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Triangulations of simplices with vanishing
local h-polynomial

André de Moura, Elijah Gunther, Sam Payne, Jason
Schuchardt & Alan Stapledon

Abstract Motivated by connections to intersection homology of toric morphisms, the motivic
monodromy conjecture, and a question of Stanley, we study the structure of geometric trian-
gulations of simplices whose local h-polynomial vanishes. As a first step, we identify a class
of refinements that preserve the local h-polynomial. In dimensions 2 and 3, we show that all
geometric triangulations with vanishing local h-polynomial are obtained from one or two simple
examples by a sequence of such refinements. In higher dimensions, we prove some partial results
and give further examples.

1. Introduction

Let � be a triangulation of a simplex � of dimension d≠1. The h-polynomial h(�; x) =
h0 + h1x + · · · + hdx

d is a common and convenient way of encoding the number of
faces of � in each dimension. It is characterized by the equation

dÿ

i=0
hi(x + 1)d≠i =

dÿ

i=0
fi≠1x

d≠i
,

where f≠1 = 1 and fi is the number of i-dimensional faces of �, for i > 0. The
coe�cients hi are non-negative integers. One powerful tool for studying h(�; x) is the
local h-polynomial ¸(�; x) = ¸0 +¸1x+ · · ·+¸dx

d, introduced by Stanley in his seminal
paper [7]. It is characterized via Möbius inversion by the equation

(1) h(�; x) =
ÿ

F6�
¸(�F ; x),

where �F denotes the restriction of the triangulation � to a face F (which may be
empty or all of �), together with the condition ¸(?; x) = 1.

The local h-polynomial has remarkable properties. In particular, the coe�cients
¸i are nonnegative and satisfy ¸i = ¸d≠i. Moreover, if the subdivision is regular,
then these coe�cients are unimodal. Among other applications, Stanley used local
h-polynomials to prove that h-polynomials increase coe�cientwise under refinement.

As discussed in Section 2, the local h-polynomial also behaves predictably with
respect to basic operations on subdivisions. It is additive for refinements that non-
trivially subdivide only one facet, multiplicative for joins, and vanishes on the trivial
subdivision. In particular, if �Õ is a refinement of � that nontrivially subdivides only
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one facet, and that subdivision is the cone over a subdivision of a codimension 1 face,
then ¸(�Õ; x) = ¸(�; x). We call such subdivisions conical facet refinements.

Our aim is to study geometric triangulations with vanishing local h-polynomial.
One might hope that all such subdivisions are obtained from the trivial subdivision
by a sequence of conical facet refinements. However, not all triangulations � with
vanishing local h-polynomial can be obtained from the trivial subdivision in this way.
One notable example in dimension 2 is the following subdivision, which we call the
triforce(1).

All of our theorems are for geometric triangulations, and all triangulations in this
paper are assumed to be geometric.

Theorem 1.1. In dimension 2, any triangulation with vanishing local h-polynomial
is obtained from either the trivial subdivision or the triforce by a sequence of conical
facet refinements.
The two cases in the theorem are distinguished by the internal edge graph, i.e. the
union of the edges that meet the interior of the subdivided simplex, which also fig-
ures prominently in the proof. For an iterated conical facet refinement of the triforce
subdivision, the internal edge graph has Euler characteristic zero and contains no
vertices of the original triangle. For an iterated conical facet refinement of the trivial
subdivision in dimension 2, the internal edge graph is a tree that contains exactly one
of the vertices of the original triangle.

In dimension three, the structural classification is even simpler.

Theorem 1.2. In dimension 3, any triangulation with vanishing local h-polynomial is
obtained from the trivial subdivision by a sequence of conical facet refinements.
The proof again relies on an analysis of the internal edge graph, which in dimension
three is a union of trees, each of which contains exactly one vertex supported on a
face of codimension at least 2 in the original simplex.

This structure of the internal edge graph is similar in higher dimensions. Note that
¸0 = 0 for any triangulation of a nonempty simplex.

Theorem 1.3. Let � be a triangulation of a simplex of dimension at least 3 such that
¸1 = ¸2 = 0. Then the internal edge graph of � is a union of trees each of which
contains exactly one vertex supported on a face of codimension at least 2.
However, the pattern of obtaining all triangulations whose local h-polynomials vanish
from a finite collection of examples by iterated conical facet refinements does not
continue in higher dimensions. See Section 5.

Our investigation into the structure of triangulations with vanishing local h-
polynomial is motivated by recent connections to algebraic and arithmetic geometry.
Local h-polynomials appear prominently in formulas for dimensions of homology
groups of intersection complexes for toric morphisms [3] and multiplicities of eigenval-
ues of monodromy [6, 8]. In Igusa’s p-adic monodromy conjecture [5], and the motivic
generalization of Denef and Loeser [4], the essential question is understanding whether
or not these multiplicities vanish. This problem is also natural and interesting from a

(1)This name reflects the subdivision’s realization in a sacred golden relic that is the ultimate
source of power in the action-adventure video game series The Legend of Zelda.
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purely combinatorial viewpoint; Stanley specifically asked for a nice characterization
of such triangulations in his original paper [7, Problem 4.13].

2. Preliminaries

We consider only geometric subdivisions � of a (d ≠ 1)-simplex �, except where
explicitly stated otherwise. In particular, all of the triangulations that we consider
are realized by subdividing a linearly embedded simplex into subsimplices. For further
details and background on local h-polynomials, we refer the reader to the recent survey
article of Athanasiadis [1], as well as [7].

2.1. Formulas for the local h-polynomial. We recall two useful formulas for
the local h-polynomial ¸(�; x). First, by applying Möbius inversion to (1), we can
express ¸(�; x) as an alternating sum of h-polynomials:

(2) ¸(�; x) =
ÿ

F6�
(≠1)codim(F )

h(�F ; x).

Here, the codimension is codim(F ) = d ≠ 1 ≠ dim(F ), since dim(�) = d ≠ 1.
Let ‡ : � æ � be the map taking a face G œ � to the smallest face F 6 � that

contains it. One says that G is carried by ‡(G), and the excess of G is
e(G) := dim(‡(G)) ≠ dim(G).

As in [7, Prop. 2.2], we can then express the local h-polynomial as

(3) ¸(�; x) =
ÿ

Gœ�
(≠1)codim(G)

x
d≠e(G)(x ≠ 1)e(G)

.

Definition 2.1. We say that G œ � is an interior face if ‡(G) = �.
2.2. Elementary properties of the local h-polynomial. The following basic
properties of local h-polynomials were mentioned in the introduction and will be used
in our main arguments.

Given triangulations � and �Õ of simplices � and �Õ, respectively, the join � ú �Õ is
naturally a triangulation of the simplex � ú �Õ. It is well-known that h-polynomials
are multiplicative for joins, i.e.

h(� ú �Õ; x) = h(�; x) · h(�Õ; x).
It follows that the local h-polynomial has the analogous property [2, Lemma 2.2], i.e.
(4) ¸(� ú �Õ; x) = ¸(�; x) · ¸(�Õ; x).

A triangulation �Õ of � is a refinement of � if every G œ � is a union of faces of
�Õ. We then write �Õ

G
for the restriction of �Õ to G. We are particularly interested in

the restriction of �Õ to maximal faces, or facets.
Definition 2.2. Let �Õ be a refinement of �, and let G be a facet of �. We say that
�Õ is a facet refinement of � along G if, for any facet H ”= G, the restriction �Õ

H
is

trivial.

� �Õ

Figure 1. A facet refinement of the triforce along its lower left facet.
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Local h-polynomials behave additively with respect to facet refinements.

Proposition 2.3. Let �Õ be a facet refinement of � along G, and let �Õ
G

denote the
triangulation of G induced by restricting �Õ. Then

¸(�Õ; x) = ¸(�; x) + ¸(�Õ
G

; x).

This follows from [6, Corollary 4.7], a much more general result about local h-
polynomials for compositions of strong formal subdivisions, applied to �Õ æ � æ �.
For the reader’s convenience, we include a direct proof in our setting.

Proof. The assertion is vacuously true in dimension zero. We proceed by induction
on dimension. First, we observe that

(5) h(�Õ; x) = h(�; x) + h(�Õ
G

; x) ≠ h(G; x).

This follows from the formula
q

d

i=0 fi(x ≠ 1)d≠i =
q

d

i=0 hix
d≠i, by inclusion-

exclusion.
Next, write each h-polynomial in (5) as a sum of local h-polynomials, using (1).

The contributions of the empty faces cancel, and each nonempty face of G contributes
0, since it is trivially subdivided. Therefore, we have

(6)
ÿ

{?} ”=H6�
¸(�Õ

H
; x) =

ÿ

{?} ”=H6�
¸(�H ; x) +

ÿ

{?} ”=HÕ6G

¸(�Õ
HÕ ; x).

For each nonempty face H 6 �, either �Õ
H

= �H or �Õ
H

is a facet refinement of �H

along G fl H. If H is a proper face of � then, by induction on dimension, we may
assume ¸(�Õ

H
; x) = ¸(�H ; x) + ¸(�Õ

GflH
; x). Similarly, for any nonempty face H

Õ 6 G,
either �Õ

HÕ is the trivial subdivision, or H
Õ is carried by a face H 6 � such that

H
Õ = G fl H and �Õ

H
is a facet refinement of �H along H

Õ . Thus, the contributions
of proper faces in (6) cancel, and we conclude that ¸(�Õ; x) = ¸(�; x) + ¸(�Õ

G
; x). ⇤

Definition 2.4. A facet refinement �Õ of � along G is a conical facet refinement if
�Õ

G
is the cone over �Õ

H
for some codimension 1 face H < G.

Corollary 2.5. Let �Õ be a facet refinement of � along G, and suppose that �Õ
G

is the
join of two triangulations of faces of G, one of which has vanishing local h-polynomial.
Then ¸(�Õ; x) = ¸(�; x). In particular, if �Õ is a conical facet refinement of �, then
¸(�Õ; x) = ¸(�; x).

Proof. This follows immediately from (4) and Proposition 2.3. ⇤

Figure 2. A triangulation obtained from the triforce by a series of
conical facet refinements.
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3. The internal edge graph

The proofs of the main results of this paper all involve the internal edge graph, formed
by the edges of a triangulation � that meet the interior of the simplex �. In this
section, we study the properties of this graph when d > 3, and ¸1 = ¸2 = 0.

Let f
j

i
denote the number of i-simplices in � that are carried by j-faces of �. From

equation (3), we see that ¸0 = 0, ¸1 = f
d≠1
0 , and

(7) ¸2 = f
d≠1
1 ≠ f

d≠2
0 ≠ (d ≠ 1)fd≠1

0 .

In particular, if ¸1 = 0 then ¸2 = f
d≠1
1 ≠ f

d≠2
0 .

Stanley proved non-negativity of all ¸i, using methods from commutative algebra. It
follows that if there are no interior vertices (i.e. if ¸1 = 0) then f

d≠1
1 > f

d≠2
0 . Note that

every vertex carried by a (d≠2)-face is contained in an interior edge, so this inequality
is a statement about the internal edge graph. We now give a combinatorial proof of
this inequality in a stronger form, showing in particular that it holds separately on
each connected component of the internal edge graph.

Definition 3.1. The internal edge graph of a subdivision � of � is the graph �(�)
whose edges are the edges of � carried by the improper face �, and whose vertices are
the vertices incident to those edges.
When � is clear from context, we will write � rather than �(�).

Proposition 3.2. Let � be a triangulation of a (d ≠ 1)-simplex � with d > 3 and
¸1 = 0. Then each connected component C of �(�) contains either a vertex of excess
less than d ≠ 2 or a simple 3-cycle.

Furthermore, if d > 4, and C has no vertices of excess less than d ≠ 2 then C

contains at least two distinct simple 3-cycles.
Proof. We may assume that � is the standard (d ≠ 1)-simplex in Rd, i.e. the convex
hull of the standard basis vectors e1, . . . , ed. Let Fi = Conv {e1, . . . , ‚ei, . . . , ed}, and
let fii : Rd æ R be the projection onto the i

th coordinate axis.
Suppose C is a connected component of � all of whose vertices have excess d ≠ 2.

We now show that C contains a simple 3-cycle.
Consider the two codimension 1 faces carrying the endpoints of an edge of C.

Without loss of generality, we may assume these to be F1 and F2. Let L be the linear
functional fi1 + fi2. Let e = Conv {v1, v2} be an edge of C such that v1 œ F1, and v2 œ
F2, such that L(v1 + v2) is maximal among all such edges. For (i, j) œ {(1, 2), (2, 1)},
let Pi : Rd æ Rd be the projection to the linear hyperplane spanned by Fi along
vj ≠ vi. More explicitly, for all w œ Rd,

Pi(w) = w ≠ fii(w)
fii(vj) (vj ≠ vi).

Substituting in the definitions above, we observe that
fii(vj)L(Pi(w) ≠ vi) = fii(vj)fij(Pi(w)) ≠ fii(vj)fij(vi)

= fii(vj)fij(w) + fij(vi)fii(w) ≠ fii(vj)fij(vi).
This is invariant under switching i and j, and hence
(8) fi1(v2)L(P1(w) ≠ v1) = fi2(v1)L(P2(w) ≠ v2).

Applying P1 to the closed star Cl(Star(e)), we see that e projects to v1, and 2-faces
project to segments ending at v1. Since e is an interior edge, v1 is in the relative interior
of P1(Cl(Star(e))). Therefore, for any hyperplane H in the image of P1 that contains
v1, there is a vertex of the link of e that projects to either side of that hyperplane. In
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particular, there is a vertex w in the link of e such that L(P1(w) ≠ v1) > 0. Recalling
that all vertices of C have excess d ≠ 2, we note that fi1(v2) > 0 and fi2(v1) > 0,
otherwise they would be contained in F1 fl F2. Therefore, by (8), L(P2(w) ≠ v2) > 0.

We claim that w is not carried by F1 or F2. Indeed, if w is carried by F1, we would
have P1(w) = w and L(v2+w) > L(v2+v1), contradicting our maximality assumption
on e. Thus w /œ F1. An identical argument shows that w is not carried by F2. This
proves the claim. Then without loss of generality, we may assume that w is carried
by F3. The three interior edges of C connecting v1, v2, and w form a simple 3-cycle.
If d = 3, then we are done.

Suppose d > 4. We must show that C contains another simple 3-cycle. Since w is in
lk e, � has an interior 2-face G = Conv {v1, v2, w}. Let p denote the projection along
G onto the codimension 2 linear subspace spanned by F1 fl F2. Then p(G) is in the
relative interior of p(Cl(Star(G)), and hence there exists a vertex w

Õ
/œ F1 fl F2 fl F3 in

the link of G. Without loss of generality, w
Õ

/œ F1. Then Conv {v1, w
Õ} is an interior

edge in C, and hence w
Õ is carried by a codimension 1 face of �. Since w

Õ
/œ F2 fl F3,

we may assume, without loss of generality, that w
Õ

/œ F2. Then the edges of G and
Conv {v1, v2, w

Õ} form two distinct simple 3-cycles in C. ⇤

Let f
j

i
(C) denote the number of i-faces of C that are carried by j-faces of �.

Corollary 3.3. Suppose d > 3 and ¸1 = 0. Then each connected component C of �
has

f
d≠2
0 (C) 6 f

d≠1
1 (C).

Proof. Recall that the Euler characteristic of a connected graph C is
‰(C) = #{vertices of C} ≠ #{edges of C}.

This is also equal to 1 ≠ h
1(C), where h

1 denotes the first Betti number. Hence
‰(C) 6 1, with equality if and only if C is a tree. Moreover, ‰(C) = 0 if and only if
C contains a unique simple cycle.

Let C be a connected component of the internal edge graph. Then
f

d≠2
0 (C) ≠ f

d≠1
1 (C) = ‰(C) ≠ f

<d≠2
0 (C).

By Proposition 3.2, either ‰(C) = 1 and f
<d≠2
0 is positive, or ‰(C) 6 0. ⇤

In Section 4, we will repeatedly use the following structural description of the
internal edge graph.

Proposition 3.4. Suppose d > 3, ¸1 = ¸2 = 0, and C is a connected component of �.
Then either

(1) C is a tree with a unique vertex of excess less than d ≠ 2, or
(2) d = 3, every vertex of C has excess d ≠ 2, and C has a unique simple 3-cycle.

Proof. Since ¸1 = 0, we can write ¸2 as a sum over connected components of �

¸2 =
ÿ

C

f
d≠1
1 (C) ≠ f

d≠2
0 (C)

=
ÿ

C

f
<d≠2
0 (C) ≠ ‰(C).

By Proposition 3.2 and Corollary 3.3, each summand is nonnegative, and the sum-
mand corresponding to C is zero if and only if either C is a tree with a unique vertex
of excess less than d ≠ 2, or d = 3, every vertex of C has excess d ≠ 2, and C contains
a unique simple 3-cycle. ⇤

Note that Theorem 1.3 follows immediately from Proposition 3.4.
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Remark 3.5. Note that the internal edge graph of any triangulation of a 2-simplex
is connected. To see this, consider a polyhedral subdivision of a triangle with dis-
connected internal edge graph. It must contain a polygon that meets two di�erent
components of the internal edge graph, and such a polygon has at least four edges:
at least two segments of the boundary, and at least one edge from each component of
the internal edge graph that it meets. In particular, it is not a triangulation.
Definition 3.6. Let F be a facet in a triangulation of the simplex �. We say that F is
a pyramid if there is some proper face of � that contains every vertex of F except one.
Remark 3.7. Understanding when a facet of a triangulation is a pyramid is helpful for
potential applications, e.g. to the monodromy conjecture for nondegenerate hypersur-
faces, as mentioned in the introduction. Note that, if �Õ is a conical facet refinement
of � along G, then both G and every facet of �Õ

G
is such a pyramid. Hence, it follows

from Theorem 1.2 that, if d = 4 and ¸(�; x) = 0, then every facet is a pyramid. Sim-
ilarly, it follows from Theorem 1.1 that, if d = 3 and ¸(�; x) = 0, then at most one
facet is not a pyramid.

The following proposition is not used in the remainder of the paper, but illustrates
how the structure of the internal edge graph gives useful statements about which
facets of a triangulation with vanishing local h-polynomial are pyramids.
Proposition 3.8. Let � be a triangulation of a (d ≠ 1)-simplex � with d > 4. If
¸1 = ¸2 = 0, then every facet G of � that contains an interior edge is a pyramid.
Proof. Let � be a facet of a triangulation of a (d ≠ 1)-simplex � with d > 4, such
that ¸1 = ¸2 = 0. Let G be a facet of � that contains an interior edge. We assume
that G is not a pyramid, and will derive a contradiction. Let e1 = Conv {v1, v2} be
an interior edge in G. Let C be the connected component of the interior edge graph
�(�) containing e1.

By Proposition 3.4, either v1 or v2 is carried by a codimension 1 face. Without loss
of generality, v1 is carried by a codimension 1 face F1. Note that v2 /œ F1. Since G is not
a pyramid, it has a vertex w2 /œ F1 distinct from v2. Then e2 = Conv {v1, w2} lies in
C. By Proposition 3.4, either v2 or w2 is carried by a codimension 1 face. Without loss
of generality, v2 is carried by a codimension 1 face F2. If w2 /œ F2, then Conv {v2, w2}
is an interior edge and C contains a cycle, contradicting Proposition 3.4. Hence,
w2 œ F2. Since G is not a pyramid, it has a vertex w1 /œ F2 distinct from v1. Then
e3 = Conv {w1, v2} lies in C. If w1 /œ F1, then Conv {v1, w1} is an interior edge and C

contains a cycle, contradicting Proposition 3.4. Hence w1 œ F1. By Proposition 3.4,
either w1 or w2 is carried by a codimension 1 face, meaning that they cannot both be
contained in some third codimension 1 face F3. Therefore, e4 = Conv {w1, w2} lies in
C, and e1, e3, e4, e2 forms a cycle in C, contradicting Proposition 3.4. ⇤

4. Dimensions 2 and 3

In this section we prove our main structural results, that all subdivisions with van-
ishing local h can be obtained by a sequence of conical facet refinements from the
trivial subdivision and the triforce subdivison in dimension 2, and from the trivial
subdivision in dimension 3. For both results our proof is by induction on the number
of vertices or interior edges in the subdivision. In the induction step, we identify a
subcomplex that arises from a conical subdivision of a facet in a coarser subdivision.

Recall that the support of a subcomplex �Õ µ � is the union of the faces in �Õ.
It is a closed subset of �. The relative boundary of any closed subset F µ � is the
intersection of F with the closure of its complement � r F . Note, in particular, that
if F is the support of a subcomplex �Õ µ �, then the relative boundary of F is the
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support of a subcomplex of �Õ. When no confusion seems possible, we will refer to
this subcomplex as the relative boundary of �Õ.

Lemma 4.1. Let � be a triangulation of a simplex � and let �Õ ™ � be a subcomplex
whose support is a simplex F of dimension d ≠ 1. Suppose that �Õ induces the trivial
subdivision on the relative boundary of F in �. Then ¸(�; x)≠¸(�Õ; x) has nonnegative
coe�cients. In particular, if ¸(�; x) = 0, then ¸(�Õ; x) = 0.
Proof. Since �Õ does not nontrivially subdivide the relative boundary of F in �, we
get a subdivision �ÕÕ of � by replacing �Õ with F itself. Note that � is then a facet
refinement of �ÕÕ along F , so by Proposition 2.3, we have ¸(�; x) = ¸(�ÕÕ; x) + ¸(�Õ; x),
and the lemma follows. ⇤
Remark 4.2. Note that, in the proof of the lemma, � is a conical facet refinement of
�ÕÕ (resp. obtained from �ÕÕ by a sequence of conical facet refinements) if and only if
�Õ is a conical facet refinement of F (resp. obtained from the trivial subdivision of F

by a sequence of conical facet refinements).

4.1. Dimension 2. We now apply the lemma to prove Theorem 1.1, which says that
any triangulation of a 2-dimensional simplex with vanishing local h-polynomial is
obtained from either the trivial subdivision or the triforce by a sequence of conical
facet refinements.

Proof of Theorem 1.1. If � has no interior edges, then it is the trivial subdivision; this
case of the theorem is obvious. We proceed by induction on the number of interior
edges, and consider two cases, according to the possible structures of the internal edge
graph given by Proposition 3.4. (Recall also that the internal edge graph is connected,
by Remark 3.5.)

Case 1: �(�) is a tree that contains exactly one vertex of excess zero.

We claim that � is obtained from the trivial subdivision of � by a sequence of
conical facet refinements. To see this, note that any interior edge that contains a vertex
of excess zero divides � into two triangular subcomplexes whose relative boundary is
not subdivided, as shown.

These two subcomplexes have vanishing local h-polynomials, by Lemma 4.1. By in-
duction, each is obtained from the trivial subdivision by a sequence of conical facet
refinements. Hence � is obtained from the subdivision into two triangles by a sequence
of conical facet refinements. The subdivision into two triangles is itself a conical facet
refinement of the trivial subdivision, and we conclude that � is obtained from the
trivial subdivision by a sequence of conical facet refinements, as claimed.

Case 2: �(�) contains a simple 3-cycle and all of its vertices have excess 1 .

We claim that � is obtained from the triforce by a sequence of conical facet refine-
ments. To see this, note that the three vertices of the simple 3-cycle must be carried
by the three sides of �. This splits � into four triangular subcomplexes, each with
unsubdivided relative boundary, i.e. � is a refinement of the triforce, and the induced
subdivision on the relative boundary of each of the four triangles is trivial. Hence, by
Lemma 4.1, each of the four induced subdivisions has vanishing local h-polynomial. In
fact, the induced subdivision of the interior triangle must be trivial (because � has no
interior vertices). In each of the other three triangles, the induced subdivision cannot
contain a cycle of interior edges, and hence the induced subdivisions are obtained
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from the trivial subdivision by a sequence of conical facet refinements. We conclude
that � is obtained from the triforce by a sequence of conical facet refinements, as
claimed. ⇤
4.2. Dimension 3. We now apply similar inductive arguments to prove Theorem 1.2,
which says that any subdivision � of a 3-dimensional simplex � with vanishing local
h-polynomial is obtained from the trivial subdivision by a sequence of conical facet
refinements.

Proof of Theorem 1.2. If � has only 4 vertices, then it is the trivial subdivision and
the conclusion is obvious. We proceed by induction on the number of vertices. By
Proposition 3.4, each connected component of the internal edge graph �(�) is a tree
with exactly one vertex of excess less than 2.
Case 1: �(�) is empty.

Let F be a 2-face of �. We claim that ¸(�F ; x) = 0. To see this, note that any vertex
carried by F must be contained in an interior edge. Hence �F has no interior vertices,
and ¸1(�F ; x) = 0. Now �F is a triangulation of the 2-simplex, so the symmetry
of the local h-polynomial implies that ¸i(�G; x) = ¸3≠i(�F ; x). Hence ¸2(�F ; x) =
¸1(�F ; x) = 0, and we conclude that ¸(�F ; x) = 0, as claimed.

We proceed to consider three subcases, according to the internal edge graphs of
the restrictions of � to the 2-faces of �.
Subcase 1.1: All 2-faces have empty internal edge graph.

Any interior 2-face of � contains an edge that is carried by �F for some 2-face
F 6 �. So � has no interior 2-faces, and hence is the trivial subdivision.
Subcase 1.2: Some 2-face has a 3-cycle in its internal edge graph.

Let F1 be a 2-face of � such that �F1 contains a 3-cycle of interior edges. The
vertices of this 3-cycle, v2, v3, and v4, are carried by distinct edges of F1. Label the
other 2-faces of � as F2, F3, F4 so that vi is carried by F1 fl Fi.

The 2-face Conv {v2, v3, v4} is contained in some 3-face T = Conv {v2, v3, v4, x} of
�. Since �(�) is empty, the edges Conv {x, vi} must be contained in the boundary of
�. Hence x must lie in the intersection F2 flF3 flF4, which is the vertex of � opposite
F1. Then the 2-faces Conv {v1, v2, x}, Conv {v2, v3, x} and Conv {v1, v3, x} cut � into
four tetrahedral regions (the cone over a triforce subdivision of F1). By Lemma 4.1,
the restriction of � to each of these regions has vanishing local h-polynomial. By
induction, the induced subdivision of each of these regions is obtained from the trivial
subdivision by a sequence of conical facet refinements, and we are done.
Subcase 1.3: No 2-face has a 3-cycle, and some 2-face has an interior edge.

Let F be a 2-face of � such that �F contains an interior edge. By Proposition 3.4,
there is an edge e carried by F with a vertex of excess 0. Label the vertices of � as A,
B, C, and D, so that F = Conv {B, C, D} and e contains D. Let E œ Conv {B, C}
be the second vertex of e.

Let G be an interior 2-face of � containing e. Then G = Conv {e, v} for some
vertex v of �. This vertex v must lie on Conv {A, B} or Conv {A, C}, so that the
edges Conv {E, v} and Conv {D, v} are not interior. Furthermore, v ”= B, C, since
G is interior. Then either v = A, or, without loss of generality, we may assume
‡(v) = Conv {A, C}. These possibilities are illustrated in Figure 3.

If v = A then G, marked in grey in Figure 3a, divides � into two distinct tetrahedra,
that satisfy the conditions of the Lemma 4.1, and by the usual induction argument
we are done.

We may therefore assume ‡(v) = Conv {A, C} as in Figure 3b. In this case, G cuts
o� a tetrahedron Conv {v, C, D, E}, which satisfies the conditions of Lemma 4.1. By
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A

B

C

D

E

e

(a) v = A

A

B

C

D

E
v

e

(b) ‡(v) = Conv {A, C}

Figure 3. Possible locations for v in Subcase 1.3

induction, it su�ces to consider the case where this tetrahedron is trivially subdi-
vided. Also since G is an interior 2-face, it must be contained in another tetrahedron
Conv {v, D, E, w} of �. We must have w œ Conv {v, A}fiConv {A, B}fiConv {E, B}r
{v, E}, in order to prevent the edges Conv {w, v} and Conv {w, E} from being interior,
and so that w is on the other side of G from C.

Now if ‡(w) = Conv {A, B}, then �Conv{A,B,C} will contain a cycle of interior
edges, with vertices v, E, w. But we assumed that no 2-face has a cycle in its internal
edge graph. Thus, w œ Conv {v, A} r {v} or w œ Conv {E, B} r {E}. Without loss
of generality, we may assume w œ Conv {E, B} r {E}. Then regardless of whether
w = B or is instead in the interior of the segment, the tetrahedron Conv {v, D, w, C}
is one to which Lemma 4.1 applies. Moreover, �Conv{v,D,w,C} is nontrivial, because G

lies in the interior. Hence �Conv{v,D,w,C} is obtained from the trivial subdivision by
a series of conical facet refinements, and the conclusion follows by induction.
Case 2: �(�) is nonempty.

By Proposition 3.4, we know that each connected component of �(�) is a tree
rooted at a unique vertex of excess less than 2. We consider one of these components
C and let v1 be one of its leaves at maximal distance from the root. Let w be the
unique vertex adjacent to v1 in C, and let F be the 2-face carrying v1. Let v2, . . . , vr

be the other leaves that are adjacent to w and carried by F , as in Figure 4.
root

w

v1 · · · vr

carried by F

Figure 4. Structure of C.

Let X be the subcomplex of �F that is the union of the closed stars of v1, . . . , vr.

Claim: X ™ Cl(Star(w)).
In other words, we claim that � contains, as a subcomplex, the cone over X with

vertex w. To prove this, it su�ces to show that if G is a k-face of �F containing some
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vertex vi, then G is contained in a face of Star(w). Any such G must be contained in
an interior (k + 1)-face of �. Let w

Õ be a vertex such that Conv {G, w
Õ} is an interior

(k+1)-face. Note that Conv {vi, w
Õ} is an interior edge. Since vi is a leaf of the internal

edge graph, we have w
Õ = w. Hence Conv {G, w} is a face of Star(w) that contains G.

This proves the claim.

Subcase 2.1: There is a vertex of X carried by F that is not in {v1, . . . , vr}. Let v

be a vertex of X that is carried by F and not contained in {v1, . . . , vr}. Since v œ X,
there is an edge Conv {v, vi} in X for some index i. By the claim proved above,
Conv {v, vi, w} is a face of �, and Conv {v, w} is an edge of C. Since v ”œ {v1, . . . , vr},
it must be the parent of w.

Consider the link lk�F (v). This is a cycle of edges in �F that contains vi. If ev-
ery edge in lk�F (v) contains some vj œ {v1, . . . , vr}, then Star(v) is contained in
Cl(Star(w)) and hence Conv {v, w} is the unique interior edge containing v. This con-
tradicts the fact that v is the parent of w. Hence lk�F (v) contains multiple vertices
not in {v1, . . . , vr}.

Choose vertices w1 and w2 in lk�F (v) that are not in {v1, . . . , vr} so that every
vertex in the path between w1 and w2 that contains vi is in {v1, . . . , vr}. Note that,
since w1 and w2 are adjacent to w and not in {v1, . . . , vr}, and since v is the parent
of w in C, the edges Conv {w, wi} must not be interior. Similarly, w cannot be the
root of C. Hence w is carried by a 2-face that contains both w1 and w2.

It follows that w1 and w2 lie on an edge of F . Thus the subcomplex with support
Conv {v, w1, w2, w} satisfies the conditions of Lemma 4.1.

Subcase 2.1.1: Conv {v, w1, w2, w} is trivially subdivided.

We claim that this is impossible. Indeed, if Conv {v, w1, w2, w} is trivially subdi-
vided, then lk�F (v) consists of the edge Conv {w1, w2} together with a sequence of
edges connecting w1 to w2 in which all other vertices are contained in {v1, . . . , vr}.
Then every facet containing v is a pyramid with base on F and vertex at w. Hence,
v is a leaf of C. This is impossible, since we have already shown that v is the parent
of w. This proves the claim.

Subcase 2.1.2: Conv {v, w1, w2, w} is nontrivially subdivided.

In this case, by the induction hypothesis, �Conv{v,w1,w2,w} is obtained from the
trivial subdivision by a series of conical facet refinements, and the result follows by
induction.

Subcase 2.2: Every vertex of X carried by F is in {v1, . . . , vr}.

In this case, every edge in the boundary of X connects two vertices that are in
the boundary of F . Then the closure X

Õ of any connected component of the relative
interior of X is a subcomplex with support a polygon whose relative boundary in F is
trivially subdivided. If the support of X

Õ is a triangle, then we can apply Lemma 4.1
for the subcomplex of � given by the cone over X

Õ with vertex w, and be done by
induction.

If X
Õ is not a triangle, then we show that X

Õ is contained in a larger subcomplex
Y µ �F such that

(1) The relative boundary of Y in F is trivially subdivided.
(2) The cone over Y with vertex w is a subcomplex of �.
(3) The support of Y is a triangle.

Once we find such a Y , then the conclusion of the theorem follows by Lemma 4.1 and
induction on the number of vertices.
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In order to find Y as above, we begin with Y0 = X
Õ, and construct an increasing

sequence of subcomplexes
Y0 µ Y1 µ · · · µ Yn = Y

such that each Yi has properties (1) and (2), and the support of Y is a triangle.
We describe the construction of Yi+1 from Yi in terms of corner cutting edges.

Definition 4.3. A boundary edge e of Yi is corner cutting if its vertices are carried
by edges of F , and Yi lies on the side of e opposite from the corner that it cuts o�.

In our construction, if Yi is not a triangle then Yi+1 has strictly fewer corner
cutting edges than Yi. Since Y0 has at most 3 corner cutting edges, the procedure will
terminate for some n 6 3.

Yi

vw2

w1

e

Figure 5. A corner cutting edge e with vertices w1 and w2

Subcase 2.2.1: Yi has no corner cutting edges.

In this case, we claim that the support of Yi is triangular. First, if Yi has no
boundary edges, then its support is F . Suppose Yi has some boundary edge e. If both
vertices of e are carried by edges, then Yi is the on the same side as the vertex of F

cut o� by e. Any other boundary edge of Yi would have to be corner cutting. Hence,
the support of Yi is the triangle cut o� by e, and we are done.

Otherwise, e contains a vertex of F , and hence divides F into two triangles. Once
again, any other boundary edge would have to be corner cutting, so the support of Yi

is a triangle. This proves the claim, and completes this subcase.

It remains to consider the situation where Yi has a corner cutting edge e, with
vertices w1 and w2. Let v be the vertex of F cut o� by e, as in Figure 5. We consider
two further subcases, according to whether or not w is the root of C, as illustrated in
Figure 6.

v

w1

w2

w

w3

(a) w carried by a 2-face

v

w1

w2

w

(b) w contained in F1 fl F2

Figure 6. Possible locations for w, with the region Yi shaded
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Subcase 2.2.2: Yi has a corner cutting edge, and w is not the root of C. If w is not
the root, then it is carried by some 2-face of � other than F . It cannot be carried
by the face opposite v, since then both of the edges Conv {w1, w} and Conv {w2, w}
would be interior, meaning that w1 and w2 would both be low excess vertices on the
same component of the internal edge graph. Therefore without loss of generality, we
can assume that w is carried by the 2-face F

Õ ”= F containing w2.
Note that the support of Yi is a polygon, and if we now think of its boundary not

in F , but in the plane containing F , there are exactly two vertices of the boundary
adjacent to w1; one of these is w2, and the other is some vertex, which we call w3.

The edge Conv {w, w3} cannot be interior, since w3 is contained in the boundary
of F , and hence has low excess, but w1 is the root of C. Thus w3 œ F fl F

Õ, as shown
in Figure 6a. It follows that the polygon Yi both contains and is contained in the
triangle bounded by Conv {w1, w2}, Conv {w2, w3}, and Conv {w1, w3}. Therefore, Yi

is the triangle Conv {w1, w2, w3}, and we are done.

Subcase 2.2.3: Yi has a corner cutting edge, and w is the root of C.

In this case, w cannot have an interior edge to either w1 or w2, since w1 and
w2 both have low excess, and w is the root of C. Therefore, if F1 and F2 are the
faces other than F containing w1 and w2 respectively, then w must lie on the edge
F1flF2, possibly at the vertex, though this will not matter. This situation is illustrated
in Figure 6b. Since Conv {w, w1, w2} is in fact a 2-face of �, the subcomplex with
support Conv {w, w1, w2, v} satisfies the hypotheses of Lemma 4.1. Thus we may
assume that it is trivially subdivided. We then set Yi+1 to be the union of Yi with
the triangle Conv {w1, w2, v}. Then Yi+1 satisfies properties (1) and (2), and has
fewer corner cutting edges than Yi. Repeating this procedure, as Y0 has at most three
corner cutting edges, we eventually arrive at Yn satisfying properties (1)–(3), and the
theorem follows. ⇤

5. Higher dimensions

While Theorem 1.3, which is an immediate consequence of Proposition 3.4, says that
the structure of the internal edge graph is essentially the same in higher dimensions,
it seems that this is not su�cient for a useful classification of triangulations with
vanishing local h-polynomial. Indeed, there are infinitely many di�erent triangulations
of the 4-simplex with empty internal edge graph. For instance, the join of the triforce
with an arbitrary subdivision of the 1-simplex has this property. These triangulations
give rise to the following negative result.

Proposition 5.1. There is no finite collection of triangulations of the 4-simplex with
vanishing local h-polynomials from which all others can be obtained by a series of
conical facet refinements.

Proof. Let �n be the subdivision of the 1-simplex with n interior vertices, and let �Õ

be the triforce. If e is an edge of �n such that both endpoints are interior, then the
join of e with the center facet of �Õ is not a pyramid. Hence �n ú �Õ is a triangulation
with vanishing local h-polynomial that has n≠1 non-pyramid facets. The proposition
follows, since, as discussed in Remark 3.7, all of the new facets introduced by a conical
facet refinement are pyramids. ⇤

We leave the problem of classifying triangulations with vanishing local h-polynomial
in dimensions 4 and higher open, for future research.
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