknown order), the computation of a
single squaring operation can be internally parallelized to boot the
overall efficiency of the algorithm. For this reason it is important
to keep the modulus as small as possible, at least as far as squaring
is concerned. For further details, we refer the reader to [41].

4.5 Range Proof for Homomorphic Time-Lock
Puzzles

In this Section we will provide a protocol which allows a prover
to convince a verifier in zero-knowledge that a list of linearly ho-
momorphic time-lock puzzles are well-formed. This allows us to
homomorphically pack them into a single time-lock puzzle.

Our protocol follows the Fiat-Shamir heuristic and we prove
soundness and zero-knowledge in the random oracle model. For our
construction we require a linearly homomorphic time-lock puzzle
which is also homomorphic in the random coins. The construction
of [41] satisfies this property.

In this Section we will always assume that plaintexts in a ring
Zq are represented via the central representation in [-q/2, q/2].

Our protocol ensures that every plaintext is in the interval
[-L,L], given that 2L is smaller than the modulus of the plain-
text space. We remark that this protocol can be readily used to
prove that plaintexts are in a non-centered interval [a, b] via homo-
morphically shifting plaintexts by —(a + b) /2, mapping the interval
[a,b] to [-(b —a)/2, (b — a)/2]. Consequently, for the sake of sim-
plicity we will only discuss the case of centered intervals. In order to
achieve zero-knowledge, we actually need that the plaintexts come
form a smaller interval [-B, B], where B < L. For our protocols, this
means that we need to use slightly looser intervals when batching
time-lock puzzles, but the efficiency of the schemes is otherwise

Session 6A: Signatures

Setup: An RSA modulus N, public parameters pp for HTLP,
interval parameters L and B with B < L. In this protocol we use k
as a statistical security parameter.

Common input: Time-lock puzzles 71, ..., Z.

Prover: On input wit, where wit := ((x1,71), ..., (xp, r¢)) and

x;j € [—B, B] such that for all i it holds

Z;j < HTLP.PGen(pp, xj; i), the prover algorithm ZKprove does
the following.

’ r/

- Choose yi, ..., yr < [-L/4,L/4] and random coins r{,..., k

from their corresponding ring.
Fori=1,...,k compute D; « HTLP.PGen(pp, yi;ri’)
Compute (t1,...,t,) < H(Z1,...,Z¢, D1, ..., Dy), where the
t; € {0, 1}
Fori=1,...k compute v; « y; + Zﬁ:l tij - x;j and
Wi — rl.' + Z§:1 Lij-rj
— Set 7 «— (Dj, vi, Wi)je[k] and output 7
Verifier: On input 7 = (Dj,v;, wi);e[k] the do the following.
- Compute (t1,...,tx) <« H(Z1,...,Z¢, Dy, ..., Dy)
— Fori=1,...k checkifv; € [-L/2,L/2], compute
F; « Dj - I‘[;i:1 ZJt.i’j and check if F; = HTLP.PGen(pp, vj; w;).
— If all checks pass output 1, otherwise 0.

Figure 5: NIZK protocol for well-formedness of a vector of
homomorphic time-lock puzzles

unaffected. Formal analysis of soundness and zero-knowledge of
our protocol is deferred to Appendix C due to space constraints.
Correctness Correctness of the protocol can be established given
that B < L/(4f). Assuming that x1, ..., x, € [—B, B], it follows that
lyi+ 2 tijxj| < €-B+L/4 < L/2,as B < L/(4f). Consequently the
verifier’s checks will pass.

4.6 On The Setup Assumption

Our VTS protocols require a one-time setup that is computed once
and for all by a trusted party. A careful analysis of the structure of
our protocol reveals that the setup consists of the common reference
string crsrange for the range proof and the public parameters pp of
the homomorphic time-lock puzzles. In our instantiations, crsrange
consists of sampling a random oracle and pp is a (uniformly sam-
pled) RSA integer N = p - g, so the problem boils down to securely
sampling N, which is then made available to all parties. In general,
this can be resolved by sampling N via a multi-party computation
protocol, for which many ad-hoc solutions exist [23].

However, when looking at specific applications of VTS, we do
not always need to resort to the power of multi-party computation.
As an example, for applications where VTS are exchanged only
among pairs of users (such as payment channel networks or claim-
and-refund) it suffices to enforce that the verifier does not learn the
factorization of N and therefore we can sample N in key generation
algorithm of the signer.

5 PERFORMANCE EVALUATION

In this section we present empirical results for VTS. In this regard,
we first survey AWS machines and benchmark squaring operations

1742

CCS 20, November 9-13, 2020, Virtual Event, USA

on various machines. Then we implement and evaluate key compo-
nents: the standard signature schemes, BLS, Schnorr and ECDSA,
and Linearly Homomorphic Time-Lock Puzzles on the weakest
AWS machine to justify practicality of the construction. Then we
estimate the cost of the VTS operations: Commit and Vrfy. As part
of these operations, we also implement the range proofs Section 4.5.
Our implementation is in C programming language and does not
use any optimizations (logical and others) or concurrency. Our
numbers are proof-of-concept and can be significantly improved in
production.

We estimate the HTLCs that are posted on the Bitcoin blockchain
as a payment closing step in a PCN heuristically. We estimate the
number of outputs present in the closing transaction to get a real-
world estimate on the number of times the worst-case, i.e. a channel
closes with pending payments.

We also measure the size of transactions (in bytes) for our VTS
based solution for the current implementation in Lightning Net-
work (the PCN in Bitcoin). Our VTS solution does not leak any
information about the time-lock on-chain with a negligible over-
head in terms of on-chain space (steal transaction in the worst
case).

5.1 Setup and Preliminaries

System Specifications. We use the following versions of the soft-
ware and libraries for our experiments: Bitcoin-client bitcoin-cli,
Bitcoin daemon bitcoind (v0.18.0.0-g2472733), Bitcoin blockchain
parser blocksci (master branch with commit hash 49e97ad) and
Lightning client Ind (0.5.1-beta commit=v0.5.1-beta-579-gb7387a)
to analyze the Bitcoin blockchain and the Lightning network. We
employ OpenSSL Library openssl (1.1.1.d-2), GNU Multi-Precision
library gmp (6.1.2-3) and Pairing Based Cryptography Library pbc
(0.5.14-1) to estimate the cryptographic computations. The machine
used for data capture has the following hardware configuration:
CPU (Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz with 20
cores) and RAM (128GB).

Parameters. For all the experiments, unless otherwise specified,
we use RSA 1024-bit modulus, random messages m with size |m| =
100 bits and threshold ¢t = [n/2].

Squarings in AWS. Given that practical constructions of time-
lock puzzles are based on sequential squaring in an RSA group [46],
we use different AWS machines to perform squarings to capture the
role played by hardware. We use 6 different types of AWS machines
whose configurations are detailed in Table 1.

First we ran the squaring experiment on the various AWS ma-
chines (presented in Table 1). As expected, we observe that the
RAM and number of cores do not help in improving the number of
squarings performed. However, we note that AWS’ compute opti-
mized machines perform better than the regular machines. We also
observe that the SSD equipped machines seem to perform more
squarings than the EBS counterparts.

For the subsequent experiments, we implement using t3a.large,
the weakest (and the cheapest) of the AWS machines in Table 1 to
show the efficiency and practicality of our constructions.
Benchmarks. Since, we use BLS, ECDSA and Schnorr, we first
measure the cost of basic operations for these signature schemes.
For VT-BLS, we use the Type A curves using PBC (pairing based

Session 6A: Signatures

CCS 20, November 9-13, 2020, Virtual Event, USA

Table 1: AWS Machine Types and Squaring Performance

Machine | RAM vCPU Disk Special Features Cost($/Hr) [N| and Squarings

1024 2048
t2.xlarge 16.0 4 EBS - 0.1856 5.853 x 10° 1.881 x 10°
t3alarge 8.0 2 EBS - 0.0752 5.685x 10° 1.806 x 10°
csnlarge | 5.25 2 EBS Compute Optimized 0.108 8.069 x 10° 2.600 x 107
d2.xlarge | 30.5 4 HDD Storage Optimized 0.69 5.025x 10° 1.525 X 10°
mb5adlarge | 8.0 2 SSD 1 x 75 NVMe 0.103 6.600 x 10° 2.097 x 10°
rSadlarge | 16.0 2 ssp LX75NVMeand 0.131 6.626x10° 2.108 x 10°

Memory Optimized

Table 2: A summary of costs for KGen, Sign and Vf

Operation | Schnorr ECDSA BLS
Keygen 1.69ms 1.70ms 0.024 s
Sign 1.63ms 1.67ms 0.023 s
Verify 1.55ms 1.57ms 0.047 s

cryptography) library [38] for pairing implementation. For VT-
ECDSA, we use the implementation and the secp256k1 curve present
in OpenSSL [21]. For VT-Schnorr, we use the proposed BIP schnorr
standard [51] to instantiate Schnorr in secp256k1 elliptic curves. A
summary of the cost of key generation, signing and verification for
these signature schemes is presented in Table 2.

5.2 Performance Evaluation

Linearly Homomorphic Time-Lock Puzzles. We first imple-
ment a library for LHTLP variant proposed in [41] and use the
library to estimate the cost (time) of various cryptographic op-
erations needed to be performed in LHTLP.PSetup, LHTLP.PGen,
LHTLP.PEval and LHTLP.PSolve.

We ran each phase of LHTLP 10 times and present the average.
We used an RSA modulus of 1024 bits and T = 1.0 x 10°, on average:

LHTLP.PSetup takes 5.521 s,

LHTLP.PGen takes 9.93 ms,

LHTLP.PSolve takes 0.692 s.

Batching using LHTLP.PEval is very efficient (linear in num-
ber of puzzles merged) and this is presented in Figure 6.

Verifiable Timed Signatures. We estimate the time required to
perform Commit and Prove and Verification algorithms for VT-BLS
(Figure 2), VT-Schnorr (Figure 3) and VI-ECDSA (Figure 4), and
present them in Table 3. We observe that the curves used for BLS
are not optimized and therefore lead to much slower computations.
All three implementations can be significantly improved using
concurrency and other efficient data structures. We also observe
that despite this, the operations are still practical for use in the
real-world.

5.3 VTS and Lightning Network

In order to get an idea for the hiding time parameter T and under-
stand how the Commit transactions are employed in PCNs today,
we study the Bitcoin PCN - the Lightning network.

Bitcoin uses elliptic curve secp256k1 for signature generation.
There is a proposal to use Schnorr signatures [51]. We study the
graph statistics for the Lightning Network (LN) [45] and analyze

1743

Time taken to Merge Puzzles (in pus)

T T T T T T
75 100 125 150 175 200

Number of puzzles merged

Figure 6: The time to batch puzzles vs the number of puzzles
batched.

Table 3: The cost (time) of commit and prove, and verification
steps for Schnorr, ECDSA and BLS for different values of n.

Operation Parameter _n9 (Soundness err_ollé)
30 (6.44 X 10°7) 40 (7.25 x 10" %)
i 20. 2.
VIR GEE Saads 175
i . 10.41
VIECDSA C\(;emrirfl;lt ;Z; 2 90.94 sS
pev—d 1L

the number of outputs from the Bitcoin blockchain for our analysis.
The number of outputs indicate the number of times a channel is
closed before completion of PCN payment.

Lightning Graph Statistics. We scanned their network using the
describegraph command of the lightning client. We consolidated the
information into Table 4. We observe that 80.05% of the payment
channels are disabled, i.e do not allow the channel to be a part of a
PCN for a payment. We also observe that the time lock duration is
85.53 blocks which is equivalent to 14.25 hours giving an estimate
to T.

Estimating Channel Closures. When a channel between Alice
and Bob is closed, there are two primary outputs. The first output

Session 6A: Signatures

Table 4: Lightning Graph Data (as of November 23, 2019)

Parameter Value Unit
Nodes 4,692 -
Channels 30, 665 -
Percentage Disabled 80.05 %
Avg. Channel Capacity 2,673,295.67 sat
Avg. Minimum HTLC Amount 1,237.42 1073 sat
Avg. Base Fee 1,008.51 1073 sat
Avg. Fee Rate 683,536.66 107° sat
Avg. Time Lock Delta 85.53 blocks

is the to_local output which settles the money to the address going
on-chain after a delay using P2ZWSH. This delay ensures that if
Alice closes the channel using a stale transaction, Bob can use a
revocation key to penalize Alice by stealing the money from the
output. The second output to_remote pays money (using P2ZWPKH)
directly to the other user in the channel. Other outputs can exist
if Alice and Bob were a part of a payment network, but one of
them decides to close the channel. In this case, there are extra
outputs which contain HTLC -Claim or Refund Scripts or a new
channel creation. Since, we cannot know what these outputs until
the witness is produced on chain, we conservatively estimate them
as HTLC-Claim or Refund outputs.

Therefore estimating the number of closure transactions on the
blockchain whose outputs are more than 2 gives an estimate of how
likely the closure of a channel with an ongoing payment is in the
real-world.

From the main chain, we observe 116, 502 closing transactions
by examining opened outputs with one output matching a to_local
output. These are transactions that are used to close the payment
channel. Among them, 66.84 % (77,867) of transactions contain
more than one P2ZWSH outputs. We present the number of P2ZWSH
outputs in these closing transactions in Table 5.

Table 5: A histogram of the number of outputs in a lightning
closing transaction. There is one standard output called the
to_local which pays self after a delay giving the remote user
time to penalize the party if a stale transaction is published.
Any output more than 1, indicates that the user was involved
as a intermediate in a payment channel but decided to close
the channel.

of P2ZWSH Outputs ‘ # of Closing Tx

1 (No HTLC output) 38,635
2 (1 HTLC output) 47,172
3-10 20, 634
11 - 100 9,245

> 100 10

From Table 4, we observe that the average base-fee is 1 satoshi
which equates to 0.000087 USD (as of today) and the average fee-
rate is 683 satoshis which amounts to 0.06 USD. From Table 1, we
observe that a faster machine can perform a lot more (2X) squarings
than the cheaper machines. However, this is not beneficial for the
attacker. Lighting network consists of micro-transactions, whose

1744

CCS 20, November 9-13, 2020, Virtual Event, USA

cost to exploit outweigh the gain. For privacy-critical applications,
VTS provides an efficient alternative.

6 CONCLUSION AND FUTURE WORK

We theoretically analyze and present secure constructions for Verifi-
able Timed Signatures compatible with standard signatures such as
BLS, Schnorr and ECDSA. Our constructions are efficient in terms
of cost for verifying the timed commitments if they indeed encapsu-
late a valid signature on a message and if it can be obtained after the
given time T. Our constructions are readily usable in several cur-
rent day systems for achieving improved privacy and compatibility
across several settings. We present several cryptocurrency-related
applications for VTS and a variant of VTS where the signing key
is committed instead of the signature. We experimentally evaluate
our approach to show that our constructions are practical. In terms
of future work, the next step is developing VTS-based solutions for
other real world systems that can benefit from the timed nature of
the primitive. Our verifiability techniques leaves open the question
of whether we can improve the efficiency of the verifier and the
size of the proof even further. Developing efficient range proofs
with smaller slack for HTLP is of independent interest.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Founda-
tion under grants CNS 1719196 and CNS 1846316, and the IJARPA
HECTOR program. The work was also partially supported by the
German research foundation (DFG) through the collaborative re-
search center 1223, and by the state of Bavaria at the Nuremberg
Campus of Technology (NCT). NCT is a research cooperation be-
tween FAU and the Technische Hochschule Niirnberg Georg Simon
Ohm (THN). We would also like to thank the anonymous reviewers
for their valuable comments for improving the paper.

REFERENCES

[1] [n.d.]. bip32. ([n.d.]). https://github.com/bitcoin/bips/blob/master/bip-0032.
mediawiki.

[n.d.]. Bitcoin Wiki: Payment Channels. https://en.bitcoin.it/wiki/Payment_
channels.

[n.d.]. BOLT #3: Bitcoin Transaction and Script Formats. https://github.com/
lightningnetwork/lightning-rfc/blob/master/03- transactions.md#offered- htlc-
outputs.

4] [n.d.]. Self Decrypting Files. https://www.gwern.net/Self-decrypting-files.

] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. 2011. How to Garble
Arithmetic Circuits. In 52nd FOCS, Rafail Ostrovsky (Ed.). IEEE Computer Society
Press, Palm Springs, CA, USA, 120-129. https://doi.org/10.1109/FOCS.2011.40
Vivek Kumar Bagaria, Joachim Neu, and David Tse. 2020. Boomerang: Redun-
dancy Improves Latency and Throughput in Payment-Channel Networks. In 24th
International Conference on Financial Cryptography and Data Security FC 2020.
304-324.

Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. 2016. Efficient
Zero-Knowledge Contingent Payments in Cryptocurrencies Without Scripts. In
ESORICS 2016, Part II (LNCS, Vol. 9879), Ioannis G. Askoxylakis, Sotiris Ioannidis,
Sokratis K. Katsikas, and Catherine A. Meadows (Eds.). Springer, Heidelberg,
Germany, Heraklion, Greece, 261-280. https://doi.org/10.1007/978-3-319-45741-
3_14

Rachid El Bansarkhani and Jan Sturm. 2016. An Efficient Lattice-Based Multisig-
nature Scheme with Applications to Bitcoins. In CANS 16 (LNCS, Vol. 10052), Sara
Foresti and Giuseppe Persiano (Eds.). Springer, Heidelberg, Germany, Milan, Italy,
140-155. https://doi.org/10.1007/978-3-319-48965-0_9

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous
Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, Berkeley, CA, USA, 459-474. https://doi.org/10.1109/
SP.2014.36

7

[8

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://www.gwern.net/Self-decrypting-files
https://doi.org/10.1109/FOCS.2011.40
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36

Session 6A: Signatures

[10

[11

[12

[14]

[15]

[16

[17

(18]

[19

[20

[21]

[22]

[23

[24]

[25]

[26

[27]

[31]

[32]

Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Design Fair
Protocols. In CRYPTO 2014, Part II (LNCS, Vol. 8617), Juan A. Garay and Rosario
Gennaro (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 421-439.
https://doi.org/10.1007/978-3-662-44381-1_24

Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. 2016. Time-Lock Puzzles from Randomized Encod-
ings. In ITCS 2016, Madhu Sudan (Ed.). ACM, Cambridge, MA, USA, 345-356.
https://doi.org/10.1145/2840728.2840745

Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-signatures
for Smaller Blockchains. In ASIACRYPT 2018, Part II (LNCS, Vol. 11273), Thomas
Peyrin and Steven Galbraith (Eds.). Springer, Heidelberg, Germany, Brisbane,
Queensland, Australia, 435-464. https://doi.org/10.1007/978-3-030-03329-3_15
Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps. In EUROCRYPT 2003
(LNCS, Vol. 2656), Eli Biham (Ed.). Springer, Heidelberg, Germany, Warsaw, Poland,
416-432. https://doi.org/10.1007/3-540-39200-9_26

Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the
Weil Pairing. In ASIACRYPT 2001 (LNCS, Vol. 2248), Colin Boyd (Ed.). Springer,
Heidelberg, Germany, Gold Coast, Australia, 514-532. https://doi.org/10.1007/3-
540-45682-1_30

Dan Boneh and Moni Naor. 2000. Timed Commitments. In CRYPTO 2000 (LNCS,
Vol. 1880), Mihir Bellare (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA,
USA, 236-254. https://doi.org/10.1007/3-540-44598-6_15

Ivan Damgard and Mats Jurik. 2001. A Generalisation, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System. In PKC 2001 (LNCS,
Vol. 1992), Kwangjo Kim (Ed.). Springer, Heidelberg, Germany, Cheju Island, South
Korea, 119-136. https://doi.org/10.1007/3-540-44586-2_9

Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. 1987. Non-interactive
zero-knowledge proof systems. In Conference on the Theory and Application of
Cryptographic Techniques. Springer, 52-72.

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs. 2019. On the security of two-round multi-signatures.
In On the Security of Two-Round Multi-Signatures. IEEE, 0.

Lisa Eckey, Sebastian Faust, Kristina Hostakova, and Stefanie Roos. 2020. Splitting
Payments Locally While Routing Interdimensionally. JACR Cryptol. ePrint Arch.
2020 (2020), 555.

Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. Atomic
Multi-Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-
Channel Networks. In ACM CCS 2019. ACM Press, 801-815. https://doi.org/10.
1145/3319535.3345666

Ralf S Engelschall. 2001. Openssl: The open source toolkit for SSL/TLS. URL:
http://www. openssl. org (2001), 2001-04.

Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.
Odlyzko (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 186-194.
https://doi.org/10.1007/3-540-47721-7_12

Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. 2018.
Fast distributed RSA key generation for semi-honest and malicious adversaries.
In Annual International Cryptology Conference. Springer, 331-361.

Juan A. Garay and Markus Jakobsson. 2003. Timed Release of Standard Digital
Signatures. In FC 2002 (LNCS, Vol. 2357), Matt Blaze (Ed.). Springer, Heidelberg,
Germany, Southampton, Bermuda, 168-182.

Juan A. Garay and Carl Pomerance. 2003. Timed Fair Exchange of Standard
Signatures: [Extended Abstract]. In FC 2003 (LNCS, Vol. 2742), Rebecca Wright
(Ed.). Springer, Heidelberg, Germany, Guadeloupe, French West Indies, 190-207.
Rosario Gennaro and Steven Goldfeder. 2018. Fast multiparty threshold ecdsa
with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1179-1194.

Christian Hanser, Max Rabkin, and Dominique Schréder. 2015. Verifiably En-
crypted Signatures: Security Revisited and a New Construction. In ESORICS 2015,
Part I (LNCS, Vol. 9326), Guinther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl
(Eds.). Springer, Heidelberg, Germany, Vienna, Austria, 146-164. https://doi.org/
10.1007/978-3-319-24174-6_8

Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The Elliptic Curve Dig-
ital Signature Algorithm (ECDSA). International Journal of Information Security
1,1 (01 Aug 2001), 36-63. https://doi.org/10.1007/s102070100002

Jonathan Katz. 2010. Digital signatures. Springer Science & Business Media.
Jonathan Katz, Andrew Miller, and Elaine Shi. 2014. Pseudonymous secure
computation from time-lock puzzles. (2014).

Ranjit Kumaresan and Iddo Bentov. 2014. How to Use Bitcoin to Incentivize
Correct Computations. In ACM CCS 2014, Gail-Joon Ahn, Moti Yung, and Ninghui
Li (Eds.). ACM Press, Scottsdale, AZ, USA, 30-41. https://doi.org/10.1145/2660267.
2660380

Ranjit Kumaresan, Tal Moran, and Iddo Bentov. 2015. How to Use Bitcoin
to Play Decentralized Poker. In ACM CCS 2015, Indrajit Ray, Ninghui Li, and
Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 195-206. https:
//doi.org/10.1145/2810103.2813712

1745

CCS 20, November 9-13, 2020, Virtual Event, USA

[33] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schroder, Sri Ar-
avinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling Private
Payments Without Trusted Setup. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (London, United Kingdom)

(CCS ’19). Association for Computing Machinery, New York, NY, USA, 31-48.

https://doi.org/10.1145/3319535.3345655

Huijia Lin, Rafael Pass, and Pratik Soni. 2017. Two-Round and Non-Interactive

Concurrent Non-Malleable Commitments from Time-Lock Puzzles. In 58th FOCS,

Chris Umans (Ed.). IEEE Computer Society Press, Berkeley, CA, USA, 576-587.

https://doi.org/10.1109/FOCS.2017.59

[35] Yehuda Lindell. 2017. Fast secure two-party ECDSA signing. In Annual Interna-
tional Cryptology Conference. Springer, 613-644.

[36] Yehuda Lindell and Ariel Nof. 2018. Fast secure multiparty ecdsa with practical

distributed key generation and applications to cryptocurrency custody. In Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 1837-1854.

Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical

Distributed Key Generation and Applications to Cryptocurrency Custody. In

ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng

Wang (Eds.). ACM Press, Toronto, ON, Canada, 1837-1854. https://doi.org/10.

1145/3243734.3243788

[38] Ben Lynn et al. 2006. PBC library. Online: http://crypto. stanford. edu/pbc 59

(2006), 76-99.

Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-

vatsan Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks.

In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 455-471. https://doi.org/10.

1145/3133956.3134096

Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability

and Interoperability. In NDSS 2019. The Internet Society, San Diego, CA, USA.

Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. 2019. Homomorphic

Time-Lock Puzzles and Applications. In CRYPTO 2019, Part I (LNCS), Hovav

Shacham and Alexandra Boldyreva (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 620-649. https://doi.org/10.1007/978-3-030-26948-7_22

[42] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. 2018.
Simple Schnorr Multi-Signatures with Applications to Bitcoin. Cryptology ePrint
Archive, Report 2018/068. https://eprint.iacr.org/2018/068.

[43] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

[44] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques Stern (Ed.).
Springer, Heidelberg, Germany, Prague, Czech Republic, 223-238. https://doi.
org/10.1007/3-540-48910-X_16

[45] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable
off-chain instant payments.

[46] R.L.Rivest, A. Shamir, and D. A. Wagner. 1996. Time-lock Puzzles and Timed-
release Crypto. Technical Report. Cambridge, MA, USA.

[47] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart
Cards. In CRYPTO’89 (LNCS, Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg,
Germany, Santa Barbara, CA, USA, 239-252. https://doi.org/10.1007/0-387-
34805-0_22

[48] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612-613.

[49] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan,
Parimarjan Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh.
2020. High Throughput Cryptocurrency Routing in Payment Channel Networks.
In 17th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20). 777-79.

[50] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Dét-
tling, Aniket Kate, and Schroder Dominique. [n.d.]. Verifiable Timed Signatures
Project Page. ([n.d.]). https://github.com/verifiable-timed-signatures/web/.

[51] P Wauille. 2018. Schnorr’s bip.

[52] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas Inden, and Klaus
Webhrle. 2015. Coinparty: Secure multi-party mixing of bitcoins. In Proceedings
of the 5th ACM Conference on Data and Application Security and Privacy. ACM,
75-86.

[53] Jan Henrik Ziegeldorf, Roman Matzutt, Martin Henze, Fred Grossmann, and
Klaus Wehrle. 2018. Secure and anonymous decentralized Bitcoin mixing. Future
Generation Computer Systems 80 (2018), 448—466.

[34

[37

[39

[40

[41

A CRYPTOGRAPHIC BUILDING BLOCKS
A.1 Digital Signatures

DEFINITION 4 (DIGITAL SIGNATURES). A (digital) signature scheme
consists of three probabilistic polynomial time algorithms (KGen,
Sign, Vf) such that:

https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1145/3319535.3345666
https://doi.org/10.1145/3319535.3345666
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-24174-6_8
https://doi.org/10.1007/978-3-319-24174-6_8
https://doi.org/10.1007/s102070100002
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/3319535.3345655
https://doi.org/10.1109/FOCS.2017.59
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1007/978-3-030-26948-7_22
https://eprint.iacr.org/2018/068
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://github.com/verifiable-timed-signatures/web/

Session 6A: Signatures

o (pk,sk) «— KGen(11): the key generation algorithm takes
as input a security parameter 1* and outputs a pair of keys
(pk, sk). We assume that pk and sk each has length at least A,
and that A can be determined from pk or sk.

o « Sign(sk, m): the signing algorithm takes as input a pri-
vate key sk and a message m from some message space (that
may depend on pk). It outputs a signature o.

0/1 « Vf(pk, m, 0): the deterministic verification algorithm
Vf takes as input a public key pk, a message m, and a signature
o. It outputs a bit b, with b = 1 meaning valid and b = 0
meaning invalid.

It is required that except with negligible probability over (pk, sk)
output by KGen(1%), it holds that Vf(pk, m,Sign(sk,m)) = 1 for
every (legal) message m.

DEFINITION 5. A signature scheme DS = (KGen, Sign, Vf) is ex-
istentially unforgeable under an adaptive chosen-message attack,
or just secure, if for all probabilistic polynomial-time adversaries A,
there is a negligible function negl such that:

Pr[ExpEUFCMAﬂ’DS(A) =1] < negl

ExpEUFCMA 4 ps (1) Oracle SignO(m)

Q:=0 o « Sign(sk, m)

(pk, sk) — KGen(1%) Q=QuU{c}
return o

(m*,6%) — A% (pk)
b* = Vf(pk,m*,c") A (m* ¢ Q)

return b*

Figure 7: Experiment for unforgeability of the signature
scheme DS

A.2 Time-Lock Puzzles

We recall the definition of standard time-lock puzzles [11]. For con-
ceptual simplicity we consider only schemes with binary solutions.

DEFINITION 6 (TIME-Lock PuzzLEs). A time-lock puzzle is a tuple
of two algorithms (PGen, PSolve) defined as follows.

o Z «— PGen(T,s) a probabilistic algorithm that takes as input
a hardness-parameter T and a solution s € {0, 1}, and outputs
apuzzle Z.

o 5 «— PSolve(Z) a deterministic algorithm that takes as input
a puzzle Z and outputs a solution s.

DEFINITION 7 (CORRECTNESS). For all A € N, for all polynomials
T in A, and for all s € {0, 1}, it holds that s = PSolve(PGen(T,s)).

DEFINITION 8 (SECURITY). A scheme (PGen, PSolve) is secure
with gap ¢ < 1 if there exists a polynomial T(-) such that for all
polynomials T(-) > T(-) and every polynomial-size adversary A =
{A)}ren of depth < T?(A), there exists a negligible function u(-),
such that for all A € N it holds that

Pr|b e A(Z): Z < PGen(T(A),b) | <=+ pu(d).

Do | =

1746

CCS 20, November 9-13, 2020, Virtual Event, USA

A.3 Homomorphic Time-Lock Puzzles

DEFINITION 9 (HoMomoRpPHIC TIME-Lock Puzzigs [41]). Let
C = {Cy})en be a class of circuits and let S be a finite domain. A
homomorphic time-lock puzzle (HTLP) with respect to C and with so-
lution space S is tuple of four algorithms (HTLP.PSetup, HTLP.PGen,
HTLP.PSolve, HTLP.PEval) defined as follows.

e pp « HTLP.PSetup(1*,T) a probabilistic algorithm that
takes as input a security parameter 1* and a time hardness
parameter T, and outputs public parameters pp.

Z «— HTLP.PGen(pp, s) a probabilistic algorithm that takes
as input public parameters pp, and a solution s € S, and
outputs a puzzle Z.

s « HTLP.PSolve(pp, Z) a deterministic algorithm that takes
as input public parameters pp and a puzzle Z and outputs a
solution s.

Z' « HTLP.PEval(C,pp,Z1,...,Zn) a probabilistic algo-
rithm that takes as input a circuit C € C), public parameters
pp and a set of n puzzles (Z1,...,Z,) and outputs a puzzle
VAS

Security requires that the solution of the puzzles is hidden for all
adversaries that run in (parallel) time less than T. Here we consider
a basic version where the time is counted from the moment the
public parameters are published.

DEFINITION 10 (SECURITY OF HTLP). An HTLP scheme consisting
of HTLP.PSetup, HTLP.PGen, HTLP.PSolve, HTLP.PEval, is secure
with gap ¢ < 1 if there exists a polynomial T(-) such that for all poly-
nomials T(-) > T(-) and every polynomial-size adversary (A1, Az)
= {(A1, A2))} ren where the depth of Ay is bounded from above by
T¢(A), there exists a negligible function p(-), such that for all A € N
it holds that

(t.50.51) — A1 (1)

pp < HTLP.PSetup(14, T(1))
b «s{0,1}

Z «— HTLP.PGen(pp, sp)

Pr|b « Ax(pp,Z,7) :

< - +u(d)

[\

and (sg,s1) € S%.

DEFINITION 11 (COMPACTNESS). Let C = {Cy}ren be a class
of circuits (along with their respective representations). An HTLP
scheme (HTLP.PSetup, HTLP.PGen, HTLP.PSolve, HTLP.PEval) is
compact (for the class C) if for all A € N, all polynomials T in A,
all circuits C € C) and respective inputs (s1,...,sp) € S, all pp
in the support of HTLP.PSetup (1%, T), and all Z; in the support of
HTLP.PGen(pp, s;), the following two conditions are satisfied:

o There exists a fixed polynomial p(-) such that|Z| = p(A, |C(s1,
...sSn)|), where Z < HTLP.PEval(C, pp, Z1, ..., Zp).

o There exists a fixed polynomial p(-) such that the runtime of
HTLP.PEval(C, pp, Z1, . .., Zn) is bounded by p(4,|C|).

Session 6A: Signatures

B SECURITY ANALYSIS OF VTS
CONSTRUCTIONS

B.1 Proof of Theorem 1 and Theorem 2

Proor. We show that the protocol (Figure 2) is private against
an adversary of depth bounded by T, for some non-negative ¢ <
1. We now gradually change the simulation through a series of
hybrids and then we argue about the proximity of neighbouring
experiments.

Hybrid Hj : This is the original execution.

Hybrid H; : This is identical to the previous hybrid except that the
random oracle is simulated by lazy sampling. In addition a random
set I* (where |I*| = t—1) is sampled ahead of time, and the output of
the random oracle on the cut-and-choose instance is programmed
to I'*. Note that the changes of this hybrid are only syntactical and
therefore the distribution is unchanged.

Hybrid H> : In this hybrid we sample a simulated common refer-
ence string crsrange. By the zero-knowledge property of (ZKsetup,
ZKprove, ZKverify) this change is computationally indistinguish-
able.

Hybrid Hs ... Hz4p : In the hybrid Hsy, for all i € [n], the proof
Trange,i is computed via the simulator provided by the underly-
ing NIZK proof. By the zero-knowledge property of (ZKsetup,
ZKprove, ZKverify), the distance between neighbouring hybrids is
bounded by a negligible function in the security parameter.
Hybrid Hatp . . . Haron—t+1 : In the i-th hybrid Hay;, foralli € [n—

(t—1)], the puzzle corresponding to the i-th element of the set I* is

computed as LHTLP.PGen(pp, 0%;r;), where I* is the complement
of I*. Since the distinguisher is depth-bounded, indistinguishability
follows from an invocation of the security of LHTLP..
Hybrid Haion—s+2 @ In this hybrid the prover behaves as follows.
For all i € I* it samples a uniform a; < Zq4 and sets h; = ggi
and computes the puzzle as described in the protocol. On the other
hand, for all i ¢ I* it computes h; as

4(0)7!
pk

£;(0)
Hje[* hj]
The rest of the execution is unchanged. Note that for all i ¢ I* we

have that ©
G0 6(0) _
[177 ni® = pk
jer*

hi =

as expected. It follows that the changes in this hybrid are only
syntactical and the distribution induced is identical to that of the
previous hybrid.

Simulator S : The simulator is defined to be identical to the last hy-
brid. Note that no information about the witness is used to compute
the proof. This concludes our proof. O

We now show that our protocol (Figure 2) is sound and the proof
of Theorem 2.

Proor. We analyze the protocol in its interactive version and
the soundness of non-interactive protocol follows from the Fiat-
Shamir transformation [22] for constant-round protocols. Let A be
an adversary that efficiently breaks the soundness of the protocol.
In particular this means that the adversary produces a commitment

1747

CCS 20, November 9-13, 2020, Virtual Event, USA

(Z4,...,Zy) such that for all Z; ¢ I it holds that LHTLP.PSolve(pp,
Z;) = d; such that

e(go. i) # e(hi, H(m)).

Assume the contrary, then we could recover a valid signature on m
by interpolating 6; with {o; };¢s, which satisfy the above relation
by definition of the verification algorithm. Further observe that
all puzzles (Z1, ..., Zy) are well-formed, i.e., the solving algorithm
always outputs some well-defined value, except with negligible
probability, by the soundness of the range NIZK.

It follows that, given (Z3,...,Z,) we can recover some set I’
in polynomial time by solving the puzzles and checking which of
the signatures satisfy the above relation. In order for the verifier
to accept, it must be the case that I’ = I which means that the
prover correctly guesses a random n-bit string uniformly chosen
from the set of strings with exactly n/2-many 0’s. This happens
with probability exactly %2,')2

Observe that, in the non-interactive variant of the protocol, the
above argument holds even in the presence of an arbitrary (poly-
nomial) number of simulated proofs, as long as the range NIZK is
simulation-sound. Therefore, if we instantiate the range NIZK with
a simulation-sound scheme, then so is the resulting VTS. [}

B.2 Proof of Theorem 3 and Theorem 4

Proor. We show that the protocol (Figure 3) is private against
an adversary of depth bounded by T¢, for some non-negative ¢ < 1.
Consider the following sequence of hybrids.

Hybrid Hy . . . Hz+2n—r+1 : Defined as in the proof of Theorem 1.
Hybrid Hz42n—t+2 : In this hybrid the prover behaves as follows.

For all i € I* it samples a uniform (x;, k;) < Zg and sets h; = g/,
Ri = gki ,and s; = k; + cx; and computes the corresponding puzzle
as described in the protocol. On the other hand, for all i ¢ I* it

computes h; as

4(0)7!
k
hi: p—[«)) and
Hje[* hjj
£(0)7"
R R
Ul (AT
Myer BT

The rest of the execution is unchanged. Note that for all i ¢ I* we

have that
[T77 - h© = pkand
J 13
jer
l_l Rjj(o) sz(o) =R
jeIx

as expected. It follows that the changes in this hybrid are only
syntactical and the distribution induced by this hybrid is identical
to that of the previous hybrid.

Hybrid Hsz42n—1+3 : Defined as in the previous hybrid except that
R is sampled uniformly over G. Note that this does not change the
distribution observed by the distinguisher.

Simulator S : The simulator is defined to be identical to the last hy-
brid. Note that no information about the witness is used to compute
the proof. This concludes our proof. O

Session 6A: Signatures

We show that the protocol (Figure 3) satisfies soundness which
is the proof for Theorem 4.

Proor. As for the proof of Theorem 2 we assume that the chal-
lenge set is sampled interactively by the verifier. The soundness
of the non-interactive version follows by a standard argument.
Consider an adversary that can efficiently violate the soundness
of the protocol. This implies that such and adversary produces a
commitment (R, Zy, ..., Z,) such that for all Z; ¢ I it holds that
LHTLP.PSolve(pp, Z;) = §; where

ggi #R; - k.

Assume the contrary, then we could recover a valid signature
on m by interpolating §; with {s;};c, which gives us a valid sig-
nature (R,s) on m, by linearity. Further observe that all puzzles
(Z4,...,2Zy) are well-formed, i.e., the solving algorithm always out-
puts some well-defined value, except with negligible probability,
by the soundness of the range NIZK.

It follows that, given (Z1, ..., Z,) we can define some set I’ in
polynomial time by solving the puzzles and checking which of the
resulting §; satisfy the above relation. In order for the verifier to
accept, it must be the case that I’ = I which means that the prover
correctly guesses a random n-bit string uniformly chosen from
the set of strings with exactly n/2-many 0’s. This happens with
probability exactly (n{l_z")z

As discussed in the.proof of Theorem 2, the non-interactive
variant of the protocol can be shown to be simulation sound with
the same argument, assuming a simulation-sound range NIZK. O

B.3 Proof of Theorem 5 and Theorem 6

Proor. We show that the protocol (Figure 4) is private against
an adversary of depth bounded by T?, for some non-negative ¢ < 1.
We do this by defining a series of hybrids.

Hybrid Hp . . . H34+2n—r+1 : Defined as in the proof of Theorem 1.
Hybrid Haion—t+2 : In this hybrid the prover does the following. For

all i € I" it samples a uniform s; < Zg and sets R; = B% = (g°-h")%
and computes the corresponding puzzle as described in the protocol.
On the other hand, for all i ¢ I* it computes R; as

6(0)7!
R

2;(0)
Hj er* Rj]
The rest of the execution is unchanged. Note that for all i ¢ I* we

have that
1—[R;;(O) RYO g
jerx

R; =

as expected. It follows that the changes in this hybrid are only
syntactical and the distribution induced by this hybrid is identical
to that of the previous hybrid.

Hybrid Hat+on—s+3 : Defined as the previous hybrid except that R =
(x, y) is sampled as a uniform point in the curve and r is set to x
mod q. Again this change is only syntactical since R is uniformly
distributed in the previous hybrid.

Simulator S : The simulator is defined to be identical to the last hy-
brid. Note that no information about the witness is used to compute
the proof. This concludes our proof. O

1748

CCS 20, November 9-13, 2020, Virtual Event, USA

We now give the formal proof of Theorem 6.

ProoF. As discussed in the proof of Theorem 2, it suffices to
show that we can correctly reconstruct a valid signature as long as
at least one of the unopened puzzles contains some s; such that

Ri = (g° - h")%.
Let I be the set of disclosed puzzles, then we have that

Rfi(()) . HR?-(O) = (¢° hr)si~£’i(0) . n(gc . hr)sj'~{’j(0)
jeI Jel
R= (gc . hr)Si‘fi(O)‘*'Ziel 5545 (0)

R:(gc.hr)§

and x = r mod g, where R := (x,y), by definition of the verifica-
tion equation. It follows that (r, 5) is a valid signature on m. Then
the proof is completed by observing that a prover that commits
invalid s; on all unopened puzzles must have guessed the challenge
set I ahead of time, which happens only with negligible probability.

We again stress that the non-interactive variant of the proof
can be shown to be simulation-sound with the same argument,
assuming an appropriate instantiation of the range NIZK. O

C PROOF ANALYSIS FOR RANGE PROOFS

Soundness We now establish soundness of our protocol. As usual

for Fiat-Shamir protocols, we will consider soundness of the inter-

active protocol. Thus, fix time-lock puzzles Z3, ..., Zp. Since the

public parameters pp are chosen honestly, each time-lock puzzle Z;

has a unique corresponding plaintext x;, i.e. the time-lock puzzles

are perfectly binding commitments.

Now assume that Z1, . .., Zp is a false statement, i.e. there exists
an index j* such that xj« ¢ [-L, L]. We now show that the verifier
rejects the statement, except with negligible probability.

Let ty,. .., t; be the verifier’s challenge. We only consider a sin-
gle index i and show that the verifier accepts for this index with
probability at most 1/2. It follows by a standard parallel repetition
argument that the verifier accepts with probability at most 27%.
Thus fix an index i.

Further fix all t; j for j # j* for the moment. We distinguish two
cases.

(1) In this case it holds that y; + X je[k],j2* tijx;j € [-L/2,L/2].
Since t; j« is uniform in {0, 1}, it holds that Pr[t; j« = 0] %
Thus, it follows that Pr[y; + X je k] ti,jxj € [-L/2,L/2]] < 1/2.

(2) In this case it holds that y; + X e[k, jzj* tij*j € [-L/2,L/2].
It follows that y; + xj+ + X je[k],j2j* tijxj € [-L/2,L/2] as
xj« ¢ [=L,L]. Consequently, as t; j« is uniform on {0, 1}, it
holds that Pr[y; + Zje[k] ljxj € [-L/2,L/2]] <1/2

Applying the law of total probability, i.e. marginalizing over all

choices of t; j for j # j*, Pr[Verifier accepts for index i] < 1/2.1t
follows that Pr[Verifier accepts] < 27k,
Zero-Knowledge We now show that the proof-system is zero-
knowledge. We do this by showing that the corresponding interac-
tive proof system is honest-verifier statistical zero-knowledge. We
use the following standard lemma, proven e.g. in [5].

Session 6A: Signatures

LemMa 1. Let U_, | be the uniform distribution on the interval
[-7,7] and B € Z. Then the statistical distance between U|_, .| and

U= + B is B/r.
Our simulator § is now given as follows.

— Input: Statement pp, Zi, ..., Z; and challenge ty, ..., tp
Choose 01, ...,0; < [-L/2,L/2] and Wy, ..., W < ZN.
Fori=1,...,k compute G; <~ HTLP.PGen(pp, 0;; w;).

. ~ 1 £\
Forlzl,...,ksetDi<—Gi~(Z.) .

J=17

First note that the simulator S is efficient and produces an accept-
ing proof r if the statement is valid. We argue that the distributions
produced by the prover and the simulator S are statistically close,
given that B/L is negligible. A reasonable practical choice of pa-
rameters may be B/L = 2759, i.e. B is 50 bits shorter than L.

To prove the ZK property, it is sufficient to argue that the (Dy, .. .,
Dy) produced by the prover and (Dy, ..., D) produced by the
simulator are statistically close. Note that the (D;,...,Dy) are
uniquely specified by ((v1, w1), ..., (v, wi)) and the (Dy,...,Dy)
by ((1, 1), .-, (3, Wg))-

First note that the distributions of the w; and the w; are each i.i.d
uniformly random. Define the 7j; to be the plaintexts corresponding
to the time-lock puzzles D; produced by the simulator S. It holds for
all i € [k] that§; =d; — Z?:l tj jxj, where as above the x1,..., xy
are the plaintexts corresponding to Zi, ..., Z;. By Lemma 1 and a
hybrid argument it follows that (y1,...,yx) and (71, ..., Jx) have
statistical distance at most k - -2 = 2k - B/L, which is negligible.

L/2
This also implies that (Dy, ..., D) and (Dl, ..
close.

We remark that since our simulator does not use a trapdoor,
one can readily show that our proof-system satisfies simulation-
soundness, as is typical for proof-systems constructed via the Fiat-
Shamir methodology.

Output 7 « (Dj, 3, Wi)ie[k]

., Dy) are statistically

D VERIFIABLE TIMED COMMITMENT

Verifiable Timed Commitments for signing keys are similar to VTS
except that now the committer creates a commitment of a discrete
log (signing key) instead of a signature. In the context of a signature
scheme, formally, the Commit algorithm outputs a timed commit-
ment C to a signing key corresponding to a public key and a proof
7 for the same. The definitions of privacy and soundness follow
same as VTS.

THEOREM 7 (PRIvacy). Let (ZKsetup, ZKprove, ZKverify) be a
NIZK for Lyange and let LHTLP. be a secure time-lock puzzle. Then
the protocol as described in Figure 8 satisfies privacy in the random
oracle model.

Proor. We show that the protocol (Figure 8) is private against
an adversary of depth bounded by T¢, for some non-negative ¢ <
1. We now gradually change the simulation through a series of
hybrids and then we argue about the proximity of neighbouring
experiments.

Hybrid Hj : This is the original execution.
Hybrid H; : This is identical to the previous hybrid except that the
random oracle is simulated by lazy sampling. In addition a random

CCS 20, November 9-13, 2020, Virtual Event, USA

Setup: Same as Figure 2.
Commit and Prove: On input (crs, wit) the Commit algorithm
does the following.

e Parse wit := sk, crs := (crsrange, pp), pk = h as the public

key
e Foralli € [t — 1] sample a uniform x; < Zg4 and set
hj == g¥i
e Foralli e {t,...,n} compute
6(0)7"
xi=(sk= > x;-£;(0) |-4:(0)" and h; = p—k{_(o)
jelt] [Tjere by

where ¢;(+) is the i-th Lagrange polynomial basis.
e For i € [n], generate puzzles with corresponding range
proofs as shown below
ri « {0,1}},Z; « LHTLP.PGen(pp, xi;r7)
Trange,i < ZKprove(crsrange, (Zi, a, b, T), (xi, 7))
e Compute
I—H (Pk, (h1, 21, ﬂrange,l)s ooy (hn, Zn, ”range,n))
e The Commit algorithm outputs C := (Z1,...,Z,,T) and
7 = ({hi, Trange,itie[n)s I {00 Ti}ier)
e Finally output (pk, C,)
Verification: On input (crs, pk, C,) the Vrfy algorithm does the
following.
e Parse C:=(Zy,...,Z,,T),
= ({hi,”range,i}ie[n]’ls {xi,ri}ier) and
crs := (crsrange, PP)
o If any of the following conditions is satisfied output 0, else
return 1:
(1) There exists some j ¢ I such that [];¢; hfi(o) ~hj.j(0) + pk
(2) There exists some i € [n] such that
ZKverify(crsrange, (Zi, @, b, T), Trange,i) # 1
(3) There exists some i € I such that
Z; # LHTLP.PGen(pp, xj; i) or h; = g*i
(4 I+H (Pk, (h1, Z1, ”range,l), covs (hn, Zn, ”range,n))

1749

Figure 8: Verifiable Timed commitments for signing keys of
the form pk = ¢°, sk € {0, 1}*

set I* (where |I*| = t—1) is sampled ahead of time, and the output of
the random oracle on the cut-and-choose instance is programmed
to I'*. Note that the changes of this hybrid are only syntactical and
therefore the distribution is unchanged.

Hybrid H> : In this hybrid we sample a simulated common refer-
ence string crsrange. By the zero-knowledge property of (ZKsetup,
ZKprove, ZKverify) this change is computationally indistinguish-
able.

Hybrid Hs ... Hzyp : In the hybrid Hsy,, for all i € [n], the proof
Trange,i 1S computed via the simulator provided by the underly-
ing NIZK proof. By the zero-knowledge property of (ZKsetup,
ZKprove, ZKverify), the distance between neighbouring hybrids is
bounded by a negligible function in the security parameter.
Hybrid Haip . .. Hasan—t+1 : In the i-th hybrid Hsy;, foralli € [n—

(t—1)], the puzzle corresponding to the i-th element of the set I* is

Session 6A: Signatures

computed as LHTLP.PGen(pp, 0%; r;), where I* is the complement
of I*. Since the distinguisher is depth-bounded, indistinguishability
follows from an invocation of the security of LHTLP..
Hybrid Hat+on—s+2 : In this hybrid the prover behaves as follows.
For all i € I* it samples a uniform x; < Z4 and sets h; = g*i and
computes the puzzle as described in the protocol. On the other
hand, for all i ¢ I* it computes h; as

£(0)7"
pk

£; (0
njel* hj]()

The rest of the execution is unchanged. Note that for all i ¢ I* we

have that

1_[hj'j(O) . hfi(O) = pk

jerr
as expected. It follows that the changes in this hybrid are only
syntactical and the distribution induced is identical to that of the
previous hybrid.
Simulator S : The simulator is defined to be identical to the last hy-
brid. Note that no information about the witness is used to compute
the proof. This concludes our proof.

hi =

]

THEOREM 8 (SOUNDNESS). Let (ZKsetup, ZKprove, ZKverify) be
a NIZK for Lyange and let LHTLP. be a time-lock puzzle with per-
fect correctness. Then the protocol as described in Figure 8 satisfies
soundness in the random oracle model.

1750

CCS 20, November 9-13, 2020, Virtual Event, USA

Proor. We analyze the protocol in its interactive version and
the soundness of non-interactive protocol follows from the Fiat-
Shamir transformation [22] for constant-round protocols. Let A be
an adversary that efficiently breaks the soundness of the protocol.
In particular this means that the adversary produces a commitment
(Z1,...,2Zy) andfor all Z; ¢ I it holds that LHTLP.PSolve(pp, Z;) =
X; such that i

hi # gxi .
Assume the contrary, then we could recover a valid signing key
by interpolating %; with {x;};es, which satisfy the above relation
of the public key and secret key. Further observe that all puzzles
(Z4,...,2Zy) are well-formed, i.e., the solving algorithm always
outputs some well-defined value, except with negligible probability,
by the soundness of the range NIZK.

It follows that, given (Z1,...,Z,) we can recover some set I’
in polynomial time by solving the puzzles and checking which of
the signing keys satisfy the above relation. In order for the verifier
to accept, it must be the case that I’ = I which means that the
prover correctly guesses a random n-bit string uniformly chosen
from the set of strings with exactly n/2-many 0’s. This happens

(n/21)?

with probability exactly ~—=+—.
]

	Abstract
	1 Introduction
	1.1 Applications of VTS
	1.2 Our Contributions

	2 Technical Overview
	2.1 Related Work

	3 Preliminaries
	3.1 Cryptographic Building Blocks
	3.2 Verifiable Timed Signatures

	4 Efficient VTS Constructions
	4.1 Verifiable Timed BLS Signatures (VT-BLS)
	4.2 Verifiable Timed Schnorr Signatures (VT-Schnorr)
	4.3 Verifiable Timed ECDSA Signatures (VT-ECDSA)
	4.4 Batching Puzzle Solving
	4.5 Range Proof for Homomorphic Time-Lock Puzzles
	4.6 On The Setup Assumption

	5 Performance Evaluation
	5.1 Setup and Preliminaries
	5.2 Performance Evaluation
	5.3 VTS and Lightning Network

	6 Conclusion And Future Work
	Acknowledgments
	References
	A Cryptographic Building Blocks
	A.1 Digital Signatures
	A.2 Time-Lock Puzzles
	A.3 Homomorphic Time-Lock Puzzles

	B Security analysis of VTS constructions
	B.1 Proof of Theorem 1 and Theorem 2
	B.2 Proof of Theorem 3 and Theorem 4
	B.3 Proof of Theorem 5 and Theorem 6

	C Proof Analysis for Range Proofs
	D Verifiable Timed Commitment

