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Fig. 1. Demonstration of our density-based model being used to evaluate how differentiable clusters are in scatterplots that vary (a) the
number of points shown (500, 2500, and 12500) or (b) the opacity of points (1%, 5%, 10%, 50%, and 100%). The threshold plots (lower
right) show how easy it is to visually identify (horizontally, bigger is better) a certain number of clusters (vertically). For example, when
varying the opacity (b), the threshold plot shows that 3 clusters are most clearly visible in the pink (5% opacity) and green (10% opacity)
scatterplots, significantly less visible in the blue (1% opacity) scatterplot, and not visible at all in the purple (50% opacity) or orange
(100% opacity) scatterplots. Designers can use these threshold plots to select the visual encodings that maximize the clarity of data.

Abstract— Scatterplots are used for a variety of visual analytics tasks, including cluster identification, and the visual encodings used
on a scatterplot play a deciding role on the level of visual separation of clusters. For visualization designers, optimizing the visual
encodings is crucial to maximizing the clarity of data. This requires accurately modeling human perception of cluster separation,
which remains challenging. We present a multi-stage user study focusing on four factors—distribution size of clusters, number of
points, size of points, and opacity of points—that influence cluster identification in scatterplots. From these parameters, we have
constructed two models, a distance-based model, and a density-based model, using the merge tree data structure from Topological
Data Analysis. Our analysis demonstrates that these factors play an important role in the number of clusters perceived, and it verifies
that the distance-based and density-based models can reasonably estimate the number of clusters a user observes. Finally, we
demonstrate how these models can be used to optimize visual encodings on real-world data.

Index Terms—Scatterplot, clustering, perception, empirical evaluation, visual encoding, crowdsourcing, topological data analysis

1 INTRODUCTION

Scatterplots are commonly used to reveal several types of relationships
between quantitative variables [37]. Numerous perceptual studies have
evaluated the effectiveness of scatterplots in low-level tasks that include
assessing trends [22, 62], measuring correlation [7, 42, 66], and average
and relative mean judgments [38]. Clustering, in particular, is an
aggregate-level task [53, 61, 70] that has been utilized in a variety of
applications, e.g., weather forecasting, text analysis, and large-scale
data analysis [52, 78, 83, 87]. Clustering occurs when patterns in the
data form distinct groups [3, 71]. However, at its core, clustering is an
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ill-posed problem, as the “correct” clustering depends upon multiple
factors [23, 35].

When considering clustering in scatterplots, several factors play a
role in how they are perceived. Data aspects, such as the data dis-
tribution size/type and the number of data points, can influence the
visual presentation. On the other hand, visual encoding properties,
such as mark type, size, and opacity, have the potential to influence
perceptual judgments [15]. What is not well understood is how these
various factors, many of which are under the control of the visualization
designer, influence the perception of clusters. The presentation of data
is particularly important when considering that a biased representation
of the data may provide an inaccurate summary, leading to invalid
conclusions [39, 46, 50, 77].

In this paper, we explore the multi-factor judgments used in identify-
ing clusters in scatterplots through a crowdsourced user study. Based
upon this study, we develop 2 models for the perception of clusters
in scatterplots, using a data structure from Topological Data Analysis,
called the merge tree [84]. We validate the models on a variety of
variables—the number of points, cluster distribution size, size of data
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points, and opacity of data points—to verify the accuracy of the models
and analyze their effects. Our results show that the perception of the
number of clusters does indeed depend upon all 4 factors. Moreover,
we show that the merge tree-based models do match an average user’s
perception of the clusters in a given scatterplot.

Finally, we demonstrate how the models can be used to optimize
visualization designs. While some variables, such as distribution size,
are difficult to control in a visualization, designers can use our mod-
els and findings as a guideline to balance the design factors that they
do have control over—the number of points shown (e.g., via subsam-
pling [12, 45]), data point size [78, 80], or opacity [56, 60]—to opti-
mize the saliency of the clusters in a visualization. A demo of the
approach can be viewed at <https://usfdatavisualization.github.io/

TopoClusterPerceptionDemo>.

2 PRIOR WORK

We provide brief coverage of clustering in scatterplots and perception
of the visual factors evaluated in our study.

2.1 Clustering in Scatterplots
Clustering plays an important role in exploring and understanding
many types of data [70, 71]. A design factor survey defined clustering
as a high-level data characterization—the ability to identify groups
of similar items [71]. Amar et al. presented a set of tasks for visual
analytics that defined clusters as having “similar attribute values in a
given set of data” [3].

Taxonomies of Clustering Factors Identifying clusters is di-
rectly influenced by the perception of cluster separation, and much of
our understanding has come from studying dimension reduction (DR)
techniques. Lewis et al. compared the effectiveness of DR techniques
using human judgments and concluded that T-SNE performs better
than other commonly used methods when expecting clusters in the
data [49]. Etemadpour et al. showed, however, the performance of DR
techniques also depends on data characteristics [33], e.g., the separa-
bility of clusters, and later created a user-centric taxonomy of visual
tasks related to clustering in DR techniques [32]. A taxonomy of visual
cluster separation in scatterplots used a qualitative evaluation to identify
4 important factors—scale, point distance, shape, and position [73].
The taxonomy gives a context to our visual factor selection. Sedlmair
and Aupetit later evaluated 15 class separation measures for assessing
the quality of DR using human input for building a machine learning
framework [72] and later extended the framework to include an even
greater number of measures [5].

Perceptual Models of Clustering Several works have considered
how to model the perception of clusters. For example, a recent study
that used eye-tracking to analyze user perception in cluster identifica-
tion, highlighted the role of Gestalt principles, especially proximity
and closure [34]. Matute et al. provided a method to quantify and
represent scatterplots through skeleton-based descriptors that measured
scatterplot similarity [57]. However, their approach does not consider
visual encodings in the evaluation. ScatterNet, a deep learning model,
captures perceptual similarities between scatterplots to emulate human
clustering decisions but lacks explainability in the choices [54]. The
scagnostics technique focused on identifying the patterns in scatter-
plots, including clusters [20]. However, a study by Pandey et al. showed
that they do not reliably reproduce human judgments [65]. Recently,
ClustMe used visual quality measures to model human judgments to
rank scatterplots [1]. ClustMe performed well in reproducing human
decisions for clustering patterns. In contrast, we are studying the ex-
tent to which various factors influence the perception of clusters and
building explainable models of how humans perceive cluster separation
using the merge tree data structure.

Clustering in Non-Scatterplot Contexts Clustering has been
studied in other types of visualization, such as text [2], maps [52, 83],
and bubble charts [78]. A task-based evaluation found that on small
data, bar and pie charts outperformed tables, scatterplots, and line
charts in clustering tasks [69]. The performance in cluster perception in
pie charts is traced back to its effectiveness in facilitating proportional

judgments through a part-whole relationship [26, 74]. Similarly, we
hypothesize that the relative distance between clusters and the relative
density of the image influence cluster identification.

2.2 Factor Selection on Scatterplots
Several prior perceptual studies have demonstrated the effect of visual
encodings on analysis tasks [15, 39, 77]. A variety of factors influence
group or separation perception [88], including color, size, shape [73],
orientation [16], texture [4], opacity [60], density [86], motion and
animation [11, 31, 81], chart size [44], and others. Other studies have
demonstrated a perceptual effect in scatterplots when changing factors
in the data, including data distribution types, number of points, the
proximity of concentrations of points, data point opacity, and relative
density [14,18,38,39,46,68,77]. Overdraw in scatterplots, in particular,
has been addressed with a variety of techniques, e.g., splatterplot [59],
recursive sampling [12], set cover optimization [45], feature-preserving
visual abstraction [10], or by applying various clutter reduction tech-
niques [29], e.g., sampling [21, 27, 28, 85] or changing opacity [56].

From this collection of possible factors, we focus our study specif-
ically on the factors that most influence visual density, including the
distribution of and distance between concentrations of points, the num-
ber and size of data points, and data point opacity in the visualization.

Point Distribution Several prior studies have investigated the influ-
ence of the distribution of data points on cluster perception. An early
study of 8 participants on 24 homogeneous dot patterns studied the
impact of varying densities and gaps between 2 square-shaped clus-
ters [63]. Sadahiro later developed a mathematical model to represent
cluster perception in point distributions based on 3 factors—proximity,
concentration, and density change—and suggested perception is sig-
nificantly influenced by the concentration and density change [68].
Similarly, the scagnostics density property identifies concentrations of
points directly influenced by the distribution of points [86].

Number of Data Points Sadahiro also showed that the higher
the number of points in a given area, the higher the chances are that
they would be perceived as a cluster, due to increased density [68].
Gleicher et al.’s empirical study asked participants to compare and
identify average values in multi-class scatterplots [38]. It demonstrated
that judgments are improved with a higher number of points.

Size of Data Points The size of symbols is an important factor in
visual aggregation tasks in scatterplots [78]. As the size of data points
increases, so does the density, which directly influences cluster percep-
tion [68]. Symbol size also has a direct influence on discriminability in
certain tasks [50], e.g., in color perception tasks [76]. Szafir’s study on
color-difference perception found that perceived color difference varies
by the size of marks [77]. Size also influences search task effective-
ness. Gramazio et al.’s study on target search demonstrated that while
the quantity of data points has little effect on searching for a target,
increasing symbol size reduces search time in a display of random
points [39].

Opacity of Data Points As the number of data points increases,
scatterplots suffer from overplotting, which obscures the data distribu-
tion. Reducing mark opacity can alleviate overplotting to aid various
visual analytics tasks [70], e.g., spike detection in dot plots [18]. Fur-
thermore, different opacity levels aid in different visual tasks—while
low opacity benefits density estimation for large data, it also makes
locating outliers more difficult [60]. Matejka et al. defined an opacity
scaling model for scatterplots that is based on the data distribution
and crowdsourced responses to opacity scaling tasks [56]. Still, their
study did not evaluate how a scatterplot design based on data symbol
opacity can affect user performance on visual analysis tasks. Somewhat
related to opacity is luminance, which can be modeled using extreme
end lightness [51], creating a popout effect [41].

3 STUDY METHODOLOGY

We investigate how visual factors affect subject responses in the task of
counting the number of clusters in a scatterplot. From this, we build
and analyze two models to estimate the number of clusters an average
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user would perceive. One model is based on the separation distance
between distributions, and the other uses the visual density of points.

3.1 Factors
Data are presented as point marks (i.e., circles ) on the scatterplots
and groups of similar objects form clusters. Based on our review of
prior work, we chose to use a normal distribution to generate clusters,
and we selected the following experimental factors:

1. Distribution size (S)

2. Number of data points (N)

3. Size of data points (P)

4. Data point opacity (O)

3.2 Experiments Setup
We designed our experimental study in 3 stages: (1) a preliminary
experiment to calibrate the experimental factors; (2) a crowdsourced
Amazon’s Mechanical Turk (AMT) experiment to validate our models;
and (3) a follow-up AMT study to elaborate upon 1 of our models.

3.3 Data Generation
Datasets are synthesized using 5 input parameters (see Fig. 2): stimuli
dimensions ([X×Y ] pixels); number of clusters (C); distribution size,
i.e., standard deviation (S pixels); number of points (N); and signal-to-
noise ratio (SNR). First, C cluster centers are randomly placed within
a “safe zone” defined as 1 standard deviation from the stimuli (image)
border, in other words, x ∈ [S,X −S] and y ∈ [S,Y −S]. Each cluster
is assigned an equal share of the available points (N/C). Points are
randomly placed around their cluster center using a normal distribution
with a standard deviation of S pixels. Points outside of the image
dimensions are discarded without replacement. Next, an additional
N/SNR points representing noise are placed randomly using a uniform
distribution across the image dimensions. Finally, to generate images,
2 more input parameters are used: point size (P pixels) and point
opacity (O). The points are drawn as filled circles of P area with
O opacity. Example stimuli are shown in Fig. 3.

In all experiments some inputs were kept constant:

• Stimuli dimensions ([X×Y ]): [550px × 550px] — The vertical
size was selected such that the image would fit on the majority of
desktop monitors without scrolling [75]. The horizontal resolution
was selected to match, avoiding any directional bias.

• Signal-to-noise ratio (SNR): 10 : 1 — We manually optimized
the SNR by looking for a high level of noise that would not
overwhelm the clusters. We ended at 10 : 1, making the maximum
total number of data points in any given dataset N +0.1 ·N.

55
0p

x

Safe Zone

Standard Deviation (S)

550px Fig. 2. Illustration of the data gener-
ation. All plots are 550× 550. Clus-
ter centers are placed within a “safe
zone”, 1 standard deviation away from
the boundary. Points are sampled
from a normal distribution (blue), and
points outside of the image are dis-
carded without replacement (gray).

4 PRELIMINARY EXPERIMENT

We performed a preliminary user study to test initial hypotheses and
calibrate parameters for the larger AMT experiment. Based on our ob-
servation and study of prior work, we drafted the following hypotheses:

[H1] The distribution size of clusters affects the accuracy in cluster
count identification in scatterplots.

[H2] The number of data points affects the accuracy in cluster count
identification in scatterplots.

S=40px
N=500
P=3px

S=40px
N=2500
P=3px

S=40px
N=12500
P=3px

S=70px
N=2500
P=1px

S=70px
N=500
P=3px

S=70px
N=2500
P=3px

S=70px
N=12500
P=3px

S=70px
N=2500
P=7px

Fig. 3. Example stimuli with the same cluster centers (C = 5), but varying
distribution size (S), number of points (N), and size of points (P).

4.1 Properties and Data Generation
As aligned with previous empirical studies, e.g., [69], we selected pa-
rameter values to maintain a reasonable level of difficulty. We designed
the task such that the response time for a single stimulus would be 5 to
20 seconds. We selected the following experimental factors:

• Number of clusters (C): {4−12}— The number of clusters was
selected using trial-and-error to avoid tasks that were too easy
(i.e., trivial to count) or too difficult (i.e., larger number or sparse
clusters).

• Data point size/area (P): {20px} — Experimental calibration
was not needed for point size, as reasonable values could be
determined analytically. Therefore, the point size was fixed in
order to calibrate other factors.

• Number of data points (N): {1000,5000,10000}
• Distribution size (S): {20px,35px,50px,65px,90px} — N and S

were the main factors to test/calibrate. The value ranges were
selected using our observation of sample stimuli and judgment of
factors from prior work, considering sufficient range, minimum
and maximum values, and the number of experimental conditions
that could be reasonably tested.

• Data point opacity (O): {100%}— Points were fully opaque.

The dependent variable we tested was:

• User-selected number of clusters (U): [1−15]

Dataset generation for the preliminary experiment was done in the
following manner—for every combination of S and N, 500 stimuli (i.e.,
images) were generated with a random number of clusters, C. Other
parameters were fixed as described, leading to a pool of |S| × |N| ×
500 = 7500 stimuli.

4.2 Study Procedure
We developed a webpage for the experiments, where each participant
was shown 50 images from the pool of 7500, one at a time, and asked
the number of clusters they could see. Answers were recorded using
a drop-down box with options 1−15. The maximum allocated time
for each task was 20 seconds. At the expiration of time, the page was
automatically advanced. To mitigate any effects or bias, we placed
a blank screen between every 2 tasks [43]. At the beginning of the
experiment, we included a brief introduction to clustering and 3 training
tasks for each participant, which were similar to the study tasks that
followed. The experiment was expected to last 20-30 minutes, including
demographic details and training tasks.

We recruited 30 participants from the College of Engineering at the
University of South Florida for the IRB approved study. Participant
ages ranged from 18-28 (µage=23), with 24 males and 6 females. No
compensation was provided. In total, 50 trials × 30 participants =
1500 responses were collected. While performing data quality checks
on the responses, we found discrepancies—participants responding to



stimuli in less than 1 second or those with responses of 1 cluster to
all stimuli—in 4 participants results and removed them from analysis,
leaving 1300 responses (26×50). We further identified and removed
161 stimuli that had been reused from the pool only keeping the first
occurrence1, leaving 1139 responses for analysis.

4.3 Analysis and Result

To measure accuracy for a given scatterplot, τ , we use the differential:
D(τ) =Uτ −Cτ , where Uτ is the user response and Cτ is the number of
clusters in the data. We analyzed the differential against the independent
factors distribution size (S) and the number of data points (N) using a
2-way ANOVA test. We also calculated partial eta-squared (η2). We ob-
served that S and N have a significant effect on the accuracy in identify-
ing the number of clusters, (FS(4,1130) = 48.57, p < 0.01,η2 = 0.12)
and (FN(2,1130) = 8.29, p < 0.01,η2 = 0.02), respectively. These
results confirm [H1] and [H2].

Although we found a significant effect, user accuracy had a low
average µD =−3.27 and a high standard deviation σD = 2.66 (accurate
predictions would have an average of 0 with a small standard deviation).
Fig. 4 shows the histogram of differentials, which appear as a truncated
normal distribution. The negative shift in the µD revealed that of the
number of points or distribution size alone is insufficient to model the
number of clusters users would perceive—an accurate model needs to
consider the overlap of clusters. For example, in Fig. 3, all images have
an identical number of generated clusters, but the interaction between
clusters causes differing numbers of clusters to appear. Instead, the
distance between clusters or the visual density of the data needs to be
considered as an additional factor in cluster perception modeling. The
next section introduces models that each considers one of these factors.

5 TOPOLOGY-BASED MODELING OF CLUSTERING

We propose 2 models for capturing human perception of clusters based
upon approaches from Topological Data Analysis (TDA) [84]. TDA is
a set of approaches used to study the “shape” of data, including scalar
fields [67, 79], vector fields [82], and high-dimensional data [13, 55].

Both models capture the clustering structure using a data structure
called the merge tree. The merge tree encodes a series of topological
events in the form of creation and merging of components (specifically,
0-dimensional homology groups), based upon properties of the space
under a real-valued function. The first model, based upon the distance
between cluster centers, is captured using a technique called persistent
homology [24]. The second model, based upon the visual density of
points, is captured by calculating the join tree of a scalar field [9].

5.1 Distance-based Model

The distance-based model tries to capture human perception of clusters
by considering the spatial resolution at which 2 or more cluster distri-
butions will blend to be perceived as 1. We do this using the technique
of persistent homology (PH) [24]. We provide a simplified view of PH
under our limited context. For a detailed introduction, see [25].

1We acknowledged this is a flaw in our preliminary study design. However,
since our primary goal was parameter calibration, the experiment still has value.
We avoid this bias in our AMT experiment by generating stimuli per participant.
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Fig. 4. The histogram of user responses differential, D, against fre-
quency for the preliminary experiment, appears as a truncated normal
distribution.

Construction begins with a finite set of points V representing cluster
centers embedded in Euclidean space (i.e., their positions on the scat-
terplot). Given a real number D >= 0, we consider a set of balls of
diameter D centered at points in V . Continuously increasing the diam-
eter, 0 = D0 ≤ D1 ≤ D2 ≤ ·· · ≤ Dm = ∞, forms a 1-parameter family
of nested unions of balls. If at a given diameter Di, 2 balls overlap, we
consider these balls as a single component. Fig. 5(b) shows an example
dataset with 4 values of Di. As Di increases, more balls intersect and
merge into larger components. At D∞, all balls will overlap, forming a
single component.

To compute the PH, the points V form the vertices of a graph. A
1-simplex (an edge) is formed between 2 points in V if and only if
their balls intersect (i.e., the distance between them is ≤Di). Sweeping
Di from 0→ ∞, as Di increases, new edges are added to the graph.
Components are efficiently calculated at each step by finding connected
components of the graph using the set union data structure. The total
computation time is O(|E|α(|V |)), where E are the edges of the graph,
and α refers to the inverse Ackermann function, an extremely slow-
growing function. At D∞, PH forms the complete graph. Therefore,
there are O(|V |2) edges.

Creating the merge tree from the prior construction is relatively
simple. The merge tree is parameterized with respect to D. At D0 = 0,
all cluster center components are born. In other words, the balls have
0 volume. These birth events appear in the merge tree as 1 node
per cluster, e.g., see the bottom of Fig. 5(c). As Di increases, when
2 components first merge at a given Di, a merge node is added to
the merge tree at Di connecting those components. For example, at
D1, the purple and pink components intersect, causing them to merge
into a single component. From that point forward, 1 of the merged
components dies (i.e., no longer exists), while the other takes on the
identity of the new merged component (in this context, it does not matter
which). Referring back to Fig. 5(c), when purple and pink merge at D1,
pink dies, while purple takes on the identity of the merged component.
When the components finally merge into a single component, yellow in
our example, this component dies at ∞. In other words, no matter how
large the balls get, that 1 component will exist. It is also relevant to note
that this particular construction has many parallels to single-linkage
hierarchical clustering.

This model has 2 main limitations: (1) it assumes that clusters are
isotropic and have similar distributions; and (2) it requires knowledge
about the location of cluster centers. Our next model uses a related
framework to overcome these limitations.

5.2 Density-based Model

The density-based model attempts to directly identify the relative visual
density at which users will differentiate between clusters. The density-
based model is found by calculating the join tree of a scalar field. We
again provide a simplified treatment—for a detailed description, see [9].

First, a 2D histogram of the visual density is created for the scat-
terplot (i.e., a density plot). The image plane is divided into a set of
grid cells of uniform width and height (selection of this resolution is
discussed in our evaluation). Within each grid cell, the number of white
pixels is counted, and this is considered the density2, fxy. For illustra-
tive purposes, this value is mapped to the range F ∈ [0,255], where 0 is
empty (i.e., completely black) and 255 is full (i.e., completely white),
as shown in Fig. 6(a).

The components of the density histogram are identified by sweeping
F , such that 0 = F0 < F1 < F2 < · · ·< Fm = ∞. At each Fi, histogram
cells where fxy ≤ Fi are extracted and components found by joining
neighboring cells (we use the 8 surrounding neighbors). This is com-
puted by treating histogram cells as graph nodes, V , iff fxy ≤ Fi. Graph
edges, E, connect vertices that are neighbors in the density histogram,
and connected components are extracted using the set union data struc-
ture with performance O(|E|α(|V |)). Since only immediate neighbors
are considered for connecting, there are O(|V |) edges.

2We acknowledge this is not the usual calculation of density, e.g., see [20],
which would count the number of black pixels. However, our configuration
makes the remainder of the discussion easier.
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Fig. 5. With the distance-based model, (a) given
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tracted. (c) Tracking components across density
values leads to the creation of the merge tree,
which marks topological events with nodes.
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Fig. 7. The persistence threshold plots for the
(a) distance- and (b) density-based models in
Fig. 5 and Fig. 6, respectively. The horizontal
axis represents the threshold, while the vertical
axis shows the number of clusters. The red
line shows how a threshold can be extracted
from a given number of clusters and vice versa.

To construct the merge tree, sweeping Fi from 0→∞, nodes are born
at the first Fi, where a new component appears. As Fi is increased, the
components expand until they merge with another component. When
components merge, the component with the more recent birth (i.e.,
higher fxy) dies, while the component with the lower fxy continues.
For example, in Fig. 6(c), at F1, the pink and purple components
are about to merge. When they do at F2, the pink component dies
since it was born more recently (i.e., fpink > fpurple), and the merged
component in purple continues. Once all clusters have merged into a
single component, that component dies at ∞ (i.e., it always exists, no
matter how large Fi gets).

The value of this model over the distance-based model is that it only
requires the input scatterplot. It needs no information about the cluster
centers, and it makes no assumptions about the distribution of points
within those clusters.

5.3 Persistence Threshold Plot

Thus far, the models only encode the clustering structure as a function
of distance or as a function of density in the merge tree. The method
to select the number of clusters that will be perceived by a user is
calculated similarly, irrespective of the underlying model, though the
input parameters (distance vs. density) have different meanings.

For this, we generate a persistence threshold plot. For a given merge
tree, each component has its persistence, ρ , calculated. The persistence
is the difference between birth and death values of the component (i.e.,
ρ = death−birth)3. The fundamental intuition behind persistence is
that it measures the relative scale of a feature (e.g., the relative change
in density), as opposed to the absolute scale of the feature (e.g., the
absolute density value). We use persistence as a threshold to model the
number of clusters a user would count in a scatterplot and vice versa.

This information is represented in a persistence threshold plot or
threshold plot. To form the plot, for the threshold T ∈ [0,∞), at a given
Ti, we count the number of clusters whose ρ > Ti. This information
is encoded into the line chart (see Fig. 7) by plotting the threshold T
horizontally and the number of clusters vertically.

Given these functions, we have the ability to determine critical
thresholds (using either model) for the visual separation of clusters.
For example, the red dashed lines in Fig. 7(b) show the persistence
threshold (Tde) that corresponds to perceiving 3 clusters and vice versa.
With this relationship, our models can now be used to estimate the
number of clusters that a user would select in a given scatterplot.

3For the distance-based model, birth is always 0 making ρ = death. However,
the full definition unifies the distance- and density-based models.

6 MAIN EXPERIMENT

We evaluate how well the merge tree models estimate the number of
clusters perceived in a scatterplot by studying 3 factors (S, N, P). In
addition to revisiting [H1] and [H2], we include 3 new hypotheses:

[H3] Data point size (P), having a direct impact on visual density, af-
fects the accuracy in cluster count identification in scatterplots.

[H4] Using a persistence threshold correlated to the distribution
size (S) of normally distributed clusters, the distance-based
model will estimate the number of clusters perceived by users.

[H5] Using a persistence threshold correlated to the size of data
point (P), the number of data points (N), and by their interac-
tion effect (N ∗P), the density-based model will estimate the
number of clusters perceived by users.

6.1 Properties and Data Generation

Using the information learned in preliminary experiment, following
values were modified for the main experiment (i.e., all others remained
the same, see Sect. 4.1):

• Data point size/area (P): {1px,3px,5px,7px}— On the low end,
1px point size is the minimum possible value. On the high end,
7px was chosen in combination with the number of points to limit
the maximum visual density to ∼ 30% of a given stimulus.

• Number of data points (N): {500,2500,12500}— To decide the
number of data points, we considered if data points are uniformly
distributed, the maximum visual density is MV D = N∗a

X∗Y , where
[X ×Y ] are stimuli dimensions [550× 550]. With a target of
< 30%, using P = 7px and N = 12500 the visual density, MV D =
0.29, i.e., 29% of pixels filled. We noted a logarithmic effect
in the preliminary experiment. Therefore, logarithmic intervals
(base 5) are used.

• Distribution size (S): {25px,40px,55px,70px,85px}— The distri-
bution size was chosen to be similar to the preliminary experiment,
slightly adjusted to have fixed intervals of 15px between values.

The data generation process is kept similar to the preliminary ex-
periment. A key difference is that task stimuli are generated for each
participant covering all combinations of factors. For each subject,
|S|× |N|= 15 dataset are generated and rendered into |15|× |P|= 60
scatterplot stimuli. Each participant received similar variability and the
same combination of factors in their stimuli.



6.2 Study Procedure
This study was designed similarly to the preliminary experiment (see
Sect. 4.2) with the following variations. Each subject was shown in
stimuli from their own pool of 60 stimuli in random order, and we
included a post-test questionnaire, asking participants to describe their
criteria for selecting the number of clusters.

We recruited participants from Amazon’s Mechanical Turk (AMT)
for the IRB approved study [8, 19]. Based upon a post hoc power
analysis of the preliminary experiment data, we recruited a total of 40
participants (21 male, 19 female; ages: [18−64], median age group:
[25−34]) limited to the US or Canada. 45% of participants reported
having corrected vision. All participants had a HIT approval rate of
≥ 95%, and were compensated at US Federal minimum wage.

In total, 60 trials × 40 participants = 2400 responses were collected.
We carried out some data quality checks on responses, and the following
responses were eliminated—9 responses with task completion time of
less than 1 second and 27 responses that ran out of time —leaving a
total of 2364 responses for analysis.

Suitability of Studying Point Size Using AMT Studying visual
factors, mark size in particular, on a crowdsourced environment has
potential biases due to lack of control of user hardware, retinal size,
viewing distance, ambient lighting, etc. For example, search task perfor-
mance decreases as the viewing angle increases [30]. However, this lack
of control is a commonly accepted limitation in crowdsourced studies—
numerous recent AMT studies have considered mark size, among other
properties, that could be impacted by this lack of environmental control,
e.g., Szafir’s study of perceived color differences [77], Chung et al.’s
evaluation of orderability in visual channels [14], and Kim and Heer’s
study of the effectiveness of multiple visual encodings [46].

6.3 Analysis Methodology
We ran our data and user responses through the merge tree-based
models. For the distance-based model, we first take the centers of each
cluster to build the model. Then, we use the user response to the number
of clusters (U) to extract a persistence threshold, Tdi. After generating
the threshold for all stimuli, a linear regression, using linear least
squares, is calculated for Tdi on the factor distribution size, T S

di(s) =
c1 · s+ c2, where the distribution size, s, is input, and c1 and c2 are
calculated by the regression. Fig. 8(a) shows the resulting regression.

The density-based model is built by using the scatterplot to generate a
visual density histogram, which is the input to the model. Then, the user
response to the number of clusters (U) is used to extract a persistence
threshold, T ∗de. For the density-based model, multiple factors are tested
(N, P, and N ∗ P), each requiring their own linear regression, i.e.,
T N

de(n) = c1 ·n+c2; T P
de(p) = c1 · p+c2; and T N∗P

de (n, p) = c1 ·n+c2 ·
p+ c3.

Threshold functions (T S
di and T ∗de) from the merge tree are used to

calculate the model-predicted number of clusters. To measure the
accuracy of the user response on a given scatterplot, τ , we add new
differentials, DS

di and D∗de, for the distance- and density-based models,
respectively:

DS
di(τ) =Uτ −Cdi(T S

di(τ)) D∗de(τ) =Uτ −Cde(T ∗de(τ))

where Uτ is the user response, and Cdi and Cde are the number of
clusters produced by the models using a given threshold. We used
the value of differentials (D, DS

di, and D∗de) as the primary measure to
analyze the effects of the factors in the cluster counting. The histograms
of the differentials for both models can be found in Fig. 9.

The study followed a within-subjects design, where all 40 subjects
were exposed to all the same treatment. Hence, we use repeated mea-
sures (RM) ANOVA to analyze the effects of the factors on D. For
some results, due to violations of sphericity, according to Mauchly’s
test, reported degrees of freedom and p-values are Greenhouse-Geisser
corrected (highlighted in green) [40, 58]. Along with RM ANOVA,
we calculated partial eta-squared (η2). As per Cohen’s guidelines for
measures of η2: 0.01 denotes small effect, 0.06 denotes medium effect,
and 0.14 denotes large effect [17].
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Fig. 8. Plots of the threshold (T S
di) and differential (DS

di) against distribution
size (S) for the distance-based model. (a) The regression (in black) T S

di(x)
is extracted for the distribution size (S), in green. (b) The regression is,
in turn, used to calculate the model-predicted number of clusters, which
are plotted by the mean and 95% confidence interval of the differential
(DS

di) against different values of distribution size (S).

6.4 Results
6.4.1 Model Accuracy
The distance- and density-based models both successfully estimated
user perception for counting clusters. Fig. 9 shows the performance
of all models in terms of differential. From our analysis, we observed
the highest estimation accuracy was achieved using the density-model,
from best to worst, DN∗P

de : (µ = 0.18, σ = 1.58); DP
de: (µ = 0.50, σ =

1.67); and DN
de: (µ = −0.53, σ = 2.14). The distance-based model

performs next best, DS
di: (µ = 1.12, σ = 2.64). Whereas, without a

model performed the worst, D: (µ =−3.74, σ = 3.00).

6.4.2 Factor Effect Analysis Without a Model
We performed 3-factor RM ANOVA testing to analyze the factors,
distribution size (S), number of points (N), and point size (P) in terms
of the effect on the differential without a model, D.

We observed that the distribution size (S) and the number of
points (N) had a significant effect for counting clusters with respect to
the differential, D, with (FS(4,2304) = 286.11, p < 0.001,η2 = 0.32)
and (FN(1.98,1576.43) = 33.98, p < 0.001, η2 = 0.029), respectively.
On the other hand, data point size (P) failed to reach significance, with
(FP(3,2304) = 0.21, p = 0.889, η2 = 0.0002). We also tested for in-
teraction effects and only observed a significant effect between S and
N, (FS∗N(8,2304) = 8.18, p < 0.001,η2 = 0.028).

The η2 analysis showed a large effect size on distribution size (S)
and a small on the number of points (N) and interaction effect S ∗N.
This is likely because smaller distributions create denser clusters with
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Fig. 9. Histograms for user response differential (horizontally) against fre-
quency (vertically) for (a) no model (skew due to users’ underestimation),
(b) the distance-based model, and (c) density-based models. Responses
that are closer to 0 imply a good fit for the data.



Table 1. Distance-based model Repeated-Measures ANOVA results on
the effect of visual factors on the differential, DS

di.

Factors Df F-value P-value η2 σ

Distribution size (S) 4 552.9 ≤ 0.001 0.4900 1.91
Number of points (N) 1.98 051.39 ≤ 0.001 0.0420 2.61
Size of points (P) 3 000.41 0.746 0.0005 2.64
S*N 8 002.72 0.006 0.0100 -
S*P 12 000.13 1.000 0.0006 -
N*P 6 000.08 0.998 0.0002 -
S*P*N 24 000.21 1.000 0.0020 -

-: not calculated; Greenhouse-Geisser corrected.

better separation, while larger distributions blend to create ambiguous
boundaries. From these results, both [H1] and [H2] are reconfirmed.
The lack of significance on point size (P) indicates that [H3] should be
rejected. However, we will revisit this hypothesis later.

6.4.3 Distance-based Model Factor Analysis
Using persistence threshold on distribution size, T S

di, we calculated
the differential (DS

di) and performed 3-factor RM ANOVA to observe
the main effects of the individual factors distribution size (S), number
of points (N), and point size (P), as well as interaction effects (see
Table 1).

The analysis identified a significant effect of distribution size (S) and
the number of points (N) on the differential (DS

di), but the point size (P)
failed to reach significance. In particular, we found a large effect for
distribution size (S) on DS

di. We also observed a small-medium effect
in the number of points (N) and a negligible effect on the point size (P).
We did not anticipate any interaction effects, and only S ∗N showed
a small effect. In terms of accuracy, as pointed out in Sect. 6.4.1, the
distance-based model improved overall accuracy over using no model
(see Fig. 9(b)). Investigating further, Fig. 8(b) shows the accuracy per
distribution size. Note that the accuracy was sound for all distribution
sizes, except at S = 85, which negatively impacted overall performance.
We speculate that this is due to the significant blending of distributions
at this extreme. Given the large effect in S and overall improvement in
accuracy, we consider [H4] confirmed.

6.4.4 Density-based Model
For the density-based model, we calculate 3 variations of the threshold
and differential that use the factors that most directly influence visual
density. Those are the number of data points (T N

de/DN
de), the size of

data points (T P
de/DP

de), and their interaction (T N∗P
de /DN∗P

de ). For each, we
performed 3-factor RM ANOVA testing on the individual factors the
distribution size (S), the number of points (N), and the point size (P),
as well as interaction effects (see Table 2).

Histogram Resolution The density-based model uses the visual
density of a given scatterplot to model cluster perception. To calculate
visual density, a 2D histogram is calculated on the image with bins
of uniform width and height, [Bpx×Bpx]. The choice of bin size for
the density histogram is potentially influential in our analysis, as bins
that are too small may cause instability, and bins that are too large may
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Fig. 11. Density-based model mean and 95% confidence intervals of user
response differential, D∗de, on factors with density histogram [20px×20px].

miss clusters. To determine the appropriate bin size, we performed an
analysis on the data from Fig. 3. A set of stimuli images are generated
with fixed values for factors (C = 6, N = 2500, and P = 7px) and
different values for S = {25px,40px,55px,70px,85px}. We plotted the
normalized density threshold (i.e., density threshold divided by area of
a bin, i.e., Tde/B2) generated by U = 6 clusters for 5 different bin sizes
(see Fig. 10). The results showed instability in the density threshold
for smaller values and a stable result starting at [20× 20]. For this
reason, 3 resolutions of histogram cell sizes are reported: [10px×10px],
[20px× 20px], and [40px× 40px], but our main discussion focuses on
[20px×20px].

Number of Points Model (T N
de/DN

de) RM ANOVA results demon-
strate significant and consistent main effects of S, N, P, and interaction
effect of N ∗P, which can be seen in Table 2. Point size has a large
effect on Dde, confirming our hypotheses and previous work (e.g., [68])
of density’s influence on cluster perception. The number of points
showed a small-medium effect size on Dde, also align with our hypothe-
ses. The accuracy of the number of points model was the worst of the
3 density models, though still significantly better than no model (see
Fig. 9(c)). The accuracy of the model, plotted by the number of points
in Fig. 11(a), shows lower accuracy as the number of points increases.

Point Size Model (T P
de/D

P
de) In this model, the number of points

showed a medium-large effect size, while point size demonstrated a
medium effect size for the differential. On the other hand, interaction
of N ∗P results small values of η2 (see Table 2). The overall accuracy
of this model was better than the number of points model (see Fig. 9(c)).
Fig. 11(b) shows the accuracy per point size. The model was largely
accurate, except for the smallest size, P = 1px.

Interaction Model (T N∗P
de /DN∗P

de ) Similar to the previous 2 models,
significant effects were observed for all factors. However, only point
size demonstrated medium effect size (see Table 2). This model showed
the best overall accuracy of any model tested (see Fig. 9(c)). This
makes logical sense, as the density is the combination of the number
of points and their size. Fig. 11(c) shows the accuracy per number of
points and per point size. For both cases, the accuracy was improved.
However, P = 1px was still the worst performing category.

Our analysis showed the number of points, point size, and their
interaction all had significant effects and improved accuracy over no
model. Therefore, we consider [H5] confirmed. Furthermore, we
identified some large effects with point size for the density-based model,
and this indirect relationship confirms [H3].

6.4.5 Post-Test Questionnaire
To further support our hypotheses, we asked the participants to state
the criteria that influenced their counting of clusters in a free-response
format at the end of the experiment. Their responses largely mirrored
our findings—10% cited the size of symbol; 25% responses cited
something amounting to distribution size; 25% cited distance between
clusters; and 65% of responses included density as a factor4.

6.5 Follow-up Study on Opacity
We now evaluate opacity modification, which studies have shown to
be more effective in overdraw reduction than other techniques, such as

4Some subjects listed multiple criteria.



Table 2. Density-based model Repeated-Measures ANOVA results on the effect of visual factors for user response accuracy (i.e., differential), D∗de.

Distribution Size (S) Number of Points (N) Point Size (P) Interaction (N*P)
Model Grid Df F-val p-val η2 Df F-val p-val η2 Df F-val p-val η2 Df F-val p-val η2 σ

10px×10px 4 061.45 ≤ 0.001 0.090 2 122.60 ≤ 0.001 0.090 3 086.28 ≤ 0.001 0.099 6 11.28 ≤ 0.001 0.028 1.640
DN

de 20px×20px 4 014.99 ≤ 0.001 0.020 2 058.80 ≤ 0.001 0.045 3 301.80 ≤ 0.001 0.280 6 10.20 ≤ 0.001 0.025 1.760
40px×40px 4 129.22 ≤ 0.001 0.180 2 216.00 ≤ 0.001 0.150 3 613.20 ≤ 0.001 0.430 6 56.90 ≤ 0.001 0.120 2.440
10px×10px 4 088.58 ≤ 0.001 0.130 2 096.50 ≤ 0.001 0.075 3 006.00 ≤ 0.001 0.086 6 1.62 0.103 0.004 1.680

DP
de 20px×20px 4 004.98 ≤ 0.001 0.008 2 143.80 ≤ 0.001 0.100 3 074.30 ≤ 0.001 0.080 6 11.40 ≤ 0.001 0.028 1.520

40px×40px 4 094.45 ≤ 0.001 0.130 2 439.70 ≤ 0.001 0.270 3 135.40 ≤ 0.001 0.140 6 010.80 ≤ 0.001 0.250 2.070
10px×10px 4 057.95 ≤ 0.001 0.090 2 383.90 ≤ 0.001 0.240 3 246.30 ≤ 0.001 0.240 6 130.30 ≤ 0.001 0.250 1.710

DN∗P
de 20px×20px 4 007.56 ≤ 0.001 0.012 2 047.10 ≤ 0.001 0.038 3 061.20 ≤ 0.001 0.070 6 11.40 ≤ 0.001 0.028 1.470

40px×40px 4 062.81 ≤ 0.001 0.096 2 273.30 ≤ 0.001 0.180 3 195.50 ≤ 0.001 0.190 6 19.10 ≤ 0.001 0.046 1.910

The [20px×20px] grid is highlighted to indicate it is the primary focus of our analysis.

reducing point size or changing the shape of the data point [36]. Given
the results for the density-based model, we hypothesize that it will be
able to model the perception of clusters when opacity is applied to the
data points.

[H6] Using a density-threshold correlated to the opacity of data
points (O), the density-based model will have a significant
effect for the number of clusters perceived by the viewer.

Properties and Data Generation Our data synthesis and ren-
dering of scatterplots is similar to main experiments (see Sect. 6.1)
in most aspects. We fix the number of points N = 200,000 and point
size P = 7px to overdraw the data on the scatterplot (see Fig. 12 for
an example). The distribution size is the same as in the main exper-
iment S = {25px,40px,55px,70px,85px}. The data point opacity was
selected on a logarithmic interval, O = {1%,10%,100%} over a white
background. Each subject sees each condition 2 times. Thus, for each
subject, 2× |S| × |N| = 10 datasets are generated and rendered into
|10|× |P|× |O|= 30 scatterplot stimuli.

Study Procedure The task for the study was identical to the main
experiment in Sect. 6.2. We recruited 40 participants (21 male, 19
female; median age group: [35−44]) from AMT, limited to subjects
located in the US or Canada. 45% of participants reported having
corrected vision. Subjects were compensated at US federal minimum
wage. In total 30 tasks × 40 participants resulted in 1200 responses.
We carried out data quality checks on responses—2 participants (60
total responses) were discarded because the majority of responses were
the default value of 1, and 23 responses that ran out of time were
rejected. A total of 1117 responses were analyzed.

6.5.1 Analysis and Results
The analysis was performed similarly to Sect. 6.4.4. We performed
2-factor RM ANOVA testing and evaluated the effect of factor opacity
of data point (O) with varying the distribution size (S) on measure DO

de.
The calculation of the visual density histogram was modified such

that it summed the pixel intensities, instead of counting the number of
filled pixels. For building the histograms, we only considered the bin of
size [20px×20px]. We calculated the density threshold on the opacity
factor using linear least squares regression on T O

de(o) = c1 · o + c2.
Using T O

de, we calculated the differential DO
de.

Opacity showed a medium-large effect (FO(2,1102) = 35.1, p <
0.001,η2 = 0.09), followed by a medium effect for the distribu-
tion of data points (FS(4,1102) = 17.44, p < 0.001,η2 = 0.086).
The interaction effect of O and S also showed medium-large effect
(FO∗S(8,1102) = 12.33, p < 0.001,η2 = 0.12). The effects that were
observed confirm [H6].

Perhaps unsurprisingly, further investigation suggested that opacity
has a more substantial effect when the distribution of the data is dense
and a smaller effect when the data distribution is sparse. The results
confirm previous findings on scatterplot overplotting [56], asserting that
a larger distribution size in a scatterplot requires more opaque points,
whereas a narrower distribution size requires more transparent points.

7 MODEL USAGE

Identifying clusters is an important low-level visual analytics task [3],
as well as in data analysis in general [64]. Still, as mentioned in Sect. 1,
clustering is an ill-posed problem, with the “correct result” being sub-
ject to the constraints of the algorithm or individual performing the
analysis. Through our evaluation, we have shown that our models, the
density-based model, in particular, performed well in estimating the
number of clusters an average human would perceive. However, this in
and of itself is not the real application value of the models. Instead, the
models can be used to optimize the visual encodings to maximize the
saliency of the visualization. Furthermore, the threshold plots provide
an evidence-based rationale for design decisions.

7.1 Controlling Design Factors
The models we have introduced construct a bridge for visualization
designers between their choice of visual encodings and how users per-
ceive clusters. Table 3 summarizes our findings and suggests how
designers should focus their design decisions on selecting visual prop-
erties that robustly support cluster identification in scatterplots. For the
distance-based model, distribution size (S) was the only factor with a
large effect size. On the other hand, with the density-based model, the
number of points (N), point size (P), and opacity (O) all showed large
effects on cluster count perception.

Distribution Size — Visualization designers generally do not have
control over distribution size (S) in the data. Although distributions
are rarely known a priori, they can be extracted from scatterplots, e.g.,
using Gaussian mixture models, which, combined with the distance-
based model, could be used to help the designer to understand the
number of clusters a user is likely to see. Nevertheless, this approach is
unlikely to be helpful to the majority of designers.

Number of Points — Visualization designers have limited control
of the number of points (N), mostly in terms of data subsampling,
e.g., [12,45,47], which influences visual density. Using uniform random
sampling, e.g., [21,28], or targeted nonuniform sampling, e.g., by using
density [6], can reduce the number of points and, thus, the visual density.
The density-based model can be used to evaluate what level of sampling
provides optimal saliency of clusters.

Table 3. Summary of the main effects found in the study based on η2.
The colors are the same as in Fig. 9.

Factor Without 
Model

Distance-
based (𝑇!")

Density-based

(𝑇!#$ ) (𝑇!#% ) (𝑇!#$∗%) (𝑇!#' )

Distribution size (S)

Number of points (N)

Size of points (P)

Opacity (O)

(N*P)

Interaction (O*S)

(S*N)
large effect; medium effect; small effect; negligible effect; not tested



Point Size — The point size (P) is the first design factor with com-
plete control in scatterplots. As pointed out earlier, increasing the area
of pixels also increases the visual density. Once again, the density-
based model can be used to help select the point size that provides the
optimal saliency. There is an important interplay between the number
of points and the point size, as adjusting either can influence the visual
density.

Opacity — Opacity (O) is another factor for which the designer
has complete control, from fully transparent to fully opaque, once
again impacting the visual density of the scatterplot. As suggested by
Urribarri and Castro, when selecting opacity, there is a trade-off with
picking a point size [80] and, given our analysis, also with the number
of data points shown. Nevertheless, using the density-based model,
various opacity levels, along with the number of points and their size,
can be evaluated and the optimal configuration selected.

7.2 Threshold Plots for Optimizing Cluster Saliency
As our goal is to improve the effectiveness of the visualization
design, it is important to understand how designers can use our
models to reduce ambiguity in the data, and thereby reduce the
chance of misinterpretation, e.g., by having a visualization that
is too sparse or over-saturated. Using pre-studies of the effects
of different visual encoding configurations in scatterplots, visual-
ization practitioners can pick the configuration that maximizes the
visibility of clusters. See <https://usfdatavisualization.github.io/

TopoClusterPerceptionDemo> for a demo.
Consider Fig. 12, for example. The 3 scatterplots are each plotted

in the persistence threshold plot. The horizontal axis reveals for each
plot how salient each of the clusters are. The 10% opacity plot shows
between 1 and 8 clusters are visible, but either 2 or 6 clusters are most
visible. That is not to say other numbers of clusters are not visible, but
they are simply not as distinctive. Of the 3 scatterplots in Fig. 12, 10%
provides the best saliency, followed by 1%, then 100% opacity.

7.3 Case Study
To demonstrate the utility of the models on real data, we showed how
the choice of visual encoding impacts the cluster perception. We per-
formed a case study using dimensionality reduction on the MNIST
dataset [48], which is an extensive database of handwritten letters com-
monly used to test machine learning techniques. Here we explore the
dataset, which consists of 70K samples with 10 labels of handwritten
digits (the labels are not used in sampling or rendering). We applied
both t-SNE (see Fig. 1(a)) and PCA (see Fig. 1(b)) to plot the features
on a 2D scatterplot and demonstrate the influence of 2 factors, the
number of points and opacity.

In Fig. 1(a), we show the results of varying the number of points
(after dimension reduction), where N = {500,2500,12500}, by using
random sampling. The resulting persistence threshold plot shows that
for N = 500, in red, clusters are difficult to differentiate. For N =
2500, in blue, and N = 12500, in purple, both have similar levels of
effectiveness, with 12500 having a slight advantage, making it the
better choice for representing this example.

In Fig. 1(b), we show the results of varying the opacity of the data
points, where O = {1%,5%,10%,50%,100%}. The results in the per-
sistence threshold plot fall into 3 groups. On the first extreme, O= 50%,
in purple, and O = 100%, in orange, provide no differentiation of any
clusters. On the other extreme, O = 1%, in blue, shows that a relatively
low level of saliency for 1, 2, or 3 clusters. The final group, O = 5%,

Fig. 12. Example of overplotted stimuli with C = 11, N = 200,000, S = 55,
P = 7px, but varying opacity, 1% (blue), 10% (green), and 100% (orange).

in pink, and O = 10%, in green, both show identically high levels of
saliency for 1, 2, or 3 clusters in the data, making either of these the
better choice for representing this example.

8 DISCUSSION & CONCLUSIONS

Scatterplots are a common type of visualization, used to identify clus-
ters in datasets. In this work, we tested and validated the importance of
4 visual factors—distribution size, the number of data points, the size
of data points, and the opacity of data points—in cluster perception and
built 2 models: a distance- and density-based model for the task. Our
results confirm the theoretical models of Sadahiro, which states data
points distribution (proximity), and number and size of data points (con-
centration and density change) affect cluster perception [68]. Finally,
our findings confirm the important role that the choice of visual fac-
tors can have on cluster identification—visualization practitioners may
apply these models for optimizing properties of their visualizations.

Model Limitations Both of our models have some limitations. In
the distance-based model, we required knowledge of the centers of the
clusters with a fixed-size isotropic normal distribution for the model—
considering other distributions would likely require modifications to
the model. This requirement is particularly restrictive with respect
to non-synthetic data. We showed that user response accuracy in the
density-based model was significantly better than the distance-based
model. However, choosing the correct density histogram resolution
is a critical task that may also be dependant on the data. A choice of
an extremely high or low resolution could reduce the accuracy of the
threshold value. Additionally, although the density model does not
directly consider a normal distribution, we have only tested it against
fixed-size normal distributions. Using the model with other types of
distribution should be treated with caution.

Study Limitations The study itself has some additional limitations.
First, we have not considered some other factors that could influence
performance in either model, e.g., chart size, screen resolutions, etc.
We have also not extensively analyzed variance between individuals,
although we did note some small variation during our analysis (i.e.,
some individuals had over- or under-estimation tendencies). Another
limitation that we have only provided a limited analysis of mixing
effects, e.g., changing the size of points, while also changing the opacity.
A final limitation is that we have not considered the correlation between
confidence, which is highly related to the nature of data [33], and the
correctness on each model.

Alternative Models Alternative models could potentially be de-
veloped to similarly explain the variance. With respect to distance,
hierarchical clustering could be used, which is functionally equivalent
to our distance model. For density, since stimuli are built on Gaus-
sian distributions, a Gaussian Mixture Model (GMM) could be used.
GMMs, being numerically extracted, cannot provide the same theoreti-
cal guarantees as our models, which are technically combinatorial. The
theoretical guarantees, coming from persistent homology, also include
stability guarantees. With stability, small changes in the input are guar-
anteed to produce only small changes to the output. A consequence
of stability is robustness to noise. The noise has low persistence, not
influencing the selection of the number of clusters.

Automatic Parameter Optimization One natural extension of this
work is to develop a (semi-)automatic model for selecting design factors
for a dataset. Unfortunately, using threshold plots as-is represents an
under-constrained optimization, and it requires, at the very least, a user
specification of the number of clusters in the data.

Code: <https://github.com/USFDataVisualization/TopoClusterPerception>

Demo: <https://usfdatavisualization.github.io/TopoClusterPerceptionDemo>

Data: <DOI: 10.17605/OSF.IO/49CD2>
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