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Abstract

Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity,
and understanding diel microbial processes is essential to the study of oceanic biogeochemical
cycles. Yet, little is known about the in situ frequency of phytoplankton metabolic activities and
their coordination across different populations. We investigated the diel orchestration of
phytoplankton activity involved in photosynthesis, photoacclimation, and photoprotection by
analyzing the pigment and quinone distribution in combination with metatranscriptomes in the
surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment
abundances resulting from the balance of their synthesis and consumption. The night represents
a metabolic recovery phase to refill cellular pigment stores, while the photosystems are remodeled
towards photoprotection during the day. Transcript levels of genes involved in photosynthesis and
pigment metabolism had highly synchronized diel expression patterns among all taxa, suggesting
that there are similar regulatory mechanisms for light and energy metabolism across domains,
and that other environmental factors drive niche differentiation. Observed decoupling of diel
oscillations in transcripts and related pigments in the NPSG indicates that pigment abundance is
modulated by environmental factors extending beyond gene expression/regulation, showing that

metatranscriptomes may provide only limited insights on real-time photophysiological metabolism.
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Introduction

Sunlight regulates the growth and cellular processes of all photosynthetic organisms in the ocean.
It plays a pivotal role for ocean ecosystem processes, many of which are driven by energy
provided by photosynthesis. The conversion of light into chemical energy is achieved by the
absorption of photons by pigments in light-harvesting complexes followed by the transfer of that
energy to the reaction center, where it is used to initiate the electron transfer and charge
separation processes. Plastoquinones mediate the transfer of electrons between photosystem |l
(PSll), the cytochrome bsf complex (Cytbsf), and photosystem | (PSI). The net result is the
generation of ATP and NADPH, which are then used for carbon fixation, biosynthesis, and aerobic
respiration (see review by Eberhard et al. [1]). Pigments play a central role in energy transport
within light-harvesting complexes and photosystems of all photosynthetic organisms (Fig. 1). In
particular, chlorophyll (Chl) is vital in these processes, performing both light harvesting and
electron transfer, and it is typically the most abundant pigment. Carotenoid pigments also

participate in energy transport and have an additional role in photoacclimation.

Phytoplankton have developed a wide variety of pigment-based mechanisms for adapting to the
variable light field experienced in the upper ocean. These mechanisms include downsizing of the
photosynthetic antenna size by reducing the pool size of Chl, using xanthophyll cycling to arrest
photoinhibition, and quenching singlet oxygen by carotenes [2]. Pigment molecules thus play key
roles in the acclimation (short-term) and adaptation (long-term) of phytoplankton to the variability
in light. In addition to their physiological importance, evolutionary divergence has led to the
formation of a variety of chlorophyll and carotenoid pigments in different photosynthetic organisms,
which allows us to delineate activity amongst phytoplankton groups [e.g., 3]. Also, the biosynthetic
pathways of pigments are well known [e.g., 4]. This allows investigation of expression patterns of

chlorophyll- and carotenoid pigment-related genes to gain further insight into the activity of
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72  individual phytoplankton groups, enabling taxonomic resolution not necessarily provided by

73  pigment analysis alone.
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75  Fig. 1. Schematic representation of the structure of photosystem Il in photosynthetic membranes.
76  The relative locations of the major pigments and quinones as well as the pathway of electrons
77  through these molecules is shown.

78 Diel oscillations in metabolic activities have been observed for both gene expression [e.g., 58]
79  and pigment profiles [e.g., 9, 10] in natural phytoplankton populations. However, there has been
80 no study of the relationship between phytoplankton pigments and photosynthesis-related gene
81  expression over the diel cycle. Little is known about the synchronicity of photosynthetic metabolic
82  pathways between different phytoplankton groups in nutrient deplete marine environments such
83 as the subtropical gyres. Yet, the nutrient scarcity requires niche and/or resource partitioning by
84  different phytoplankton to facilitate growth in the face of competition [11]. Additionally, temporal
85 anomalies of phytoplankton biomass and cellular pigment content impact the optical properties of
86 the surface ocean influencing the interpretation of satellite-derived ocean color observations and
87  global models using these data [12]. In these studies, diel oscillations are typically not considered
88  because satellite observations take place only at a narrow interval of the diurnal cycle. Instead,

89 most global ocean ecosystem models based on satellite data assume that the observed

4
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90 phytoplankton communities are under steady state growth conditions with respect to daily time-
91 scales [e.g., 13]. Thus, better understanding group-specific differences as well as bulk community
92  acclimation over the diel cycle is important for informing models relying on photoacclimation

93  parameters to determine growth and accumulation rates as well as primary production [12, 14].

94 In this study, we used a combined analysis of pigments, quinones, and metatranscriptomes to
95 investigate the diel orchestration of phytoplankton activity involved in photosynthesis,
96 photoacclimation, and photoprotection in the surface waters of the North Pacific Subtropical Gyre
97  (NPSG). An intensive multidisciplinary field campaign near station ALOHA in summer 2015 made
98 use of a Lagrangian sampling strategy that mitigates the effect of spatial variability and allowed
99 us to investigate microbial populations within the same water parcel over time [15]. In light of the
100 importance of the subtropical gyres of the oceans for global biogeochemical cycles [16, 17], it is
101  crucial to know how diel cycles of photoacclimation in phytoplankton affect the pigment

102  composition in these ecosystems.

103 Results and discussion

104 Diel oscillations of chloropigments and carotenoids

105 The majority of detected pigment and quinone molecules investigated here displayed clear,
106  statistically significant diel oscillations in abundance based on the Rhythmicity Analysis
107  Incorporating Non-parametric Methods (RAIN) hypothesis-testing method ([15, 18, 19];
108  Supplementary Table 1). Diel oscillations of chloropigments, i.e., mono- and divinyl-Chls, showed
109  maximum concentrations at dawn (6:00 h local time) and minimum concentrations during daylight
110  hours (Fig. 2; Fig. S1). This pattern is distinct from previous investigations of diurnal Chl, which
111  showed a mid-day maximum and a night-time minimum especially in data integrated through the
112 water column[10, 20, 21]. Based on these previous observations, it was thought that Chl synthesis
113 directly reflects primary production by photoadaptation, with increasing cellular chlorophyll during

114  the day and chlorophyll break down (or dilution by cell division) at night [e.g., 22]. Alternatively,
5
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115  mid-day minima in surface water Chl that have frequently been observed in data from in vivo Chl
116  fluorescence have been interpreted to result from non-photochemical quenching, not absolute
117  decreases in Chl concentrations. The reasoning behind this interpretation is that variability in
118 quantum yield for fluorescence is significant and complicates the interpretation of Chl estimates
119  from in vivo fluorescence at high light intensities (e.g., [23-25]). However, here we used mass
120  spectrometry to determine Chl concentrations from lipid extracts, which is insensitive to
121  quenching. Other studies, measuring extracted Chl, also showed clear and reproducible night-
122 time maxima for both near surface waters (e.g., [9]) and culture experiments at high light intensities
123 (e.g., [26—-29]). Additionally, Fouilland et al. [30] found a depth-dependence of diel variations in
124  Rubisco activity and Chl concentration per cell further supporting a light regime-dependence of

125  Chl profiles.

126  The photosynthetic carotenoids (PSC) aligned with Chl over the diel cycle (Fig. 2; Fig S1) and no
127  periodic variations were observed in ratios among PSC pigments (Fig. S2), which has previously
128  been observed for both phytoplankton cultures [31] and surface ocean samples [32] and is
129  consistent with PSC and Chl having similar functions [33]. The most abundant PSC in surface
130 waters were fucoxanthin (diatom biomarker), 19-butanoyloxyfucoxanthin (pelagophyte
131 biomarker), and 19’-hexanoyloxyfucoxanthin (prymnesiophyte biomarker). All showed similar
132 trends, with a nocturnal increase leading to a pre-dawn maximum and a minimum later, during
133  daylight hours (Fig. 2 and Fig. S2). Similar to Chls, the nocturnal increase may seem
134  counterintuitive as light harvesting molecules are needed during the day for photosynthesis.
135  However, at high photon flux, the rate of photon absorption by Chl antenna far exceeds the rate
136  at which photons can be utilized for photosynthesis; to avoid over-excitation of the photosystem,
137  high light acclimation typically involves downsizing of the antenna of both photosystems [34, 35],
138  in particular of PSII [36]. The observed profiles thus likely represent the balance of photoprotective

139  and photorepair mechanisms.
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141  Fig. 2. Diel oscillations of pigments and pigment-related transcripts. a Molecular structure of
142  investigated pigments and respiratory quinones associated with the photosystem. b Time-of-day
143  average of fold change relative to 18:00 h (local time) of chloro- and carotenoid pigments,
144  quinones, as well as transcript associated with the metabolism of the pigment and quinone
145  molecules. Error bars represent the standard deviation of averaged values for each time of day
146  (n=6). Molecular structures and pigment and quinone data are colored according to compound
147  group. If colors for transcripts match those of pigments or quinones, transcripts are related to the
148  metabolism of the respective molecule.

149 While the observed depression in Chl and PSC during daylight might be explained by PSII
150 damage due to high-light stress, the increase at night clearly indicates synthesis in the dark.

151  Increased vertical mixing during the night could also explain this signal, but the surface mixed
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152 layer typically ranges from ~0-40 m [37], which is too shallow to transport large amounts of Chl,
153  for example, from the deep Chl maximum (at ~100 m at station ALOHA our sampling site and
154  times [15, see Fig. 1 therein]) to the sampling depth of 15 m. Additionally, Prochlorococcus cell
155  numbers remained constant over the diel cycle in our samples, which results in increasing divinyl-
156  Chl/cell quotas during the night (Fig. S2) and supports the hypothesis of night-time synthesis. The
157  energy and carbon for the de novo synthesis of Chls in the dark is likely provided by carbon stores,
158  for example glycogen in cyanobacteria or triacylglycerols (TAGs) in eukaryotic phytoplankton.
159  Consistent with this, we recently showed that nanoeukaryotic phytoplankton in the NPSG
160 accumulate large amounts of TAGs during the day and subsequently consume them at night [38].
161 A similar mechanism has been proposed for dark synthesis of proteins in several phytoplankton
162  (e.g., [39—41]) and our findings extend the potential utilization of C stores by phytoplankton for

163  dark synthesis of pigments.

164  Pheophytin and divinyl- pheophytin profiles were tightly coupled to those of Chl and divinyl-Chl,
165  respectively, with peak times at night (Fig. 2). While the presence of pheophytin in marine samples
166  has traditionally been interpreted to reflect dead or dying cells due to the high abundance of these
167  pigments in zooplankton guts and sinking particles, which are unlikely to be consistently captured
168 in our small volume samples [42—-46], we hypothesize that the pheophytins may in fact be
169 associated with living phytoplankton. Most notably, pheophytin has been found to play an
170  important role in electron transport in PSII by being the primary electron acceptor for excited Chl
171  [47] and has been frequently detected in isolated PSIlI with a 6:2 stoichiometry of Chl and
172 pheophytin [e.g., 48]. Additionally, pheophytin and Chl share a biochemical pathway, where Chl
173  is converted to pheophytin by a magnesium dechelatase [49] supporting the idea of simultaneous
174  dark synthesis of Chls and pheophytins. Other Chl related structures, pheophorbide and
175  chlorophyllide, were out of phase with Chl and pheophytin, both showing peak times at 14:00 h

176  (Fig. 2). These Chl related structures are not known to participate in photosynthetic reactions,
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177  suggesting daytime peaks are likely associated with photodamage and photoprotective

178 mechanisms.

179  High light stress during daylight is also apparent from xanthophyll cycle pigments, essential
180 molecules that channel excess energy away from chlorophylls for protection against
181  photooxidative damage [50]. Diadinoxanthin (Dd) and diatoxanthin (Dt), which are part of the
182  Dd/Dt xanthophyll cycle predominantly possessed by haptophytes, diatoms and dinoflagellates in
183  the NPSG [51], were the most abundant xanthophyll cycle pigments detected (Fig. S1). The sum
184  of Dt and Dd showed clear diel cycles with maximum abundances during the day (peak time at
185  14:00 h; Fig. 2). This pattern indicates that the cellular xanthophyll pigment pool increased during
186  daylight hours likely due to photoadaptation triggered by a change of light intensity over the course
187  of the day [32]. The de-epoxidation state (DES), which is defined as [Dt]/[Dt+Dd], showed a
188  minimum during the day (Fig. S2), which contrasts observations from culture experiments [52] and
189 the field [32]. This pattern is likely related to severe high-light stress at 15 m water depth where
190 our samples were collected. Oxidative stress due to an increased formation of various ROS
191  species consumes Dt by degrading it to low molecular weight compounds [53, 54], requiring re-
192  synthesis for the pool to be refilled. Potentially, phytoplankton refill cellular Dt stores during the
193 night. We therefore looked for Violaxanthin de-epoxidases, which convert Dd to Dt in the
194  xanthophyll cycle [55], and find that transcript abundances for the diatoms and haptophytes were
195  out of phase with XCPs (Fig. S10). Additionally, Zeaxanthin epoxidases, which participate in non-
196  photochemical quenching by regulating the level of epoxy-free xanthophylls in photosynthetic
197  energy conversion, showed statistically significant diel oscillation for diatoms and haptophytes with
198  peak times during the day at 10:00 h local time (Fig. S11). Our results from the pigment analysis
199 thus show that high light conditions in the upper photic zone results in severe photooxidative stress
200 for phytoplankton, which is displayed in a distinct and different diel xanthophyll cycle pigment and
201  Chl degradation product patterns compared to observations from the deeper photic zone [32].

202  Through this, phytoplankton are likely able to maintain the balance between dissipation and
9
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203  utilization of light energy to minimize the generation of ROS and resulting molecular damage.
204  Since net primary production is typically invariable throughout the mixed layer at station ALOHA
205 [56], the observed pigment signal represents a light adaptation signal as opposed to an increased

206  photodegradation state of near surface phytoplankton cells.

207 Diel patterns of isoprenoid quinones

208  Analyses of quinones in the marine water column are still relatively rare [38, 57, 58], but due to
209 their physiological importance in electron transport in both photosynthesis and cellular respiration,
210 quinones provide valuable information on microbial activities. While plastoquinones (PQs) are
211 primarily involved in electron transport of PSII, ubiquinones (UQs) are associated with aerobic
212 respiration [59]. Recent studies suggested PQs and UQs might additionally be involved in
213 photoprotective mechanisms by acting as ROS scavengers [60—63]. In our samples, both quinone
214  groups showed distinct and statistically significant diel patterns (Fig. 2; Table S1) with UQs
215  peaking at the end of the night (6:00 h; cf. [38]) and PQs peaking at the end of the day (18:00 h,
216  Fig. 2). These two groups of structurally similar molecules were thus out of phase by 12 h. The
217  pre-dawn maximum of UQs is likely associated with enhanced respiration of storage lipids, which
218 have been shown to accumulate during the day and are consumed at night [38]. The daytime
219 increase of PQs may partly be driven by growth, but similar to other photosystem constituents,
220  photoacclimation mechanisms play a major role for intercellular PQ abundances. Increasing the
221  rates of electron transport processes can protect PSIl when absorption of quanta exceeds the
222 requirements of photosynthetic carbon metabolism [64], which, in turn, requires an increase in the
223  PQ pool size and may in part be responsible for observed daytime maxima of PQs. Additionally,
224  in plants, PQs have been shown to act as ROS scavengers under high-light stress [65, 66]. These
225  processes deplete PQs due to photooxidation during daylight hours. Hence, they have to be re-
226  synthesized to keep this important function. The daytime increase in the proportion of the PQ to

227  chlorophyll pool (Fig. S2) is likely due to the different organization of chloroplast structure. In

10
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228  plants, chloroplasts have less antenna chlorophyll per electron transport chain under high light

229  than low light [67].

230 Diel oscillations of transcripts involved in photosynthesis

231 In addition to measuring diel oscillations in pigments and quinones, we further explored diel
232 transcriptional rhythms of genes involved in photosynthesis and pigment metabolism of the
233 dominant bacterial and eukaryotic groups at station ALOHA. Transcripts of all photosynthetic
234  populations showed statistically significant diel oscillations for most investigated pathways
235  (Supplementary Table 2). Almost all significant diel transcripts associated with photosynthesis and
236  pigment metabolism peaked in the first part of the day (10:00 h; Fig. 3a), suggesting their
237  transcriptional regulation in phototrophs is strongly synchronized across diverse taxa (within the
238  temporal resolution of our measurements). These observations further imply that the pigment
239  metabolism network is conserved across domains in the oligotrophic open ocean (see Figs. S3 —
240  S9 for profiles of individual phytoplankton groups). This complements recent findings by Kolody et
241  al. in coastal systems [8] who observed periodic photosynthesis-related transcripts that were
242  conserved across diverse phototrophic lineages in a high-nutrient coastal environment. Thus, our
243  data is consistent with a multispecies synchronous diel cycles of genes associated with
244  photosynthesis and pigment metabolism with increasing transcript abundances during dark hours
245 and peak times in the mid-morning. Nightly expression of photosynthesis genes in natural
246 photoheterotrophic bacteria, followed by a drawdown shortly after light onset, has been suggested
247  to be related to preparing cells for efficient solar energy harvest in the early morning hours [6]. Our
248 data from cyanobacteria and eukaryotic phytoplankton and consistent with this hypothesis. A
249 notable exception of this pattern was Crocosphaera. Transcripts for most pathways in this
250 diazotroph only showed a weak relationship or no significant positive correlation with the pathways
251 in the other phytoplankton populations. However, this is in agreement with other culture [68] and

252  field-based observations [15, 69]. The process of N fixation in this unicellular cyanobacteria

11
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253 seems to require a tightly orchestrated diel cycle distinct from other diazotrophs and non-

254  diazotrophic microorganisms [15, 69].
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256  Fig. 3. Relationship between periodic pigment-associated gene expression in phytoplankton
257  transcripts and actual pigment abundances a. Peak times of expression of all transcripts assigned
258 to KEGG pathways associated with pigment metabolism (triangles) and pigment molecule
259  abundances (circles). Purple symbols denote transcripts or pigment molecules identified as
260  significantly periodic (24-hour period) whereas gray symbols denote peak times without a
261  significant diel component in peak expression or pigment abundance, respectively. b. Spearman’s
262  rank correlation matrix of the different pigment and quinone classes (blue text) and aggregated
263  genes within the KEGG pathways Photosynthesis (PS), Carotenoid biosynthesis (CaBiosyn),
264  Chlorophyll and porphyrin metabolism (ChIPhyMet), Photosynthesis - antenna proteins (PSA),
265  Plastoquinol biosynthesis (Plqgl), Ubiquinone and other terpenoid-quinone biosynthesis (Ubiq)
266  separated into prokaryotes (Prok) and eukaryotes (Euk).

267  Strong diel rhythmicity in transcripts of eukaryotic phytoplankton including haptophytes and
268 diatoms is expected from earlier culture and field experiments [e.g., 5, 8, 19, 70-72]. However,
269  peak times for pathways involved in photosynthesis and pigment metabolism seem to be variable
270 in culture experiments. For example, light harvesting antenna protein gene expression was

271  enriched in late afternoon (2 to 6 pm) for iron-replete cultures of the diatom Phaeodactylum
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272 tricornutum, along with genes involved in porphyrin and chlorophyll metabolism [71], while
273  enrichment for the KEGG pathways photosynthesis and porphyrin and chlorophyll metabolism
274  was observed in the dawn for the diatom Thalassiosira pseudonana [70]. This variability in the
275  timing of gene expression contrasts our findings from natural phytoplankton populations in the
276 NPSG, which showed synchronized expression patterns across diverse phytoplankton. This
277  synchrony across taxa has recently also been shown for a coastal environment [8] and together
278  the results indicate that responses to signals in the environment, possibly including organismal
279 interactions, play an important role in shaping gene expression patterns of natural phytoplankton

280  populations.

281  Decoupling between transcription and pigment production

282  The combination of pigment analysis and metatranscriptomics further shed light on the complex
283  interplay between metabolic pathways and actual metabolite concentrations. In a previous study
284  of energy storage mechanisms of natural phytoplankton populations at station ALOHA, we showed
285 that gene expression and lipid abundances were decoupled - despite distinct diel patterns in
286  storage lipid abundance, transcript abundance for the genes involved in the final step of their
287  biosynthesis remained relatively constant over the diel cycle [38; Fig 4]. In addition, the
288  correlations we observe between transcripts and lipids (shown in Fig. 3b) are not significantly
289  stronger than the correlations expected from comparing independent time series (see Fig. S13).
290 In culture experiments with the marine diatom Phaeodactylum tricornutum, during high light
291  acclimation, Chl metabolism at the transcriptional level was down-regulated at an early stage while
292  Chl a concentrations showed a lag time to this initial transcriptional response [73], which is what
293  would be expected for an ideal system. However, the change of concentrations of pigments or any
294  metabolite is governed by the difference between production and consumption. For example, the
295 observed offset in peak time between transcripts (mid-morning) and associated pigments (dawn,

296  Fig. 3a) suggests the influence of additional regulatory processes for chlorophyll and carotenoid
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297  pigment abundances. Irradiance at 15 m at station ALOHA (700 umol m2 s') was higher than in
298 the “high light” experiments conducted by Nymark et al. [73] (500 ymol m? s™') and the different
299  patterns between the culture experiments and our field based observations may be related to
300 photoacclimation mechanisms. Our observations that transcripts peak approximately 4 hours later
301 than their corresponding pigments might indicate that phytoplankton actively synthesize Chls and
302 PSC at a high rate, but catabolic processes, i.e., a shift towards photoprotection, consume more
303 molecules than are produced. Our data thus show that metatranscriptome data should not be

304 interpreted as a real-time readout of photophysiological metabolism.

305 The response of cells towards ambient light conditions involves optimization of their photosystems
306  in such a way that energy generation and utilization are in balance. Kana et al. [74] proposed that
307 pigment abundance is modulated by environmental factors extending beyond gene
308 expression/regulation, i.e., the initial response to high light intensities is self-adjusting. The light
309 sensor that in a first step regulates photoacclimation in phytoplankton has been suggested to be
310 the redox state of the quinone pool [74]. Although our methods do not allow direct determination
311  of the redox state of the PQ pool because plastoquinols become spontaneously oxidized to
312  plastoquinones when exposed to oxygen during sample analysis, we found significant diel
313  oscillations in the expression of Chl a/b binding protein (cab) genes (Fig. S12). The cab genes are
314  important for both light-harvesting and photoprotection in eukaryotic phytoplankton and are under
315 transcriptional control by the redox poise of the PQ pool [75]. In cultures, under high light, it has
316  been shown that the PQ pool becomes more reduced resulting in a suppression of cab mRNA
317 synthesis and light harvesting complex production, and an ultimate decrease in cellular
318  photosynthetic pigments [75]. We observed a decline in cab transcript abundances during daylight
319  hours (Fig. S12) suggesting that this light intensity-dependent photon-sensing system is active in
320 the NPSG. This process then likely triggers the down-regulation of photosynthesis and pigment
321 metabolism related genes to keep pigments levels consistently low to prevent over-excitation of

322  the photosystems at the high irradiance levels phytoplankton experience in the surface waters of
14
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323  the NPSG. Besides the insights our data provided on the (de)coupling between transcriptional and
324  metabolite rhythms, our data suggest that the night reflects a metabolic recovery phase that is
325 used by all photosynthetic organisms across domains to be prepared for photosynthetic reaction

326  as soon as the sun rises, make optimal use of sunlight energy and grow efficiently.

327 Conclusions

328 We are just beginning to understand in detail the mechanisms by which marine phytoplankton are
329  able to maintain homeostasis and coordinate growth under metabolic and energetic shifts driven
330 by the perpetual rising and setting sun. Our work demonstrates that combined lipidomics (here
331 pigment and quinone profiles) and transcriptomics can provide mechanistic insights into rapid (i.e.,
332 sub-daily) microbial processes (Fig. 4). While pigments involved in light harvesting and energy
333  transfer peaked at dawn, photoprotective pigments and Chl degradation products peaked later in
334  the day. This succession of pigment metabolism according to their function suggests a recovery
335  of cellular Chl and PSC stores at night and a dominance of photoprotective mechanisms during
336  daylight. The diel cycles of combined pigment, quinone and transcriptomics data from the NPSG
337 thus highlight the fundamental connection between sunlight and phytoplankton photosynthetic
338  metabolism [74]. Furthermore, diel metabolic cycles were similar across all major phytoplankton
339 taxa with few exceptions. Thus, harvesting light energy is not the basis for temporal niche
340 differentiation among these taxa, which stands to reason because photons are in excess at 15 m
341 depth and therefore are not a resource that phytoplankton compete with one another to obtain.
342  Niche differentiation among phytoplankton occurs for processes involving competitive and growth-
343  limiting substrates, such as nutrients, which are scarce in the surface of the oligotrophic ocean.
344  Yet the daily synthesis of pigments — and the machinery required for this synthesis — place
345 considerable burden on phytoplankton for growth-limiting substrates. Thus, any temporal
346  partitioning in accessing growth-limiting substrates must also be accompanied by different modes

347  for their storage, which are rarely considered [77, 78]. In summary, the data presented herein
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348  advances our knowledge of this fundamental process within photosynthetic microbes in the mixed
349 layer, providing valuable detailed observations of transcriptional and pigment dynamics across
350 kingdoms. These data will thus prove useful for future models linking remotely sensed ocean color
351 to temporal dynamics of pigment concentrations or photosynthetic activity.
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353  Fig. 4. Conceptualized temporal separation of phytoplankton pigment, plastoquinone and
354  transcript abundances during the dark-light cycle in surface waters (15 m) at station ALOHA. The
355 timing was set based on Fig. 2 with the center of the polygon indicating the approximate peak
356 time. Additionally, the particulate organic carbon (POC) and Photosynthetically Available
357 Radiation (PAR) profiles averaged for one day/night cycle are shown. Surface PAR data was
358  obtained from the HOT program database
359 (http://hahana.soest.hawaii.edu/hoelegacy/hoelegacy.html), POC data from White et al. [76] and
360 TAG (Triacylglycerols & Diacylglycerol acyltransferase) data from Becker et al. [38].
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362 Materials and methods

363  Sample collection and lipid analysis.

364  Seawater samples were collected during R/V Kilo Moana cruise KM1513 (July/August 2015) near
365  Station ALOHA (22°45'N, 158°00°'W) in the oligotrophic North Pacific Subtropical Gyre using
366  standard Niskin-type bottles attached to a CTD rosette. Samples were collected every 4 h from 2
367 p.m. (local time) July 27, 2015 to 6 a.m. (local time) on July 30, 2015. Samples (~2 L) were filtered
368  using vacuum filtration (ca. -200 mm Hg) onto 47 mm diameter 0.2 ym hydrophilic Durapore filters

369  (Millipore). Samples were immediately flash-frozen and stored at -196 °C until processing.

370  Lipids were extracted using a modified Bligh and Dyer protocol [79] with DNP-PE-C16.0/C16:0-DAG
371  (2,4-dinitrophenyl phosphatidylethanolamine diacylglycerol; Avanti Polar Lipids, Inc., Alabaster,
372 AL) used as an internal standard. Filter blanks were extracted and analyzed alongside
373  environmental samples. The total lipid extract was analyzed by reverse phase high performance
374  liquid chromatography (HPLC) mass spectrometry (MS) on an Agilent 1200 HPLC coupled to a
375 Thermo Fisher Exactive Plus Orbitrap high resolution mass spectrometer (ThermoFisher
376  Scientific, Waltham, MA, USA). HPLC and MS conditions are described in detail in [38] and [80];

377  modified after [81].

378  For identification and quantification of pigments and quinones, we used LOBSTAHS, an open-
379  source lipidomics software pipeline based on adduct ion abundances and several other orthogonal
380 criteria [80]. Pigments and quinones identified using LOBSTAHS were quantified from MS data
381  after pre-processing with XCMS [82] and CAMERA [83]. XCMS peak detection was validated by
382  manual identification using retention time as well as accurate molecular mass and isotope pattern
383  matching of proposed sum formulas in full-scan mode and tandem MS (MS?) fragment spectra of
384  representative compounds [38]. For validation of accuracy and reliability of LOBSTAHS
385 identification and quantification, quality control (QC) samples of known composition and spiked

386 lipid standards were interspersed with samples as described previously [80]. Lipid abundances
17
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387 obtained from LOBSTAHS were corrected for relative response of commercially available
388 standards. Abundances of quinones were corrected for the response of a ubiquinone (UQ1o:10)
389 standard, chlorophylls and their associated compounds using a chlorophyll a standard, and
390 carotenoid pigments using a fB-carotene standard. All standards were purchased from Sigma
391  Aldrich (St. Louis, MO, USA). Individual response factors were obtained from external standard
392  curves by triplicate injection of a series of standard mixtures in amounts ranging from 0.15 to 40
393  pmol on column per standard. Data were corrected for differences in extraction efficiency using

394  the recovery of the DNP-PE internal standard (Avanti Polar Lipids, Inc., Alabaster, AL; USA).

395 Eukaryotic metatranscriptome analysis.

396  Samples for the >5 pm microeukaryote metatranscriptomes were collected at the same time as
397 lipid samples following Harke et al. [72]. Briefly, 20 L of seawater was collected in acid-washed
398 carboys every 4 h from 10 p.m. (local time) July 26, 2015 to 6 a.m. (local time) on July 30, 2015
399 for a total of 21 time points. Seawater was prescreened through a 200 um nylon mesh and then
400 filtered onto two 5 uym polycarbonate filters (47 mm) via peristaltic pump, passing ~10 L across
401  each filter. Samples were then flash frozen in liquid N until extraction. Total RNA was extracted
402  from individual filter sets (n = 2 per timepoint) using Qiagen RNeasy Mini Kit (Qiagen, Hilden,
403 Germany) as in Harke et al. [72] and then sequenced on an lllumina HiSeq 2000 at the JP
404  Sulzberger Genome Center (CUGC) using center protocols. PolyA-selected samples were
405  sequenced to a depth of 90 million 100 bp, paired-end reads. Raw sequence quality was visualized
406  with FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and cleaned and
407  trimmed using Trimmomatic [84] version 0.27 (paired-end mode, 4 bp-wide sliding window for
408  quality below 15, minimum length of 25 bp). Processed reads were mapped to a reference
409 database after Alexander et al. [85], constructed from the Marine Microbial Eukaryotic
410 Transcriptome Sequencing Project (MMETSP; [86]. Transcripts within the reference database

411  were annotated with KEGG using UProC [87]. Mapping was conducted with the Burrows-Wheeler
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412 Aligner (BWA-MEM, parameters —k 10 —aM; [88]) and read counts generated with the HTSeq
413  0.6.1 package (options —a 0, --m intersection-strict, -s no; [89]). Read counts were filtered for
414  contigs with average read counts = 10 across the time series and then normalized with DESeq2
415  “varianceStabilizingTransformation” command [90]. These environmental sequence data are
416  deposited in the Sequence Read Archive through the National Center for Biotechnology
417 Information under accession no. SRP136571, BioProject no. PRINA437978. To facilitate
418  comparisons with pigment and quinone data, transcripts occurring in dinoflagellate, haptophyte,
419 and diatom taxa were mined for the following KEGG pathways: Carotenoid biosynthesis
420 [PATH:ko00906], Porphyrin and chlorophyll metabolism [PATH:ko00860], Photosynthesis
421  [PATH:ko00195], Carbon fixation in photosynthetic organisms [PATH:ko00710], and Ubiquinone
422  and other terpenoid-quinone biosynthesis [PATH:ko00130]. In addition, signals involved in
423  plastoquinol biosynthesis were separated out from Ubiquinone and other terpenoid-quinone

424  biosynthesis to mirror pigment and quinone data.

425  Prokaryotic metatranscriptome analysis

426  For this study, a previously published dataset of transcriptomes was used [15, 19], which consisted
427  of bacterioplankton samples collected every four hours over the same study period. Sampling was
428  performed as follows: 2 L of seawater were filtered onto 25 mm, 0.2 ym Supor PES Membrane
429  Discfilters (Pall) using a peristaltic pump. The filtration time was between 15 and 20 min and filters
430 were placed in RNALater (Ambion) immediately afterwards, and preserved at —-80 °C until
431  processing. Molecular standard mixtures for quantitative transcriptomics were prepared as
432  previously described [91], and, 50 ul of each standard group was added to sample lysate before
433  RNA purification. Metatranscriptomic libraries were prepared for sequencing with the addition of
434  5-50 ng of RNA to the ScriptSeq cDNA V2 library preparation kit (Epicentre). Metatranscriptomic
435  samples were sequenced with an lllumina NextSeq 500 system using V2 high output 300 cycle

436  reagent kit with PHIX control added. Reads were mapped to the station ALOHA gfne catalog [92]
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437  using LAST [93]. Transcripts were quantified through normalization of raw hit counts using
438  molecular standards [15]. Transcripts in Prochlorococcus and Crocosphaera were mined for the

439 same KEGG pathways as the eukaryotes.

440  Statistical analysis

441  The statistical significance of diel oscillations of pigment, quinone and transcript abundances was
442  tested using the RAIN package in R [see 15, 18, 19]. Resulting p-values from RAIN analysis were
443  corrected for false discovery using the ‘padjust’ function in R with Benjamini-Hochberg method
444  [94]. Corrected p-values <0.05 were considered to have significant diel periodicity. Peak times

445  were calculated with a harmonic regression, fitting the expression data to a sine curve.

446  To evaluate rank correlations between pigment and transcript time series, data were centered to
447  a mean of zero and scaled to one standard deviation to facilitate inter-comparability between data
448  with different units. Then, pairwise spearman rank correlations (spearman's rho) were calculated
449  between all pairs of measured time series. To address autocorrelation, we evaluated whether
450  observed correlations were stronger than independent identically distributed random walks, which
451  are known to often be spuriously correlated [95]. To test this, the differences between consecutive
452  observations were calculated for all measured time series. The frequency distributions of observed
453  differences were then used to bootstrap sample 20 random differences and cumulatively summed
454  to simulate a random walk. This process was repeated and we bootstrap sampled 100,000 such
455  random walks independently to create a null ensemble of time series with similar autocorrelation-
456 1 structure to the data. Bootstrap sampling was then used to randomly select 100,000 pairs of
457  random walks and rank correlations were calculated to generate a Monte Carlo simulation of the
458  distribution of spearman's rho between independent identically distributed random walks with step
459  sizes similar to those observed in the data (Fig. S13). This distribution was then used to calculate
460  empirical one-tailed p-values of observed rank correlations. The adaptive Benjamini-Hochberg

461  method was applied to account for multiple testing [94]. All calculations were carried out using the
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462 R statistical computing language v 3.6.3 with functionalities from the ‘tidyverse’ set of packages

463 version 1.2.1.
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