

1 Congruence and conflict in the higher-level phylogenetics of squamate reptiles: an 2 expanded phylogenomic perspective

3

4 Authors and Affiliations

5 Sonal Singhal^{1,2,3*}, Timothy J. Colston^{4,5}, Maggie R. Grundler^{1,2,6}, Stephen A. Smith¹, Gabriel C.
6 Costa⁷, Guarino R. Colli⁸, Craig Moritz⁹, R. Alexander Pyron⁴, Daniel L. Rabosky^{1,2}

7

⁸ ¹Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor,
⁹ Michigan 48109

10 ²Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109

11 ³Department of Biology, CSU Dominguez Hills, Carson, California 90747

14 ⁵Department of Biological Science, Florida State University, Tallahassee, Florida 32306

19 ⁸Departamento de Zoologia, Universidade de Brasília, Brasília, DF, Brazil

20 ⁹Division of Ecology and Evolution, Research School of Biology, and Centre for Biodiversity
21 Analysis, The Australian National University, 46 Sullivans Creek Road, Acton, ACT,
22 2601, Australia

23

24 * corresponding author: sonal.singhal1@gmail.com

25

26 **Keywords**

27 target capture, molecular evolution, gene tree conflict, anchored hybrid enrichment (AHE),
28 ultraconserved elements (UCE), phylogenomic concordance

29

30 **Abstract**

31 Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life,
32 but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger
33 datasets both increase statistical confidence and uncover significant discordance, suggests that
34 understanding sources of conflict is important for accurate reconstruction of evolutionary history.

35 We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes,
36 and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span
37 higher-level diversity within the clade, which we augmented with publicly available sequences
38 for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative
39 topologies at 17 contentious nodes in the phylogeny. We identified shared properties of
40 conflicting loci, finding that rate and compositional heterogeneity drives discordance between
41 gene trees and species tree and that conflicting loci rarely overlap across contentious nodes.

42 Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we
43 confidently resolve nine of the 17 problematic nodes. We suggest this locus-by-locus and node-
44 by-node approach can be used to build consensus on which topological resolutions remain
45 uncertain in phylogenomic studies of other contentious groups.

46 **Introduction**

47 Phylogenomic analyses face several major challenges. Because large datasets are used to
48 generate these trees, many nodes in a tree often have strong statistical support (Rokas and Carroll
49 2006), whether measured by bootstrap or posterior probability metrics. However, this support is
50 somewhat illusory, because alternative datasets and inference methods can yield strongly
51 discordant results. Notable examples include the placement of ctenophores within animals
52 (Pisani et al. 2015; Whelan et al. 2015, 2017) and relationships among bird families (Jarvis et al.
53 2014; Prum et al. 2015). In both cases, phylogenies were inferred with millions of sites, and most
54 nodes in a given analysis were strongly statistically supported. Yet, some of these strongly
55 supported nodes conflict with each other across datasets and analytical methods, suggesting that
56 these estimates of statistical support might be inflated for some nodes (Cummings et al. 2003;
57 Jeffroy et al. 2006). In addition – and somewhat paradoxically – phylogenomic datasets
58 sometimes fail to provide additional resolution for some contentious nodes, despite massive
59 amounts of data (Philippe et al. 2011).

60 To address these challenges, we can instead interrogate support for alternative
61 phylogenetic hypotheses using a locus-by-locus approach (Brown and Thomson 2016; Arcila et
62 al. 2017; Shen et al. 2017; Smith et al. 2020; Walker et al. 2018). Given the assumption of a
63 single underlying species tree, this approach explicitly measures levels of conflict among gene
64 trees and attempts to determine its potential causes. Researchers can then filter loci or use more
65 sophisticated analytical methods (i.e., modeling introgression across tips, Wen et al. 2018) to
66 better resolve nodes with high levels of conflict.

67 Conflict among gene trees can result from both biological processes and methodological
68 issues. With respect to biology, certain evolutionary histories can increase gene tree conflict,

69 including introgression among lineages, large or structured ancestral populations, and periods of
70 rapid speciation (Maddison 1997; Degnan and Rosenberg 2006; Edwards 2009). Gene-tree
71 conflict can also arise if gene trees were estimated incorrectly due to methodological issues such
72 as undetected paralogy, model violation, or low information-content. Identifying and removing
73 sources of gene tree estimation error can generate better-resolved phylogenies (Jeffroy et al.
74 2006; Salichos and Rokas 2013; Doyle et al. 2015). However, such filtering approaches cannot
75 ameliorate gene tree incongruence that results from biological processes (but see Knowles et al.
76 2018). Instead, we must evaluate what these conflicts tell us about our confidence in a given
77 node as well as the processes that have led to conflict in the first place.

78 Here, we apply a locus-by-locus approach to understand gene tree conflict in Squamata,
79 the vertebrate clade comprising lizards, snakes and amphisbaenians. This clade includes over
80 10,000 species and exhibits striking instances of evolutionary convergence, with multiple
81 independent origins of viviparity, parthenogenesis, limblessness, sex chromosomes, and venom
82 production (Uetz and Stylianou 2018, Fry et al. 2006; Brandley et al. 2008; Kearney et al. 2009;
83 Pyron and Burbrink 2014; Gamble et al. 2015). This group has been subject to three recent,
84 wide-ranging phylogenomic studies (Burbrink et al. 2020; Streicher and Wiens 2016, 2017), all
85 of which clarified key relationships among clades and identified topological relationships that
86 remain uncertain. Building on these studies, we provide a consensus view on higher-level
87 squamate phylogenetics by assessing conflict and congruence across thousands of independent
88 loci, conducting targeted tests of support across high-conflict nodes, and identifying the shared
89 properties of conflicting loci. In doing so, we show how our locus-by-locus and node-by-node
90 approach can help focus attention on which phylogenetic relationships remain uncertain.

92 **Methods**

93 *Sampling, Data Acquisition, and Data Processing*

94 We used both newly-collected and previously-published genome-wide sequence data to infer a
95 family-level phylogeny for squamate reptiles. We sequenced 92 target samples, prioritizing
96 samples that were linked to voucherized museum specimens. We addressed key gaps in our
97 phylogenetic sampling by further including 17 samples from previously-published phylogenomic
98 studies (Leaché et al. 2015, Streicher et al. 2016, Streicher and Wiens 2016, Streicher and Wiens
99 2017). Where possible, we downloaded the raw sequence data associated with these samples and
100 processed them similarly to newly collected data. In total, we included 109 samples across 108
101 species, spanning 58 of the 67 squamate families (Table S1). Most families are represented by
102 two species that span the phylogenetic breadth of the family. Our taxonomy follows Uetz *et al.*
103 2018.

104 We used a target capture approach to sequence 5,462 phylogenomic loci per newly-
105 collected sample (SqCL marker set; Singhal et al. 2017). This marker set consists of three loci
106 types, all commonly used in vertebrate phylogenomics: 372 anchored hybrid enrichment loci
107 (AHE; Lemmon et al. 2012), 5052 ultraconserved elements (UCE; Faircloth et al. 2012b), and 38
108 single-copy nuclear genes (Wiens et al. 2012). The AHE and nuclear genes are conserved exons,
109 whereas UCEs are non-exonic conserved loci. To generate these data, we first extracted DNA
110 from either tail or liver tissue using a high-salt or phenol-chloroform DNA extraction (Aljanabi
111 and Martinez 1997). Following Illumina protocols, the commercial services Rapid Genomics
112 (Gainesville, FL, USA) and Arbor Biosciences (Ann Arbor, MI, USA) then prepared dual-
113 barcoded genomic libraries from ~1.0 ng of sheared DNA. Libraries were pooled in sets of eight;
114 pooled libraries were then used as template for standard capture reactions following the MyBaits

115 v3 Protocol (Arbor Biosciences; Ann Arbor, MI, USA). Following capture, libraries were pooled
116 further and 100 libraries were sequenced per one lane of 125PE reads with the Illumina HiSeq
117 4000 at the University of Michigan Sequencing Core (Ann Arbor, MI, USA) and at
118 HudsonAlpha (Huntsville, AL, USA).

119 We processed sequenced reads as follows; full details are available at Singhal et al.
120 (2017). Following demultiplexing, we removed adaptor sequence using Trimmomatic v0.36
121 and merged overlapping reads with PEAR v0.9.6 (Zhang et al. 2013; Bolger et al. 2014). We
122 used Trinity v2.3.2 to assemble reads and blat v36x1 to annotate assemblies (Kent 2002;
123 Grabherr et al. 2011). To call variants per individual, we aligned trimmed reads using bwa
124 v0.7.17 and called genotypes using GATK v3.4 (Li 2013, Van der Auwera et al. 2013). For use
125 as outgroups, we used BLAST v2.2.29 and samtools v1.3 to extract our target loci from the
126 human (hg38), chicken (galGal2), turtle (chrPic1), zebra finch (taeGut2), and alligator (allMis1)
127 reference genomes (Altschul et al. 1997; Li et al. 2009).

128

129 *Phylogenetic Inference*

130 We inferred a phylogeny across species using both a coalescent-based approach (ASTRAL-III
131 v5.5.9; Zhang et al. 2018) and concatenated approach (ExaML v3.0.19; Kozlov et al. 2015).
132 First, we generated locus-specific alignments using mafft v7.294 (Katoh and Standley 2013).
133 We removed any alignments that sampled <5% of individuals and then trimmed the remaining
134 alignments to remove any individual sequences that were <300 bp and any sites that were >70%
135 missing.

136 To generate a coalescent-based tree, we used RAxML v8.2.8 under the rapid hill-
137 climbing algorithm to infer a gene tree for each locus under the GTRGAMMA model

138 (Stamatakis 2014). To evaluate support for each gene tree, we calculated Shimodaira–Hasegawa
139 (SH)-like values per node. We then collapsed all gene tree nodes with <10 SH-like support,
140 resulting in an average of 9% of nodes collapsed. We used **ASTRAL-III** to infer a phylogeny
141 across these gene trees.

142 To infer a concatenated phylogeny, we used **ExaML** under the CAT model. We
143 generated 100 bootstraps by randomly subsampling 5% of the loci in the original alignment and
144 then inferring topology with **ExaML**. Because bootstrapping values were uniformly high even
145 with a small subsample and because this subsampling strategy was computationally efficient, we
146 did not explore alternative subsampling strategies.

147 We then inferred both a concatenated and coalescent phylogeny using an AHE-only or
148 UCE-only alignment, because marker type has been shown to affect phylogenetic inference
149 (Jarvis et al. 2014; Reddy et al. 2017). We did not analyze an alignment of traditional
150 phylogenetic genes only due to its small sample size. Then, we identified nodes that differed
151 among inferred trees using **phyparts v0.0.1** (Smith et al. 2015). **phyparts** identifies concordant
152 nodes as those that share the same set of descendants; all other nodes are discordant.

153 Finally, a major source of gene tree conflict can be topologies that fall into the anomaly
154 zone, the parameter space in which gene trees are more likely to be discordant with the species
155 tree than concordant (Degnan and Rosenberg 2006). Using scripts provided by Linkem et al.
156 (2016), we calculated the limit of the anomaly zone for each pair of parent-child internodes
157 (equation 4 in Degnan and Rosenberg 2006). If the descendant internal branch is shorter than the
158 limit, this branch falls into the anomaly zone. We calculated internal branch lengths in coalescent
159 units based on the **ASTRAL-III** tree.

160

161 *Testing Phylogenetic Conflicts*

162 We identified uncertain nodes in the family-level phylogeny for subsequent interrogation using
163 several approaches. First, we identified nodes that have been resolved inconsistently across
164 different studies (Wiens et al. 2012; Pyron et al. 2013; Streicher and Wiens 2017). In addition,
165 we considered nodes that have been historically contentious, such as the placement of Iguania (as
166 summarized in Losos et al. 2012). Second, we identified nodes that conflicted across the
167 phylogenies inferred in this study (Fig. 1, Fig. S1). Third, we identified common conflicting
168 topologies across gene trees. To do so, we used **bp** to compare rooted gene trees to the
169 concatenated phylogeny (Smith et al. 2020). For every node, **bp** outputs all conflicting
170 topologies found in the gene trees, ranked by frequency. We then manually reviewed this output
171 to both identify high conflict nodes and their alternate topological resolutions. Through these
172 three approaches, we selected 17 relationships for further investigation; each had two to four
173 alternate topological resolutions (see Table 1).

174 We used two complementary approaches to evaluate support for alternative topological
175 resolutions across our 17 putatively uncertain nodes. First, we measured levels of gene tree
176 conflict using **bp**. For a given node, if the gene tree and species tree have different descendants,
177 **bp** will classify the gene tree as conflicting. We measured conflict using gene trees that were
178 outgroup rooted and for which all nodes with <80 SH-like values were collapsed. Second, we
179 measured the difference in log-likelihoods for a given locus across all alternate topologies, as
180 introduced by Smith et al. (2020). Per node and locus, we calculated the log-likelihood under
181 each alternate topology by specifying these topologies as constraints in **RAxML**. We then
182 collated all likelihoods across all topological resolutions and took the difference between the two
183 largest likelihoods as D_{LNL} . D_{LNL} is thus an estimate of the extent to which a particular

184 topological resolution is favored over the next-best topological resolution for a given locus and
185 node. Then, per topology, we summed D_{LNL} values across the loci that best supported that
186 topological resolution. The summed D_{LNL} thus tells us the total weight of evidence favoring the
187 focal topology; this metric quantifies how strongly (summed D_{LNL} large) or weakly (summed
188 D_{LNL} small) a set of loci favors a particular topology. Similar to other measures of nodal support
189 based on likelihood (e.g., Shen et al. 2017), the D_{LNL} approach does not account for how
190 demographic parameters affect the likelihood of a gene tree given a species tree and thus might
191 fail in situations like the anomaly zone (Degnan and Rosenberg 2006).

192

193 *Shared properties of conflicting loci*

194 The properties of a given locus affect phylogenetic inference and thus levels of gene tree conflict
195 (Jeffroy et al. 2006). Accordingly, we calculated 14 summary statistics that characterized the
196 loci's overall data quality and patterns of molecular evolution (Table 2). We measured levels of
197 missing data (missingness and occupancy), informativeness (locus length, total tree length,
198 average SH-like value, and two metrics related to phylogenetic informativeness [PI]),
199 heterogeneity (nucleotide compositional heterogeneity, root-tip variance, and residuals of root-
200 tip length against root-tip node depth), quality (heterozygosity, number of long branches), GC
201 content, and saturation C value (Kück and Struck 2014, Townsend 2007). To calculate
202 phylogenetic informativeness, we calibrated the concatenated phylogeny using **treePL** (Smith
203 and O'Meara 2012) and fossil and secondary calibrations from Irisarri et al. 2017 and then
204 estimated PI using **TAPIR** (Faircloth et al. 2012a).

205 To determine what shared properties of loci might drive conflict, we conducted five
206 analyses. Across all these analyses, we used the D_{LNL} results to categorize loci as either

207 conflicting or supporting. First, per metric and per putatively contentious relationship, we
208 calculated the mean difference between loci that supported the most-preferred topology vs. those
209 that conflicted. We then generated 1000 non-parametric bootstraps and calculated the difference
210 for each of these scrambled datasets. We calculated significance as the number of bootstraps in
211 which the absolute difference was greater than the observed difference. Second, we determined
212 which locus-level properties might explain the level of conflict between the gene tree and the
213 species tree. Here, we measured the level of conflict as the difference in log-likelihoods of an
214 unconstrained gene tree vs. one constrained to the concatenated species tree. Before conducting
215 correlations, we took the residuals of all metrics and log-likelihoods against ‘tree length’. Third,
216 we correlated patterns of D_{LNL} values across all pairwise combinations of our 17 putatively
217 contentious nodes. Fourth, we determined if the identity of conflicting loci overlap more across
218 topological resolutions than would be expected by random chance. To calculate the percent
219 overlap expected under random, we scrambled the identity of conflicting vs. supporting loci for
220 each comparison, keeping proportions constant, and then measured percent overlap across 100
221 bootstraps.

222 Finally, fifth, patterns of molecular evolution can vary across locus types. For example,
223 UCEs contain a central conserved region and more quickly evolving flanking regions, whereas
224 AHE exons exhibit modest levels of conservation across their entire region (Faircloth et al.
225 2012b; Lemmon et al. 2012, Singhal et al. 2017). To determine if locus type might affect our
226 phylogenetic inference, we compared our locus-level metrics across all three locus types and
227 repeated the D_{LNL} analyses for both AHE- and UCE-only data sets. We did not conduct D_{LNL}
228 analyses with traditional phylogenetic genes because of the small sample size.

229

230 *Data analysis and visualization*

231 All code used to process genomic data and analyze data is available at <GitHubLink>. We used
232 `python` v3, `R` v3.3.3, `ape`, `phangorn`, `phytools`, and `cowplot` to process and visualize these
233 data (Paradis et al. 2004; Schliep 2010; Revell 2012; Wilke 2016).

234

235 **Results**

236 *Phylogenetic inference*

237 Our target capture approach was highly effective; we collected an average of 4.5 Mb of sequence
238 across 5103 loci across our 92 individuals (Table S1). Per locus, average completeness across
239 individuals was 92%. Our newly-generated data were of higher quality – higher coverage (mean
240 80×) and longer loci (mean 880 bp) – than previously-published data, likely because of greater
241 high sequencing effort (Fig. S3).

242 Using these data, we inferred both coalescent-based and concatenated trees. The two trees
243 were largely concordant but differed at several nodes, particularly with respect to family-level
244 relationships within Iguania (Fig. 1). Given that the two trees are fairly similar and mainly
245 disagree at known discordant nodes, we focus further analyses and discussion on the
246 concatenated phylogeny.

247 The concatenated phylogeny was largely concordant with previous squamate
248 phylogenies, whether these phylogenies were inferred with a few loci or with phylogenomic
249 datasets (Burbrink et al. 2020; Wiens et al. 2012; Streicher and Wiens 2017). However, some
250 inferred relationships differed. For example, in the concatenated topology, Dibamidae is sister to
251 all non-gecko squamates (as in Townsend et al. 2004), whereas other studies have found it sister
252 to all squamates (Pyron et al. 2013; Streicher and Wiens 2017) or sister to Gekkota (Burbrink et

253 al. 2020; Wiens et al. 2012; Reeder et al. 2015). Other conflicts emerged by comparing
254 phylogenies inferred using different marker sets and different analytical methods (Fig. 1 and S1).
255 For example, the position of Eublepharidae differs in trees inferred with AHE vs. UCE loci (Fig.
256 S1), as seen in other studies (Townsend et al. 2004; Wiens et al. 2012; Pyron and Burbrink 2014;
257 Reeder et al. 2015).

258

259 *Testing Phylogenetic Conflicts*

260 To more systematically evaluate conflict, we compared gene tree and species tree
261 topologies to determine the number of gene trees that conflict at each node. Levels of support
262 and conflict varied considerably both across clades and across clade depth (Fig. 2, Fig. S2).
263 Although our within-family sampling was limited, monophyly of families was well-supported by
264 the majority of gene trees (average support = 71%; Fig. S2). However, for relationships deeper
265 than family-level, gene tree support averaged 40%. Conflict was particularly common among
266 early branching relationships in Serpentes and Iguania; many of these branches fall into anomaly
267 zones (Fig. S4). In fact, conflict was so rampant within Iguania that we could not identify
268 alternate topological resolutions to test (see also Burbrink et al. 2020). Conflict was high even
269 across nodes that had high statistical support as measured by bootstrap and local posterior
270 probability (Fig. S5).

271 We then identified 17 putatively contentious nodes and used a summed log-likelihood
272 approach to evaluate support for alternate topological resolutions at each node (Table 1). Most
273 loci had very low D_{LNL} values (median D_{LNL} = 1.66; Fig. 3), indicating that they did not strongly
274 distinguish amongst alternate topologies. Nonetheless, the summed D_{LNL} approach strongly
275 resolved several uncertain nodes (Table 1, Table S2), including the historically contentious

276 placement of Iguania (Losos et al. 2012, see also Burbrink et al. 2020). For 10 of the 17 nodes,
277 comparing summed D_{LNL} across topologies provided strong support for one resolution among
278 others (Table 1). Here, we interpret a given topology as “strongly supported” when the top
279 resolution has a summed D_{LNL} at least 50% greater than the next best topological resolution. The
280 summed D_{LNL} approach supported the same topology found in the concatenated tree for 11 out of
281 17 tested nodes (Fig. 1; Table 1). Of the remaining six nodes, four of them (position of
282 Bolyeriidae, Eublepharidae, Rhineuridae, and Xenosauridae) had fairly equivocal support across
283 alternate topologies – i.e., alternate topological resolutions had very similar summed D_{LNL}
284 values.

285

286 *Shared properties of conflicting loci*

287 We tested if locus-specific patterns of data quality and molecular evolution could possibly be
288 driving conflict at nodes using five approaches. First, we compared how loci properties differed
289 between loci that supported the preferred vs. alternate topologies. In general, supporting vs.
290 conflicting loci were similar across most metrics, even when these differences were significant
291 (Table 2, Table S3). In the cases where metrics differed significantly across loci supporting
292 different topologies, typically higher quality loci – i.e., loci with less missingness, less
293 heterogeneity – supported the preferred topology (Table 2, Table S3). Exceptions included the
294 placement of Dibamidae, Gymnophthalmidae, and Xenosauridae, in which the best-supported
295 topology was supported by a biased subset of lower-quality loci.

296 Second, we calculated the correlation between locus summary statistics and the adequacy
297 of the concatenated topology for individual loci, finding that loci with increased compositional

298 heterogeneity and greater root-tip variance (indicative of heterotachy) showed the greatest
299 differences in likelihood (Fig. 4).

300 Third, we compared patterns of D_{LNL} values across topological tests. In general,
301 correlations in D_{LNL} values across different tests were weak; the average correlation was $r =$
302 0.175 (Fig. 5A). All correlations > 0.5 were between topological tests within snakes – e.g., the
303 correlation in D_{LNL} values between “position of Cylindrophiidae & Uropeltidae” and “position of
304 Anomalepididae”.

305 Fourth, we determined if the identity of conflicting loci overlap more across topological
306 resolutions than would be expected by chance, finding no more or less overlap than expected
307 under random (Fig. 5B). Together, this result and the D_{LNL} correlations suggest little consistency
308 in which loci conflict across different nodes.

309 Fifth, we repeated the summed D_{LNL} tests with AHE loci only, finding patterns in
310 agreement with the full data set at 11 of the 17 contentious nodes (Table S4). Of the remaining
311 six, the summed D_{LNL} values across topological resolutions were similar, suggesting that the D_{LNL}
312 test was inconclusive. Finally, the AHE markers generally exhibited less conflict with the species
313 tree, had less missing data and were more informative, and showed less evidence of
314 heterogeneity (Fig. 6, S6).

315

316 **Discussion**

317 *Squamate phylogenomics*

318 Our 5,343-locus phylogeny captures 86% of the family-level diversity in squamate
319 reptiles and recapitulates many of the same relationships identified by studies with more taxa and
320 fewer loci (Pyron et al. 2013; Tonini et al. 2016) and similar phylogenomic datasets (Burbrink et

321 al. 2020; Streicher and Wiens 2017). Many of the differences between our tree and previously-
322 published trees – for example, relationships among gecko families, placement of Xenosauridae,
323 placement of Dibamidae – have shown instability across studies that either sample different loci
324 and taxa and / or use different analytical methods. We replicate this pattern of discordance in our
325 study, finding topological differences across trees inferred using concatenated versus coalescent-
326 based methods (Fig. 1), as well as for UCE versus AHE loci only (Fig. S1). Given that levels of
327 gene tree conflict are high for most nodes in the phylogeny (Fig. 2, S2), this discordance across
328 datasets and studies is perhaps unsurprising.

329 We explored 17 putatively contentious nodes in detail. Some of these are nodes that have
330 low statistical support, some are nodes that have alternate topologies depending on the dataset
331 and analytical method used, and others show extensive gene tree conflict. By comparing summed
332 D_{LN} values across topological resolutions, we could strongly resolve 10 of these 17 nodes,
333 (Table 1). However, although the placements of Dibamidae and Gymnophthalmidae were
334 strongly resolved, they should remain open questions. For both, support for the preferred
335 topology is partially driven by markers with greater data missingness and more heterogeneity,
336 and for Dibamidae, relatively few markers were sampled.

337 Further, eight of these ten strongly supported topological resolutions were also recovered
338 in the concatenated phylogeny. The exceptions are the placements of Dibamidae and
339 Anomalepididae. Anomalepididae, along with Leptotyphlopidae and Typhlopidae, constitutes
340 the blind snakes, a group of fossorial snakes with reduced eyes. Most phylogenetic studies have
341 placed Anomalepididae as either sister to all snakes or sister to all non-blind snakes (Streicher
342 and Wiens 2016). In all inferred phylogenies (Fig. 1, S1, S2), we recover Anomalepididae as
343 sister to all non-blind snakes, which would suggest the ancestor of all snakes likely resembled

344 blind-snakes (Bellairs and Underwood 1951). In contrast, our D_{LNL} results recover
345 Anomalepididae as sister to other blind snakes (Table 1), as found in phylogenetic studies that
346 consider morphological data (Hsiang et al. 2015). However, our D_{LNL} analysis based solely on
347 AHE loci weakly supports Anomalepididae as sister to all non-blind snakes (Table S4).
348 Supporting versus conflicting loci for Anomalepididae are similar across all measured metrics
349 (Table S3); thus, this discrepancy between our topologies and D_{LNL} results might result from
350 variance at some other unmeasured metric of the sampled loci (e.g., gappiness of alignment).

351 Comparing our results to other phylogenomic analyses (Burbrink et al. 2020, Streicher
352 and Wiens 2016 & 2017), we can build consensus on which relationships in the squamate
353 phylogeny remain uncertain. These three studies and ours employ different sampling, similar
354 marker sets (either AHEs or UCEs or both), and different approaches to inferring nodal support
355 (bootstrap, local posterior probability, or locus-by-locus approaches). Thus, they can be regarded
356 as semi-independent studies. Summarizing these studies suggests that nine of the 17 putatively
357 contentious nodes in Squamata have been resolved (Table 3). Most notable among these eight
358 nodes is the placement of Iguania, which has been historically contentious (Losos et al. 2012).
359 Further, like Burbrink et al. (2020), we find no evidence that biased loci drive the placement of
360 Iguania (Table S3), as has been suggested in previous analyses (Gauthier et al. 2012, Koch et al.
361 2018). A few nodes – e.g., the placement of Dibamidae, the position of Eublepharidae – remain
362 uncertain and also have low statistical support across studies (Table 3). However, we also
363 identify a few nodes – e.g., position of Bolyeridae, position of Cylindrophiidae & Uropeltidae,
364 position of Xenosauridae – which both have strong statistical support and conflicting topologies
365 across previous studies. Our D_{LNL} analysis identified these nodes as having ambiguous support,
366 even when traditional measures of support failed to capture this ambiguity. These results suggest

367 the power of locus-by-locus approaches to identify contentious nodes in phylogenies. Below, we
368 explore potential causes for this conflict at these contentious nodes.

369

370 *Sources of conflict*

371 **Biological sources of conflict**

372 Gene tree conflict can arise from multiple biological sources – incomplete lineage sorting,
373 introgression, gene duplication, or varying selective or recombination regimes across loci
374 (Degnan and Rosenberg 2006, Maddison 1997, Duchêne et al. 2018). Of these sources of
375 conflict, incomplete lineage sorting – particularly as it arises during rapid radiation (e.g., Cloutier
376 et al. 2019) – most likely affects our dataset. Many of the internode distances within snakes and
377 iguanids are very short (Fig. 1), which could reflect rapid radiations in these clades. Accordingly,
378 we tested if any branches in our tree are in anomaly zones (Degnan and Rosenberg 2006). We
379 found that relationships within Iguania and within the clade spanning Boidae to Pythonidae in
380 Serpentes are in anomaly zones (Fig. S4). Both ‘position of Bolyeridae’ and ‘position of
381 Cylindrophiidae & Uropeltidae’ within the anomaly zone in Serpentes (see Table 1), which
382 limits our ability to interrogate these nodes using likelihood-based tests. Nonetheless, our tests of
383 these nodes were inconclusive (Table 3). In such cases where poor resolution is driven by
384 biological processes, phylogenetic uncertainty cannot be simply addressed through better
385 sampling, and these relationships are likely to persist as unresolvable.

386

387 **Gene tree estimation error: uninformative loci**

388 If loci have low information content, then some nodes in the inferred gene tree can be essentially
389 resolved randomly. This leads to extensive gene tree conflict, although this conflict does not

390 necessarily impact the reliability of species tree inference (Lanier et al. 2014, Blom et al. 2016).
391 To test if uninformative loci are driving conflict, we measured locus properties that reflect
392 information content, including SH values, tree length, locus length, and phylogenetic
393 informativeness. Generally, we found loci with greater informativeness (greater locus length,
394 higher SH, greater tree length) had higher concordance with our species tree (Fig. 4, see also
395 Burbrink et al. 2020), though results across phylogenetic informativeness were mixed. In our
396 dataset, more than 68% of our loci reached their maximum phylogenetic informativeness >100
397 million years ago (Fig. S7). Most of our loci should thus have adequate power to inform deeper
398 relationships in squamates, such as family-level relationships within Iguania, many of which
399 formed $\sim 80 - 100$ million years ago. Yet, most loci exhibit only minimal differences in log-
400 likelihoods across competing relationships (Fig. 3), suggesting these loci might be weakly
401 informative about these deeper nodes. Indeed, on average, only 2424 of the 5354 loci sampled
402 offered strong support for one relationship over another ($D_{LNL} > 2$). Possibly, loci with greater
403 information content – perhaps ones that are longer or that evolve more quickly – might be more
404 variable in their relative likelihoods across these relationships. However, perhaps because of the
405 low correlation of loci D_{LNL} values across nodes (Fig. 5A), we found no relationship between a
406 locus's average D_{LNL} and our measures of loci informativeness.

407

408 **Gene tree estimation error: model violation**

409 Model violation is an important source of gene tree estimation error. We quantified several
410 metrics of loci and their inferred trees that suggest the potential for model violation. For
411 example, high root-tip variance might reflect rate heterogeneity across lineages, high
412 compositional heterogeneity might reflect biased mutational process, high GC might reflect high

413 recombination rates (Romiguier et al. 2016), and high saturation c-values might reflect multiple
414 mutations to the same position. In our pipeline, we implemented fairly simple models of
415 sequence and tree evolution. Particularly for UCEs – in which there is marked spatial
416 heterogeneity in rates of evolution across the locus – these models might be too simple which
417 could then lead to gene tree estimation error (but see Abadi et al. 2019). Such model violation
418 might partially explain why loci with greater rate and compositional heterogeneity showed the
419 greatest difference between unconstrained and constrained gene tree likelihoods (Fig. 4), why
420 many of the loci supporting alternate, less-supported topologies exhibited higher rates of rate and
421 compositional heterogeneity (Table S3), and why AHE gene trees showed better fit to the species
422 tree than UCE gene trees (Fig. 6).

423

424 **Gene tree estimation error: poor data quality**

425 In a phylogenomic pipeline, data quality issues can arise across multiple steps, including poor
426 sequencing quality, mis-assemblies, and mistaken ortholog identification. These technical issues
427 can result in messy alignments, which could include poorly aligned regions or regions with high
428 missingness. The gene trees inferred from these alignments might then have inaccurate
429 topologies (Wong et al. 2008) or have longer branch lengths, more branch outliers, or show
430 higher levels of root-tip variance. Together, these sources of error can create gene tree conflict
431 even if they do not necessarily impact species tree inference (Nute et al. 2018). We attempted to
432 mitigate some of these quality issues by trimming alignments and requiring strict orthology
433 identification. Yet, we still see evidence for variance across all these metrics of locus and tree
434 quality (Fig. S7). In particular, loci with high levels of missingness and greater number of branch
435 outliers exhibit bigger log-likelihood differences in unconstrained topologies vs. topologies

436 constrained to the species tree (Fig. 4), and we found conflicting loci were more likely to have
437 greater missingness (Table S3). Emerging tools like SpruceUp and TreeShrink (Borowiec 2019,
438 Mai and Mirarab 2018) automatically profile alignments and inferred trees, offering a promising
439 way to identify and remove low-quality samples and loci that can increase gene tree conflict.

440

441 **Comparisons across marker types**

442 Other analyses have found the type of marker – e.g., intron versus exon – can influence
443 phylogenetic inference (Jarvis et al. 2014; Reddy et al. 2017). In this study, we sequenced three
444 markers types, which are relatively similar. These markers all have relatively slow evolutionary
445 rates (Faircloth et al. 2012b; Lemmon et al. 2012), and they almost certainly evolved under a
446 history of purifying selection (Katzman et al. 2007). Despite these similarities, AHE markers
447 have less missing data, exhibit less heterogeneity, and are more informative than UCE markers
448 or genes (Fig. 6B). These locus-level properties reduce discordance between gene trees and the
449 species tree (Fig. 5). Consequently, AHE markers show smaller differences in log-likelihoods
450 between their unconstrained topologies and the topologies constrained to the species tree (Fig.
451 6A). Despite the differences in quality across marker types, an AHE-only D_{LNL} analysis returned
452 a concordantly strong resolution for nine of the ten contentious nodes resolved strongly by the
453 full dataset (Table S4).

454

455 *Phylogenomics and phylogenetic conflict*

456 In many phylogenomic studies, independent analyses of the same clade often return trees
457 that conflict with one another yet have high statistical support (e.g., Pisani et al. 2015; Whelan et
458 al. 2015, 2017). Here, we recapitulate this finding; our inferred trees have nodes that conflict

459 with those found in three other squamate phylogenomic studies (Table 3, Burbrink et al. 2020,
460 Streicher and Wiens 2016 & 2017). Several of these conflicting nodes have strong statistical
461 support, but our D_{LNL} analysis identifies these nodes as remaining uncertain – thus showing the
462 power of a locus-by-locus and node-by-node approach.

463 Further, although our trees conflict, assessments of which nodes are uncertain – and
464 which nodes remain uncertain – are robust across the locus-by-locus and node-by-node analysis
465 we conducted and one conducted by Burbrink et al. 2020. We independently designed different
466 studies to address the same question, using different marker and taxon sets and different gene-
467 wise analyses to assess support and conflict. Yet, both Burbrink et al. 2020 and our study found
468 the same pattern across the two nodes we both tested; both studies strongly supported a nested
469 relationship for Iguania and showed uncertainty in the placement of Dibamidae. Although the
470 number of shared comparisons is small, this concordance suggests this locus-by-locus and node-
471 by-node approach provides better insights into levels of support for particular topological
472 resolutions (Shen et al. 2017; Smith et al. 2020; Walker et al. 2018), relative to traditional
473 measures that use clade posterior probabilities or bootstrap proportions (see also Fig. S5). Thus,
474 this general approach of interrogating nodes might help build consensus across different
475 phylogenomic studies on which nodes are resolved and which remain uncertain. Based on this
476 consensus, future researchers could then target uncertain relationships with different locus or
477 taxon sampling or improved analytical methods.

478 Other studies have argued to filter loci to ameliorate gene tree conflict (Jeffroy et al.
479 2006; Doyle et al. 2015; Whelan et al. 2015), specifically removing loci with low information
480 content. Particularly for coalescent-based methods, less-informative loci tend to lead to less
481 accurate gene trees, which could lead to inaccurate species trees (Gatesy and Springer 2014 but

482 see Blom et al. 2016). Removing such loci often results in better resolved species trees. Our
483 results suggest, however, that supporting versus conflicting loci do not dramatically differ in
484 information content (Fig. 4, Table S3), suggesting low information content might simply
485 increase noise rather than introducing bias.

486 Employing a locus-by-locus approach sidesteps this debate. Instead of removing less-
487 informative loci, we quantified how much support a given locus has for a particular topology
488 relative to others. Most loci show only minimal differences in likelihoods across different
489 constrained topologies (Fig. 3), which accords with a more general finding that only a small
490 proportion of sequenced loci can drive overall phylogenetic patterns (Brown and Thomson 2016;
491 Shen et al. 2017). Further, different loci have power to resolve nodes in different parts of the
492 phylogenetic tree. For example, we see little correlation in D_{LN} values across loci for different
493 tested relationships, even across adjacent nodes or nodes with similar splitting times (Fig. 5A).
494 Filtering loci on general informativeness risks removing loci that might inform specific
495 relationships (Chen et al. 2015, Dornburg et al. 2019, Smith et al. 2020). Instead, the pipeline
496 used here, where we ensure that biased loci are not driving topological resolutions, provides an
497 alternative approach (Table S3). Better identification and then removal of loci with poor data
498 quality – e.g., mistaken orthology assignment, chimeric assemblies – from large phylogenomic
499 datasets could further strengthen this approach.

500 Finally, traditionally, downstream phylogenetic analyses such as ancestral state
501 reconstruction have incorporated uncertainty in topologies by sampling across bootstrapped trees
502 or a posterior distribution. But, when inferred from phylogenomic data, bootstrap trees and
503 posterior distributions often fail to properly capture the uncertainty inherent in evolutionary
504 relationships (e.g., Arcila et al. 2017; Smith et al. 2020). A potential solution is to conduct

505 comparative analyses across gene trees, particularly in cases where gene tree conflict is driven by
506 biological processes (Hahn and Nakleh 2016). An additional solution might be to develop new
507 approaches for translating these alternative measures of nodal support (e.g., number of gene trees
508 supporting a given node, summed log-likelihoods) into uncertainty metrics that can then be
509 properly modeled in comparative analyses. As we collect larger and larger phylogenomic
510 datasets, such advances, along with improved methods for inferring and modeling sources of
511 conflict, will allow us to both better generate robust phylogenies and to use these phylogenies to
512 understand the evolution of life's diversity.

513

514 **Acknowledgements**

515 We gratefully acknowledge funding from: a fellowship from the David and Lucile Packard
516 Foundation to DLR, NSF 1754398 to DLR, NSF DEB-1441719 to RAP, NSF DEB-1519732 to
517 SS, CSU Dominguez Hills RSCA & EFA to SS, CAPES, CNPq, FAPDF to GRC. For technical
518 & logistical support, we thank Alison Devault & Jake Enk at Arbor Biosciences, Robbin Murrell,
519 Raquel Rivadeneira, and the staff of University of Michigan ARC TS Flux. For helpful
520 discussions, we thank Mike Harvey and Joseph Walker.

521

522 **Data availability**

523

- 524 • All scripts used in processing and analyzing the data: <GITHUBLINK>
- 525 • Short-read sequencing data: <SRALINK>
- 526 • Locus alignments and tree topologies: <DRYADLINK>
- 527 • Many sequenced individuals are accessioned as museum specimens (Table S1)

528 **Literature Cited**

529 Abadi S., Azouri D., Pupko T., Mayrose I. 2019. Model selection may not be a mandatory step
530 for phylogeny reconstruction. *Nat. Commun.* 10:934.

531 Aljanabi S.M., Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic
532 DNA for PCR-based techniques. *Nucleic Acids Res.* 25:4692–4693.

533 Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997.
534 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
535 *Nucleic Acids Res.* 25:3389–3402.

536 Arcila D., Ortí G., Vari R., Armbruster J.W., Stiassny M.L.J., Ko K.D., Sabaj M.H., Lundberg J.,
537 Revell L.J., Betancur-R R. 2017. Genome-wide interrogation advances resolution of
538 recalcitrant groups in the tree of life. *Nat. Ecol. Evol.* 1:20.

539 Bellairs A. d'A, Underwood G. 1951. The origin of snakes. *Biol. Rev.* 26:193–237.

540 Blom M.P.K., Bragg J.G., Potter S., Moritz C. 2016. Accounting for uncertainty in gene tree
541 estimation: summary-coalescent species tree inference in a challenging radiation of
542 Australian lizards. *Syst. Biol.* 66:352–366.

543 Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
544 data. *Bioinformatics.* 30:2114–2120.

545 Borowiec, M., 2019. Spruceup: fast and flexible identification, visualization, and removal of
546 outliers from large multiple sequence alignments. *J. Open Source Softw.* 4:1635.

547 Brandley M.C., Huelsenbeck J.P., Wiens J.J. 2008. Rates and patterns in the evolution of snake-
548 like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and
549 long-term persistence of intermediate body forms. *Evol. Int. J. Org. Evol.* 62:2042–2064.

550 Brown J.M., Thomson R.C. 2016. Bayes factors unmask highly variable information content,

551 bias, and extreme influence in phylogenomic analyses. *Syst. Biol.* 66:517–530.

552 Burbrink F.T., Grazziotin F.G., Pyron R.A., Cundall D., Donnellan S., Irish F., Keogh J.S.,
553 Kraus F., Murphy R.W., Noonan B., Raxworthy C.J., Ruane S., Lemmon A.R., Lemmon
554 E.M., Zaher H. 2020. Interrogating genomic-scale data for Squamata (lizards, snakes, and
555 amphisbaenians) shows no support for key traditional morphological relationships. *Syst.*
556 *Biol.* 69:502–520.

557 Chen, M.Y., Liang, D. and Zhang, P., 2015. Selecting question-specific genes to reduce
558 incongruence in phylogenomics: a case study of jawed vertebrate backbone phylogeny.
559 *Syst. Biol.* 64:1104–1120.

560 Cloutier, A., Sackton, T.B., Grayson, P., Clamp, M., Baker, A.J. and Edwards, S.V. 2019.
561 Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the
562 presence of an empirical anomaly zone. *Syst. Biol.* 68:937–955.

563 Cummings M.P., Handley S.A., Myers D.S., Reed D.L., Rokas A., Winka K. 2003. Comparing
564 bootstrap and posterior probability values in the four-taxon case. *Syst. Biol.* 52:477–487.

565 Degnan J.H., Rosenberg N.A. 2006. Discordance of species trees with their most likely gene
566 trees. *PLoS Genet.* 2:e68.

567 Dornburg, A., Su, Z. and Townsend, J.P. 2019. Optimal rates for phylogenetic inference and
568 experimental Design in the era of genome-scale data sets. *Syst. Biol.* 68:145–156.

569 Doyle V.P., Young R.E., Naylor G.J.P., Brown J.M. 2015. Can we identify genes with increased
570 phylogenetic reliability? *Syst. Biol.* 64:824–837.

571 Duchêne, D.A., Bragg, J.G., Duchêne, S., Neaves, L.E., Potter, S., Moritz, C., Johnson, R.N.,
572 Ho, S.Y. and Eldridge, M.D. 2018. Analysis of phylogenomic tree space resolves
573 relationships among marsupial families. *Syst. Biol.* 67:400–412.

574 Edwards S. V. 2009. Is a new and general theory of molecular systematics emerging? *Evol.*
575 63:1–19.

576 Faircloth B.C., Chang J., Alfaro M.E. 2012a. TAPIR enables high-throughput estimation and
577 comparison of phylogenetic informativeness using locus-specific substitution models. *arXiv*
578 Prepr. arXiv1202.1215.

579 Faircloth B.C., McCormack J.E., Crawford N.G., Harvey M.G., Brumfield R.T., Glenn T.C.
580 2012b. Ultraconserved elements anchor thousands of genetic markers spanning multiple
581 evolutionary timescales. *Syst. Biol.* 61:717–726.

582 Fry B.G., Vidal N., Norman J.A., Vonk F.J., Scheib H., Ramjan S.F.R., Kuruppu S., Fung K.,
583 Hedges S.B., Richardson M.K. 2006. Early evolution of the venom system in lizards and
584 snakes. *Nature*. 439:584–588.

585 Gamble T., Coryell J., Ezaz T., Lynch J., Scantlebury D.P., Zarkower D. 2015. Restriction site-
586 associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions
587 among gecko sex-determining systems. *Mol. Biol. Evol.* 32:1296–1309.

588 Gatesy J., Springer M.S. 2014. Phylogenetic analysis at deep timescales: unreliable gene trees,
589 bypassed hidden support, and the coalescence/concatalescence conundrum. *Mol.*
590 *Phylogenet. Evol.* 80:231–266.

591 Gauthier J.A., Kearney M., Maisano J.A., Rieppel O., Behlke A.D.B. 2012. Assembling the
592 squamate tree of life: perspectives from the phenotype and the fossil record. *Bull. Peabody*
593 *Museum Nat. Hist.* 53:3–309.

594 Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan
595 L., Raychowdhury R., Zeng Q. 2011. Trinity: reconstructing a full-length transcriptome
596 without a genome from RNA-Seq data. *Nat. Biotechnol.* 29:644–652.

597 Hahn, M.W. and Nakhleh, L., 2016. Irrational exuberance for resolved species trees. *Evolution*,
598 70(1), pp.7–17.

599 Hsiang A.Y., Field D.J., Webster T.H., Behlke A.D.B., Davis M.B., Racicot R.A., Gauthier J.A.
600 2015. The origin of snakes: revealing the ecology, behavior, and evolutionary history of
601 early snakes using genomics, phenomics, and the fossil record. *BMC Evol. Biol.* 15:87.

602 Irisarri I., Baurain D., Brinkmann H., Delsuc F., Sire J.-Y., Kupfer A., Petersen J., Jarek M.,
603 Meyer A., Vences M. 2017. Phylogenomic consolidation of the jawed vertebrate
604 timetree. *Nat. Ecol. Evol.* 1:1370.

605 Jarvis E.D., Mirarab S., Aberer A.J., Li B., Houde P., Li C., Ho S.Y.W., Faircloth B.C., Nabholz
606 B., Howard J.T. 2014. Whole-genome analyses resolve early branches in the tree of life of
607 modern birds. *Science* 346:1320–1331.

608 Jeffroy O., Brinkmann H., Delsuc F., Philippe H. 2006. Phylogenomics: the beginning of
609 incongruence? *Trends Genet.* 22:225–231.

610 Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7:
611 improvements in performance and usability. *Mol. Biol. Evol.* 30:772–780.

612 Katzman S., Kern A.D., Bejerano G., Fewell G., Fulton L., Wilson R.K., Salama S.R., Haussler
613 D. 2007. Human genome ultraconserved elements are ultraselected. *Science*. 317:915.

614 Kearney M., Fujita M.K., Ridenour J. 2009. Lost sex in the reptiles: constraints and correlations.
615 Lost Sex. Springer. p. 447–474.

616 Kent W.J. 2002. BLAT—the BLAST-like alignment tool. *Genome Res.* 12:656–664.

617 Knowles L.L., Huang H., Sukumaran J., Smith S.A. 2018. A matter of phylogenetic scale:
618 Distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene
619 tree discord in recent versus deep diversification histories. *Am. J. Bot.* 105:376–384.

620 Koch N.M., Gauthier J.A. 2018. Noise and biases in genomic data may underlie radically
621 different hypotheses for the position of Iguania within Squamata. *PLoS One.* 13:e0202729.

622 Kozlov A.M., Aberer A.J., Stamatakis A. 2015. ExaML version 3: a tool for phylogenomic
623 analyses on supercomputers. *Bioinformatics.* 31:2577–2579.

624 Kück P., Struck T.H. 2014. BaCoCa--A heuristic software tool for the parallel assessment of
625 sequence biases in hundreds of gene and taxon partitions. *Mol. Phylogenet. Evol.* 70:94–98.

626 Lanier H.C. Huang H. Knowles L.L. 2014. How low can you go? The effects of mutation rate on
627 the accuracy of species-tree estimation. *Mol. Phylogenet. Evol.* 70:112–119.

628 Leache, A.D., Chavez, A.S., Jones, L.N., Grummer, J.A., Gottscho, A.D. and Linkem, C.W.
629 2015. Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture
630 versus restriction site associated DNA sequencing. *Genome Biol. Evol.* 7:706–719.

631 Lemmon A.R., Emme S.A., Lemmon E.M. 2012. Anchored hybrid enrichment for massively
632 high-throughput phylogenomics. *Syst. Biol.* 61:727–744.

633 Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin
634 R. 2009. The sequence alignment/map format and SAMtools. *Bioinformatics.* 25:2078–
635 2079.

636 Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
637 arXiv preprint arXiv:1303.3997.

638 Linkem, C.W., Minin, V.N. and Leaché, A.D. 2016. Detecting the anomaly zone in species trees
639 and evidence for a misleading signal in higher-level skink phylogeny (Squamata:
640 Scincidae). *Syst. Biol.* 65: 465–477.

641 Losos J.B., Hillis D.M., Greene H.W. 2012. Who speaks with a forked tongue? *Science.*
642 338:1428–1429.

643 Maddison W.P. 1997. Gene trees in species trees. *Syst. Biol.* 46:523–536.

644 Mai, U. and Mirarab, S. 2018. TreeShrink: fast and accurate detection of outlier long branches in
645 collections of phylogenetic trees. *BMC Genomics.* 19:272.

646 Nute, M., Chou, J., Molloy, E.K. and Warnow, T. 2018. The performance of coalescent-based
647 species tree estimation methods under models of missing data. *BMC Genomics.* 19:286.

648 Paradis E., Claude J., Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R
649 language. *Bioinformatics.* 20:289–290.

650 Philippe H., Brinkmann H., Lavrov D. V., Littlewood D.T.J., Manuel M., Wörheide G., Baurain
651 D. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough.
652 *PLoS Biol.* 9:e1000602.

653 Pisani D., Pett W., Dohrmann M., Feuda R., Rota-Stabelli O., Philippe H., Lartillot N., Wörheide
654 G. 2015. Genomic data do not support comb jellies as the sister group to all other animals.
655 *Proc. Natl. Acad. Sci.* 112:15402–15407.

656 Prum R.O., Berv J.S., Dornburg A., Field D.J., Townsend J.P., Lemmon E.M., Lemmon A.R.
657 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA
658 sequencing. *Nature.* 526:569–573.

659 Pyron R.A., Burbrink F.T. 2014. Early origin of viviparity and multiple reversions to oviparity in
660 squamate reptiles. *Ecol. Lett.* 17:13–21.

661 Pyron R.A., Burbrink F.T., Wiens J.J. 2013. A phylogeny and revised classification of Squamata,
662 including 4161 species of lizards and snakes. *BMC Evol. Biol.* 13:93.

663 Reddy S., Kimball R.T., Pandey A., Hosner P.A., Braun M.J., Hackett S.J., Han K.-L.,
664 Harshman J., Huddleston C.J., Kingston S. 2017. Why do phylogenomic data sets yield
665 conflicting trees? Data type influences the avian tree of life more than taxon sampling. *Syst.*

666 Biol. 66:857–879.

667 Reeder T.W., Townsend T.M., Mulcahy D.G., Noonan B.P., Wood Jr P.L., Sites Jr J.W., Wiens
668 J.J. 2015. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal
669 unexpected placements for fossil taxa. PLoS One. 10:e0118199.

670 Revell L.J. 2012. phytools: an R package for phylogenetic comparative biology (and other
671 things). Methods Ecol. Evol. 3:217–223.

672 Rokas A., Carroll S.B. 2006. Bushes in the tree of life. PLoS Biol. 4:e352.

673 Romiguier, J., Cameron, S.A., Woodard, S.H., Fischman, B.J., Keller, L. and Praz, C.J., 2016.
674 Phylogenomics controlling for base compositional bias reveals a single origin of eusociality
675 in corbiculate bees. Mol. Biol. Evol. 33: 670–678.

676 Salichos L., Rokas A. 2013. Inferring ancient divergences requires genes with strong
677 phylogenetic signals. Nature. 497:327–331.

678 Schliep K.P. 2010. phangorn: phylogenetic analysis in R. Bioinformatics. 27:592–593.

679 Shen X.-X., Hittinger C.T., Rokas A. 2017. Contentious relationships in phylogenomic studies
680 can be driven by a handful of genes. Nat. Ecol. Evol. 1:126.

681 Singhal S., Grundler M., Colli G., Rabosky D.L. 2017. Squamate Conserved Loci (Sq CL): A
682 unified set of conserved loci for phylogenomics and population genetics of squamate
683 reptiles. Mol. Ecol. Resour. 17:e12–e24.

684 Smith S.A., Moore M.J., Brown J.W., Yang Y. 2015. Analysis of phylogenomic datasets reveals
685 conflict, concordance, and gene duplications with examples from animals and plants. BMC
686 Evol. Biol. 15:150.

687 Smith S.A., O’Meara B.C. 2012. treePL: divergence time estimation using penalized likelihood
688 for large phylogenies. Bioinformatics. 28:2689–2690.

689 Smith S.A., Walker J.F., Brown J., Walker-Hale N. 2020. Nested phylogenetic conflicts,
690 combinability, and deep phylogenomics in plants. *Syst. Biol.* 69:579–592.

691 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
692 large phylogenies. *Bioinformatics*. 30:1312–1313.

693 Streicher, J.W., Schulte, J.A. and Wiens, J.J., 2016. How should genes and taxa be sampled for
694 phylogenomic analyses with missing data? An empirical study in iguanian lizards. *Syst.*
695 *Biol.* 65:128–145.

696 Streicher J.W., Wiens J.J. 2016. Phylogenomic analyses reveal novel relationships among snake
697 families. *Mol. Phylogenet. Evol.* 100:160–169.

698 Streicher J.W., Wiens J.J. 2017. Phylogenomic analyses of more than 4000 nuclear loci resolve
699 the origin of snakes among lizard families. *Biol. Lett.* 13:20170393.

700 Tonini J.F.R., Beard K.H., Ferreira R.B., Jetz W., Pyron R.A. 2016. Fully-sampled phylogenies
701 of squamates reveal evolutionary patterns in threat status. *Biol. Conserv.* 204:23–31.

702 Townsend J.P. 2007. Profiling phylogenetic informativeness. *Syst. Biol.* 56:222–231.

703 Townsend T.M., Larson A., Louis E., Macey J.R. 2004. Molecular phylogenetics of Squamata:
704 the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree.
705 *Syst. Biol.* 53:735–757.

706 Uetz P., Stylianou A. 2018. The original descriptions of reptiles and their subspecies. *Zootaxa*.
707 4375:257–264.

708 Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine,
709 A., Jordan, T., Shakir, K., Roazen, D., Thibault, J. and Banks, E. 2013. From FastQ data to
710 high-confidence variant calls: the genome analysis toolkit best practices pipeline. *Curr.*
711 *Protoc. Bioinformatics*. 43:11.

712 Walker J.F., Brown J.W., Smith S.A. 2018. Analyzing contentious relationships and outlier
713 genes in phylogenomics. *Syst. Biol.* 67:916–924.

714 Wen D., Yu Y., Zhu J., Nakhleh L. 2018. Inferring phylogenetic networks using PhyloNet. *Syst.*
715 *Biol.* 67:735–740.

716 Whelan N. V, Kocot K.M., Moroz L.L., Halanych K.M. 2015. Error, signal, and the placement
717 of Ctenophora sister to all other animals. *Proc. Natl. Acad. Sci.* 112:5773–5778.

718 Whelan N. V, Kocot K.M., Moroz T.P., Mukherjee K., Williams P., Paulay G., Moroz L.L.,
719 Halanych K.M. 2017. Ctenophore relationships and their placement as the sister group to all
720 other animals. *Nat. Ecol. Evol.* 1:1737.

721 Wiens J.J., Hutter C.R., Mulcahy D.G., Noonan B.P., Townsend T.M., Sites Jr J.W., Reeder
722 T.W. 2012. Resolving the phylogeny of lizards and snakes (Squamata) with extensive
723 sampling of genes and species. *Biol. Lett.* 8:1043–1046.

724 Wilke C.O. 2016. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. 2016.
725 URL <https://CRAN.R-project.org/package=cowplot>. R Packag. version 0.7. 0.[p 287].

726 Wong, K.M., Suchard, M.A. and Huelsenbeck, J.P. 2008. Alignment uncertainty and genomic
727 analysis. *Science.* 319: 473–476.

728 Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018. ASTRAL-III: polynomial time species tree
729 reconstruction from partially resolved gene trees. *BMC Bioinformatics.* 19:153.

730 Zhang J., Kobert K., Flouri T., Stamatakis A. 2013. PEAR: a fast and accurate Illumina Paired-
731 End reAd mergeR. *Bioinformatics.* 30:614–620.

732

733

734

735 **FIGURES**

736 **Figure 1:** Concatenated phylogeny inferred using **ExaML**. Branch colors denote major squamate
737 clades, and each clade is depicted by a representative taxon (all photographs courtesy of author
738 TJC and Pascal Title). Nodes marked by black circles have high statistical support (bootstrap >
739 95) but conflict between the concatenated and coalescent-based inferred tree (Fig. S2); nodes in
740 gray conflict and have low statistical support; nodes in white are congruent but have low
741 statistical support. Many conflicting nodes have high statistical support.

742

743 **Figure 2:** **ExaML**-inferred tree with levels of conflict shown at each node. Pie proportions
744 represent the number of gene trees that either support a node, support the most common
745 conflicting relationship, support other less common conflicting relationships, or are non-
746 informative. Branches in gene trees with <80 SH-like support were collapsed prior to analysis.
747 Node labels mark putatively contentious nodes; labels follow Table 1. Many nodes exhibit high
748 levels of gene tree conflict.

749

750 **Figure 3:** D_{LNL} values across all loci for each of the seventeen putative conflicts investigated. Per
751 locus, D_{LNL} values are measured as the difference in log-likelihoods between the two best-
752 supported topological resolutions with respect to a focal relationship (e.g., Anniellidae). Loci are
753 categorized by whether they support the best-supported topology (see Table 1) or not; the dotted
754 line is where $D_{LNL} > 2$. Most loci had fairly small D_{LNL} values, suggesting they do not strongly
755 support any given topological resolution.

756

757 **Figure 4:** Correlation between locus summary statistics (Table 2) and the level of conflict
758 between gene trees as species trees across marker types. Conflict level was measured difference
759 in log-likelihoods of an unconstrained gene tree vs. one constrained to the concatenated species
760 tree. Larger values suggest greater conflict. Linear model fit shown for significant correlations
761 as measured by Spearman's correlation and shown for visualization only. The strongest absolute
762 correlations are for compositional heterogeneity (Spearman's $\rho = 0.19$; $p = 3.0\text{e-}49$) and root-tip
763 variance (Spearman's $\rho = 0.18$; $p = 1.3\text{e-}39$). These results suggest that loci with greater
764 compositional heterogeneity or greater rate variation across the tree are more likely to differ from
765 the concatenated topology.

766

767 **Figure 5:** (A) Correlation in locus D_{LN} values across different topological tests. The mean
768 correlation in D_{LN} is $r = 0.175$; the few correlations >0.5 all stem from topological comparisons
769 within snakes. (B) Percent overlap in conflicting loci across different topological tests, shown as
770 the mean deviation from percent overlap of 100 random bootstraps. Values > 0 indicate greater
771 overlap than expected by random. Together, these results suggest that there is little to modest
772 consistency in which loci conflict across different nodes.

773

774 **Figure 6:** Comparative performance across the three marker types used in this study: Anchored
775 Hybrid Enrichment (AHE) markers, standard phylogenetic genes, and ultraconserved elements
776 (UCEs). (A) The level of conflict between gene trees as species trees across marker types.
777 Conflict level was measured difference in log-likelihoods of an unconstrained gene tree vs. one
778 constrained to the concatenated species tree. These results suggest that AHE loci better fit the
779 concatenated tree. (B) Differences in locus quality metrics across marker types. In general, AHE

780 markers showed evidence of being higher quality (i.e., they had lower levels of missingness) and
781 more informative (i.e., trees inferred with AHE markers had higher nodal support as measured
782 by Shimodaira–Hasegawa (SH)-like support).