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By making use of an explicit representation for the imaginary part of the photon polarization
tensor in terms of transitions between the Landau levels of light quarks, we study the angular
dependence of direct photon emission from a strongly magnetized quark-gluon plasma. Because
of the magnetic field, the leading order photon rate comes from the three processes of the zeroth
order in the coupling constant αs: (i) the quark splitting (q → q + γ), (ii) the antiquark splitting
(q̄ → q̄ + γ), and (iii) the quark-antiquark annihilation (q + q̄ → γ). In a wide range of moderately
high temperatures, T & mπ, and strong magnetic fields, |eB| & m2

π, the direct photon production
is dominated by the two splitting processes. We show that the Landau-level quantization of quark
states plays an important role in the energy and angular dependence of the photon emission. Among
other things, it leads to a nontrivial momentum dependence of the photon ellipticity coefficient v2,
which takes negative values at small transverse momenta and positive values at large transverse
momenta. The crossover between the two regimes occurs around kT ≃

√

|eB|. In application to
heavy-ion collisions, this suggests that a large value of v2 for the direct photons could be explained
in part by the magnetic field in the quark-gluon plasma.

PACS numbers: 12.38.Mh,25.75.-q,11.10.Wx,13.88+e

I. INTRODUCTION

For the last half a century, there has been a growing interest in the problem of strongly interacting QCD matter
under extreme conditions. One of the extreme regimes, which is characterized by a high energy density, is the quark-
gluon plasma (QGP) produced in heavy-ion collision experiments at the Relativistic Heavy Ion Collider (RHIC)
in Brookhaven and the Large Hadron Collider (LHC) at CERN. While the deconfined QCD matter produced in
relativistic heavy-ion collisions is initially far from equilibrium, it is likely to approach a quasiequilibrium state on
a relatively short timescale. There is also a growing consensus that the resulting strongly interacting QGP behaves
almost like a perfect hydrodynamic fluid. Because of the high initial pressure, the plasma expands rapidly and its
temperature decreases. Thus, a detailed study of the corresponding evolution could be used to shed light on a large
part of the QCD phase diagram. Such knowledge is not only of interest in heavy-ion physics but may also provide an
insight into the physics of the early Universe.
High temperature is not the only extreme feature of the QGP produced in heavy-ion collisions. In the case

of noncentral collisions, in particular, the resulting QCD matter is also characterized by a super-strong magnetic
field [1, 2] and very large vorticity [3, 4]. The exploration of such unusual conditions is of fundamental interest
because both magnetic field and vorticity could trigger a range of interesting anomalous phenomena. The chiral
magnetic effect (CME) [5–7] and the chiral vortical effect (CVE) [6, 8, 9] are perhaps the most popular among them.
Theoretically, such effects can modify dramatically the collective behavior of relativistic matter. In heavy-ion collision
experiments, the effects can be revealed by detailed studies of multiparticle correlators of charged particles and the
spin polarization of neutral particles. The anomalous phenomena in question are of fundamental interest since they
promise the possibility of extracting anomalous quantum effects from bulk properties of matter. As the recent progress
in the field suggests, the same anomalous physics can be relevant also for applications in astrophysics, cosmology, and
even for a class of topological semimetals, e.g., see Ref. [10].
The hydrodynamics features of the QGP in heavy-ion collisions are supported by the measurements of the anisotropic

flow coefficients. In essence, the latter are the eccentricity (Fourier) coefficients of multiparticle correlators averaged
over many events. Theoretically, an anisotropic flow of plasma is seeded by the initial spatial asymmetry of the overlap
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region of nuclei colliding with a nonzero impact parameter. Because of the unavoidable event-by-event fluctuations in
collisions, as well as large statistical fluctuations due to the small system size, all flow coefficients are expected to be
nonzero. At midrapidity, however, the second harmonics v2 (describing the average ellipticity of flow) is expected to
be particularly important and informative. Indeed, the latter should be dominated by the initial pressure anisotropy
stemming from an almond-shape overlap region of the colliding nuclei.
One of the curious observations in the heavy-ion experiments at RHIC and LHC is a strong azimuthal asymmetry

of the photon production in a wide range of rapidities. The first measurement of the elliptic flow of direct photons
in Au-Au collisions was reported by the PHENIX collaboration at RHIC nearly a decade ago [11]. Later the same
collaboration published more precise measurements with an extension to lower values of the transverse momentum [12].
The photon elliptic flow of a similar magnitude was also reported independently by the ALICE collaboration at
LHC [13]. The most surprising fact was the magnitude of the photon flow which is comparable to the flow of hadrons.
To explain the experimental data, a barrage of theoretical studies was triggered [14–35]. Nevertheless, it is fair to say
that the current understanding of underlying physics is still far from being complete.

It is reasonable to expect that a strong magnetic field, produced in noncentral heavy-ion collisions, can affect the
photon emission [36–38]. Since the magnetic field is likely to be present during an extended period of the evolution of
the fireball [1, 2, 39, 40], all known sources of photon emission could be affected. Here we will concentrate primarily
on the direct photon emission from the quark-gluon plasma. The latter is the dominant mechanism during the early
stages of quark-gluon plasma when the magnetic field is particularly strong. As we show, quantum transitions between
the Landau levels of quarks lead to photon emission with unique properties.

We argue that, in a strongly magnetized plasma, the photon rate is dominated by the following three single-photon
processes: (i) the quark splitting (q → q + γ), (ii) the antiquark splitting (q̄ → q̄ + γ), and (iii) the quark-antiquark
annihilation (q + q̄ → γ). This is in contrast to the vanishing magnetic field case when these three processes are
forbidden by the energy-momentum conservation. In fact, the leading order result at B = 0 is given by the gluon-
mediated 2 → 2 processes q + g → q + γ, q̄ + g → q̄ + γ, and q + q̄ → g + γ, where g represents a gluon [41–47].
This explains why the corresponding leading-order photon rate is linear in the strong coupling constant αs. In the
presence of a strong magnetic field, in contrast, the 1 → 2 splitting and 2 → 1 annihilation processes are allowed by
the energy-momentum conservation. As a result, the photon rate is nonzero already at the leading zeroth order in
αs. The corresponding rate is calculated explicitly in this paper.
From the general considerations, it is clear that the presence of a strong magnetic field could trigger a strong

emission of direct photons. Moreover, the rate is expected to have a rather nontrivial dependence on the magnitude
and direction of the photon momentum. As we show in this study, the Landau level quantization plays an important
role in the emission of photons with small transverse momenta (i.e, kT .

√

|eB|). Also, the emission rate tends to be
the highest in the directions along the line of the magnetic field (i.e., perpendicularly to the reaction plane). While

the quantization is less important at large transverse momenta (i.e, kT &
√

|eB|), the emission still has a strong
dependence on the direction relative to the magnetic field. In fact, similarly to the classical synchrotron radiation,
the preferred direction of the photon emission at large kT is perpendicular to the magnetic field (i.e., in the reaction
plane) [37, 38].
This paper is organized as follows. In Sec. II, we give a general overview of the elliptic flow in heavy-ion experiments.

In Sec. III, the explicit expression for the imaginary part of the one-loop photon polarization tensor is presented.
Numerical results for the direct photon production and the ellipticity of emission in a magnetized plasma are presented
in Sec. IV. The summary of the main results and conclusions are given in Sec. V. Some technical details and
calculations are provided in several appendices at the end of the paper.

II. ANISOTROPIC FLOW

In noncentral heavy-ion collisions, the anisotropic flow coefficients (vn) are defined by the following Fourier decom-
position of the azimuthal particle distributions [48, 49]:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

(

1 + 2

∞
∑

n=1

vn cos[n(φ−ΨRP)]

)

, (1)

where E is the particle energy, p is the momentum, pT is the transverse momentum, φ is the azimuthal angle, y is
the rapidity, and ΨRP is the reaction plane angle. By definition,

vn(pT , y) = 〈cos[n(φ−ΨRP)]〉, (2)

where the angular brackets denote the average over all particles (or all events, or both) in a given bin of the transverse
momentum (pT ) and rapidity (y). Note that the first two coefficients in the Fourier decomposition (1), i.e., v1 and
v2, characterize the directed and elliptic flow, respectively.
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FIG. 1: A schematic illustration of the reaction plane and the coordinate system used.

As shown schematically in Fig. 1, the direction of the magnetic field in a noncentral collision is (approximately)
perpendicular to the reaction plane. In the study below, we will assume that the corresponding direction is the z axis
of the coordinate system used. Also, by assumption, x-y is the reaction plane and the x axis points along the beam
direction. The azimuthal angle φ measures the angle between the photon momentum k and the reaction plane. The
photon four-momentum is given by kµ = (k0,k). Note that the transverse components of the photon momentum are
given by

ky = kT cos(φ), kz = kT sin(φ). (3)

where kT =
√

k2y + k2z is the magnitude of the transverse momentum. Here we set kx = 0 which corresponds to the

case of midrapidity (y = 0).
By making use of the general representation in Eq. (1), the differential distribution of photons is given by

k0
d3R

dkxdkydkz
=

d3R

kT dkT dφdy
=

1

2π

d2R

kT dkT dy

[

1 +

∞
∑

n=1

2vn(kT , y) cos(nφ)

]

, (4)

where we used dkx = k0dy, which follows from the definitions k0 =
√

k2T + k2x and y = 1
2 ln

k0+kx

k0−kx
.

By making use of quantum field theory, the thermal photon production rate can be expressed in terms of the
imaginary part of the retarded polarization tensor as follows [50]:

k0
d3R

dkxdkydkz
= − 1

(2π)3
Im
[

Πµ
µ(k)

]

exp
(

k0

T

)

− 1
, (5)

As usual, this assumes that the mean free path of photons is larger that the system size so that the photon leave the
plasma region without reabsorption.
Note that, to the leading one-loop order, the photon polarization tensor is given by the Feynman diagram in Fig. 2,

where the internal solid lines represent quark propagators in a background magnetic field. Here, by considering a
sufficiently strong magnetic field, we assume that the higher-loop diagrams with gluon-mediated interactions will
produce subleading corrections. It should be emphasized, however, that the interplay between the thermal and
magnetic effects could be quite nontrivial in general.
It is easy to see from the definition in Eq. (4) that the anisotropy coefficients vn can be evaluated from the differential

distribution of photons as follows:

vn =
1

R0

∫ 2π

0

d3R

kT dkT dφdy
cos(nφ)dφ, (6)

where the normalization factor is given by the photon production rate integrated over the angular coordinate φ, i.e.,

R0 =
d2R

kT dkT dy
=

∫ 2π

0

d3R

kT dkT dydφ
dφ. (7)

Similarly, by making use of the quantum field theoretical expression in Eq. (5), one can extract the anisotropy
coefficients as follows:

vn(kT ) = − 1

(2π)3R

∫ 2π

0

Im
[

Πµ
µ(k)

]

exp
(

k0

T

)

− 1
cos(nφ)dφ, (8)
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FIG. 2: The one-loop Feynman diagram for the photon polarization tensor in a magnetic field.

where the corresponding normalization factor is defined by

R = − 1

(2π)3

∫ 2π

0

Im
[

Πµ
µ(k)

]

exp
(

k0

T

)

− 1
dφ. (9)

Below we will use the definition in Eq. (8) to determine the ellipticity (v2) of the direct photon production in a hot
magnetized quark-gluon plasma.

III. POLARIZATION FUNCTION

The photon polarization tensor in the presence of a background magnetic field was studied by a number of authors.
At zero temperature, the most comprehensive studies were reported in Refs. [51, 52]. Some studies of the polarization
tensor have been done also at nonzero temperature. In particular, the results in the lowest Landau level approximation
were obtained in Refs. [53, 54], and in the weak field limit in Refs. [55, 56]. Several interesting results have been also
obtained by using the Ritus method and the real time formalism in Refs. [57] and [58]. In this paper, to study the
ellipticity of the direct photon emission, we will use an explicit expression for the imaginary part of the polarization
tensor obtained in Ref. [59]. The corresponding result has a relatively simple form and a clear interpretation in terms
of quantum transitions between quantized Landau levels of light quarks.
By omitting most of technical details of the derivation in Ref. [59], it is instructive to discuss the underlying

assumptions and highlight the key steps that lead to the final expression for the imaginary part of the polarization
tensor Im[Πµ

µ(k)]. To leading order in coupling, the photon polarization tensor is given by the flavor sum of the one-
loop Feynman diagrams shown in Fig. 2, where the internal lines represent the quark propagators in a background
magnetic field. We will assume that the contributions of the lightest up and down quarks dominate the photon
polarization function in the quark-gluon plasma at moderately high temperatures. For simplicity, we will also assume
that the masses of the light quarks are the same, i.e., mu = md = m. While the strange quark is not taken into
account, its inclusion is straightforward if needed. In either case, the role of strange quark is not critical for the
purposes of the current study, which examines the qualitative features of the direct photon emission from a strongly
magnetized plasma.
We will assume that the magnetic field B points in the +z direction and the vector potential is given by the Landau

gauge, i.e., A = (−By, 0, 0). In such a background field, the quark propagator takes the following form [10]:

Gf (t− t′; r, r′) = eiΦ
f (r⊥,r′⊥)Ḡf (t− t′; r− r′), (10)

where r⊥ = (x, y) is the transverse coordinate (in the reaction plane), f = u, d is the flavor index, and Φf (r⊥, r
′
⊥) =

−efB(x− x′)(y+ y′)/2 is the well-known Schwinger phase. According to our conventions here, ef = qfe is the quark
charge, where qu = 2/3, qd = −1/3, and e is the absolute value of the electron charge.

It is convenient to rewrite the translation invariant part of the propagator Ḡf in Eq. (10) by using the following
mixed coordinate-momentum space representation [10]:

Ḡf (t; r) =

∫

dωdpz
(2π)2

e−iωt+ipzzḠf (ω; pz; r⊥), (11)

where

Ḡf (ω, pz; r⊥) = i
e−r

2
⊥/(4l2f )

2πl2f

∞
∑

n=0

D̃f
n(ω, pz; r⊥)

ω2 − E2
n,pz,f

, (12)
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(a) (b) (c)

q→q γ

(d)

q→q γ

(e)

q+q→γ

(f)

FIG. 3: Three types of processes involving fermion states with the Landau-level indices n and n′: (a) q → q+ γ, (b) q̄ → q̄+ γ,
(c) q + q̄ → γ. The corresponding Landau level transitions are shown schematically in panels (d), (e) and (f), respectively.

and En,pz,f =
√

m2 + p2z + 2n|efB| is the quark energy in the nth Landau level. In the last expression, we also used
the following shorthand notation for the numerator of the nth Landau-level contribution [10]:

D̃f
n(ω, pz; r⊥) =

[

ωγ0 − p3γ3 +m
]

[

Pf
+Ln

(

r2⊥
2l2f

)

+ Pf
−Ln−1

(

r2⊥
2l2f

)]

− i

l2f
(r⊥ · γ⊥)L

1
n−1

(

r2⊥
2l2f

)

, (13)

where Lα
n(z) are the generalized Laguerre polynomials [60], Pf

± ≡ 1
2

(

1± isf⊥γ
1γ2
)

are spin projectors, and lf =
√

1/|efB| is the flavor-specific magnetic length. By definition, sf⊥ = sign(efB) and Lα
−1(z) ≡ 0.

The finite-temperature expression for the polarization function is given by

Πµν(iΩm;k) = 4πNc

∑

f=u,d

αfT

∞
∑

k=−∞

∫

dpz
2π

∫

d2r⊥e
−ir⊥·k⊥tr

[

γµḠf (iωk, pz; r⊥)γ
νḠf (iωk − iΩm, pz − kz;−r⊥)

]

,

(14)
where αf = q2fα, α = e2/(4π) is the fine structure constant, Nc = 3 is the number of colors, and the trace on the
right-hand side runs over the Dirac indices. Note that the photon and quark Matsubara frequencies are given by
Ωm = 2πmT and ωk = π(2k + 1)T , respectively.

After summing over the Matsubara frequencies, the retarded polarization tensor is obtained from the thermal
Green’s function by replacing iΩm with Ω + iǫ. (Here we use the notation k0 = Ω for the photon.) The imaginary
part of the corresponding (Lorentz-contracted) polarization function reads [59]:

Im
[

Πµ
R,µ(Ω;k)

]

=
∑

f=u,d

Ncαf

2l4f

∞
∑

n,n′=0

∫

dpz
2π

∑

λ,η=±1

nF (En,pz,f )− nF (λEn′,pz−kz,f )

2ηλEn,pz,fEn′,pz−kz,f

4
∑

i=1

Ff
i

× δ (En,pz,f − λEn′,pz−kz,f + ηΩ) . (15)

where the explicit expressions for functions Ff
i are given in Appendix A. From the physics viewpoint, it is

important to note that the δ function has a nonvanishing support only when the energy conservation equation
En,pz,f − λEn′,pz−kz,f + ηΩ = 0 is satisfied.
It is instructive to remember that, unlike the real part of the polarization function, the imaginary part should have

no ultraviolet divergencies. This is confirmed by a careful analysis of the explicit expression in Eq. (23), where the
sum over Landau levels is convergent. Depending on the model parameters, however, the inclusion of a large number
of terms could be required for a reliable evaluation of the imaginary part.
Without loss of generality, let us assume that Ω is positive. Taking into account that the imaginary part should

be an odd function of Ω, this is not a strong limitations. (By making use of the time reversal transformation, it is
also natural to associate negative values of Ω with the photon absorption processes. Such an interpretation is also
supported by the analysis of the energy conservation relation.) Then, depending on the choice of signs of λ and η, the
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energy conservation equation En,pz,f − λEn′,pz−kz,f + ηΩ = 0 represents one of the three possible physical processes
involving quark and/or antiquark states with the Landau-level indices n and n′. Two of the processes, which are
realized when λ = +1, are the quark and antiquark splitting processes, i.e., q → q + γ (η = −1) and q̄ → q̄ + γ
(η = +1), respectively. The third possibility is the annihilation process q + q̄ → γ, which is realized when λ = −1
and η = −1. It is easy to verify that there are no physical processes that correspond to λ = −1 and η = +1 when Ω
is positive.
The existence of real solutions for pz to the energy conservation equation implies that the corresponding process

is allowed in principle. In the case of three types of processes mentioned above, the necessary conditions for the
existence of real solutions are given as follows:

q → q + γ (λ = +1, η = −1) :
√

Ω2 − k2z ≤ kf− and n > n′, (16)

q̄ → q̄ + γ (λ = +1, η = +1) :
√

Ω2 − k2z ≤ kf− and n < n′, (17)

q + q̄ → γ (λ = −1, η = −1) :
√

Ω2 − k2z ≥ kf+, (18)

where we utilized the shorthand notation

kf± =

∣

∣

∣

∣

√

m2 + 2n|efB| ±
√

m2 + 2n′|efB|
∣

∣

∣

∣

. (19)

When the appropriate condition is satisfied for a given process, see Eqs. (16) – (18) the real solutions for pz are given
by the following explicit expressions:

p
(±)
z,f =

kz
2



1 +
2(n− n′)|efB|

Ω2 − k2z
± Ω

|kz|

√

√

√

√

[

1− (kf−)
2

Ω2 − k2z

][

1− (kf+)
2

Ω2 − k2z

]



 . (20)

On these solutions, the quark energies take the following explicit forms:

En,pz,f |pz=p
(±)
z,f

= −ηΩ

2



1 +
2(n− n′)|efB|

Ω2 − k2z
± |kz|

Ω

√

√

√

√

(

1− (kf−)
2

Ω2 − k2z

)(

1− (kf+)
2

Ω2 − k2z

)



 , (21)

En′,pz−kz,f |pz=p
(±)
z,f

=
ληΩ

2



1− 2(n− n′)|efB|
Ω2 − k2z

∓ |kz|
Ω

√

√

√

√

(

1− (kf−)
2

Ω2 − k2z

)(

1− (kf+)
2

Ω2 − k2z

)



 , (22)

By making use of these solutions and assuming the on-shell condition Ω =
√

k2y + k2z for the emitted photons, the

imaginary part of the (Lorentz-contracted) polarization tensor can be written as follows [59]:

Im
[

Πµ
R,µ

]

=
∑

f=u,d

Ncαf

2πl4f

∞
∑

n>n′

g(n, n′)
[

Θ
(

kf− − |ky|
)

−Θ
(

|ky| − kf+

)]

√

[(kf−)
2 − k2y][(k

f
+)

2 − k2y]

(

Ff
1 + Ff

4

)

−
∑

f=u,d

Ncαf

4πl4f

∞
∑

n=0

g0(n)Θ
(

|ky| − kf+

)

√

k2y[k
2
y − (kf+)

2]

(

Ff
1 + Ff

4

)

, (23)

where Θ (x) is the Heaviside step function. We also used the following shorthand notations:

g(n, n′) = 2−
∑

s1,s2=±

nF

(

Ω

2
+ s1

Ω(n− n′)|efB|
k2y

+ s2
|kz|
2k2y

√

(

k2y − (kf−)
2
)(

k2y − (kf+)
2
)

)

, (24)

g0(n) = g(n, n) = 2− 2
∑

s=±

nF

(

Ω

2
+ s

|kz|
2|ky|

√

k2y − 4(m2 + 2n|efB|)
)

. (25)

In the final expression, we took into account that the quark (q → q+ γ) and antiquark (q̄ → q̄+ γ) splitting processes
contribute equally. Note that, in the problem at hand, this is the consequence of the charge-conjugation symmetry.
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IV. PHOTON EMISSION RATES

In this section, by making use of the explicit expression for the imaginary part of polarization function in Eq. (23),
we study numerically the photon emission rate in a strongly magnetized quark-gluon plasma. The main question that
we aim to address is the dependence of emission on the magnitude and direction of the photon momentum.

To optimize numerical calculations, we express all dimensionful quantities in units of the (neutral) pion mass,
mπ ≈ 0.135 GeV. This is indeed convenient since the corresponding energy scale is representative of the key properties
of a quark-gluon plasma produced in heavy-ion collisions. This is also suitable for the purposes of this study since
the magnetic field and temperature are of the order of the pion mass squared and the pion mass, i.e., |eB| ∼ m2

π and
T ∼ mπ, respectively.
To study the photon emission rate as a function of the transverse momentum kT (which is same as Ω here) and

the azimuthal angle φ, see Fig. 1, we will use the parametrization for the photon momenta in Eq. (3). For a better
understanding of the photon emission, we will investigate in detail the cases of two representative choices of the
magnetic field strength, |eB| = m2

π and |eB| = 5m2
π, and two representative values of temperature, T = 0.2 GeV and

T = 0.35 GeV. In each case, we will limit the range of photon parameters as follows. The transverse momenta will be
taken in the range between kT,min = 0.01 GeV and kT,max = 1 GeV, with the discretization step ∆kT = 0.01 GeV.
The symmetry of the problem implies that the emission should be invariant with respect to a mirror reflection in the
reaction plane (i.e., φ → −φ). Thus, it is sufficient for us to cover the range of azimuthal angles between φ = 0 and
φ = π

2 . In the actual numerical calculations, however, we will be avoiding the limiting values of the azimuthal angle

by considering the range between φmin = 10−4 π
2 and φmax = π

2 − φmin and use the discretization step ∆φ = 10−3 π
2 .

When calculating numerically the sum over Landau levels in Eq. (23), we will approximate the result by including
only a finite number of terms with n, n′ ≤ nmax. Qualitatively, this corresponds to setting an ultraviolet energy cutoff
at Λ ≃

√

2nmax|eB|. Of course, the minimum value of nmax should be sufficiently large to include all Landau levels
that contribute substantially to the photon rate. From the kinematics of the relevant 1 → 2 and 2 → 1 processes
shown in Fig. 3, we find that the most stringent constraints come from the regions of very small and very large
transverse momenta. They give nmax & |eB|/k2T,min and nmax & k2T,max/|eB|, respectively. The first constraint (i.e.,

nmax & |eB|/k2T,min) is the consequence of the Landau-level quantization. As is clear, the emission of photons with a

small kT (energy) is possible only when the energy separation between the nearest Landau levels is smaller than kT .
As we explain in detail later, this is true only for the quark states with energies of the order of ∼ |eB|/kT or larger.
Thus, to include all relevant states with such high energies, one needs to sum up at least nmax & |eB|/k2T,min Landau

levels. The other constraint (i.e., nmax & k2T,max/|eB|) comes from the requirement of having a nonempty phase space

when the value of kT,max (energy) is large. This is also easy to understand since the emission of high-energy photons
would be impossible if the quark states with sufficiently large energies were removed from the spectrum.

By choosing kT,min = 0.01 GeV and kT,max = 1 GeV, one finds that the minimum number of nmax should be greater
than max(182, 55) when |eB| = m2

π. Similarly, in the case of |eB| = 5m2
π, one finds that nmax should be greater than

max(911, 11). Therefore, to cover both choices of the magnetic field and the whole range of transverse momenta, we
will use a relatively large number of Landau levels, i.e., nmax = 1000. Numerically, the latter corresponds to the
ultraviolet energy cutoff Λ ≃ 6 GeV for |eB| = m2

π and Λ ≃ 13.5 GeV for |eB| = 5m2
π. With limited computational

recourses, however, the maximum number of Landau levels could be chosen on the case-by-case basis. In particular,
this could lead to a substantial reduction of nmax when the photon transverse momenta are neither too large nor too
small. It should be mentioned that the above consideration is valid only in the regime when the magnetic energy
scale

√

|eB| is comparable to temperature. At temperatures much higher or much lower than
√

|eB|, the estimates
for nmax will be different.
Let us start by considering the case of moderately strong magnetic field, |eB| = m2

π. The corresponding numerical
results for the angular dependence of the photon emission rates are shown in Fig. 4 for selected values of the transverse
momentum kT . The two panels on the left (a and c) give the rates for T = 0.2 GeV and the two panels on the right
(b and d) for T = 0.35 GeV. The two upper (lower) panels correspond to a range of small (large) values of kT . As is
clear form the figure, there are several qualitative features of the photon emission that stand out.

First, as we see, the rate is not a smooth function of φ. It is easy to understand that this is the consequence of
the Landau level quantization for quark states that causes numerous threshold effects in the photon production. In
principle, the corresponding threshold effects should be smoothed out by a nonzero quasiparticle width of quarks due
to their interactions in plasma. Conceptually, the quasiparticle width can be obtained from the imaginary part of the
quark self-energy. In the case of hot QCD, of course, the latter should be dominated by the gluon-exchange interaction.
While the interaction effects are expected to smooth out the angular dependence (as well as its energy dependence),
they are not expected to change qualitatively the overall features in the photon production. This is indeed reasonable
since the combined effect of numerous Landau levels will largely average in a plasma with temperature T &

√

|eB|.
Thus, for simplicity, we will neglect the gluon-mediated interaction effects and assume that quarks have the vanishing
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FIG. 4: The angular dependence of the photon production rates for |eB| = m2

π and fixed values of kT . The left panels show
the results for T = 200 MeV (panels a and c) and the right panels for T = 350 MeV (panels b and d). The top (bottom) panels
show the results for several small (large) values of kT .

quasiparticle width in this study.
By comparing the results for different values of kT in Fig. 4, we see that, on average, the rate tends to decrease

with increasing of the transverse photon momentum (or, equivalently, the energy). This is explained in part by the
suppression of all processes involving quarks and antiquarks with large energies. Mathematically, this comes from the
Fermi-Dirac distribution functions in the polarization tensor, see Eqs. (23) – (25). The other contributing factor to
the suppression at large transverse momenta is the overall Bose distribution factor 1/[exp (Ω/T )− 1] in definition of
the rate in Eq. (5).
By carefully analyzing the contributions of different types of processes, we find that the photon production rate

is largely dominated by the two splitting processes q → q + γ and q̄ → q̄ + γ for a wide range of moderately high
temperatures (T & mπ), moderately strong magnetic fields (|eB| & m2

π), and not too larger transverse momenta

(kT .
√

|eB|). With increasing kT , however, the relative contribution of the annihilation process q + q̄ → γ grows
gradually. From our numerical results, we find that it gives a comparable contribution when kT & 0.5 GeV or so.

(One can also verify that the annihilation process plays the dominant role at very small temperatures, T ≪
√

|eB|,
but such a regime of quark-gluon plasma is irrelevant in the context of heavy-ion collisions.)
As we see from panels (a) and (b) in Fig. 4, the emission rate at small values of kT has an overall tendency to

peak at φ = π
2 , i.e., in the direction perpendicular to the reaction plane. This behavior changes dramatically at large

values of kT , as seen from panels (c) and (d) in Fig. 4. Indeed, when the value of kT is larger than about
√

|eB|,
the emission tends to be highest at φ = 0, i.e., in the direction along the reaction plane. Such unusual behavior
has interesting underlying physics and may have important implications. In application to heavy-ion collisions, for
example, one can argue that the direct photon production will be characterized by an apparent flow with a negative
ellipticity coefficient v2 at small values of kT and a positive v2 at large values of kT . Of course, such flow is caused by
a strong magnetic field and has nothing to do with the hydrodynamic behavior of the quark-gluon plasma.
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FIG. 5: Ellipticity of the photon production as a function of the transverse momentum kT for |eB| = m2

π and two different
temperatures: T = 200 MeV (panel a) and T = 350 MeV (panel b).

The qualitative finding about the apparent flow of the direct photon emission can be formally verified by calculating
the ellipticity coefficient v2 by using the definition in Eq. (8). Our numerical results for v2 as a function of kT are
presented in Fig. 5 for the same two values of temperature, i.e., T = 0.2 GeV (panel a) and T = 0.35 GeV (panel b). As
anticipated, the ellipticity coefficient v2 takes negative values at small kT and positive values at large kT . The critical
point where v2 vanishes appears to be roughly around kT ≃

√

|eB|. Needless to say, because of the quantization
of Landau levels and numerous threshold effects, the functional dependence of v2 on kT is not a smooth function.
However, there is a clear tendency of v2 to grow with kT . Despite the large difference in the overall photon production
rate at two different temperatures, our results in Fig. 5 do not reveal a strong dependence of v2 on temperature. The
only exception is, perhaps, the region of small transverse momenta, where larger negative values of v2 can be achieved
with decreasing temperature.
One of the most interesting features of the v2 dependence on the transverse momentum is its behavior at large

kT . As is clear from our calculation, the ellipticity reaches and saturates at a relatively large positive value, i.e,
v2,max ≃ 0.2. From a physics viewpoint, one might wonder why v2 does not vanish when the transverse momentum is

much larger than the magnetic energy scale
√

|eB|. The reason is quite simple and is connected with the underlying
mechanism of the photon emission in a magnetized plasma. In essence, it is the magnetic field in the first place that
makes the corresponding photon emission possible without the mediation of any additional particles (e.g., gluons) in
the initial or final states. Thus, while the total integrated photon rate quickly decreases with increasing kT , the angular
dependence preserves a characteristic oblate shape described by a moderately large positive v2. It is appropriate to
mention that the magnitude of v2,max ≃ 0.2 appears to be considerably smaller than 4/7 ≈ 0.57 predicted by the
classical analysis in Ref. [37]. We assume that this is largely due to the inclusion of the annihilation processes in our
analysis.
It is tempting to argue that the predicted positive v2 at large kT could be very important in the context of heavy-ion

collisions, where the direct photon production is characterized by a surprisingly large v2. Of course, a more realistic
and complete model of the direct photon production form a hot quark-gluon plasma should include not only the
emission assisted by a magnetic field but also the gluon-mediated processes [41–47]. The latter are expected to be
nearly isotropic in the local rest frame. It is the relative weight of the gluon and magnetic field mediated processes that
should determine the net v2. It should be pointed that, at large values of kT , the total integrated rates for both types
of processes are strongly suppressed by the Fermi-Dirac distributions of quarks. Unlike the gluon-mediated processes,
which are additionally suppressed by the Bose distributions of gluons, the leading order splitting and annihilation
processes in a magnetic field do not suffer from an extra suppression. There is a good chance, therefore, that the
latter play an important role indeed. A careful investigation of this issue deserves a separate study, however.
In order to better understand the role of the magnetic field on the direct photon emission from hot quark-gluon

plasma, it is instructive to consider the case of a stronger field. So, let us now consider the case with |eB| = 5m2
π.

The corresponding angular dependence of the photon emission rates are shown in Fig. 6 for a wide range of values
of the transverse momenta. As in the case of the weaker field, we present the results for T = 0.2 GeV in the two
left panels (a and c) and T = 0.35 GeV in the two right panels (b and d). The pair of upper (lower) panels show
the results for small (large) values of kT . The corresponding results for the ellipticity of the emission are shown in
Fig. 7. Needless to say that the v2 dependence on the transverse momentum is qualitatively the same as in the case
of a weaker field. It stays negative at small kT , crosses zero around kT ≃

√

|eB|, and then remains positive at large
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FIG. 6: The angular dependence of the photon production rates for |eB| = 5m2

π and fixed values of kT . The left panels show
the results for T = 200 MeV (panels a and c) and the right panels for T = 350 MeV (panels b and d). The top (bottom) panels
show the results for several small (large) values of kT .

kT , with the saturation value again close to v2,max ≃ 0.2.
While the results for a stronger magnetic field, |eB| = 5m2

π, shares many similarities with that of a weaker field,
|eB| = m2

π, some qualitative differences are seen too. To start with, let us point that the photon rate tends to grow
(rather than fall) with kT in a window of small values of kT , see panels (a) and (b) in Fig. 6. From the available data,
we determine that the maximum is reached at about kT ≃ 0.06 GeV when T = 0.2 GeV and at about kT ≃ 0.04 GeV
when T = 0.35 GeV. When the transverse momentum increases further, the photon production rate starts to decrease
quickly, following the same qualitative behavior as seen before in the case of a weaker field.

In order to reconfirm the nonmonotonic dependence of the photon production rate on the transverse momentum, it is
instructive to calculate the total rate integrated over the angular coordinate, as defined by Eq. (9). The corresponding
results are plotted in Fig. 8 for both choices of magnetic field, |eB| = m2

π (panel a) and |eB| = 5m2
π (panel b). As

clear from Fig. 8(b), in the case of the stronger field, |eB| = 5m2
π, there are indeed well-resolved peaks in the photon

production rate at kT ≃ 0.06 GeV when T = 0.2 GeV and at kT ≃ 0.04 GeV when T = 0.35 GeV. While similar
peaks appear to be absent in the case of weaker field, |eB| = m2

π, such a conclusion is premature.
A careful analysis reveals that the photon rates must always have well-defined maxima at sufficiently small values of

the transverse momentum. The existence of such maxima is a necessary consequence of the Landau-level quantization
of quark states in a strongly magnetized plasma. In order to understand the underlying physics, it is instructive to
consider in detail the kinematics of the quark splitting process q → q + γ in the regime of small kT . Because of
the charge-conjugation symmetry, the same is true for the antiquark splitting process q̄ → q̄ + γ. As for the quark-
antiquark annihilation q+ q̄ → γ, it can be neglected in the regime of moderately high temperatures, T & mπ, which
is assumed here.

The Landau level transitions for the splitting processes that are allowed by the energy conservation constraint
En,pz,f −En′,pz−kz,f = Ω (where we set λ = +1 and η = −1) are visualized schematically in Fig. 9. To be specific, we
concentrate on the splitting processes of up quarks as an example. The kinematics for down quark is qualitatively the
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FIG. 7: Ellipticity of the photon production as a function of the transverse momentum kT for |eB| = 5m2

π and two different
temperatures: T = 200 MeV (panel a) and T = 350 MeV (panel b).
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FIG. 8: The integrated photon production rate as a function of the transverse momentum kT for |eB| = m2

π (panel a) and
|eB| = 5m2

π (panel b). The different lines represent results for two different temperatures, i.e., T = 200 MeV (blue solid line)
and T = 350 MeV (red dashed line).

same. For comparison, we show side-by-side the results for two different choices of the photon transverse momenta:
a smaller value (kT = 0.025 GeV) in panel (a) and a larger value (kT = 0.075 GeV) in panel (b). Also, to get an
idea about the angular dependence, the result for three different directions of the photon emission are superimposed.
They are represented by color-coded arrows: φ = 0 (red), φ = π/6 (green), and φ = π/2 (blue).
It should be noted that the allowed transitions between Landau levels can be grouped systematically into an infinite

set of series n′ → n, where n′ = n+ i and i = 1, 2, 3, . . .. For a generic angle φ < π/2, all such series represent allowed
transitions, although some of them (e.g., with large values of i) might be suppressed more than others. In the
limiting case φ = π/2, however, only the transitions between the adjacent Landau levels (n + 1 → n) happen to be
possible. Interestingly, this restriction does not come from the energy conservation itself. This is the consequence of
the vanishing amplitude for the photon emission in the direction of the magnetic field. Mathematically, this can be

understood by considering functions Ff
1 in the limit ky = 0, see Eqs. (A5), (A6), (A12), and (A13) in Appendix A.

As is easy to see, at ky = 0 (which is equivalent to φ = π/2), the corresponding functions are nonzero only when
n′ = n or n′ = n± 1.
Let us now discuss how the quantization of Landau levels affects the dependence on the photon emission on the

transverse momentum. As seen from Fig. 9(a), the quantization has a particularly profound effect on the kinematics
of the allowed transitions at small values of kT . The underlying reason is related to the fact that the separation
between Landau levels is of the order of

√

|eB| at low energies. Thus, for kT ≪
√

|eB|, the transitions between
quark states with low energies are impossible. In fact, as is clear from Fig. 9(a), the lowest lying transitions are
those between quark states with large momenta |pz| ∼ |efB|/ [kT (1 + | sinφ|)], where the energy separation between
the adjacent Landau levels is sufficiently small. Since such transitions involve quarks with relatively large energies
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FIG. 9: A schematic representation of the low-energy transitions between Landau levels that correspond to the quark splitting
processes q → q + γ, allowed by the energy conservation constraint. Transitions associated with the emission of photons in
three different directions are color-coded as follows: φ = 0 (red), φ = π/6 (green), and φ = π/2 (blue). Note that only the
transitions between the adjacent Landau levels (n+ 1 → n) contribute nontrivially at φ = π/2. The two choices of the photon
transverse momenta are kT = 0.025 GeV (panel a) and kT = 0.075 GeV (panel b).

Epz
& |efB|/ [kT (1 + | sinφ|)], their contributions are strongly suppressed by the Fermi-Dirac distribution functions

in the imaginary part of the polarization tensor, see Eqs. (23) – (25). In essence, this is the underlying mechanism
that explains the suppression of the total rate when kT goes to zero, see Fig. 8(b).

As the value of kT grows and becomes comparable to the Landau energy scale, kT ∼
√

|eB|, the effects of quan-
tization relax gradually. This is seen qualitatively from the representation of allowed transitions in Fig. 9(b), where
the photon transverse momentum is three times larger (i.e., kT = 0.075 GeV). In this case, the transitions start
to occur between quark states with lower energies and, as a result, the photon production rate becomes higher. Of
course, eventually when kT ≫

√

|eB|, the rates will start to decrease again with increasing kT . Therefore, the generic
behavior of the photon production rate as a function of kT is similar to that in Fig. 8(b). It starts growing from a
very small value when kT ≃ 0, reaches a maximum at certain kT,max, and then decreases at large kT .

It is interesting to note that the same quantization of Landau levels also explains the unusual ellipticity of photon
emission in the region of small kT , which is characterized by a negative v2. Indeed, it follows from the angular
dependence of the quark momenta |pz| ∼ |efB|/ [kT (1 + | sinφ|)] quoted earlier, which characterize the transitions
between states with the lowest energies. Since the smallest value of |pz| (and, thus, the energies of quark states)
is achieved at φ = π/2, the emission rate is largest in the corresponding direction perpendicularly to the reaction
plane. On the other hand, the largest |pz| corresponds to φ = 0, implying that the rate is suppressed the most for the
photons emitted along the reaction plane.
The explanation of a positive v2 at large kT is not as simple. One may speculate that it is analogous to a classical

synchrotron radiation that is emitted predominantly in the direction perpendicular to the magnetic field. One should
note, however, that there is a substantial contribution from the annihilation process, which is not a classical effect
but a special feature of the relativistic plasma.
Before concluding this section, it is instructive to discuss briefly the validity of the lowest Landau level approxi-

mation, which is often utilized when the magnetic field is strong. Formally, such an approximation can be obtained
from Eq. (23) by dropping all terms except for those with n = n′ = 0. The corresponding explicit expression for
Im[Πµ

R,µ] is presented in Appendix B. As is clear, in this approximation, the quark and antiquark splitting processes

(which require n 6= n′) does not be contributing to the photon production. The only process that contributes is
the quark-antiquark annihilation in the lowest Landau level. In most regimes of a hot quark-gluon plasma, with
the exception of the small temperature limit (T ≪

√

|eB|), such an annihilation is a subdominant process, however.
Therefore, one must conclude that the lowest Landau level approximation is inadequate for calculating the photon
production in a hot quark-gluon plasma even if the magnetic field is very strong.

V. SUMMARY AND CONCLUSIONS

In this paper, we studied the direct photon production rate from a strongly magnetized hot quark-gluon plasma. At
leading zeroth order in the coupling constant αs, the photons are produced by the following three types of processes:
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(i) the quark splitting q → q + γ, (ii) the antiquark splitting q̄ → q̄ + γ, and (iii) the quark-antiquark annihilation
q + q̄ → γ. Because of a modified energy conservation in a background magnetic field, there is no need for the gluon
mediation in the underlying production mechanism.

By analyzing the relative contribution of different processes, we found that the photon production rate is dominated
by the 1 → 2 splitting processes in a wide range of moderately high temperatures (T & mπ), moderately strong

magnetic fields (|eB| & m2
π), and a range of not too large transverse momenta (kT .

√

|eB|). With increasing
transverse momenta, the relative contribution of the annihilation process grows and eventually becomes comparable
to that of the splitting processes. The annihilation also plays an important role in the limit of small temperature.
In this connection, it is instructive to mention that the lowest Landau level approximation, which includes only the
annihilation of quarks and antiquarks in the zeroth Landau level, is not reliable for calculating the photon emission
from a hot plasma even if the magnetic field is strong.
Our investigation reveals that the photon emission from a strongly magnetized hot quark-gluon plasma is charac-

terized by a nonzero ellipticity coefficient v2 that depends on the transverse momentum. Generically, v2 is negative
at small momenta, kT .

√

|eB|, and positive at large momenta, kT &
√

|eB|. While the ellipticity coefficient v2 is an
overall growing function of kT , it is not smooth or monotonic. This is due to the quantization of the Landau levels
of quarks that produces numerous thresholds associated with the inclusion of additional quantum transitions when
kT (or, equivalently, energy) increases. While the strong interaction effects in plasma are expected to smooth out the
functional dependence of v2, the corresponding analysis was not performed in this study. We hope to address the
role of interaction effects beyond the leading order in αs in the future. It is not expected, however, that they could
change dramatically the overall dependence of the photon production on the transverse momentum or the angular
coordinate φ.
As we found in this study, the ellipticity coefficient v2 tends to saturate at large kT , reaching a relatively high

positive value v2,max ≃ 0.2. Interestingly, this prediction is considerably smaller than the result in Ref. [37], where

the use of the classical formula for synchrotron radiation gave the maximum value v
(class)
2,max = 4/7. It appears that the

effective suppression in our quantum analysis is caused by the inclusion of the annihilation processes. Nevertheless,
we find that v2 still approaches a moderately high value at large kT . This result can have important implications
for heavy-ion collisions. In particular, the magnetic field mediated processes could give a substantial contribution
to the observed v2 for the direct photon production. Of course, the final anisotropy could be diluted by the photon
production from the standard gluon-mediated processes [41–47], which are (mostly) isotropic in the local rest frame of
the plasma. Thus, in the presence of a strong magnetic field, it is reasonable to expect that the leading order splitting
and annihilation processes can be more important since they do not suffer from an extra suppression due to the Bose
distribution of gluons. While the interplay of the two types of processes was not investigated in detail in this paper,
it will be very interesting to address in the future.
The analysis of the kT dependence shows that the integrated photon production rate is strongly suppressed in the

limit kT → 0. This is the consequence of quantum effects and the structure of quark Landau levels in a magnetic
field. In essence, the physics mechanism is explained by a wide spacing of the quantized Landau levels that prohibits
transitions between the low-energy states when producing photons. In fact, by analyzing the energy conservation
constraint, one finds that the only allowed transitions are those involving quarks with rather high energies, i.e.,
Epz

& |efB|/(2kT ). Since the number density of high-energy quarks is small, the photon production is negligible.
The suppression from the Landau level quantization gets lifted gradually as the value of kT grows and the photon
production starts to grow too. At certain critical point, however, it reaches a maximum and then starts to decrease
with kT .
It should be emphasized that, in this study, we calculated the photon rate at the leading zeroth order in the

strong coupling constant αs. This is expected to be a good approximation in a strongly magnetized QCD plasma. In
general, however, higher-order corrections in αs should exist and become increasingly important with decreasing of
the magnetic field. At present, we do not know how to identify and include systematically all relevant gluon-mediated
processes. One might try to include the relevant corrections by using the hard thermal loop resummations [61] as done
in the absence of the magnetic field [41, 42]. (Note that an additional subclass of 2 → 3 and 3 → 2 processes with a
collinear enhancement become as important as the 2 → 2 processes [43–45].) Unfortunately, the inclusion of strong
interaction effects via the resummation of higher-order loop diagrams is far from straightforward from a technical
viewpoint when the QCD plasma is magnetized. The problem stems not only from the elaborate structure of the
quark propagator, but also from the intrinsic role of the magnetic field that should interfere with the thermal effects.
This is suggested by the studies of the strongly magnetized QCD vacuum (i.e., T = 0), where the resummation of the
hard “magnetic loops” becomes important [53]. It leads, for example, to a nonzero (but gauge invariant) gluon mass

that scales as
√
αs

√
eB. Similar effects are likely to survives also at nonzero temperatures and could complicate the

hard thermal loop resummations. The corresponding systematic study is beyond the scope of the present paper but
should be attempted in the future.
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Appendix A: Dirac traces and auxiliary functions

In this Appendix, we present the explicit expressions for the functions that appear in the calculation of the imaginary
part of the (Lorentz contracted) photon polarization function.
As is clear from the explicit structure of the quark propagators, see Eqs. (12) and (13), there are four types of Dirac

traces that appear in the calculation:

gµνT
µν
1,f = tr

[

γµ
(

p‖γ‖ +m
)

(P+Ln + P−Ln−1) γµ
(

(p‖ − k‖)γ‖ +m
)

(P+Ln′ + P−Ln′−1)
]

= 4
[

m2 − p‖(p‖ − k‖)
]

(Ln−1Ln′ + LnLn′−1) + 4m2 (LnLn′ + Ln−1Ln′−1) , (A1)

gµνT
µν
2,f =

i

l2f
tr
[

γµ
(

p‖γ‖ +m
)

(P+Ln + P−Ln−1) γµ(r⊥ · γ⊥)L
1
n′−1

]

= 0, (A2)

gµνT
µν
3,f = − i

l2f
tr
[

γµ(r⊥ · γ⊥)L
1
n−1γµ

(

(p‖ − k‖)γ‖ +m
)

(P+Ln′ + P−Ln′−1)
]

= 0, (A3)

gµνT
µν
4,f =

1

l4f
tr
[

γµ(r⊥ · γ⊥)L
1
n−1γµ(r⊥ · γ⊥)L

1
n′−1

]

=
8

l4f
r2⊥L

1
n−1L

1
n′−1, (A4)

where, for brevity of notation, the argument ξ = k2
⊥l

2
f/2 of the Laguerre polynomials is suppressed.

After the integration over the transverse spatial coordinates, these produce the following functions:

Ff
1 = gµνI

µν
1,f =

∫

d2r⊥e
−ir⊥·k⊥e−r

2
⊥/(2l2f )gµνT

µν
1,f

= 8πl2f
[

m2 − p‖(p‖ − k‖)
]

(

In−1,n′

0,f (k⊥) + In,n′−1
0,f (k⊥)

)

+ 8πl2fm
2
(

In,n′

0,f (k⊥) + In−1,n′−1
0,f (k⊥)

)

, (A5)

Ff
4 = gµνI

µν
4,f =

∫

d2r⊥e
−ir⊥·k⊥e−r

2
⊥/(2l2f )gµνT

µν
4,f = 16π In−1,n′−1

2,f (k⊥). (A6)

(Note that Ff
2 = Ff

3 = 0.) Since function Ff
1 depends explicitly on the zeroth component of the fermion four-

momentum, it has to be treated with care when the Matsubara summation is performed. In effect, the Matsubara
sum produces the result which is equivalent to the following replacement:

p‖(p‖ − k‖) → λEn,pz,fEn′,pz−kz,f − pz(pz − kz). (A7)

Furthermore, when the fermion energies satisfy the energy conservation condition En,pz,f − λEn′,pz−kz,f + ηΩ = 0,
one finds that

λEn,pz,fEn′,pz−kz,f − pz(pz − kz) = m2 + (n+ n′)|efB|+ 1

2

(

k2z − Ω2
)

. (A8)

Thus, in the calculation of the imaginary part of the polarization function, it is convenient to use the following

expression for function Ff
1 :

Ff
1 = 8π

[

Ω2 − k2z
2|efB| − (n+ n′)

]

(

In−1,n′

0,f (k⊥) + In,n′−1
0,f (k⊥)

)

+ 8πl2fm
2
(

In,n′

0,f (k⊥) + In−1,n′−1
0,f (k⊥)

)

, (A9)

which is equivalent to Eq. (A5) provided En,pz,f − λEn′,pz−kz,f + ηΩ = 0.
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The Ff
i functions are expressed in terms of the following two functions:

In,n′

0,f (k⊥) =
(n′)!

n!
e−ξξn−n′

(

Ln−n′

n′ (ξ)
)2

=
n!

(n′)!
e−ξξn

′−n
(

Ln′−n
n (ξ)

)2

, (A10)

In,n′

2,f (k⊥) = 2
(n′ + 1)!

n!
e−ξξn−n′

Ln−n′

n′ (ξ)Ln−n′

n′+1 (ξ) = 2e−ξ (n+ 1)!

(n′)!
ξn

′−nLn′−n
n (ξ)Ln′−n

n+1 (ξ) . (A11)

Note that, for each function, there are two formally different but mathematically equivalent representations. In
numerical calculations, however, the evaluation errors could be minimized by using the first form when n > n′ and
the second when n < n′.
By using the properties of the Laguerre polynomials [60], the following asymptotic behavior of In,n′

0,f and In,n′

2,f can
be derived:

In,n′

0,f (k⊥) ≃ δn,n′ − 1

2
[(2n+ 1)δn,n′ − (n+ 1)δn,n′−1 − (n′ + 1)δn−1,n′ ] (k⊥lf )

2
+O

[

(k⊥lf )
4
]

, (A12)

In,n′

2,f (k⊥) ≃ 2(n+ 1)δn,n′ − (n+ 1)(n′ + 1) (2δn,n′ − δn,n′−1 − δn−1,n′) (k⊥lf )
2
+O

[

(k⊥lf )
4
]

, (A13)

in the limit of small |k⊥|lf .

Appendix B: Lowest Landau level approximation

In the lowest Landau level approximation, the explicit result for the Lorentz-contracted imaginary part of the
polarization tensor follows from Eq. (23) by omitting all terms with n and n′ larger than 0. The corresponding result
reads

Im
[

Πµ
µ

]

=
4Ncm

2Θ
(

k2y − 4m2
)

k2yRm

∑

f=u,d

αf

l2f
e−k2

yl
2
f/2

[

nF

(

Ω− kzRm

2

)

+ nF

(

Ω+ kzRm

2

)

− 1

]

, (B1)

where Rm =
√

1− 4m2/k2y and Ω =
√

k2y + k2z .

As is easy to check, the result in Eq. (B1) is consistent with the spectral function obtained in the lowest Landau
level approximation in Ref. [54]. As emphasized in the main text, however, this approximation is not very reliable for
calculating the photon production rate even in the case of very strong magnetic fields.
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