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Abstract
Coral reefs are known to have extremely high rates of primary production. However, common geochemical

methods for determining bulk rates of reef metabolism cannot distinguish which organisms are responsible for
primary production. Here we used a “bottom-up” approach to estimate the contribution of diverse primary pro-
ducers including hard corals, octocorals, and algae to gross primary production on coral reefs by scaling up
taxon-specific rates by the abundance of those taxa in the environment. Chamber-based production rates of the
dominant primary producers were obtained as a function of irradiance, the primary short-term driver of photo-
synthesis. These rates were then combined with annotated three-dimensional (3D) reconstructions of reef sec-
tions and a simple light field model to estimate reef-scale gross and net primary production rates over time. At a
degraded reef in the Florida Keys octocorals and algae were the main producers, but at a more intact site a
scleractinian coral (Acropora palmata) was the most important producer. As a validation of the approach, rates of
primary production estimated using the “bottom-up” approach were compared with in situ eddy covariance
fluxes. The daily integrated rates agreed within 16%, though maximal production was � 35% lower in the “bot-
tom-up” approach likely due to under-representation of octocorals and macroalgae in the 3D reconstructions.
The “bottom up” approach yielded results that were largely consistent with the in situ measurements of primary
production and irradiance with the significant benefit of providing taxon-specific and spatially-explicit primary
production rates.

Coral reefs exhibit spectacular organismal diversity and
have significant ecological, aesthetic and commercial value,
especially in relation to fisheries and tourism (Hughes 1994;
Bowen et al. 2013). Coral reefs are also some of the most pro-
ductive ecosystems on earth with clear, warm, shallow waters
promoting the proliferation of numerous aquatic primary pro-
ducers (Gattuso et al. 1998; Long et al. 2013). The dominant
primary producers on a coral reef include zooxanthellae (sym-
biotic photosynthetic dinoflagellates) found in scleractinian
(hard) corals and octocorals, and a diverse array of benthic
macro- and micro-algae. Scleractinian corals are the principal
framework builders on coral reefs and are therefore the main
contributor to the high level of surface habitat complexity
within a reef ecosystem (Graham and Nash 2013). The com-
plex three-dimensional (3D) structure of coral reefs combined
with the high levels of productivity found within the system
support a multitude of higher trophic organisms and provide

ecosystem services that help support more than 275 million
people world-wide (Burke et al. 2011). While it is clear that
coral reefs are highly productive, the geochemical methods
typically used to determine production provide little quantita-
tive insight into which reef primary producers are responsible.

A better understanding of taxa-specific production patterns
on coral reefs would provide insight into how energy and ele-
ments flow through coral reef food webs. On coral reefs, pri-
mary production by algal-symbionts is directly used by the
coral hosts. Corals respire most of this material themselves
(Muscatine et al. 1981; Edmunds and Davies 1986), and coral
biomass is only grazed upon by a few specialist consumers
such as crown-of-thorns starfish, specialist fish species, and
Drupella snails (Moran 1986; Cole et al. 2008). While coral tis-
sue is typically not heavily grazed, corals exude mucus and
other dissolved organic matter (DOM) at high rates (up to
50% of the material translocated from algal-symbionts is
excreted), most of which is consumed in the pelagic microbial
loop (Crossland et al. 1980; Wild et al. 2004). In contrast to
corals, algal primary production is directly consumed by
numerous higher trophic level organisms. Algal turfs are
highly productive and nearly all the production is consumed
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immediately by reef fishes and invertebrates (Hatcher and
Larkum 1983; Carpenter 1986). Macroalgae are less abundant
(at least on pristine reefs) than algal turfs, but when present
are also grazed by diverse fish species (Choat et al. 2002;
Bellwood et al. 2006). Though much algal production is
grazed, DOM release from algae is also significant (Wild
et al. 2010; Haas et al. 2011). In general, productivity by algal-
symbionts supports the hosts, specialist consumers, and the
microbial loop, while algal productivity supports diverse fish
and invertebrate species.

The structure and health of coral reefs worldwide are
increasingly and negatively impacted by natural and anthro-
pogenic stressors. Coral reefs affected by decades of losses in
reef herbivores due to overfishing, disease, excess of inputs of
sediment and nutrients, thermally induced coral bleaching,
damage from hurricanes, and other stresses are exhibiting
community phase shifts from coral to algal and sponge domi-
nance (Aronson and Precht 2001; Hughes et al. 2003; Pawlik
and McMurray 2020). Coral reefs in some areas have docu-
mented hard coral cover decreases from 50% cover to 5%
cover in a matter of years, with little signs of recovery for
decades after (Hughes 1994; Gardner et al. 2003; Graham and
Nash 2013). Further, in areas where the local herbivores are
severely impacted, increases in macroalgae can produce mas-
sive amounts of labile organic matter that may increase the
growth and activity of microbes that are pathogenic to corals
(Barott and Rohwer 2012; Haas et al. 2016). These dynamics
create a positive feedback loop that maintains algal domi-
nance (Smith et al. 2006). Sponges have also increased in
abundance on many reefs, especially in the Caribbean,
claiming space once occupied by corals and potentially alter-
ing reef biogeochemistry (de Goeij et al. 2013; Pawlik and
McMurray 2020). In many coral reef systems, these negative
stressors have severely impacted the ecosystem processes and
potentially the dynamics of ecosystem productivity. Being
able to accurately partition production among reef commu-
nity members will help us understand how reef community
production is being affected by reef degradation, and in turn
how these changes in production may affect energy flow and
elemental cycling on reefs.

Development of new methods to measure coral reef ecosys-
tem productivity has been ongoing for over half a century
(e.g., Odum and Odum 1955). The two major approaches for
determining reef-scale primary production are (1) geochemical
approaches that use changes in chemical constituents
(e.g., O2, CO2) as water flows over the reef to infer metabolic
rates and (2) “bottom-up” approaches that integrate produc-
tion rates of individual taxa using their abundance in the eco-
system to estimate community metabolic rates. Geochemical
approaches include classic techniques such as “flow respirom-
etry” (Gordon and Hamilton 1962) and more modern
methods such as the boundary layer approach and eddy
covariance, which couple temporal or spatial changes in O2

with more sophisticated understandings of turbulent transport

to infer metabolic rates (McGillis et al. 2011; Long et al. 2013;
Takeshita et al. 2016). Geochemical approaches provide accu-
rate, in situ production rates but are fundamentally limited to
ecosystem-scale analysis (� 10–1000 m2 spatial resolution). In
contrast, “bottom-up” approaches scale-up the production
rates of individual taxa, typically obtained from metabolic
chamber measurements in a lab, to ecosystem scale using the
abundance of each taxa on the reef, commonly obtained from
underwater transects (Naumann et al. 2013; Van Hoytema
et al. 2016). “Bottom-up” approaches offer more information-
rich views of reef-scale primary production, providing taxon-
specific and spatially-explicit production rates, but have been
infrequently applied.

Here, we develop and apply an improved “bottom-up”
approach that makes use of new developments in computer
vision and machine learning (e.g., Hopkinson et al. 2020) to
more accurately map primary producers on reefs and includes
a simple light-field model as light is the primary short-term
control on production (Fig. 1). 3D reconstructions of coral reef
sections are generated from video transects and automatically
labeled to map the distribution (surface area) of primary pro-
ducers on a reef. In parallel, chamber incubations of the domi-
nant primary producers are used to determine taxon-specific
primary production rates as a function of irradiance. These
production rate functions are then applied to the primary pro-
ducers in 3D reconstructions and combined with incident irra-
diances from a simple light field model to estimate primary
production over time. The method provides an “information-

Fig. 1. Components of the “bottom up” reef productivity model. A 3D
mesh reconstruction of the reef is created from images. The model esti-
mates the productivity of each mesh element based on its identity, which
is determined from images using a convolutional neural network (CNN),
the productivity vs. irradiance of that taxa, determined from metabolic
chamber incubations, and the light intensity on each mesh element, as
estimated using a light field model that accounts for direct and diffuse
irradiance.
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rich” perspective on reef production, providing rates that are
taxonomically, spatially, and temporally resolved.

Methods
Specimen collection and handling

Specimens were collected within Little Grecian Reef in the
Northern Florida Keys (25.1185�N, 80.3005�W) under NOAA
collection permits (FKNMS-2016-042, FKNMS-2016-082,
FKNMS-2017-035). Collections were conducted in the summer
over three consecutive years (June–July 2016, 2017, and 2018)
and in winter over two consecutive years (December 2016 and
2017). Specimens of the dominant autotrophic taxa present at
each reef site were taken during sampling. Specimens taken
for metabolic study included the scleractinian corals Orbicella
annularis, Orbicella faveolata, Porites astreoides, and A. palmata,
octocorals within the genus Antillogorgia, Gorgonia ventalina,
and various octocorals morphologically classified as “Sea
Rods” (Muricea spp., Eunicea spp., Plexaurella spp., etc), the
algal groups Dictyota spp., Stypopodium spp., Halimeda spp.,
and Galaxaura spp., as well as rubble with encrusting coralline
algae and turf algae. All specimens were collected from differ-
ent colonies to avoid pseudo-replication during metabolic
measurements.

Specimens were immediately placed in seawater-filled
Ziploc bags after removal and were transported back to the
laboratory in seawater filled insulated coolers. Once on shore,
specimens were labeled and placed in a recirculating holding
tank filled with seawater collected from the reef sampling site.
The temperature, salinity, and water level of the recirculating
tank were monitored in order to keep the holding tank as
close to the sampling environmental conditions as possible. A
mesh screen was placed over the tank when it was in direct
sunlight to keep irradiances below 600 μmol photons m−2 s−1

in order to avoid excessive heating and minimize stress. Sam-
ples were held upright or suspended from above to reduce
stress and abrasion on the specimen. After collection, speci-
mens were allowed to recover for at least 24 h before produc-
tivity measurements were taken, but were not held for more
than 7 d.

Metabolic measurements
Photosynthesis (or respiration) as a function of irradiance

(P vs. E) was determined through chamber incubations of the
collected samples. The samples, depending on their physical
size, were placed in either a 140 mL or 1200 mL clear acrylic,
metabolic chamber in order to measure oxygen fluxes as a
function of irradiance. The chambers were water-jacketed to
maintain constant temperature and stirred with magnetic stir
bars at rates that generate turbulent energy dissipation rates
similar to in situ flow rates. Turbulent dissipation rates were
estimated based on dye dispersion timescales in the chamber
(Fischer et al. 1979). The freshly exposed portions of the
scleractinian coral skeletons and rubble surfaces were covered

with plasticine clay approximately 24 h prior to measurement
to eliminate metabolic signals from internal cryptic organisms
that would not naturally have been exposed. Oxygen concen-
trations were continuously recorded using a calibrated Firesting
oxygen optode. Irradiance was then increased step-wise (0, 50,
100, 200, 300, 450, 900, and 0 μmol photons m−2 s−1) holding
light levels constant for 9 min at each irradiance. Light was
delivered using computer-controlled LED light sources (Cool-
White 5000K Cree) calibrated for each chamber via a Walz pho-
tosynthetically active radiation (PAR) meter. P vs. E data was
fit to a saturating exponential function to extract the maxi-
mal gross photosynthetic rate (Pmax), the light saturation
parameter (Ek), and the dark respiration rate (R), which were
subsequently normalized to specimen surface areas calculated
as described below. Seawater blanks were measured for pho-
tosynthetic and respiratory activity periodically and maximal
metabolic rates of the blanks were at least 10-fold lower than
sample rates.

Specimen surface area calculations
Surface areas for the Scleractinia coral and rubble specimens

were determined using the aluminum foil method
(Marsh 1970). All other specimens were photographed against
a gridded background, which was used to calibrate the images
and correct for image angle orientation via a homography
transformation (Hartley and Zisserman 2003). The outline of
the macroalgal and octocoral samples (except for sea rods) in
the corrected images were obtained in ImageJ, and the surface
areas for each sample were calculated from the measured pixel
area. In order to determine the surface area for sea rods sam-
ples, the radius and length of each branch was measured in
ImageJ and surface area was calculated approximating each
branch as a cylinder.

Annotated 3D reef site models
3D reconstructions of reef sections were created and auto-

matically annotated as described in detail in Hopkinson
et al. (2020). Briefly, stereo-video (2.7 k resolution at
30 frames s−1, Dual GoPro 3 + Black) was acquired by swim-
ming 1–3 m above the reef in a lawnmower pattern at sites on
Little Grecian (25.1185�N, 80.3005�W) and Horseshoe
(25.1393�N, 80.2945�W) reefs (Table 1). Images were extracted
at 1–4 frames s−1 and 3D reconstructions were generated using
Agisoft Photoscan and scaled using a custom approach. The
3D surface reconstructions (meshes) are composed of linked
triangular elements (faces). The results of the 3D reconstruc-
tions have been described in detail in Hopkinson et al. 2020,
in which the same reconstructions used here to assess primary
production were used to test a method for automatic annota-
tion. The 3D reconstructions show good general agreement
with expected morphology and have few data gaps. They are
composed of between � 200,000 and 3 million linked triangu-
lar elements with sides averaging 1.6–4.6 cm, and total surface
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areas from 132 to 2349 m2 (Table S1). Each specific site was
only surveyed once at the time indicated in Table 1.

Each triangular mesh element was mapped back into the
original images and a trained Convolutional Neural Network
(CNN), nViewNet-8 (Hopkinson et al. 2020), was used to clas-
sify mesh elements into one of 13 categories. These 13 catego-
ries were defined as: Algae (macroalgae including Dictyota
spp., Stypopodium spp., and Halimeda spp.), Galaxaura,
Orbicella (O. annularis or O. faveolata), P. astreoides, Siderastrea
siderea, A. palmata, G. ventalina, Antillogorgia, Sea Rods, Rub-
ble, Sand, Other (visually identifiable sections of the reef ben-
thos that are not any of the previous categories), and
Unclassified (sections of reef benthos that could not be identi-
fied due to image quality) (Table 2). nViewNet-8 was trained
on a manually annotated dataset of 15,804 points split into
training (70%), validation (10%), and testing (20%) datasets.
The overall classification accuracy on the testing dataset was
94.4% and most classes were classified with > 90% accuracy
with the exception of G. ventalina, Sea Rods, Sand, and Unclas-
sified (Fig. S1).

Light field model
A light field model was applied to the annotated 3D reef

reconstructions in order to estimate the PAR intensity striking
each mesh face over the course of a day. The model considers
direct and diffuse PAR separately and then sums the intensi-
ties of these two components to calculate the total PAR irradi-
ance incident on each mesh face. PAR (400–700 nm) is not
spectrally resolved. The direct and diffuse irradiance at the
ocean surface was determined using the Simplified Model of
Atmospheric Radiative Transfer of Sunshine (SMARTS Win-
dows version 2.9.5i1.3) (Gueymard 2005) using the subtropi-
cal reference atmosphere, maritime aerosol model, a regional
and tilted surface albedo of water/calm ocean, and a spectral
range of 400–700 nm, for the hours of 06 : 00–19 : 00 h on
July 5 (“Summer”) and 07 : 00–17 : 00 h on December
15 (“Winter”) at Little Grecian Reef. For site LG9, the SMARTS
“Summer” date was shifted to June 27 to align with eddy

covariance productivity data collected at this location (see
below). The model was run on surfaces at four evenly spaced
tilt and azimuth angles to parameterize diffuse irradiance as a
function of these angles.

As direct light passes through the air–water interface its
intensity is reduced by reflection, which is treated using
Fresnel’s equation, and its angle is modified by refraction
(Kirk 2011). The intensity of direct light is attenuated with dis-
tance traveled through the water based on a diffuse attenua-
tion coefficient for downwelling irradiance (Kd) of 0.1 m−1

(based on Zepp et al. 2008 and Ong et al. 2018), accounting
for light absorption and scattering by the water column above
the reef benthos. When direct light intercepts a mesh element,
the angle of incidence is used to determine the intensity and a
ray is projected from mesh element back to the sun to ensure
the line of sight is not blocked by another part of the mesh.
The line of sight test is accelerated using a bounding volume
hierarchy.

Diffuse PAR light is assumed to pass without loss through
the air–water interface, but as it travels through the water it is
attenuated based on a diffuse attenuation coefficient as
described for direct irradiance. Diffuse light intensity striking a

Table 1. 3D reconstruction sites.

Site ID Reef Reef zone Year/month Post-hurricane

LG1 Little Grecian Back reef 2015/7 No

LG2 Little Grecian Back reef 2015/7 No

LG3 Little Grecian Reef crest 2017/7 No

LG4 Little Grecian Reef crest 2017/7 No

LG5 Little Grecian Back reef 2017/12 Yes

LG6 Little Grecian Back reef 2017/12 Yes

LG7 Little Grecian Back reef 2017/12 Yes

LG8 Little Grecian Back reef 2017/12 Yes

LG9 Little Grecian Fore reef 2018/6 Yes

H1 Horseshoe Reef crest 2015/7 No

H2 Horseshoe Reef crest 2015/7 No

Table 2. Classes used in the convolutional neural network.

Class
name Description P vs. E parameters

Algae Macroalgae and/or dense

turf algae

Average of all algae other

than Galaxaura

Galaxaura Galaxaura red macroalgae Galaxaura

Antillogorgia Antillogorgia spp.

octocorals, commonly

called sea plumes

Antillogorgia

G. ventalina Sea fan G. ventalina G. ventalina

Sea rods A highly varied group of

octocorals including

Eunicea, Plexaura,

Plexaurella, Muricea, etc

Sea rods

A. palmata A. palmata coral A. palmata

P. astreoides P. astreoides coral P. astreoides

S. siderea S. siderea coral Average of all corals

Orbicella O. faveolata and O.

annularis corals

Average of O. faveolata

and O. annularis

Rubble Bare coral rubble or rubble

covered with crustose

coralline algae or low

density algal turf

Rubble

Sand Loose sand N/A

Other Visually identifiable but not

in the above categories

N/A

Unclassified Poor image quality

prevented identification

N/A
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mesh face has angular dependence and this dependence was
accounted for using the orientation of the mesh face and
interpolating between outputs of the SMARTS model at dis-
crete tilt and azimuth angles. Direct and diffuse PAR irradiance
incident on each face are then summed to determine the total
PAR photosynthetic photon flux (μmol photons m−2 s−1) on
each mesh face over time, which is then used in the “bottom
up” model.

Bottom-up model
The “bottom-up” model combines the annotated 3D recon-

struction, light field model, and P vs. E relationships to esti-
mate reef-scale production as illustrated in Fig. 1. The P vs.
E parameters (Pmax, Ek, R) for each taxa were averaged over all
years and seasons (see “Results” section) and used to parame-
terize the reef-scale “bottom-up” production model (Table 2).
The metabolic rates of Dictyota spp., Stypopodium spp., and
Halimeda spp. were averaged together to apply to the “Algae”
annotated surfaces. The metabolic rates of O. annularis and O.
faveolata were averaged together to apply to the “Orbicella”
annotated surfaces. The metabolic parameters for all
scleractinian corals were averaged and applied to S. siderea
annotated surfaces, since this species was not sampled. For all
other taxa the measured metabolic rates were directly applied
to the corresponding annotated surfaces though note that
“Sea Rods” represent multiple genera. The Sand, Other, and
Unclassified categories were assumed to have no significant
photosynthetic activity compared to the other more dominant
classes.

PAR intensities from the light field model were then used
to calculate the photosynthetic rate of each mesh element
over the course of the day. Production rates per mesh element
were summed by taxa to determine taxon specific rates of pro-
duction over time and integrated over the course of a day.
These rates were then normalized by the planar area of the
reef section. Gross primary production (GPP, neglecting auto-
troph respiration) and net primary production (NPP) were cal-
culated in the summer and winter for all sites. NPP was only
calculated over the daytime hours because all respiration rates
were measured during the day, during which respiration rates
are typically elevated over nighttime values (“light-enhanced
respiration”; Kuhl et al. 1996, Langdon et al. 2003, Glud 2008)
and so is referred to as “day-time integrated NPP.”

The consequences of variability in P vs. E parameters and
errors in class assignment by the CNN on outputs of the “bot-
tom-up” model were assessed using a Monte-Carlo analysis
since these sources of error are well constrained. P vs.
E parameters (Pmax, R, and Ek) for each taxa were perturbed
from their mean values by draws from a standard Gaussian
distribution scaled by the standard error of the mean for each
parameter. Class assignments for each mesh element were
flipped probabilistically based on assignment distributions
from the confusion matrix (Fig. S1). The “bottom-up” model
was then run on the perturbed inputs 100 times and

variability in the model outputs (total production, fraction of
total production by each taxa) was used to estimate errors. To
assess the effects of errors in the light field model, the diffuse
attenuation coefficient (Kd) was either doubled or reduced to
half of its base value resulting in changes to both direct and
diffuse irradiance. Source code for the bottom-up and light
field models are publicly available (https://github.com/
bmhopkinson/Bottom_up_model).

Eddy covariance measurements
An eddy covariance instrument was deployed at Little Gre-

cian reef at the center of the area of the LG9 3D reconstruc-
tion for a period of 4 d (25 June 2018–29 June 2018) to
determine the flux of oxygen across the reef-water interface.
The system included an acoustic Doppler velocimeter (ADV,
Nortek) coupled to a FirestingO2 Mini fiber-optic O2 meter
with a temperature-compensated, fast-response (< 0.3 s),
430 μm diameter optode (Pyroscience, GE), as described in
Long et al. (2019). The mean turbulent O2 flux was calculated
over 0.25 h periods from the product of the instantaneous var-
iations in the vertical velocity and O2 concentration by
Fbw = �O0

2w0 , where the prime values indicate the turbulent fluc-
tuating components determined from Reynolds decomposi-
tion and the overbar indicates temporal averaging.

The system logged data from the ADV (3D velocity), O2

optode, and an Inertial Measurement Unit (IMU) sensor at a
frequency of 32 Hz. The height of the velocimeter measuring
volume above the sediment surface was determined using rela-
tionships determined by Rheuban and Berg (2013) with mea-
suring heights of 0.8 m over the high surface roughness
environments of the reef (Long et al. 2013). The large measur-
ing height and the presence of a biological canopy required
the use of a storage correction to account for changes in the
mean concentration (see Rheuban et al. 2014 and Long
et al. 2015). A flow-through O2 sensor design used a micro-
fluidic volume and KNF micropump (model NF10,
100 mL min−1) that was located 2.5 cm behind the measuring
volume. All instruments were packaged onto a rotating base
which allowed the precise correction for the separation
between the sensors using the known sensor separation, cur-
rent flow rate and the fact that that sensors were always ori-
ented in line with the flow. The IMU measured the
instrument orientation, movement and acceleration to allow
for coordinate matrix transformation to account for platform
rotation and movement (Long and Nicholson 2018) and is
based on similar approaches used in atmospheric eddy covari-
ance measurements (Edson et al. 1998, Flügge et al. 2016).
The specific configurations, data treatment, and validation
can be found in Long et al. (2019) and Long and Nichol-
son (2018). Additionally, in situ photosynthetically active
radiation (PAR) was measured using a PAR logger (Odyssey,
NZ) that was calibrated to a spherical quantum sensor (LICOR
193SA) by the methods of Long et al. (2012).
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Statistical analyses
The statistical significance of differences in chamber-

based metabolic rates between season and taxa was assessed
using ANOVA analysis in R. The ability of taxonomic and
structural variables to explain observed reef scale GPP rates
were assessed using linear regression in R. For this analysis,
there were 11 possible explanatory variables (10 different
photosynthetic taxa and one structural variable, the ratio of
total surface area to planar surface area) and only 11 observa-
tions resulting in a completely determined system of equa-
tions. Consequently, we first excluded low abundance taxa
(P. astreoides, S. siderea, and Sea Rods) and then constructed
a linear model with the remaining seven taxa and the index
of structural complexity. This model was sequentially
reduced by eliminating non-significant variables until a par-
simonious model containing only significant variables was
obtained.

Results
Metabolic measurements

A total of 211 samples of macroalgae, scleractinian corals,
octocorals, and rubble were collected and subjected to pho-
tosynthesis vs. irradiance experiments over the course of
3 yr. The data from each sample was fit to a saturating expo-
nential function to extract metabolic parameters (Pmax, R,
Ek). A two-way ANOVA assessing the significance of taxa
and season on metabolic parameters indicated that taxa was
a significant factor for all parameters whereas season (winter
vs. summer) only significantly affected R. However, there
was no significant interaction between season and taxa on
R, and so all metabolic parameters were averaged across
seasons.

The taxa were divided into three general groups based on
P vs. E parameters: the first macroalgae, the second taxa with
symbiotic, photosynthetic dinoflagellates (corals), and third
Rubble, which hosts a complex mix of turf and crustose coral-
line alga (Fig. 2). Pmax was similar across most taxa (� 4 × 10−4

μmol O2 cm−2 s−1) as indicated by overlap in the 95% confi-
dence intervals of the mean (Fig. 2a). The macroalgae Galaxaura
had notably high but variable Pmax (� 7 × 10−4 μmol O2 cm

−2 s−1)
and Sea Rods and Rubble had significantly lower Pmax than most
other taxa (� 1.5 × 10−4 μmol O2 cm−2 s−1). R was generally low
and similar among the macroalgae (� −1 × 10−4

μmol O2 cm−2 s−1, the negative value indicating consumption
of O2) but was typically higher in the coral group
(� −2 × 10−4 μmol O2 cm−2 s−1) with the notable exception of
Sea Rods (Fig. 2b). Rubble had low respiration rates similar to
Sea Rods (� −0.5 × 10−4 μmol O2 cm

−2 s−1). The light saturation
constant (Ek) was similar among nearly all taxa
(� 150 μmol photons m−2 s−1) except Rubble, which had a sta-
tistically significantly higher Ek (� 250 μmol photons m−2 s−1,
Fig. 2c). Ek for A. palmata was highly variable in part due to the
small sample size (n = 3).

3D reef scale primary production
The “Bottom-up” approach was used to determine taxo-

nomically, spatially, and temporally resolved GPP and NPP on
11 different reef sections using summer and winter light fields.
A typical result is shown in Fig. 3 illustrating that GPP and
NPP rise rapidly in the morning since light intensities quickly
exceed Ek for most taxa soon after sunrise (Fig. S2), remain
roughly constant throughout most of the day, and then
decline rapidly just before sunset as irradiance drops below Ek.

Fig. 2. Results of chamber metabolic measurements on reef primary pro-
ducers. (a) Maximal photosynthetic rates (Pmax), (b) respiration rates (R),
and (c) the light saturation parameter (Ek). The dashed vertical lines sepa-
rate three major groups: macroalgae (left), coral and octocorals (center), and
rubble (left) which is partially covered with turf and crustose coralline algae.
Points are mean values and error bars indicate 95% confidence intervals.
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Daily integrated GPP ranged from 127 to 258 mmol O2 m
−2 d−1

(average: 198 ± 36) in the summer and from 90 to
188 mmol O2 m

−2 d−1 (average: 141 ± 26) in the winter (Fig. 4).
Day-time integrated NPP ranged from 75 to
205 mmol O2 m−2 d−1 (average: 123 ± 41) in the summer and
from 50 to 145 mmol O2 m

−2 d−1 (average: 83 ± 31) in the win-
ter. NPP was 39% ± 11% lower (average and SD among sites)
than GPP in summer and 43% ± 11% lower than GPP in win-
ter. GPP decreased by 28% ± 1% and NPP decreased by 33% ±
3% from summer to winter primarily due to a reduced number
of daylight hours. However, potential seasonal changes in ben-
thic cover, especially macroalgae (Lirman and Biber 2000;
Duran et al. 2016), were not incorporated into these estimates
since the same 3D constructions (captured in a single season)
were used in both summer and winter production simulations.

In a given season, the taxonomic composition of the pri-
mary producers exerts primary control on reef-scale GPP and
NPP based on multiple linear regression analyses (Table 3). Just
two variables (the fraction of surface area covered by Galaxaura
and Rubble) were able to explain ≧98% of the variance in GPP
and NPP, and only in one case (NPP in winter) was structural
complexity a significant explanatory variable.

On Little Grecian reef production was primarily from Algae,
Rubble, and octocorals (G. ventalina and Antillogorgia) with
Galaxaura algae important on sites sampled after Hurricane
Irma in September 2017 (LG5-LG9, Fig. 4). In contrast, pro-
duction on Horseshoe Reef was dominated by A. palmata and
Rubble. The relative contribution of each taxon to total GPP
was roughly proportional to its contribution to total produc-
tive surface area (the combined surface area of all photosyn-
thetic taxa), with Galaxaura notably over-contributing to
productivity and Rubble under-contributing (Fig. 5).

A Monte Carlo error analysis showed that uncertainties in
P vs. E parameters and errors in mesh labeling by the CNN had
relatively small effects on inferred total GPP, NPP, and the
proportions of productivity contributed by different taxa
(Tables S2, S3). Absolute SD of GPP ranged from 4.9 to
30.2 mmol O2 m−2 d−1, averaging 11.8 mmol O2 m−2 d−1 over
the 11 sites sampled. Relative SD (100 × SD/mean) in summer
GPP ranged from 2.9% to 11.8% and averaged 5.7%. Absolute
SD of NPP ranged from 5.6 to 28.3 mmol O2 m−2 d−1, averaging
12.1 mmol O2 m

−2 d−1 over the 11 sites sampled and relative SD
ranged from 6.6% to 14.0% and averaged 9.2%. Absolute errors
in the percent contribution of different taxa to GPP ranged from
0% to 4.4% and averaged 0.7%, but note that many of the per-
cent contributions are zero or near zero. Relative SD in the con-
tribution of different taxa to GPP ranged from 0% to 22.2% and
averaged 7.2%. Absolute SD in the percent contribution of differ-
ent taxa to NPP ranged from 0% to 5.2% and averaged 1.2%,
while relative SD ranged from 0% to 33.3% and averaged 14.7%.

The quality of the light field model was compared to diel in
situ PAR measurements at one site where these measurements
were available (LG9). Comparison of the modeled PAR values
with PAR data showed good agreement between the model and
data in the morning, underestimation by the model in the mid-
dle of the day, and slight overestimation by the model toward
the end of the day (Fig. S3). Underestimation in the middle of
the day is likely due to neglect of benthic light scattering in the
model, which can be significant in carbonate systems (Joyce
and Phinn 2002; Dierssen et al. 2009). To assess the potential
effect of errors in the modeled light field on inferred production
a sensitivity analysis was conducted in which light intensity
was varied by modifying Kd, the diffuse attenuation coefficient.
This assessment showed that total production was only slightly
sensitive to variations in light intensity with production chang-
ing by � 3% for a 10% variation (increase or decrease) in aver-
age irradiance (Table S4), in large part because primary
producers are saturated for light for most of the day
(Figs. S2, S4).

Eddy covariance
In situ oxygen fluxes were determined with the eddy

covariance instrument continuously over a 4 d period at site
LG9 (Fig. S5). Fluxes range from � 20 mmol O2 m−2 h−1 dur-
ing the daytime to –50 mmol O2 m−2 h−1 during the night.
The NCP rates were largely negative over the entire 4 d

Fig. 3. Sample results of (a) taxon-resolved GPP and (b) day-time inte-
grated NPP vs. time from site LG2.
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deployment except during brief periods during the afternoon.
To compare the bottom up GPP estimate to the eddy covari-
ance fluxes, hourly rates of GPP were estimated from the eddy
covariance data by subtracting interpolated respiration rates
(Fig. 6). The daytime respiration rates were linearly interpo-
lated across the daytime period (e.g., hour 6–19) from the
early morning respiration rates (e.g., hour 0–6) and the late
night respiration rates (i.e., hour 19–23). The mean (n = 4 d)
integrated GPP was 251.0 mmol O2 m−2 d−1 was similar to the
mean GPP predicted by the bottom up approach at this site,
210.5 mmol O2 m−2 d−1, representing a difference of only
16.2% between the two methods, but maximum GPP rates

(� 27 mmol O2 m−2 h−1) exceeded those of the bottom-up
approach (� 17.5 mmol O2 m

−2 h−1) by 35.2%.

Discussion
Coral reefs are known to be one of the most highly produc-

tive marine ecosystems and they support a closely associated,
diverse invertebrate and fish community (Gattuso et al. 1998;
Bellwood et al. 2017). Techniques commonly used to deter-
mine reef productivity (flow respirometry, eddy covariance,
boundary layer approach) are based on changes in oxygen
concentrations in waters overlying the reef and are not

Fig. 4. Daily integrated (a) summer GPP, (b) winter GPP, (c) summer day-time integrated NPP, and (d) winter day-time integrated NPP. Panel (e)
shows the fraction of surface area in each class by site.
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capable of resolving the taxa responsible for production. There
have been a few attempts to determine the contributions of
different taxa to total productivity in reefs and associated sys-
tems (Naumann et al. 2013; Van Hoytema et al. 2016). In

these “bottom-up” approaches chamber-based production
rates of corals, algae, and other components of the commu-
nity were made and scaled up to the entire reef based on their
percent cover (percent of occupancy when viewed from over-
head), using a 2D–3D correction factor to account for the dis-
parity between the 2D percent cover estimate and the 3D
nature of the reef. Here an improved version of such an
approach was taken using 3D surface reconstructions of reef
sections to directly capture the 3D structure of the reef and
accounting for the light dependence of production, since light
is the primary short-term driver of production on coral reefs
(Long et al. 2013). This approach was enabled by advances in
computer vision (Hartley and Zisserman 2003) and machine
learning (LeCun et al. 2015) that make it possible to generate
and automatically label 3D surface reconstructions of reefs
from images (Hopkinson et al. 2020).

This new “bottom-up” approach was employed at 11 sites
on two reefs in the Florida Keys sampled over the course of
3 yr. As measured by this new approach, productivity (GPP
and NPP) rose quickly in the early morning hours and
remained at maximal rates for most of the day, declining only
in the late evening hours (Fig. 3). Total PAR intensities on
most surfaces exceeded Ek (� 150 μmol photons m−2 s−1) early
in the morning meaning that production was light saturated
throughout most of the day (Fig. S2). Diffuse light was an
especially important component of this as it illuminated sur-
faces that were oriented away from direct sunlight. The effect
of errors in P vs. E parameters and mesh labeling via a CNN
were assessed using a Monte Carlo analysis, which showed
that these sources of error had relatively modest effects on
total production and the fraction of production contributed
by different taxa (Tables S2, S3). Because light intensities
greatly exceeded Ek on most surfaces for most of the day, the
productivity results were not very sensitive to parameteriza-
tion of the light model. Total production varied by � 3% for a
10% change in average irradiance, and the relative contribu-
tions of taxa to total production was effectively invariant to
changes in irradiance (Table S4). While the reefs studied here
are very shallow (1–3 m deep) and well-illuminated, applica-
tion of this approach to deeper reefs may require more careful
parameterization and design of the light-field model.

Comparison of reef scale production rates determined using
the “bottom-up” method with a geochemical technique at
one site (LG9) indicates that the “bottom-up” method per-
forms reasonably well (Fig. 6), with daily integrated GPP rates
(210 mmol m−2 d−1) that were within 16% of the in situ eddy
covariance rate (251 mmol m−2 d−1). While the integrated
rates were similar, the “bottom-up” approach appears to
underestimate maximal GPP. Reef scale maximal photosyn-
thetic rates estimated by the “bottom-up” method were up to
17.5 mmol O2 m−2 h−1 at site LG9, whereas eddy covariance
rates (� 27 mmol O2 m−2 h−1) were moderately higher. Multi-
ple sources of error including errors in the light field model,
differences between in situ and chamber production, and

Fig. 5. Contribution of taxa to GPP vs. contribution to productive surface
area from all sites. The solid line indicates a 1 : 1 relationship.

Fig. 6. Comparison of Eddy covariance-based GPP (EC) with "bottom-
up”-based GPP (BU) at LG9 (a) over a diel cycle and (b) integrated over
a day.

Table 3. Linear regression analysis of factors explaining GPP
and day-time integrated NPP. GPP and NPP in each season were
regressed against the fraction of surface area (SA) of Galaxaura
and Rubble, and an index of 3D structural complexity, the
ratio of total SA to planar SA (Table S1). For each explanatory var-
iable the p-value in the multiple linear regression is reported. The
R2 value for the model using only the statistically significant
explanatory variables is reported in the final column.

Rate/
season

SA
galax

SA
rubble

Total
SA/planar SA R2

GPP/summer <0.001 <0.001 0.053 0.99

GPP/winter <0.001 <0.001 0.21 0.99

NPP/summer <0.001 <0.001 0.064 0.98

NPP/winter <0.001 <0.001 0.023 0.99
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incomplete representation of photosynthetic surface area in
the 3D reconstructions potentially account for this discrep-
ancy. The light field model underestimated midday irradiances
(Fig. S3) but this error can only account for a small portion of
the discrepancy between eddy-covariance and “bottom-up”
maximal production because primary producers were already
approximately light saturated (Figs. S2, S4). When the “bot-
tom-up” model was forced with the observed PAR intensities
maximal photosynthetic rates increase only � 5% (to
18.4 mmol O2 m−2 h−1). It is possible that collection and
maintenance of specimens for laboratory P vs. E measure-
ments stressed the organisms, reducing maximal photosyn-
thetic rates, despite care taken to minimize these effects. If
this is an issue, it appears to be a systematic consequence of
ex situ measurement since the production rates we measured
are very similar to those measured by other investigators (see a
compilation in table S1 of Sawall and Hochberg 2018). An
additional source of potential bias is that the 3D reconstruc-
tions only capture the surface of organisms at a resolution
of � 3 cm. While this accurately represents some primary pro-
ducers such as corals and the turf and crustose coralline algae
that cover rubble, it does not fully capture producers such as
macroalgae and octocorals that have branching morphologies
and form volumetric assemblages. The 3D reconstructions
only capture the outer surface of these assemblages. Addi-
tional sources of bias may include the natural in situ variabil-
ity of drivers that are not captured in ex situ incubations
(currents, nutrients, diel variability, etc.) and uncertainties in
determining the contributing area or “footprint” of the eddy
covariance technique. Furthermore, EC-based GPP rates likely
underestimate true GPP because nighttime respiration rates,
which are typically lower than daytime rates due to light-
enhanced respiration (Kuhl et al. 1996, Langdon et al. 2003,
Glud 2008), were used to convert observed NCP to GPP. While
these methodological differences and biases are expected, the
general agreement of the integrated rates suggests that both
methods are suitable for determining reef GPP and both pro-
vide different insights into reef metabolism.

While geochemical approaches may ultimately provide
more accurate estimates of total production, the main pur-
pose of the “bottom-up” approach is to provide
taxonomically-resolved rates of primary production (Figs. 3,
4). This information is important for understanding how car-
bon and energy flow through coral reef food webs and how
these flows may change as the community composition of
reefs is altered due to reef degradation (Carpenter 1986; Haas
et al. 2016). At all sites, the turf and crustose coralline algae
covering coral rubble provided a consistent base of produc-
tion (at � 35 mmol O2 m−2 d−1 GPP in summer)
comprising � 20% of total GPP and NPP. Taxa responsible
for the remaining production varied substantially between
reefs and over time (Fig. 4). On Little Grecian reef, a highly
degraded reef with low coral cover typical of the Florida Keys,
production at sites sampled in summer 2015 and summer

2017 (LG1–LG4) was primarily contributed by the octocorals
Antillogorgia and G. ventalina (� 40%) and Algae (� 30%). At
sites sampled after passage of Hurricane Irma in September
2017 (LG5–LG9), Galaxaura, a red alga, proliferated dominat-
ing production on most sites (� 50%), with smaller contribu-
tions from octocorals (� 20%), illustrating that sources of
production can change rapidly with environmental forcings.
On Horseshoe Reef (H1–H2), an atypical reef still containing
large stands of A. palmata, which used to dominate shallow
reefs in Florida prior to degradation (Aronson and Pre-
cht 2001), production from A. palmata was substantial
(� 40% of GPP and NPP) with contributions from octocorals
(� 25%) but almost no macroalgae production (� 3%). The
Horseshoe sites were only sampled before Hurricane Irma, so
it is unclear what impact this hurricane had on Horseshoe’s
productivity. On a relatively pristine reef with high coral cover
in the Red Sea van Hoytema et al. (2016) found that hard corals
were responsible for > 50% of GPP with soft corals a secondary
factor and algae of all types contributing only � 20% to GPP.
These results demonstrate, perhaps not surprisingly, that reef
degradation shifts production, as well as abundance (Hughes
et al. 2007; Ruzicka et al. 2013), from hard corals toward soft
corals and algae. As discussed above, it is likely that productiv-
ity from clumped producers such as macroalgae and
Antillogorgia are underestimated. Consequently, the shift from
hard coral and turf/crustose coralline algae production to mac-
roalgae and octocoral production with reef degradation are
likely to be even more dramatic than estimated here.

The effects of reef degradation on total production will
depend on both changes in the taxonomic composition of
primary producers and reef structural complexity. At the
11 sites surveyed here taxonomic composition was the major
determinant of total system production (Table 3) and these
differences could be explained almost entirely by the amount
of Rubble, with low productivity, or Galaxaura, a highly pro-
ductive red alga. While this may suggest production will
increase as macroalgae take over degraded reefs, Galaxaura
appears to be an anomaly as the GPP rates of most algal spe-
cies per unit surface area were similar to those of hard corals
(Figs. 2, 5). This suggests that the total surface area of pro-
ducers is likely to be a major control on reef-scale production
in many cases. On the one hand, the loss of hard corals dur-
ing the course of degradation ultimately leads to lowered
structural complexity as the coral skeletons that form most
of the reef’s 3D structure break down (Alvarez-Filip et al. 2009;
Graham and Nash 2013), suggesting total productive surface
area may decrease. However, the macroalgae and octocorals
that replace hard corals often have complex morphologies
with high total surface area and so the overall effect of reef
degradation on reef-scale production may be more
complicated.

Although the degraded reefs studied here have high GPP,
as indicated by both the “bottom up” and EC methods, EC-
based NCP rates at LG9 showed that the system was net
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heterotrophic even during mid-day (Fig. S5) when most coral
reefs have positive NCP (McGillis et al. 2011; Long et al. 2013;
Takeshita et al. 2016). Potential explanations for net hetero-
trophy at this site include taxonomic differences from typical
coral reefs, most notably a lower abundance of hard corals, or
longer-timescale temporal decoupling (e.g., seasonal) between
production and respiration, but we suspect the most likely
explanation is high respiration rates from organisms within
the reef framework (Richter et al. 2001). Most relevant to the
work at hand, this observation highlights the inability of the
“bottom-up” method to capture the often substantial respira-
tion of heterotrophic cryptic and endolithic communities
throughout the reef framework (Richter et al. 2001; Mueller
et al. 2014), since the "bottom-up” method only incorporates
the surficial community observable via photography.

Although we focus here on the “bottom-up” method’s abil-
ity to produce taxon-specific production rates, it is also capable
of generating spatially explicit estimates of production over the
reef as shown in Fig. 7. Notable features include the high pro-
ductivity associated with bands of Galaxaura around the edge
of the reef section (low stands) and lower rates of production
associated with rubble. These spatially explicit fluxes could pro-
vide insight into hotspots of food availability for fauna or be
integrated into physical ocean models to better understand
oxygen or carbon fluxes on the reef and exchanges with the
adjacent ocean. Furthermore, the “bottom-up” approach is not
limited to estimating production rates. The approach could be
adapted to estimate reef-scale fluxes of dissolved organic carbon

(Haas et al. 2016), nitrogen, or even sponge mediated transfor-
mations (Pawlik and McMurray 2020).

Conclusions
Using an improved “bottom-up” method, taxon specific

rates of production on coral reefs in the Florida Keys were
assessed. At all sites, turf algae and crustose coralline algae
growing on coral rubble provided a consistent base of produc-
tion (� 20% of total), supporting fish and invertebrates
(Carpenter 1986). On a more pristine reef, hard corals and
octocorals were responsible for most of the production and
macroalgal production was extremely low, consistent with
previous observations in the Red Sea (Van Hoytema
et al. 2016). However, on degraded reefs macroalgae and
octocorals dominated production, potentially inhibiting reef
recovery through release of dissolved organic matter that pro-
motes growth of harmful microbes (Barott and Rohwer 2012).
A highly productive red algae, Galaxaura, grew rapidly after
the passage of a hurricane shifting the dominant sources of
production on the reef. Comparison of the “bottom-up”
approach with eddy covariance measurements showed the
“bottom-up” method was reasonably accurate with daily inte-
grated and maximal production estimates from the “bottom-
up” method being somewhat lower. Nonetheless, this compar-
ison shows the “bottom-up” approach is capturing the bulk of
reef production and can be used to provide taxonomically,
spatially, and temporally resolved production rates.

Fig. 7. Maps of (a) reef organisms and substrates and (b) daily integrated primary production at site LG9.
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