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ABSTRACT
This study presents robot-based rehabilitation and its as-

sessment. Robotic devices have significantly been useful to help
therapists do the training procedure consistently. However, as
robotic devices interface with humans, quantifying the interac-
tion and its intended outcomes is still a research challenge. In
this study, human-robot interaction during rehabilitation is as-
sessed based on measurable interaction forces and human phys-
iological response data. And correlations are established to
plan the intervention and effective limb trajectories within the
intended rehabilitation and interaction forces. In the study, the
Universal Robot 5 (UR5) is used to guide and support the arm
of a subject over a predefined trajectory while recording muscle
activities through surface electromyography (sEMG) signals us-
ing the Trigno wireless DELSYS devices. The interaction force is
measured through the force sensor mounted on the robot endef-
fector. The force signals and the human physiological data are
analyzed and classified to infer the related progress. Feature re-
duction and selection techniques are used to identify redundant
inputs and outputs.

1 Introduction
Recently an increase in research interest has been shown

in rehabilitation using robots and exoskeletons due to their ca-
pabilities in supporting physical therapy procedures [1–4]. The
demand of such devices has increased partly due to an increas-
ing rate of the aging community with motor impairments [5, 6].
Age related and other neuromuscular diseases such as muscu-
lar dystrophy (MD), amyotrophic lateral sclerosis (ALS), and
multiple sclerosis (MS) can result in loss of independence due

∗Corresponding Author

to the associated hand impairments. About 800,000 Americans
have strokes each year. The total cost of stroke in the United
States is estimated at $ 34 billion per year with the direct costs
of medical care; and therapy are estimated at $ 28 billion per
year [7]. Stroke often causes paralysis or weakness of one or
more of the muscles in the arm or shoulder. Diseases like these
leave patients with greatly impaired or completely non-existent
muscle function over time, making life for them tremendously
difficult. An option to relieve the symptoms while medical re-
search continues is rooted in assistive technologies. To this end,
there has been considerable research directed toward the devel-
opment of assistive devices to restore arm and hand functional-
ity. For example, there are currently exoskeletons being used,
largely in physical therapy, to help rehabilitate paralyzed or im-
paired movement of the upper-arm due to strokes and other sim-
ilar medical problems [8–11]. However, due to the lack of quan-
tifiable feedback regarding the degree of intervention at one point
and the effectiveness of various training parameters (such as tim-
ing, intensity, etc.), the training protocols and their efficacy vary
remarkably between institutions and therapists [12, 13]. In or-
der to assess the efficacy of novel therapeutic methods and un-
derstand the potential contributions of incorporating innovative
technologies into the training process, observing the variation in
biomechanical and bio signal parameters are vital. In rehabili-
tation procedures, co-adapting interaction approaches with a be-
havior prediction power through data-driven models are needed
for a quick and complete restoration of lost functions [14]. How-
ever, as robotic devices interface with humans, quantifying the
interaction and its intended outcomes while maintaining the de-
sired physiological movement is still a research challenge [15].
Maximizing the number of repeated movements and generating a
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correct physiological movement trajectory are the two most im-
portant factors in task-specific rehabilitation. People with upper-
arm muscle weakness may not be able to carry the weight of their
arms and can cause joint dislocations; a proper arm positioning
and exercise after stroke can speedup recovery. Robotic devices
have been significantly useful to help therapists do the training
procedure efficiently and consistently. Assistive technologies can
also guide/assist patients to follow a certain trajectory during the
rehabilitation process. However, only few studies are available
on how muscles are engaged in such interventions.

Universal Robots (UR) are considered as one of the col-
laborative robots (Cobots) that can be utilized in a human en-
vironment facilitating specific tasks in industries as well as clin-
ics and hospitals [16, 17]. These robots are considered to have
smooth movements being able to interact with human under dif-
ferent circumstances. This feature with some factors of safety,
has been utilized in motor learning and interactive learning to
develop effective neuro-rehabilitation methods [18]. Exploring
and understanding of the potential effects of such assistive de-
vices based on interventions and their interactions with the user
are crucial. Some patients, such as PD patients are typically in-
capable of swinging their hands in a normal way, because the
certain muscles that need to be recruited do not have enough
strength [19]. These patients may not be able to trace a given
circular path, however, with assistance through the end-effector
mounted on the robot, they can complete the task. There have
been numerous investigations and multidisciplinary studies on
this issue each has approached the shortcomings from a different
aspect [20,21]. However, it is still unknown on to what extent the
robot recruits additional muscles from the upper arm to perform
the task without introducing any complications in terms of force
or stiffness on the patients. In this study, a task based rehabil-
itation with Universal Robot 5 (UR5) is assessed through mus-
cle activities and robotic force sensors (FT300 sensor) mounted
on the UR5. Using multiple IMU sensors to find position and
orientation of points of interest, the study focuses on two main
contributions: 1) a strategy to capture impact-based novel limb
trajectories which can serve as a base for the intervention and
input data for mechanism synthesis and 2) to develop an assist-
as-needed (AAN) support strategy based on the targeted muscle
activity and control of the highly corelated directional human-
robot interaction force. The study envisions a model that can
help physicians and therapists predict and quantify the efficacy
of therapy for a given intervention pattern. The findings will
help in prescribing the intervention with the right dosage and
engaging robots in novel exercise than enhancing the traditional
approaches.

2 Methodology
The study presents a systematic approach to develop a novel

and controlled intervention procedure for upper-arm task-based
rehabilitation. The specific tasks include 1) identifying effective

trajectories based on the muscle activity, 2) identifying correla-
tions of interaction forces with targeted muscle responses, and 3)
the implication towards an AAN control strategy. The method-
ology outlines the general procedure as well as its implication in
a specific case study for upper arm rehabilitation using a circular
trajectory.

2.1 Investigating Impact-based Limb Trajectories
This task is based on the rationale that harvesting and uti-

lizing effective trajectories which can highly affect the muscle
activity may result in reduced workspace and subsequently a re-
duced recovery time during rehabilitation. It has been established
that the reduction in the number of degrees of freedom in the
workspace provides a number of potential benefits in the clini-
cal settings. However, the Degree of freedom (DoF)s that should
be captured are neither arbitrary nor obvious. The workspace in
many applications will greatly exceed the desired effective op-
erational workspace of the device as well as the limb trajectory.
Here, we introduced a new approach in which the muscle ac-
tivities (EMG signals) and human motion via Inertial Measure-
ment Unit (IMU) are integrated to get the effective and desired
task(s) for the application of robot. The collected data include
positions and angles from multiple locations on the human limb
of interest. Effective cloud points will be collected and selected
based on threshold values. The general outline for the this task
is shown in Figure 1. For the upper limb rehabilitation, we have
considered Biceps Brachii (BB), Triceps Lateral (TL), and Tri-
ceps Long (TLo) muscles; hence, placing surface electromyo-
graphy (sEMG) hybrid sensors on these muscles and an IMU
sensor at the upper arm can help to track position and orienta-
tion. A matlab script is developed to extract IMU data based on
the RMS value of EMG, such that to maintain a set threshold of
muscles activities. Finally, effective points for each muscle are
analyzed individually, and the common points that have a poten-
tial effect on all the muscles are further characterized for their
trajectory related implication. Studies have been done in the area
of limb motion and corresponding muscle activities while follow-
ing controlled joint and limb moments [22]. However, harvesting
effective points within the range of motion of the limbs for reha-
bilitation requires more work and investigation. A preliminary
analysis has also been done based on a selected motion of the
upper arm as shown in Figure 2 and sEMG is collected at the tar-
geted muscles: Biceps Brachii (BB), Triceps Lateral (TL), and
Triceps Long (TLo) muscles. For this specific example, the red
cloud points have a relatively higher impact on the corresponding
muscles. At the same time, we can see differences in the three
muscles, which opens an opportunity. Depending on the targeted
muscle, effective points/trajectory can be defined or a common
trajectory can be selected to affect the three muscles. Identify-
ing such trajectories can also help as a base for novel mechanism
synthesis; the traditional mechanism synthesis for an exoskeleton
follow an intuitive approach by mimicking human-joint to robot-

2 Copyright c© by ASME

ASME Journal of Engineering and Science in Medical Diagnostics and Therapy. Received October 15, 2019; 
Accepted manuscript posted February 28, 2020. doi:10.1115/1.4046475 
Copyright (c) 2020 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

edicaldiagnostics/article-pdf/doi/10.1115/1.4046475/6488660/jesm
dt-19-1046.pdf by W

ichita State U
niversity, Yim

esker Yihun on 04 M
ay 2020



joint which may not reach such effective points/trajectories due
to joint constraints. Such approaches can also be used as a base
to asses traditional therapy tasks and their implications on the
targeted muscle, for example, following geometrical paths such
as circular and elliptical shapes are utilized to asses upper arm
strength and muscle weaknesses for stroke and Parkinson disease
patients.

FIGURE 1. Experimental Setup for investigating impact-based limb
trajectories

FIGURE 2. (a) Selected upper limb motions, (b) Biceps Brachii (BB),
(c) Triceps Lateral (TL), and (d) Triceps Long (TLo) muscles.

2.2 Identifying Correlation Between Interaction
Forces and Muscle Responses

The interaction force signals and the human physiological
data can be analyzed to infer gestures and related progresses.
In our preliminary study [23], an upper-arm, task-based reha-
bilitation with Universal Robot 5 (UR5) is assessed through a
model-based approach. Universal robot5 (UR5) has been uti-
lized to move an arm of healthy subjects over a circular path

while the muscle activities were recorded through sEMG; and
interaction forces measured using Robotiq force sensors (FT300
sensor) mounted on the robot. This sensor provides forces in
the three Cartesian coordinates (Fx, Fy, and Fz) also the cou-
ple about those directions (Mx, My, and Mz). A dynamic model
has been developed through system identification to relate the re-
sultant force with the level of muscle activity in the upper-arm.
Based on the preliminary result obtained from the five healthy
subjects, the model has provided a good accuracy in capturing
the dynamics. However, in that study, the resultant force was
utilized instead of directional forces; utilizing the resultant force
for modeling is not a good approach from an implementation per-
spective, as it is easier to control forces in a certain direction than
the resultant one. Understanding the interaction between direc-
tional forces and muscle responses in an effective limb trajectory
is vital to employ robots in novel intervention protocol that can
provide an effective and controlled outcome.

3 Case Study: Upper Arm Task-based Rehabilitation
Currently, robots do not introduce any novel rehabilitation

methods; instead they enhance the traditional approaches [24].
Thus, either a new approach, or a novel modification of tradi-
tional devices is needed to develop a more convenient assistive
training. In this case study, a typical geometrical path (circular)
that is frequently utilized for upper arm rehabilitation is used to
demonstrate how the selected task recruits the upper arm mus-
cles, how directional interaction forces correlate with the muscle
responses, and its implication for implementation and engage-
ment perspectives. Within a wide variety of different geometries,
drawing a circle has been the center of attention in lots of studies
to detect the pattern movements, joint excursion and roundness
precision so that a comprehensive therapeutic technique can be
developed to help the therapist in the optimized rehabilitation
process [25]. In another study, torque distribution of the shoul-
der and elbow have been observed while subjects were drawing
various shapes and lines [26]. We have selected this well applied
task based exercise (circular path) to establish interaction force
and muscle response at the selected muscle groups. In this study,
after obtaining the required Institutional Review Board (IRB) ap-
proval, a Universal Robot 5 (UR5) has been utilized to move an
arm of healthy subjects over a circular path while the muscle ac-
tivities are recorded through sEMG; at the same time, all compo-
nents of the forces applied to the robot have also been measured
using Robotiq force sensors (FT300 sensor). Five healthy male
subjects, ranging from 24 to 29 years old, and weighing within
the range of 62Kg to 86 Kg have been recruited to investigate the
robot-based rehabilitation and its efficacy on the upper arm mus-
cle recruitment. The subjects have been tasked to follow a given
circular trajectory with robot assistance. Universal Robot (UR5)
has been used for the assistance and the forces at the tip of the
robot has been recorded while the robot is used in the training.
The sEMG signal is also recorded from the Brachii (BB), Triceps
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Lateral (TL), and Triceps Long (TLo) muscles while the subjects
are performing a circular trajectory.

3.1 Experimental Setup
An ergonomic knob (green knob) has been designed and fix-

ated on the gripper, so that subjects can place their right hand
during the training. Additional strapping mechanism is used to
securely hold subjects’ hand and to avoid wrist rotation. Dur-
ing the training, real-time measurement of the force interaction
between the user and UR5 has been recorded; all components of
the forces are measured using Robotiq force sensors (FT300 sen-
sor) mounted on the robot. Muscle activities are captured using
sEMG sensors, Trigno wireless DELSYS device (Fig. 3). The
hybrid sensors have accelerometer as well as sEMG electrode.
Sensors are placed on the three aforementioned muscles of all
subjects and the robot runs through the same circular trajectory
with the same pace. This is a simulation of upper-arm therapeu-
tic movement that is usually done by a therapist. The trajectory
of the robot while holding the knob is confirmed by the circular
trace in a similar setting shown in Fig 3. Kinematics of the mo-
tion is designed in such a way that the jerk is minimal so subjects
could have a secure environment and trust the machine during the
rehabilitation process. Post processing built-in module provided
by the Delsys has been applied to filter and smooth the signals.
Fig. 4 demonstrates EMG data at the Triceps long muscles for all
five subjects. The raw data indicated that the triceps long mus-
cles are relatively insensitive for the selected task and force in-
teraction combination regardless of the anatomical differences of
the subjects. This suggests that the need of new trajectory/task
in order to engage TLo muscle groups (Fig. 4). Similarly, the
corresponding forces on the robot have been recorded to analyze
its implication on the upper-arm muscle activities. Understand-
ing the associated interaction directional forces are vital for the
controlled intervention. For instance, in the circular task some
of the forces and couples have no or minimal changes indicating
their effect on the targeted muscles. A sudden change of such
unnecessary directional forces might lead to discomfort or affect
muscles other than the targeted ones. An example of the RMS
values of sEMG data and the corresponding interaction forces
for one of the subject can be visualized in Fig.5.

FIGURE 3. sEMG sensor setup and UR5 with its trajectory

FIGURE 4. (a) RMS-filtered sEMG response of the Triceps Long
(TLo) muscle of the five subjects’ (X axis is # of samples)

FIGURE 5. (a) RMS-filtered sEMG response of a subject’s while
straight arm is trained by UR5, (b) the measured interaction force and
(c) moments

3.2 Correlation Analysis
The association between the directional forces and muscle

responses have been analyzed based on the Pearson product-
moment correlation criteria.
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3.2.1 Correlation of force and couple compo-
nents: In this study, we have analyzed the correlation and im-
pact of each force and couple components for a better under-
standing and implementation. Such analysis is important to bet-
ter define the process main parameters.

We used the Pearson’s Product Moment Correlation Coef-
ficient ( [27], [28]) given the ordinary distribution of the vari-
ables in the problem of interest. Preliminary analysis of data
linking forces with EMG signals shows that the dimensionality
of the vector of forces can be initially reduced by eliminating
forces with high correlation (for example, in five subjects, we
have found Fy and Mx have a correlation of = -0.99 (Fig 6), thus
one of these parameters can be eliminated from the analysis).
With that, key independent factors are recognized to be part of
the correlation analysis as they are impactful towards identify-
ing an effective model using reduced parameters. As shown in
Fig 6, Mx and Fy are highly correlated in a reverse fashion. The
same is applicable to My and Fz, as well as My and Fx with
lower levels of comparability. This means My parameter could
convey the effects of Fz and Fx on the model as we reduce the
number of main factors. This demonstration indicates how three
forces, three moments; and three EMG values of the targeted
muscles are related within several training trails by five subjects.
Moreover, by comparing the information between muscle activ-
ity level and Force/Torque data, it is noticed that TLo activity
does not even have marginal correlation to any force or torque
collected from the UR5. In other words, the selected training is
not a promising way to engage TLo muscle fibers. In addition,
Fx, Fy, Mx, and Mz do not have major association with BB and
TL muscle activities as well. There is plenty of useful informa-
tion embedded in the table that can be instrumental to therapists
and physiologist as they prescribe a particular rehabilitative train-
ing method to better help the patients recover.

3.2.2 Correlation Between Interaction Forces and
Muscle Responses: To administer the right task and inter-
action force control, understanding the interdependence of mus-
cles and forces is required. For example, as it is stated earlier,
the TLo correlation to any of the forces, as well as to other mus-
cle groups, is minimal. An analysis of the relationship between
forces and muscle activity shows significant differences between
such relationships for different subjects, both in terms of patterns
and variability. This supports the need for the more comprehen-
sive data collection and analysis. Moreover, correlation of the
EMG signals collected from each individual muscle group has
been investigated to further observe how dependent muscle sig-
nals are from one another. This has been discussed for each indi-
vidual subject (Fig.7 - Fig.11). For all cases except for one, TLo
activity is more related to TL than to BB; which is reasonable as
both are elbow extensors. Here it is confirmed that for virtually
all cases, Fy and Mx intercorrelation is high enough to narrow
them down to one representative factor. My and Fz are another

FIGURE 6. Correlation Between Interaction Forces and Muscle re-
sponses for five subjects

FIGURE 7. Correlation Between Interaction Forces/EMG the mus-
cles for subject 1

pair of parameters that are somewhat correlated to one another;
however, there are several others such as My and Fx that are usu-
ally of high correlation factor yet there is also inconsistencies
at times. Integrated correlation table and individual correlation
tables would help therapist to come up with a more robust and
effective procedure for training and rehabilitation.

4 Trajectory and Muscle activity Correlations
This task is based on the rationale that if the effective

trajectories and associated human-robot interaction force are
known, we should be able to predict/estimate the correspond-
ing muscle activity. This finding and prediction model can lead
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FIGURE 8. Correlation Between Interaction Forces/EMG the mus-
cles for subject 2

FIGURE 9. Correlation Between Interaction Forces/EMG the mus-
cles for subject 3

FIGURE 10. Correlation Between Interaction Forces/EMG the mus-
cles for subject 4

to prescription-based rehabilitation. Once the effective trajec-
tory/cloud points are identified, the implementation part will dis-
cuss controlling the robot. The robot can be programmed to pass

FIGURE 11. Correlation Between Interaction Forces/EMG the mus-
cles for subject 5

smoothly and safely through the selected cloud points in two
ways: (1) systematically by feeding the points sequentially. This
approach is good, especially when the effective cloud points for-
mulate a quantifiable trajectory; and (2) to search cloud points
based on maximizing the sEMG patterns. Following the ex-
perimental setup shown in Fig.3, another experiment has been
conducted using three subjects to identify the impact of a tra-
jectory on the muscle recruit and to demonstrate the idea. The
overall idea is to propose an integrated approach that involves
a trajectory with a desired interaction force to better recruit and
positively affect the targeted muscle groups. In this experiment,
two IMU sensors have been placed on the upper arm and lower
arm so that one can measure the relative position and orientation
of the whole limb for further investigations on the trajectory of
proximal or distal limb, respectively. For this case, the data for
the sensor on the upper arm close to the muscles has been uti-
lized to be associated with their level of activity i.e. BB, TL, and
TLo muscles (Fig.12). Fig.12 shows the IMU placement as well
as cloud points marked as three subjects move their right arm
through a constant circular path for the training exercise.

The captured EMG data for each muscle is associated with
location of the motion tracking sensor and the speed of the robot
as it loops through the circular path. After that, an appropriate
threshold value has been selected and applied so as to filter out
data points in the 3D workspace that are below that particular
value; hence, remaining points represent those that are highly
impactful on the designated muscle. This perspective provides
a targeted trajectory within which we are confident that training
will be more effective; such techniques lead to lower training
duration delivering the same result that can help patients recover
quickly. Fig.13, Fig.14 and Fig.15 illustrate the filtered EMG
values for each targeted muscle while using color to convey the
concept of effective trajectory and its influence on each muscle
group.

Based on Fig.13, sections with more dense distribution of
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FIGURE 12. Trajectory of all three subjects

FIGURE 13. Effective trajectory based on the EMG signal of BB, TL,
and TLo muscles for subject1

points imply that as the IMU on the upper arm pass through that
region, the designated muscle experiences a higher level of re-
cruitment. Therapists can use this information to design the ther-
apy path. So as Fig.14 and Fig.15 indicate, the effective region is
not necessarily similar for different muscles. In Fig.14, the up-
per left hand side of the loop is almost open which means moving
the arm through that section of the loop does not contribute much
toward triggering BB muscles. Same analogy holds for TL and
TLo as lower parts of the loop does not have many designated
point whereas the upper part where more points are concentrated.
This indicates the productive region of the movement. This re-

FIGURE 14. Effective trajectory based on the EMG signal of BB, TL,
and TLo muscles for subject2

FIGURE 15. Effective trajectory based on the EMG signal of BB, TL,
and TLo muscles for subject3

gion is tremendously subjective as Fig.15 shows a different set
of trajectory points as the most effective ones. This will help
to provide a greater emphases while planning and controlling a
robot to work within the part of the trajectory that have a better
impact/influence on the muscle, and may potentially reduce the
recovery time and associated rehabilitation costs by reducing the
total duration of the therapy.
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5 Implementation Strategy
Defining the desired, effective trajectory alone is not enough

for a quick recovery of the patient. Acknowledging progresses
made by the patients during an intervention is crucial while pro-
viding assistance when needed. Traditionally, the rehabilitation
therapist manually assists patients in performing movements,
providing only as much assistance as needed to complete the
movement, i.e., ”assist-as-needed”. Researchers are attempting
to automate this principle with robotic movement training de-
vices and several robot control algorithms have been designed to
automate the process [29, 30]. However, more investigation is
still required to provide autonomy to the user by involving hu-
man physiological signals and motor unit activities in the loop,
for both, operating the device and monitoring the level of recov-
ery. EMG signals have shown promising results in controlling
robots with correct human motion intention interpretation, and
detection of medical conditions, such as level of injury and re-
covery [31].

This section is designed to provide a general outline for the
implementation of the assist-as-needed strategy while following
effective trajectory. The task involves system identification to
relate muscle activity and interaction forces based on the outline
shown in Fig. 16. The outline helps to engage the robots in an
outcome-based rehabilitation protocol, which includes following
the desired trajectories and actively learn from the real-time data
to adjust its assistance during the interaction.

FIGURE 16. Model Prediction Outline
To implement the controller strategy, the kinematic and dy-

namics of the robot and the interaction force at the end-effector
are required. The controller interface will have two main sys-
tems (i) task-planner and (ii) joint-torque control using inverse
dynamics.

(i) Task-planner: The task planner module will send data
(end-effector position and orientation) based on the intended task
and the identified effective trajectories. The robot motion will
be programmed using Python to command the robot to move as
well as collect data from the robot. To achieve this online, socket
communication, a TCP/IP protocol communication is created be-
tween the robot and the computer.

(ii) Joint-torque control: The inverse kinematics analysis
will then be conducted to obtain the values of the angular po-
sition of the robot joints to satisfy the given end-effector trajec-

FIGURE 17. The assist-as-needed control strategy

tory. This allows to compute torques using the Euler-Lagrange
Equation shown in equation 1.

τ = M(q)q̈+C(q, q̇)q̇+G(q)+β [[J]T [Fin]] (1)
where M(q) is the Mass Inertia Matrix of the system, C(q, q̇) is
the matrix that defines the Centrifugal and Coriolis forces, g(q)
is the gravity vector and τ is the Torque acting at the robot joints.
M(q) matrix is calculated using Equation 2 .

M(q) = [
n

∑
i=1

(miJT
vi

Jvi + JT
ωi

RiIiRT
i Jωi ] (2)

where Jvi and Jωi are the linear and angular part of the Jacobian
Matrix Ji.

The matrix C(q, q̇) elements (ci j) are calculated using the
mass inertia matrix mi j .

ci j =
n

∑
k=1

1
2
(

∂mi j

∂qk
+

∂mik

∂q j
−

∂mk j

∂qk
) (3)

The gravity vector gi(q) is calculated as:

gi(q) =
∂P
∂qi

(4)

This method takes into account the moment of inertia of the indi-
vidual links and thus provides a more realistic representation of
the motion. To implement the AAN support strategy, a dynamic
scaling vector β to account the muscle activity and its correlation
with the directional interaction force is used so that it can con-
trol the torque/power demand due to the interaction force (Fin).
This interaction force has six dimensions, the three forces and
moments in x, y, and z directions. The β value will keep the
power/torque demand as needed at each major joints to gener-
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ate the directional force as interface as needed for the targeted
muscle. A higher value of β is needed during at the beginning
of the intervention and a lower value of β is needed when the
patient is recovering and contributing to the motion. For exam-
ple, if more assistance is needed based on the predicted model
or measured sEMG, the β value will be increased in the desired
direction of force or moment to influence the total torque de-
mand for the robot. For the specific task/trajectory, β can be
set based on the correlation factor of the interaction force and
targeted muscle, so that the highly correlated component of the
load is maximized. Essentially, the β factor plays the element of
compensation role which is the intent in AAN controllers yet it
will be adjusted intelligently based upon the correlation analysis.

6 Conclusions
In this study, UR5 robot is utilized for an upper-arm task-

based rehabilitation, and the interaction between the robot and
the user’s upper arm muscles has been analyzed based on task
specific trajectories. Correlation analysis is utilized to capture
the relationship between the force interaction and the muscle
activities(sEMG) in the upper-arm, while following a circular
path. Based on the preliminary result obtained from the five
healthy subjects, the analysis has provided a good insight to in-
fer the muscle activity in the upper-arm based on the force data.
Highly correlated parameters suggest that they could be referred
to as one representative factor which is the most effective and
could serve as the main parameter when physicians are prescrib-
ing training and defining the procedure. Muscles with low de-
pendencies will not be influenced by that particular configura-
tion and driving forces must change so as to engage such mus-
cles. Moreover, targeted trajectory approach will reinforce the
idea of finding a robust yet constructive operation by selection of
the optimized path and impact rehabilitative movements as well
as the right dosage of applied force and other parameters that
have already been assessed in correlation analysis. This result
will layout a foundation to establish research strategies to under-
stand how human muscles are recruited during a task-based robot
assisted rehabilitation that eventually leads to a clear and con-
cise rehabilitation prescription. For instance, after the predicted
model is applied to the UR5 force input, having an outliers peak
or continuous misalignment in the result may suggests that not
only the robot is not helping the patient but also it has applied
counter force to the arm which needs an immediate attention.
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