
AutoSA: A Polyhedral Compiler for High-Performance
Systolic Arrays on FPGA

Jie Wang
University of California, Los Angeles

jiewang@cs.ucla.edu

Licheng Guo
University of California, Los Angeles

lcguo@cs.ucla.edu

Jason Cong
University of California, Los Angeles

cong@cs.ucla.edu

ABSTRACT
While systolic array architectures have the potential to deliver
tremendous performance, it is notoriously challenging to customize
an efficient systolic array processor for a target application. De-
signing systolic arrays requires knowledge for both high-level char-
acteristics of the application and low-level hardware details, thus
making it a demanding and inefficient process. To relieve users from
the manual iterative trial-and-error process, we present AutoSA, an
end-to-end compilation framework for generating systolic arrays
on FPGA. AutoSA is based on the polyhedral framework, and fur-
ther incorporates a set of optimizations on different dimensions to
boost performance. An efficient and comprehensive design space
exploration is performed to search for high-performance designs.
We have demonstrated AutoSA on a wide range of applications, on
which AutoSA achieves high performance within a short amount
of time. As an example, for matrix multiplication, AutoSA achieves
934 GFLOPs, 3.41 TOPs, and 6.95 TOPs in floating point, 16-bit and
8-bit integer data types on Xilinx Alveo U250.

KEYWORDS
polyhedral model; systolic array; compilation; FPGA
ACM Reference Format:
Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Com-
piler for High-Performance Systolic Arrays on FPGA. In Proceedings of the
2021 ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays (FPGA ’21), February 28-March 2, 2021, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3431920.3439292

1 INTRODUCTION
The systolic array architecture is capable of delivering high perfor-
mance for a wide range of applications, such as linear algebra [37],
machine learning [52], and genomics [20]. In recent years, we have
also seen a wide adoption of systolic array architectures in the field
of deep learning [1, 8, 9, 15, 23, 26, 52, 54].

However, designing high-performance systolic arrays is never
an easy task. It requires the expert knowledge for both the target ap-
plication and the hardware. Specifically, designers need to identify
the systolic array execution pattern from the application, transform
the algorithm to describe a systolic array, write the hardware code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00
https://doi.org/10.1145/3431920.3439292

for the target platform, and tune the design to achieve the optimal
performance. Each step will take significant efforts, raising the bar
to reap the benefits of such an architecture.

To lower the programming efforts of systolic arrays, there is
an active research domain to automate the systolic array genera-
tion [3, 7, 10, 15, 17, 30, 46, 48, 52]. Previous works [3, 4, 7, 17, 46]
have proposed various compilation flows that use the polyhedral
model [4, 49] to generate systolic array designs. These works per-
form the dependence analysis on the program and transform the
program using the space-time transformation [27, 31] to generate
systolic arrays. Although the polyhedral model based compilers can
analyze the program and perform transformations automatically,
most of them suffer from low performance that does not match
the hand-written designs. The key problem is that many important
hardware optimization techniques are missing in these tools. For
example, the framework MMAlpha [17] does not support array
partitioning, which is essential in handling large-scale programs
given the limited hardware. The recent work PolySA [10] is the
first work that covers the most optimization techniques and gener-
ates designs with comparable performance to the manual designs.
However, PolySA suffers from low generality as the framework
only supports programs with a single statement in perfectly nested
loops.

Apart from the polyhedral compilers, there have been several
recent works [30, 48] that develop domain-specific language (DSL)
compilers for systolic arrays based on the Halide [43] infrastruc-
ture and achieve comparable performance to the manual designs.
However, these tools require programmers to analyze the program
and write the DSL to set the legal program transformations manu-
ally prior to the compilation. In addition, there is no auto-tuning
support in these works and programmers need to examine different
transformations manually to find the best design. This task can be
as challenging as finding out the legal transformations given the
vast design space. All of these hurdles have raised barriers for pro-
grammers to access such tools and stretched out the development
cycles, decreasing the productivity.

In summary, we found that previous works are faced with the
following limitations that prohibit them from being used in practice:

• Limited generality. Works such as [7, 10] place rigid restric-
tions on the input programs that limit the application scope
of the compiler.
• Limited performance. Works such as [3, 7, 17, 46] support
limited program optimizations that limit the performance of
the generated designs.
• Limited productivity. Works such as [30, 48, 55] require pro-
grammers to analyze the program and to describe and ex-
plore the program transformations manually. This, in turn,
leads to long development cycles.

https://doi.org/10.1145/3431920.3439292
https://doi.org/10.1145/3431920.3439292

In this paper, we propose a new compilation framework, AutoSA,
to overcome the previous limitations. AutoSA is a polyhedral model
based compilation framework. The top priority for us is to improve
the generality by compiling any programs to systolic arrays, as
long as they can be supported by the polyhedral framework and
can legally be mapped to a systolic array. AutoSA supports SCoP
programs1 with imperfectly nested loops and multiple statements.
To compile such programs to systolic arrays, we propose techniques
and optimizations for automatic translation of regular sequential
programs to parallel ones that describe a complete system of sys-
tolic arrays, including both the processing elements (PEs) and the
on-chip I/O network. We would like to emphasize that the compila-
tion of even this restricted class of programs is very challenging
and that no automatic and general solution exists despite decades of
research. To support these transformations, previous works either
rely on a semi-automatic workflow that requires users to deter-
mine the transformation manually prior to the compilation (e.g.,
MMAlpha [17], SuSy [30]), or restrain themselves to a narrow set
of programs and techniques (e.g., [7], PolySA [10]). In this paper,
we demonstrate that AutoSA is not only able to handle applications
with regular dependence structure such as matrix multiplication
and convolution, but also supports applications with complicated
and irregular dependence structure such as LU decomposition.

In addition, AutoSA further improves performance and produc-
tivity. AutoSA covers a superset of all the previous optimization
techniques that have been applied on systolic arrays and extend
with new techniques to further improve the performance. Several
representative techniques that AutoSA supports can be found in
Table 1. For example, SIMD vectorization is an important technique
to increase parallelism and resource efficiency. AutoSA supports
auto-detection of vectorizable loops with rigid dependence and
access analysis and performs automatic program transformation
and code generation to produce a vectorized design. In comparison,
such a feature is either not supported in the previous work, or re-
quires human intervention to analyze and transform the program.
This could lead to the missing of such an optimization opportunity
with sub-optimal performance.

AutoSA takes C code as the input that requires the minimal lines
of code to describe an algorithm. The entire compilation flow is
automated with minimal human intervention. Besides, an auto-
tuning module is implemented to ease the efforts of design space
exploration. In the evaluation section, we show that programmers
are able to generate high-performance systolic arrays with AutoSA
within a short amount of time.

The contributions of this paper are as follows:
• Automation: We introduce a new open-source compilation
framework2, AutoSA, that generates systolic arrays on FP-
GAs automatically.
• Algorithms: We propose a set of efficient and effective algo-
rithms based on the polyhedral framework to construct and
optimize systolic arrays.
• Experiments: We evaluate AutoSA on a suite of benchmarks.
We show that AutoSA is able to generate high-performance

1SCoP, as an abbreviation for Static Control Part, is a category of programs that can
be supported by the polyhedral model. Details will be introduced in Section 3.
2https://github.com/UCLA-VAST/AutoSA

Table 1: Comparison between different frameworks.

Feature AutoSA MMAlpha [17] [7] PolySA [10] SuSy [30]

Generality
Imperfectly Nested Loops Yes No No No No
Multi-Statement Yes Yes No No Yes

Performance
Array Partitioning Auto No Auto Auto Semi-Auto
Latency Hiding Auto No No Auto Semi-Auto
SIMD Vectorization Auto No No Limited Semi-Auto
Double Buffering Auto No No Auto Semi-Auto
Data Packing Auto No No Limited Semi-Auto

Productivity
Input C DSL C C DSL
Auto-Tuning Yes No No Yes No
Space-Time Transformation Auto Semi-Auto Auto Auto Semi-Auto

systolic arrays within a short amount of time. For example,
AutoSA achieves up to 934 GFLOPs, 3.41 TOPs, and 6.95
TOPs for the floating point/16-bit integer/8-bit integermatrix
multiplication on Xilinx Alveo U250, respectively.

2 RELATEDWORK
Polyhedral compilers: The polyhedral model is a compilation
framework for loop transformation [4, 32, 33, 41, 49]. Most prior
systolic array compilers are built upon the polyhedral framework [3,
7, 10, 17, 46]. The commonality of these frameworks is the use of
space-time transformation [27, 31] to convert an algorithm into a
new program that describes the architecture and execution of the
systolic array. These compilers are all fully automatic and improve
the productivity, but most of them fail to deliver the performance
on par with manual designs because they miss several hardware
optimization techniques that help increase the compute and com-
munication efficiency. The first four columns of Table 1 compare
AutoSA with three other representative polyhedral frameworks.
Among the previous works, PolySA [10] covers the largest set of op-
timization techniques. However, PolySA is limited in its generality
as it only supports the program with a single statement in perfectly
nested loops. Besides, PolySA is limited in its implementation which
is built upon Matlab and is unscalable in handling complex designs.
As mentioned in its paper, it takes up to 23 minutes to perform the
polyhedral transformation on a single layer of CNN, which finishes
within seconds in AutoSA.

DSLs: There are several recent works that implement a domain-
specific language (DSL) based compiler for generating systolic ar-
rays [30, 48, 55]. T2S-Tensor [48] is a DSL compiler extended from
Halide [43] for generating systolic arrays for tensor programs. Fol-
lowing the similar design principle of Halide, T2S-Tensor decouples
the compute and communication optimization of systolic arrays.
The recent work SuSy [30] has further improved T2S-Tensor by sup-
porting general applications that can be mapped to systolic arrays.
Both T2S-Tensor and SuSy are able to achieve high performance.
However, since Halide does not have dependence analysis and re-
lies on conservative rules to determine the legality of program
transformation, these compilers are semi-automatic and require
programmers to analyze the systolic array execution pattern from
the algorithms and specify the necessary transformation required
to generate the desired array. For instance, SuSy [30] requires pro-
grammers to transform the program into a form with perfected
nested loops to satisfy the language requirement. Data reuse should
be explicitly described in SuSy. As we will show later, such a job is

challenging when handling complicated applications with irregular
dependence structure. Furthermore, neither tools implement the
auto-tuning. All of these limitations have reduced the productivity
of using such tools.

Other frameworks: There are some other frameworks that tar-
get a specific domain of applications [13–16, 22, 37, 52]. Gem-
mini [15] is a framework for generating systolic arrays for matrix
multiplication. It uses a code template that can be reconfigured to
generate different arrays.Wei et al. [52] implement a template-based
generator for convolution kernels in deep neural networks. These
frameworks achieve high performance with many application-
specific optimization techniques. However, the mapping mythology
is only limited to specific applications and cannot extend to gen-
eral ones. Lastly, apart from systolic arrays, there is also an active
research domain on mapping applications to CGRAs [25, 28, 34,
40, 42, 53]. CGRAs differ from systolic arrays with more flexible
PE architecture and I/O interconnects. The techniques proposed in
this work will be helpful in addressing some similar issues such as
computation scheduling and I/O mapping.

3 BACKGROUND
In this section, we describe the polyhedral model, which is the
foundation of the algorithms that we proposed in AutoSA. We also
introduce the space-time transformation, which is the basis of the
automatic systolic array compilation.

3.1 Polyhedral Model
The polyhedral model is a mathematical framework for loop nest
optimization. Loop nests that satisfy the requirements of the poly-
hedral model are called Static Control Part (SCoP) [4, 6]. A SCoP is
defined as a set of statements with loop bounds and conditions as
affine functions of the enclosing loop iterators and variables that
are constant during the SCoP execution.

A program in the polyhedral model is typically represented by
three components: iteration domains, access relations, and a sched-
ule. We use a running example of matrix multiplication (MM) to
illustrate these concepts. Figure 1 shows the example code3.

The iteration domain contains the loop instances of the state-
ments in the program. The iteration domain of the statement 𝑆0 in
the example program has the form {𝑆0[𝑖, 𝑗, 𝑘] : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤
𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}. Throughout the paper, to represent the com-
ponents of the polyhedral model, we use the same format as integer
set library (isl) [49], which is a library for polyhedral compilation.

The access relation maps a statement instance to an array in-
dex. For example, the access relations for the read accesses in the
statement 𝑆0 have the form {𝑆0[𝑖, 𝑗, 𝑘] → 𝐴[𝑖, 𝑘]; 𝑆0[𝑖, 𝑗, 𝑘] →
𝐵 [𝑘, 𝑗]; 𝑆0[𝑖, 𝑗, 𝑘] → 𝐶 [𝑖, 𝑗]}.

Finally, a schedule maps instance sets to multi-dimensional time.
The statement instances are executed following the lexicographic
order of the multi-dimensional time. As an example, the schedule of
the statement 𝑆0 has the form {𝑆1[𝑖, 𝑗, 𝑘] → [𝑖, 𝑗, 𝑘]}. The schedule
of a SCoP program can be represented by schedule trees [51]. Fig-
ure 2 shows the schedule tree of the example program. The schedule
tree starts with a domain node that defines the iteration domain
of the program, followed with band nodes that encode the partial
3The matrix initialization is omitted for brevity.

for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)

for (int k = 0; k < K; ++k)
S0: C[i][j] += A[i][k] * B[k][j];

Figure 1: Example code of matrix multiplication.

DOMAIN : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

BAND : {𝑆0 𝑖, 𝑗, 𝑘 → [𝑖, 𝑗, 𝑘]}

Figure 2: Initial schedule of MM in schedule tree form.

// space loops
for (int i = 0; i < M; ++i)
for (int j = 0; j < N; ++j)
// time loop
for (int k = 0; k < K; ++k)

S0: C[i][j] += A[i][k] * B[k][j];

(a) Optimized code after space-
time transformation.

PE PE

PE PE

PE PE PE

PE

PE

⋯

⋯

⋯

⋯ ⋯ ⋯

𝐴

𝑖

𝑗

𝑀

𝑁

𝐵

(b) 2D systolic array for MM.
Figure 3: Example of space-time transformation.

schedules at each loop dimension. The isl library manipulates the
schedule tree of the program to perform the loop transformation.
To generate the final code, an AST is obtained from the schedule
tree which is then lowered to the target code (e.g., C).

3.2 Space-Time Transformation
Space-time transformation [27, 31, 36, 45] is the foundation of the
automatic systolic array synthesis. It applies loop transformations
on the target program and assigns new semantics (space and time)
to the generated loops. Space loops map loop instances to differ-
ent PEs that execute concurrently, while time loops describe the
computation inside each PE.

To generate a legal systolic array, the following constraints
should be satisfied by the loop transformation: First, the trans-
formation should be semantics-preserving. Second, all dependences
should be uniform (with constant dependence distance). Third, the
dependence distances on space loops should be no greater than one
so that the data communication only happens between neighbor
PEs. Note that for the first and second constraints, we consider
all types of dependences (flow, anti, output and input/read depen-
dences). We take into account the read dependences since the data
transfer needs to be managed explicitly in systolic arrays including
the read-only data. As for the third constraint, we only examine the
flow and read dependences which are associated with the inter-PE
communication. Since each PE has its own address space, anti and
output dependences do not contribute to the data communication
between PEs [5].

For the MM example in Figure 1, we obtain one flow dependence
(domain constraints omitted for brevity) as 𝐷1 := {𝑆0[𝑖, 𝑗, 𝑘] →
𝑆0[𝑖, 𝑗, 𝑘 + 1]}, and two read dependences for array references
A[i][k] and B[k][j] as 𝐷2 := {𝑆0[𝑖, 𝑗, 𝑘] → 𝑆0[𝑖, 𝑗 + 1, 𝑘]} and
𝐷3 := {𝑆0[𝑖, 𝑗, 𝑘] → 𝑆0[𝑖 + 1, 𝑗, 𝑘]}, respectively. One possible
space-time transformation is 𝑆 := {𝑆0[𝑖, 𝑗, 𝑘] → [𝑖, 𝑗, 𝑘]}, which is
an identity mapping that keeps the original loop. We could calculate
the dependence distances for the above-mentioned three depen-
dences 𝐷1, 𝐷2, and 𝐷3 under the schedule 𝑆 , which are (0, 0, 1),
(0, 1, 0), and (1, 0, 0). All dependences are uniform (we omit the

HLS C

Model Extraction

C

Legality Check

Computation Management
(Section 5)

Communication Management
(Section 6)

Code Generation

Polyhedral IR

AST

Auto-Tuner
(Section 7)

...

User-Specified
Optimization

Manual Auto

Figure 4: Overview of AutoSA compilation flow.

discussion about output and anti dependences for brevity). Besides,
dependence distances on all three loops are no greater than one.
Therefore, all three loops are eligible to be selected as the space
loops. As an example, we select the first two loops 𝑖 and 𝑗 as space
loops and leave the loop 𝑘 as the time loop. The transformed code
after space-time transformation is shown in Figure 3a. This trans-
formation leads to a 2D systolic array with the dimensions of𝑀×𝑁 .
Each PE in this array computes one array element C[i][j]. In ad-
dition, according to the two read dependences 𝐷2 and 𝐷3, data of
matrices 𝐴 and 𝐵 are reused along the loops 𝑗 and 𝑖 , respectively.
Therefore, horizontal and vertical interconnects between PEs are
inserted to transfer the reused data. The complete array is depicted
in Figure 3b.

4 FRAMEWORK OVERVIEW
In this section, we first clarify the application scope that AutoSA
covers. Then, we give a bird’s-eye view of the overall compilation
flow of AutoSA.

4.1 The Scope of AutoSA
AutoSA is built on the polyhedral framework, which takes SCoP
programs as the input. In addition, AutoSA assumes all the depen-
dences of the input programs have been rendered uniform before
the compilation. Prior studies on uniformization such as [35] which
converts affine dependences to uniform dependences can be inte-
grated as a pre-processing step to relax this contraint. This work is
orthogonal to our framework and will be left for future work.

4.2 Compilation Flow
Figure 4 presents the overall compilation flow of AutoSA.

Model extraction: This step extracts the polyhedral model con-
sisted of the iteration domains, access relations, schedule, and data
dependences from the input C program.

Legality check: This step checks to see if the input program can
legally bemapped to a systolic array. Specifically, we check the three
constraints as mentioned in Section 3.2. If the new schedule fails
to meet any of those constraints, AutoSA will skip the following
steps and dump out a CPU code from the current schedule.

Computation and communication management: A com-
plete systolic array architecture consists of both the PE array and
the on-chip I/O network. AutoSA separates the process of building

Algorithm 1: Space-time transformation.
Inputs :A schedule tree 𝑠
Outputs :A list of schedule trees 𝑆
Initialize the space loop candidate pool 𝑃 ← ∅;
Extract the outermost permutable loop band 𝑑 from 𝑠 ;
for each loop 𝑙 in the band 𝑑 do

if all flow/read dependence distances on loop 𝑙 ≤ 1 then
𝑃 ← 𝑃 ∪ 𝑙 ;

/* Generate 2D systolic array. */

for each pair of loops (𝑙1, 𝑙2) in the pool 𝑃 do
Duplicate the schedule tree 𝑠′ ← 𝑠 ;
Modify 𝑠′ by permuting the loops 𝑙1, 𝑙2 to outermost;
𝑆 ← 𝑆 ∪ 𝑠′;

/* Generate 1D systolic array (omitted), similar to 2D case

with only one space loop selected. */

these two components into two stages: computation and communi-
cation management. The stage of computation management con-
structs the PE and optimizes its micro-architecture. After that, the
stage of communication management builds the I/O network for
transferring data between PEs and the external memory. Details of
these two stages will be covered in Sections 5 and 6, respectively.

Code generation: After the previous stages, AutoSA generates
the AST from the optimized program. The AST is then traversed to
generate the final design for the target hardware.

Auto-tuner: The stages of computation and communication
management involve multiple optimization techniques, each intro-
ducing several tuning options. AutoSA implements tunable knobs
for these techniques which can be set by users manually or tuned
by an auto-tuner. Details of the auto-tuner are covered in Section 7.

5 COMPUTATION MANAGEMENT
The stage of computation management consists of four steps: space-
time transformation, array partitioning, latency hiding, and SIMD
vectorization. We will go though each step in the following subsec-
tions.

5.1 Space-Time Transformation
This step performs the space-time transformation to map the input
program to a systolic array. Algorithm 1 describes how AutoSA ap-
plies the space-time transformation. AutoSA searches for the loops
in the outermost loop band with flow/read dependence distances no
greater then one. Those loops are put into a pool as the candidate
space loops. Next, AutoSA enumerates all space loop combinations
from the candidate pool. The selected space loops are permuted
outermost. All the loops below the space loops are assigned as time
loops. At present, AutoSA generates 1D and 2D systolic arrays. This
constraint can be relaxed to generate higher-dimensional arrays if
necessary. There will be multiple systolic arrays generated from this
step, each with a unique schedule. Users can choose which array to
process manually, or leave it to be explored by the auto-tuner.

5.2 Array Partitioning
Given the limited on-chip resource, array partitioning is mandatory
when mapping a large array to FPGA. To achieve this, AutoSA tiles

the outermost permutable loop band in the schedule tree which
contains the space loops. The tiling factors can be chosen by the
users or set by the auto-tuner during the design space exploration.
Figure 5a shows one example in which we tile the outermost loop
band in the MM example (shown in Figure 2) with the tiling factors
of (4, 4, 4). The point loops from the original loops 𝑖 and 𝑗 are kept
as the space loops. This will lead to a 2D systolic array with the
dimensions of 4 × 4.

5.3 Latency Hiding
Latency hiding helps hide the pipeline stalls caused by the loop-
carried dependence of the compute statements. In the MM example,
the multiply-and-add (MAC) operation in the statement 𝑆0 intro-
duces loop-carried dependence on the loop 𝑘 , resulting in an initial
interval (II) greater than one. To resolve this issue, AutoSA looks
for parallel loops in the schedule tree, strip-mines them and per-
mutes the point loops innermost. As an example, loops 𝑖 and 𝑗 are
parallel loops in the MM example. We will strip-mine them with the
tiling factors of (2, 2) and permute the point loops innermost. Since
there is no loop-carried dependence on the innermost loop, the PE
could now achieve II=1. The newly generated schedule is shown
in Figure 5b. Similar as the previous stage, AutoSA allows users
to specify the loops to be tiled and the tiling factors. Alternatively,
such choices will be explored by the auto-tuner to maximize the
performance.

5.4 SIMD Vectorization
SIMD vectorization duplicates the compute units inside each PE,
which still share the same control logic. This helps amortize the
control overheads and improve the resource efficiency of the design.
At present, AutoSA detects the vectorizable loop by examining the
following two criteria: 1) The loop should be a parallel loop or a
reduction loop4. 2) All array references within the loop are stride-
one or stride-zero in regard to this loop. In the MM example, the
loop 𝑘 is a reduction loop. Array references C[i][j] and A[i][k]
are stride-zero and stride-one with regard to loop 𝑘 . The array
reference B[k][j] requires a layout transformation to B[j][k] so
that it becomes a stride-one access that enables the vectorization.
Figure 5c shows the vectorized code in which we strip-mine the
loop 𝑘 with a factor of 2. The point loop is permuted innermost and
marked unroll which will be handled by HLS tools at last. During
the compilation, AutoSA examines each loop and enumerates all the
possible layout transformations to expose the SIMD opportunities.
Users may choose one loop to proceed or let the auto-tuner take
over and make the choice.

6 COMMUNICATION MANAGEMENT
So far we have finished the PE construction and optimization. How-
ever, the current array is still not functional as we are missing
the other key component, the I/O network. The I/O network is a
network on chip that supports two types of data communication:

Inner-array communication: This refers to the data commu-
nication between PEs. An an example, in Figure 3b, we show that

4The current polyhedral framework that AutoSA builds on lacks the capability to
detect the reduction loop, which requires the user annotation prior to the compilation.

DOMAIN : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

BAND : {𝑆0 𝑖, 𝑗, 𝑘 → [𝑖/4 , 𝑗/4 , 𝑘/4]}

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖 𝑚𝑜𝑑 4, 𝑗 𝑚𝑜𝑑 4

BAND: 𝑆0 𝑖, 𝑗, 𝑘 → 𝑘 𝑚𝑜𝑑 4

Space loops

(a) Array partitioning.
DOMAIN : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

BAND : {𝑆0 𝑖, 𝑗, 𝑘 → [𝑖/4 , 𝑗/4 , 𝑘/4]}

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖/2 − 2 𝑖/4 , 𝑗/2 − 2 𝑗/4

BAND: 𝑆0 𝑖, 𝑗, 𝑘 → 𝑘 𝑚𝑜𝑑 4

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖 𝑚𝑜𝑑 2, 𝑗 𝑚𝑜𝑑 2 Latency hiding loops

(b) Latency hiding.
DOMAIN : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

BAND : {𝑆0 𝑖, 𝑗, 𝑘 → [𝑖/4 , 𝑗/4 , 𝑘/4]}

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖/2 − 2 𝑖/4 , 𝑗/2 − 2 𝑗/4

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑘/2 − 2 𝑘/4

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖 𝑚𝑜𝑑 2, 𝑗 𝑚𝑜𝑑 2

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑘 𝑚𝑜𝑑 2 (𝑢𝑛𝑟𝑜𝑙𝑙) SIMD loops

(c) SIMD vectorization.
Figure 5: Optimized schedules with different PE optimiza-
tion techniques.

for the MM example, we could transfer data elements from matrix
𝐴 and 𝐵 via horizontal and vertical interconnects.

Outer-array communication: This refers to the data commu-
nication between PEs and the external memory (e.g., DRAM). In the
MM example, the I/O network needs to fetch the data elements of
matrices 𝐴 and 𝐵 to feed the array, drain the final results of matrix
𝐶 from the array and write out to the external memory.

The stage of communication management in AutoSA analyzes
the program and constructs the I/O network as mentioned above.
We show that I/O network can be built automatically via data de-
pendence analysis in the polyhedral model. Furthermore, as the
topology of the I/O network plays an important role in the fre-
quency of the design, we extend the algorithm to build an I/O net-
work that only involves local interconnects, hence, guaranteeing
the sustained high frequency.

The following subsections explain our approaches in detail. Sec-
tion 6.1 describes how we analyze the dependences in the program
to extract the necessary information for constructing the I/O net-
work. Section 6.2 builds the I/O network using the information
extracted from the previous step. Section 6.3 discusses several I/O
optimization techniques to further improve the I/O performance.

6.1 I/O Analysis
The data communication is associated with the data dependences.
Previous works such as [5, 12] have demonstrated how to imple-
ment the data transfer scheme for MPI programs using the polyhe-
dral model. Our algorithms for building the I/O network of systolic
arrays are inspired by that thread of work but with further exten-
sion to take into account the uniqueness of systolic arrays. To build
the I/O network, AutoSA analyzes the following three types of data
dependences:

• Read dependence: For transferring the read-only data.
• Flow dependence: For transferring the intermediate results.
• Output dependence: For transferring the final results.

Table 2 lists the dependences extracted from the MM example.
The step of I/O analysis interprets such dependences and extracts a

Table 2: Dependence relations of the MM example.

Type Dependence Relation Array Access

Read 𝐷1 := {𝑆0[𝑖, 𝑗, 𝑘] → 𝑆0[𝑖, 𝑗 + 1, 𝑘] } A[i][k]
Read 𝐷2 := {𝑆0[𝑖, 𝑗, 𝑘] → 𝑆0[𝑖 + 1, 𝑗, 𝑘] } B[k][j]
Flow 𝐷3 := {𝑆0[𝑖, 𝑗, 𝑘] → 𝑆0[𝑖, 𝑗, 𝑘 + 1] } C[i][j]
Output 𝐷4 := {𝑆0[𝑖, 𝑗, 𝑘] → 𝑆0[𝑖, 𝑗, 𝑘 + 1] } C[i][j]

data structure named I/O group that contains the necessary informa-
tion required to construct the I/O network. Algorithm 2 describes
the details of this step.

An I/O group 𝑔 is defined as a tuple of 𝑔 = (𝐴, 𝐷) where 𝐴 is a
set of array accesses that are associated with the current group and
𝐷 is the set of data dependences associated with the array accesses
in 𝐴. In Algorithm 2, we first populate the initial I/O group set
𝐺 . A single I/O group is constructed for each array access and its
associated data dependence. For each I/O group, the following two
properties are computed:

I/O direction: This is the component of the dependence distance
vector on the space loops.

I/O type: The I/O group is classified as exterior I/O if the depen-
dence is carried by the space loops. Otherwise, it is classified as
interior I/O.

As an example, in the MM example, for the array access B[k][j],
we construct an I/O group 𝑔 from the array access B[k][j] and its
associated dependence 𝐷2 as shown in Table 2. The dependence
distance of 𝐷2 on the space loops is (1, 0). Therefore, we assign the
I/O direction as 𝑔.𝑑𝑖𝑟 = (1, 0) and the I/O type as 𝑔.𝑡𝑦𝑝𝑒 = 𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 .

The next step of our algorithm merges the I/O groups that share
the same properties. I/O groups are merged together if satisfying
the following constraints: 1) They have the same I/O direction and
I/O type. 2) They are associated with the same array and the same
type of dependence. Later, AutoSA will allocate a set of I/O modules
for each I/O group, as will be discussed in detail in Section 6.2.

The last step is to compute the statement instances that require
such data. We divide them into two sets: copy-in set𝑊𝑖𝑛 and copy-
out set𝑊𝑜𝑢𝑡 . These sets contain the statement instances that require
the data to be copied in or copied out, respectively. For I/O groups
with read dependences, we compute the copy-in set as the union of
all source and destination domains of the dependences as all the
data are required. The copy-out set is left empty. For I/O groups
with flow dependences, the copy-in set consists of the destination
domains of the dependences and the copy-out domain consists of
the source domains. Lastly, for I/O groups with output dependences,
we compute the copy-out set by subtracting the source domains
from the destination domains as we are only interested in the last
updated elements. The copy-in set is left empty. Table 3 includes
the final I/O groups extracted from the MM example and their copy-
in/copy-out sets. They will be used for I/O network construction in
the next section.

6.2 I/O Construction
This step constructs the I/O modules based on the I/O grouping
information extracted from the previous step. For each I/O group,
AutoSA allocates a set of I/O modules for transferring the data
between PEs and the external memory. Algorithm 3 describes the
detailed procedure of this step.

Algorithm 2: I/O group construction.
Inputs :Access relations 𝐴, dependence relations 𝐷𝑟𝑒𝑎𝑑 , 𝐷𝑓 𝑙𝑜𝑤 ,

𝐷𝑜𝑢𝑡𝑝𝑢𝑡 , schedule 𝑠
Outputs :A set of I/O groups𝐺
Initialize the I/O group set𝐺 ← ∅;
/* Populate the I/O groups. */

for each array access 𝑎𝑐𝑐 in 𝐴 do
for each dependence 𝑑 in 𝐷𝑟𝑒𝑎𝑑 , 𝐷𝑓 𝑙𝑜𝑤 , 𝐷𝑜𝑢𝑡𝑝𝑢𝑡 do

if 𝑎𝑐𝑐 is associated with 𝑑 then
Construct a new I/O group 𝑔 (𝑎𝑐𝑐,𝑑) ;
Compute the properties of the group 𝑔: I/O direction
𝑔.𝑑𝑖𝑟 and I/O type 𝑔.𝑡𝑦𝑝𝑒 ;

𝐺 ← 𝐺 ∪ 𝑔;

/* Merge the I/O groups. */

for each pair of I/O groups (𝑔1, 𝑔2) in𝐺 do
if is_shared(𝑔1, 𝑔2) then

Merge the two I/O groups 𝑔 ←𝑚𝑒𝑟𝑔𝑒 (𝑔1, 𝑔2) ;
Update the I/O group set𝐺 ← 𝐺 \ (𝑔1 ∪ 𝑔2) ∪ 𝑔;

/* Compute the I/O group copy-in/copy-out sets. */

for each I/O group 𝑔 in𝐺 do
if g is associated with read dependences then

𝑔.𝑊𝑖𝑛 ← ∪𝑑𝑖 (𝑠𝑟𝑐 (𝑑𝑖) ∪ 𝑑𝑠𝑡 (𝑑𝑖)) ;
if g is associated with flow dependences then

𝑔.𝑊𝑖𝑛 ← ∪𝑑𝑖𝑑𝑠𝑡 (𝑑𝑖) ;
𝑔.𝑊𝑜𝑢𝑡 ← ∪𝑑𝑖 𝑠𝑟𝑐 (𝑑𝑖) ;

if g is associated with output dependences then
𝑔.𝑊𝑜𝑢𝑡 ← ∪𝑑𝑖 (𝑑𝑠𝑡 (𝑑𝑖) − 𝑠𝑟𝑐 (𝑑𝑖)) ;

Table 3: I/O groups of the MM example.

No. 𝐴 𝐷 𝑊𝑖𝑛/𝑊𝑜𝑢𝑡

𝑔1 A[i][k] 𝐷1 𝑊𝑖𝑛 := 𝑆0[𝑖, 𝑗, 𝑘] : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}
𝑔2 B[k][j] 𝐷2 𝑊𝑖𝑛 := 𝑆0[𝑖, 𝑗, 𝑘] : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}
𝑔3 C[i][j] 𝐷2 𝑊𝑖𝑛 := 𝑆0[𝑖, 𝑗, 𝑘] : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 < 𝑘 < 𝐾}

𝑊𝑜𝑢𝑡 := 𝑆0[𝑖, 𝑗, 𝑘] : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾 − 1}
𝑔4 C[i][j] 𝐷3 𝑊𝑜𝑢𝑡 := 𝑆0[𝑖, 𝑗, 𝑘 = 𝐾 − 1] : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁

Algorithm 3: I/O construction.
Inputs :Schedule 𝑠 , I/O groups𝐺 , number of space loops 𝑑𝑖𝑚
Outputs :A list of schedules for I/O modules 𝐿
𝐿 ← ∅;
/* Copy-in modules */

for each I/O group 𝑔 in𝐺 do
Duplicate the schedule 𝑠′ ← 𝑠 ;
Insert the domain filter 𝑔.𝑊𝑖𝑛 into the schedule 𝑠′;
𝑖𝑜_𝑙𝑒𝑣𝑒𝑙 ← 1;
while 𝑖𝑜_𝑙𝑒𝑣𝑒𝑙 ≤ 𝑑𝑖𝑚 do

Perform I/O module clustering on the first
(𝑑𝑖𝑚 − 𝑖𝑜_𝑙𝑒𝑣𝑒𝑙 + 1) space loops
𝑠′ = 𝑖𝑜_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 (𝑠′, 𝑑𝑖𝑚 − 𝑖𝑜_𝑙𝑒𝑣𝑒𝑙 + 1, 𝑔) ;

Add 𝑠′ to 𝐿;
𝑖𝑜_𝑙𝑒𝑣𝑒𝑙 ← 𝑖𝑜_𝑙𝑒𝑣𝑒𝑙 + 1;

/* Copy-out modules (omitted for brevity) */

We start with the optimized schedule from the computation
management. In the first step, we isolate the statement instances

DOMAIN : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

FILTER : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

BAND : {𝑆0 𝑖, 𝑗, 𝑘 → [𝑖/4 , 𝑗/4 , 𝑘/4]}

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖/2 − 2 𝑖/4 , 𝑗/2 − 2 𝑗/4 Space loops

Figure 6: Insert the filter to isolate the statement instances
of group 𝑔2.

PE PE

PE PE

D
R

A
M DOMAIN : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

FILTER : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

BAND : {𝑆0 𝑖, 𝑗, 𝑘 → [𝑖/4 , 𝑗/4 , 𝑘/4]}

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖𝑑𝑥, 𝑖𝑑𝑦

Schedule for the I/O module of group 𝑔2:

𝑥

𝑦

Figure 7: PE array with the I/O module for 𝑔2 and its loop
schedule.

PE PE

PE PE

D
R

A
M

L1

L1

L1

L1

L2L2

Buf

Keep

Prev
I/O module

Next
I/O module

PE

(a) Clustering L1 I/O modules.

PE PE

PE PE

L1

L1

L1

L1

L2L2L3

D
R
A
M

(b) Clustering L2 I/O mod-
ules.

Figure 8: I/O clustering example for group 𝑔2.

that are involved with the data communication from the current
group by inserting a filter node into the schedule tree with the copy-
in/copy-out set. The filter node restrains the iteration domains of
its children nodes by intersecting the current iteration domain with
the filter set [49, 51]. As an example, Figure 6 shows the updated
schedule with the filtered domain for the I/O group 𝑔2 in Table 3
(loops inside the space loops are omitted for brevity). At this stage,
we could already generate a set of I/O modules that load the data
from the external memory and send the data directly to each PE.
This can be realized by equating the space loops to the PE indices
𝑖𝑑𝑥 and 𝑖𝑑𝑦 in the updated schedule and using it to generate the
code inside each I/O module. Figure 7 shows the generated array
and the corresponding schedule for each I/O module.

However, this architecture may not be scalable as the data are
scattered directly from the external memory which causes high
fan-outs and could lead to routing failure. To resolve this issue, we
choose to localize the I/O network by using a daisy-chain architec-
ture that have been seen in many previous works [11, 37, 48, 52].
In this architecture, each I/O module fetches data from the upper-
stream I/O modules. The I/O module works as a filter that keeps
the data belonging to the PEs that it is associated with and passes
the rest of the data to the down-stream I/O modules. As for the
architecture in Figure 7, we name the I/O modules that are directly
connected to PEs as level-one (L1) I/O modules. We could first clus-
ter the L1 I/O modules along the 𝑥-axis, as shown in Figure 8a.
Every two L1 modules along the 𝑥-axis are connected to an upper-
level (L2) I/O modules, which helps to reduce the memory fan-outs
from four to two. We name such a process as I/O clustering. I/O
clustering can be applied multiple times in a hierarchical way. For
example, we could apply the I/O clustering again on the L2 I/O
modules, generating one L3 I/O module that connects to the DRAM,

DOMAIN : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

FILTER : {𝑆0 𝑖, 𝑗, 𝑘 : 0 ≤ 𝑖 < 𝑀 ∧ 0 ≤ 𝑗 < 𝑁 ∧ 0 ≤ 𝑘 < 𝐾}

BAND : {𝑆0 𝑖, 𝑗, 𝑘 → [𝑖/4 , 𝑗/4 , 𝑘/4]}

BAND : 𝑆0 𝑖, 𝑗, 𝑘 → 𝑖𝑑𝑦, 𝑖𝑑𝑥

Figure 9: Updated schedule for the clustered L1 I/O module
by applying the transformation 𝑇1 := [𝑐0, 𝑐1] → [𝑐1, 𝑐0] on
the space loops in the original schedule as shown in Figure 7.

PE PE

PE PE

𝒈𝟏 (𝑨 𝒊 [𝒌])

𝒈𝟐 (𝑩 𝒌 [𝒋])

𝒈𝟑 (𝑪 𝒊 [𝒋])

𝒈𝟒 (𝑪 𝒊 [𝒋])

D
R
A
M

(a) Initial array.

PE PE

PE PE

D
R
A
M

A

B

C

L1

L2L3

L2

L3

L3 L2

(b) Optimized array.

Figure 10: A complete 2D systolic array for theMMexample.

as shown in Figure 8b. Eventually, we reduce the memory fan-outs
from four to one.

I/O clustering is realized by applying loop transformation on the
space loops. For example, when clustering the L1 I/O modules for
the group 𝑔2, since the group 𝑔2 has the I/O type as exterior I/O
and I/O direction as (1, 0), indicating that data are reused along the
𝑥-axis, we will cluster the I/O modules along the (1, 0) direction.
This is achieved by applying a partial schedule transformation
𝑇1 := {[𝑐0, 𝑐1] → [𝑐1, 𝑐0]} on the space loops. Figure 9 shows the
updated schedule for the L1 I/O module. Next, when clustering
the L2 I/O modules, only the first space dimension is involved. For
simplicity, we apply an identity transformation 𝑇2 := {[𝑐0] →
[𝑐0]} that clusters the L2 I/O modules along the 𝑦-axis. Note that,
when choosing the I/O clustering directions for the L1 I/O modules
of the I/O groups with exterior I/O, AutoSA uses the default I/O
direction of the group. As for the rest of the cases, at present, AutoSA
simply clusters the I/O modules vertically or horizontally. However,
users can also provide their own inputs to direct the I/O clustering
manually. Figure 10a depicts the final array architecture after the
I/O clustering for all the I/O groups in Table 3.

6.3 I/O Optimization
In this step, AutoSA applies multiple passes to further optimize the
I/O network.

I/O module embedding: L1 I/O modules with exterior I/O are
embedded into the PEs to save the resource.

I/O module pruning: When transferring the data between dif-
ferent sub-array tiles, AutoSA checks if the copy-out set of the
previous tile equals the copy-in set of the current tile at the PE level.
If two sets are equal at the PE level, it indicates the data are located
on-chip and hence the data transfer from the external memory is
unnecessary. For such a case, the I/O modules for this I/O group
are pruned away to save the off-chip communication and on-chip
resource. As an example, for the MM example, the I/O modules for
the group 𝑔3 will be pruned away since the data of matrix 𝐶 are
accumulated locally inside each PE. Figure 10b shows the optimized
array by applying two techniques as mentioned above.

Data packing: To reduce the data transfer latency between the
I/O modules, AutoSA performs data packing between I/O modules.
Packing more data helps reduce the data transfer latency, however,

it leads to FIFOs with a larger width and higher resource usage.
Therefore, AutoSA offers options to set the data packing factor at
each I/O level, which can also be set by the auto-tuner during the
design space exploration.

Double buffering: By default, AutoSA allocates a local buffer
inside the L1 I/O modules for I/O groups with interior I/O or inside
the L2 I/O modules for I/O groups with the exterior I/O. For such
I/O modules with local buffers inside, AutoSA offers options to
enable the double buffering that helps overlap the memory transfer
with the PE computation.

7 AUTO-TUNING
7.1 Problem Statement
The optimizations described in the previous sections introduce
many design factors that compose a large design space which is
impractical to explore manually. AutoSA provides an auto-tuner to
find a good design with high performance.

Given an input program 𝑃 and a target FPGA device 𝐷 , AutoSA
searches for the design with the least latency without over-utilizing
the on-chip resource. The optimization problem is summarized as:

minimize
𝑥∈𝐷𝐹 (𝑃)

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑥)

subject to 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑖 (𝑥) ≤ 𝑏𝑖 (𝐷),
𝑖 = FF, LUT, DSP, BRAM

where𝐷𝐹 (𝑃) includes all legal design factor choices of the program
𝑃 , and 𝑏𝑖 (𝐷) is the resource limit for different types of resource 𝑖
on-chip. 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑥) and 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑖 (𝑥) are the latency and resource
usage of the design optimized with the design factor 𝑥 .

7.2 Resource and Latency Modeling
AutoSA builds analytical models to estimate the resource and la-
tency of the target design.

Resourcemodeling:AutoSA randomly samples the design space
to build a suite of training samples (16 samples for the current im-
plementation). Then, we run HLS synthesis to collect the resource
usage of each design. Based on the collected synthesis results, Au-
toSA builds a linear regression model to predict the resource usage
of FF, LUT, and DSP. As for input features, based on our experi-
ments, three features including the SIMD factor, data packing factor,
and local buffer sizes suffice to provide an acceptable prediction
accuracy. BRAM usage is directly calculated based on the local
buffer sizes. The resource models achieve an error rate within 10%
on all the evaluated benchmarks.

Latency modeling: The latency of a pipelined loop can be cal-
culated as 𝑙𝑜𝑜𝑝_𝑐𝑜𝑢𝑛𝑡𝑠 × 𝐼 𝐼 + 𝑙𝑜𝑜𝑝_𝑑𝑒𝑝𝑡ℎ. AutoSA extracts the
𝑙𝑜𝑜𝑝_𝑐𝑜𝑢𝑛𝑡𝑠 from the generated AST for each module. We set 𝐼 𝐼
as one by default. For the 𝑙𝑜𝑜𝑝_𝑑𝑒𝑝𝑡ℎ, we set it as one as an es-
timation for loops without any statements accessing the DRAM.
For loops with statements accessing the DRAM, AutoSA further
examines the memory coalescing and sets the 𝑙𝑜𝑜𝑝_𝑑𝑒𝑝𝑡ℎ as 182 ns
as an approximation for the non-coalesced access obtained from a
recent work [29]. As the entire systolic array is implemented using
a dataflow architecture, the final design latency is calculated as the
maximum of all the modules. The latency model achieves an error
rate within 5% on all the evaluated benchmarks.

Table 4: Benchmark description.

Application Problem Size #Stmts LOC

Matrix Multiplication [𝑖, 𝑗, 𝑘] : [1024, 1024, 1024] 2 7
CNN [𝑖, 𝑜, ℎ,𝑤, 𝑝, 𝑞] : [512, 512, 56, 56, 3, 3] 2 10
MTTKRP [48] [𝑖, 𝑘, 𝑙, 𝑗] : [512, 512, 512, 512] 2 9
TTMc [48] [𝑖, 𝑗, 𝑘, 𝑙,𝑚] : [128, 128, 128, 128, 128] 2 9
LU Decomposition [𝑛] : [12/16/20/24] 9 27

The auto-tuner examines all designs using exhaustive search.
We have also applied several pruning strategies to shrink the de-
sign space. Besides, the auto-tuning is multi-processed to further
speedup the procedure. With these optimizations, the auto-tuning
can finish within hours on a normal work station for all the experi-
ments evaluated in this paper. In the future, we will improve the
tuning efficiency by considering recent design space exploration
works that leverage the machine learning techniques [2, 24, 38, 47].

8 EVALUATION
AutoSA is built upon PPCG [50]. The core of AutoSA is imple-
mented in C/C++ with about 30K lines of code. The auto-tuner
is written in Python. We use Xilinx Vitis 2019.2 for synthesizing
and implementing the FPGA designs and target Xilinx Alveo U250
board. We also adopt AutoBridge [18, 19] to improve the design
frequency. Table 4 describes the details of the benchmarks that we
used to evaluate AutoSA.

In the following sections, we first perform two case studies on
matrix multiplication and LU decomposition. We use the case study
of matrix multiplication to assess the performance of AutoSA and
the case study of LU decomposition to assess the generality of
the AutoSA. Lastly, we present the rest of the results on the other
benchmarks and evaluate the productivity of our tool.

8.1 Case Study 1: Matrix Multiplication
AutoSA is able to generate six different systolic arrays for MM.
This is realized by selecting loops ➊𝑖 , ➋ 𝑗 , and ➌𝑘 as the space
loop for 1D arrays, and loops ➍(𝑖, 𝑗), ➎(𝑖, 𝑘), and ➏(𝑗, 𝑘) as space
loops for 2D arrays. We denote these six arrays as designs 1-6 in
sequence. Among these six designs, designs 1 and 2, designs 5 and
6 are symmetric. Finally, we choose to conduct experiments on
designs 1, 4, and 5 for simplicity. Figures 11a, 11b, and 11c depict
the architecture of these three designs.

In design 1, as shown in Figure 11a, loop 𝑖 is assigned as the
space loop. As a result, matrix 𝐴 is associated with interior I/O and
is fed to each PE directly. The elements of matrix 𝐵 are reused along
the 𝑖-axis. Each PE accumulates the elements of matrix 𝐶 locally.
Therefore, we allocate a local buffer for matrix 𝐶 (as denoted by
bufC) in the PE to store the intermediate results. After the compu-
tation is finished, the final results of matrix 𝐶 are drained out and
sent to the DRAM. Such an architecture can be found in previous
works like [13, 21].

Design 4, as shown in Figure 11b, is generated by selecting loops
𝑖 and 𝑗 as the space loops. The elements of matrix 𝐴 and 𝐵 are
reused along the 𝑗-axis and 𝑖-axis, respectively. The data of matrix
𝐶 are accumulated inside PEs and will be drained out after the
computation is completed. Such an architecture can be found in
previous works [10, 30, 37, 48].

PE PE

D
R
A
M

𝑖

L1L2

L2

B

C

L2 A L1
regA

MAC

PE
bufC

L1

L1

regB

(a) Design 1.

PE PE

PE PE

A

L3

L2
B

L3 L2

L1

L2
L3C

𝑖
𝑗

regB

regA

MAC

PE
bufC

D
R
A
M

(b) Design 4.

PE PE

PE PE

D
R
A
M

A

B

C

L2

L3

L2

L1

L3

L2

L1

𝑖
𝑘

regB

MAC

PE

regA

(c) Design 5.
Figure 11: The array architecture of MM designs 1, 4, 5.

Table 5: Performance comparison of different MM designs.

Designs SA Sizes MHz GFLOPs LUT FF BRAM DSP

1 128×8 346 555 38% 31% 10% 42%
4 13×16×8 300 934 52% 42% 41% 68%
5 13×12×8 300 660 46% 37% 10% 51%

Design 5, as shown in Figure 11c, is generated by choosing loops
𝑖 and 𝑘 as the space loops. The key difference between design 5 and
design 4 is that the elements of matrix𝐶 are now accumulated along
the 𝑘-axis. Therefore, the local buffer (bufC) is saved. However, the
data from matrix 𝐴 need to be sent directly to each PE. The data of
matrix 𝐵 are reused along the 𝑖-axis. This architecture can be seen
in previous works [15, 23].

We use designs 1 and 4 to study the impacts of different array
dimensions, and use designs 4 and 5 to study the impacts of different
space mappings. All the experiments are in floating point. Table 5
shows the detailed results of these three designs.

We observe several interesting trade-offs from this table:
Design 1 vs. Design 4: 1D systolic array limits the design space

with one less space dimension to be explored. The best 1D systolic
array we found has 128 PEs with a SIMD factor as 8. Placing more
PEswill either lead to routing failure or wasted cycles for computing
the padded elements that lowers the effective GFLOPs. However, 1D
systolic array achieves a higher frequency than the 2D counterpart,
which is contributed by both a more regular architecture and less
resource.

Design 4 vs. Design 5: We are able to place more PEs for design 4
compared to design 5, albeit this requires more resource. This is due
to a simpler I/O network. As shown in Figure 11b, design 4 exploits
both the data reuse of matrix 𝐴 and 𝐵 and therefore only generates
L2 I/O modules at the PE boundary. However, design 5 (shown in
Figure 11c) only exploits the reuse of matrix 𝐵. Data elements of
matrix 𝐴 need to be sent separately to each PE via L1 I/O modules.
This increases the routing complexity and limits the design scale
that we could explore.

We found that design 4 achieves a balance in terms of the re-
source and routing complexity and therefore achieves the highest
performance among these designs. The comprehensive design space
that AutoSA provides and the generality of both the front-end and
back-end of AutoSA enable us to explore such as a design space
for various studies. This case study shows one example for archi-
tectural exploration. We are also working on adding power as one

Table 6: MM performance comparison with previous works.

PolySA [10] SuSy [30] [37] [22] AutoSA

Data Type FP32 FP32 FP32 int16 int8 FP32 int16 FP32 int16 int8
Platform Xilinx VU9P Intel Arria 10 Intel Arria 10 Xilinx VU9P Xilinx Alveo U250
MHz 229 202 315 N/A N/A 265 323 300 250 300
DSP 89% 93% 100% N/A N/A 75% 60% 68% 67% 52%
LUTs/ALMs 49% 40% N/A N/A N/A 78% 5% 52% 38% 45%
TOPs 0.56 0.55 0.8 1.53 3.83 0.68 2.64 0.93 3.41 6.95
DSP Efficiency 98% 96% 99% 100% 94%

of the new metrics in the auto-tuner to provide more architectural
insights into the systolic array architecture.

Furthermore, we compare the best designs generated by AutoSA
with other systolic array compilation frameworks. AutoSA supports
different data types. Table 6 shows the best results that AutoSA
achieved in the floating point, 16-bit and 8-bit integer types, as well
as numbers from the previous works.

AutoSA achieves 934 GFLOPs for the floating point. As for int16,
since the number of DSPs for each MAC operation is reduced from
5 (in FP32) to 1, the performance is improved to 3.41 TOPs. For
int8, we combine the logic and DSPs to implement the MACs and
achieve 6.95 TOPs. AutoSA achieves higher throughput compared
to the previous works with more DSPs utilized or higher frequency.
To better understand the performance, we also compare the DSP
efficiency for FP32 designs, AutoSA achieves similar DSP efficiency
compared to the previous works.

8.2 Case Study 2: LU Decomposition
LU decomposition is an important kernel that has been used in
solving the systems of linear equations. It factorizes a matrix 𝐴 as
the product of a lower triangular matrix 𝐿 and an upper triangular
matrix 𝑈 (𝐴 = 𝐿 ×𝑈). We choose the algorithm implemented in
PolyBench [56]. Figure 12a shows the dependence graph of the
LU algorithm. In the dependence graph, each node represents a
loop instance in the program. Nodes are connected if there is any
dependence associated with the loop instance they represent. The
dependence structure of LU decomposition has introduced sev-
eral new challenges to the systolic array compilation frameworks
compared to other regular kernels such as matrix multiplication:

• The iteration domain is in a pyramid shape which cannot be
handled by the current Halide-based frameworks that only
support rectangular domains.
• The statement instances are non-uniform and conduct dif-
ferent computations. As shown in Figure 12a, there are three
types of nodes marked by different shades. This has intro-
duced a more complex dependence structure which is chal-
lenging to analyze manually.

We use the LU decomposition as a stress test to assess the ro-
bustness of our framework. With the general algorithms we have
proposed in the previous sections, AutoSA is able to compile such
an application and generate the systolic array. Figure 12b shows an
example array generated by AutoSA by choosing the loops 𝑗 and
𝑘 as the space loops. This mapping leads to a 2D systolic array in
a triangular shape. In this array, data of matrix 𝐴 are fed only to
the first row of the array. The final results of matrix 𝐿 are drained
out from all the PEs, while the results of matrix 𝑈 are drained only
from the PEs on the diagonal of the array. Such an architecture can
be found in several previous manual designs [27, 44].

Table 7: Comparison results for CNN, MTTKRP, and TTMc.

Benchmark Platform SA Sizes (Row×Col×SIMD) Data Type LUT FF BRAM DSP GFLOPs MHz DSP Efficiency Input Code LOC

CNN [52] Intel Arria 10 8×19×8 FP32 59% 40% 47% 81% 602.8 253 97% 10
Ours Xilinx Alveo U250 16×14×8 FP32 58% 46% 30% 73% 950.2 272 97% 10

MTTKRP [48] Intel Arria 10 8×9×16 FP32 N/A N/A 56% 81% 700 204 99% 32
Ours Xilinx Alveo U250 16×8×8 FP32 42% 32% 26% 67% 896.7 296 99% 9

TTMc [48] Intel Arria 10 8×10×16 FP32 N/A N/A 62% 90% 738 205 94% 38
Ours Xilinx Alveo U250 16×8×8 FP32 42% 32% 21% 67% 886.2 290 99% 9

PEPE PE

PE PE

PE

𝑗

𝑘

𝑖

(a) Dependence graph.

PE PE PE

PE PE

PE
D
R
A
M

A

U

L

(b) Generated array.

Figure 12: The dependence graph of LU decomposition and
the mapped array.

Table 8: LU performance comparison with LAPACK.

Matrix Size 12 16 20 24 Geo. Mean

LAPACK 11.69us 41.06us 78.09us 83.38us
Ours 3.42us 5.23us 7.68us 10.44us
Speedup 3.4× 7.8× 10.2× 8.0× 6.8×

As there is no reported numbers for LU decomposition in the
previous automation frameworks due to its high irregularity, we
compare the performance of the generated arrays with LAPACK
benchmark [39]. The comparison results are shown in Table 8.
The FPGA results here are collected from RTL simulation with the
assumed frequency of 250MHz. The LAPACK routine is evaluated
on a server with an Intel Xeon E5-2699 v3 CPU and 189 GB of
main memory. We call the functions 10000 times and calculate the
average as the final results.

The systolic array achieves an average speedup of 6.8× compared
to the LAPACK baseline. This result is not surprising as all the PEs
are fully-pipelined and the systolic array extracts the maximal
pipeline parallelism from the application with the dataflow-like
architecture.

8.3 Other Results
We have further evaluated AutoSA on three other benchmarks, in-
cluding the convolutional kernel from the convolutional neural net-
work (CNN) and two tensor contraction kernels, matricized tensor
times Khatri-Rao product (MTTKRP), and tensor timesmatrix-chain
(TTMc) as studied by previous works [30, 48]. Table 7 presents the
detailed results of these benchmarks and compares them with the
results from the other systolic array compilation works.

As seen in the table, AutoSA achieves higher throughput than
the previous work on all the benchmarks with more DSPs utilized
and higher frequency. With the wide coverage of different hard-
ware optimization techniques and the help of an auto-tuner, the
designs generated by AutoSA achieve an average DSP efficiency
of 99%. Figure 13 presents an ablation study of a few optimization
techniques applied by AutoSA. All the other techniques are enabled
by default. We collect the design latency by incrementally apply-
ing each technique. All the performance numbers are normalized
against the baseline applied with array partitioning. As can be seen

24.3x

26.9x

23.6x

21.7x

13.5x

14.4x

3.0x

3.0x

2.8x

1.0x

1.0x

1.0x

0.0 5.0 10.0 15.0 20.0 25.0 30.0

TTMc

MTTKRP

CNN

Speedup

Array Partitioning Latency Hiding SIMD Vectorization Double Buffering

Figure 13: Ablation analysis of several hardware optimiza-
tion techniques.

from the figure, all the techniques in the computation management
combined together bring an average speedup of 16.1×. The double
buffering in the communication management further increases the
throughput, on average, by 1.5×. The benefits of double buffering on
TTMc is minimal as the application is more compute-intensive. This
indicates the needs for an auto-tuner to make the right trade-offs
between different design factors.

AutoSA requires minimal lines of code as the input (i.e., C). The
polyhedral compilation takes a few seconds, and the training and
searching of the auto-tuner takes one to two hours. Taking into
account the time for FPGA tools to synthesize and implement the
designs, which usually finishes within one day, AutoSA is able to
generate high-performance designs within one or two days, which
significantly boosts the productivity of developing systolic arrays.

9 CONCLUSION
This paper presents AutoSA, an open-source compiler framework
for generating high-performance systolic arrays on FPGA. We
present general techniques and optimizations implemented in the
polyhedral framework that help improve the compute and commu-
nication efficiency of systolic array designs. We evaluate AutoSA
on a suite of benchmarks and achieve high performance. AutoSA
strikes a balance between generality, performance, and productiv-
ity. We hope such a tool can facilitate more architectural studies
and applications on systolic arrays. Future work includes the back-
end support to Intel platforms, adding the power metric to the
auto-tuner, and improving the auto-tuning efficiency.

ACKNOWLEDGMENTS
We would like to thank Marci Baun for helping edit the paper and the
anonymous reviewers for their valuable feedbacks. This work is partially
supported by the Intel and NSF joint research center for Computer Assisted
Programming for Heterogeneous Architectures (CAPA), NSF NeuroNex
Award DBI-1707408, and the members from the CDSC Industrial Partnership
Program. We acknowledge the valuable support of the Xilinx Adaptive
Compute Clusters (XACC) Program. We also appreciate the authors of
PPCG for open-sourcing the tool.

REFERENCES
[1] Amazon. 2020. AWS Inferentia. https://aws.amazon.com/machine-learning/

inferentia
[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303–316.

[3] Marcus Bednara and Jürgen Teich. 2003. Automatic synthesis of FPGA processor
arrays from loop algorithms. The Journal of Supercomputing 26, 2 (2003), 149–165.

[4] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and
Cédric Bastoul. 2010. The polyhedral model is more widely applicable than you
think. In International Conference on Compiler Construction. Springer, 283–303.

[5] Uday Bondhugula. 2013. Compiling affine loop nests for distributed-memory
parallel architectures. In SC’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE, 1–12.

[6] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy
Sadayappan. 2008. A practical automatic polyhedral parallelizer and locality
optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 101–113.

[7] Uday Bondhugula, Jagannathan Ramanujam, and Ponnuswamy Sadayappan.
2007. Automatic mapping of nested loops to FPGAs. In Proceedings of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel programming.
101–111.

[8] Xiaoming Chen, Yinhe Han, and Yu Wang. 2020. Communication Lower Bound
in Convolution Accelerators. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 529–541.

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News 44, 3 (2016), 367–379.

[10] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-based systolic array auto-
compilation. In 2018 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE, 1–8.

[11] Jason Cong, PengWei, Cody Hao Yu, and Peipei Zhou. 2018. Latte: Locality aware
transformation for high-level synthesis. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
125–128.

[12] Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula.
2013. Generating efficient data movement code for heterogeneous architectures
with distributed-memory. In Proceedings of the 22nd international conference on
Parallel architectures and compilation techniques. IEEE, 375–386.

[13] Johannes de Fine Licht, Grzegorz Kwasniewski, and TorstenHoefler. 2020. Flexible
Communication Avoiding Matrix Multiplication on FPGA with High-Level Syn-
thesis. In The 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 244–254.

[14] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. 2019. FBLAS:
streaming linear algebra on FPGA. arXiv preprint arXiv:1907.07929 (2019).

[15] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John
Wright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, et al. 2019. Gemmini:
An Agile Systolic Array Generator Enabling Systematic Evaluations of Deep-
Learning Architectures. arXiv preprint arXiv:1911.09925 (2019).

[16] Paolo Gorlani, Tobias Kenter, and Christian Plessl. 2019. OpenCL implementation
of Cannon’s matrix multiplication algorithm on Intel Stratix 10 FPGAs. In 2019
International Conference on Field-Programmable Technology (ICFPT). IEEE, 99–
107.

[17] Anne-Claire Guillou, Fabien Quilleré, Patrice Quinton, S Rajopadhye, and Tanguy
Risset. 2001. Hardware design methodology with the Alpha language. FDL’01
(2001).

[18] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained
Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die
FPGAs. In Proceedings of the 2021 ACM/SIGDA international symposium on Field-
programmable gate arrays.

[19] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru
Zhang, and Jason Cong. 2020. Analysis and Optimization of the Implicit Broad-
casts in FPGA HLS to Improve Maximum Frequency. In 57th ACM/IEEE Design
Automation Conference.

[20] Intel. 2017. Accelerating Genomics Research with OpenCL and FP-
GAs. https://www.intel.com/content/www/us/en/healthcare-it/solutions/
documents/genomics-research-with-opencl-and-fpgas-paper.html

[21] Ju-Wook Jang, Seonil B Choi, and Viktor K Prasanna. 2005. Energy-and time-
efficient matrix multiplication on FPGAs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13, 11 (2005), 1305–1319.

[22] Liancheng Jia, Liqiang Lu, XuechaoWei, and Yun Liang. 2020. Generating Systolic
Array Accelerators With Reusable Blocks. IEEE Micro 40, 4 (2020), 85–92.

[23] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of

the 44th Annual International Symposium on Computer Architecture. 1–12.
[24] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. 2020. ConfuciuX: Au-

tonomous Hardware Resource Assignment for DNN Accelerators using Rein-
forcement Learning. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 622–636.

[25] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al.
2018. Spatial: A language and compiler for application accelerators. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 296–311.

[26] HT Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing sparse convo-
lutional neural networks for efficient systolic array implementations: Column
combining under joint optimization. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 821–834.

[27] Sun Yuan Kung. 1988. VLSI array processors. ph (1988).
[28] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael

Pellauer, and Angshuman Parashar. 2020. MAESTRO: A Data-Centric Approach
to Understand Reuse, Performance, and Hardware Cost of DNN Mappings. IEEE
Micro 40, 3 (2020), 20–29.

[29] Young kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, and Jason Cong. 2020.
When HLS Meets FPGA HBM: Benchmarking and Bandwidth Optimization.
arXiv:2010.06075 [cs.AR]

[30] Yi-Hsiang Lai, Hongbo Rong, Size Zheng, Weihao Zhang, Xiuping Cui, Yunshan
Jia, Jie Wang, Brendan Sullivan, Zhiru Zhang, Yun Liang, Jason Cong, Nithin
George, Jose Alvarez, Christopher Hughes, and Pradeep Dubey. 2020. SuSy: A
Programming Model for Productive Construction of High-Performance Systolic
Arrays on FPGAs. In 2020 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD).

[31] Dominique Lavenier, Patrice Quinton, and Sanjay Rajopadhye. 1999. Advanced
systolic design. Digital Signal Processing for Multimedia Systems (1999), 657–692.

[32] Amy W Lim and Monica S Lam. 1997. Maximizing parallelism and minimizing
synchronization with affine transforms. In Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 201–214.

[33] Junyi Liu, John Wickerson, Samuel Bayliss, and George A Constantinides. 2017.
Polyhedral-based dynamic loop pipelining for high-level synthesis. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 37, 9 (2017),
1802–1815.

[34] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yaz-
danbakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. 2016. Tabla: A unified
template-based framework for accelerating statistical machine learning. In 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 14–26.

[35] Manju Manjunathaiah, Graham M Megson, S Rajopadhye, and Tanguy Risset.
2001. Uniformization of affine dependence programs for parallel embedded
system design. In International Conference on Parallel Processing, 2001. IEEE,
205–213.

[36] Dan I Moldovan. 1983. On the design of algorithms for VLSI systolic arrays. Proc.
IEEE 71, 1 (1983), 113–120.

[37] Duncan JM Moss, Srivatsan Krishnan, Eriko Nurvitadhi, Piotr Ratuszniak, Chris
Johnson, Jaewoong Sim, Asit Mishra, Debbie Marr, Suchit Subhaschandra, and
Philip HW Leong. 2018. A customizable matrix multiplication framework for the
Intel HARPv2 Xeon+ FPGA platform: A deep learning case study. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 107–116.

[38] Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. 2019. Hy-
perMapper: a Practical Design Space Exploration Framework. In 2019 IEEE 27th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 425–426.

[39] Netlib. 2020. LAPACK — Linear Algebra PACKage. http://www.netlib.org/lapack/
[40] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and Jian Weng.

2018. Hybrid optimization/heuristic instruction scheduling for programmable
accelerator codesign. In Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques. 1–15.

[41] Louis-Noel Pouchet, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong.
2013. Polyhedral-based data reuse optimization for configurable computing. In
Proceedings of the ACM/SIGDA international symposium on Field programmable
gate arrays. 29–38.

[42] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A reconfigurable architecture for parallel patterns. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA). IEEE,
389–402.

[43] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519–530.

https://aws.amazon.com/machine-learning/inferentia
https://aws.amazon.com/machine-learning/inferentia
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/genomics-research-with-opencl-and-fpgas-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/genomics-research-with-opencl-and-fpgas-paper.html
https://arxiv.org/abs/2010.06075
http://www.netlib.org/lapack/

[44] SV Rajopadhye. 1988. Systolic arrays for LU decomposition. In 1988., IEEE Inter-
national Symposium on Circuits and Systems. IEEE, 2513–2516.

[45] Sailesh K Rao and Thomas Kailath. 1988. Regular iterative algorithms and their
implementation on processor arrays. Proc. IEEE 76, 3 (1988), 259–269.

[46] Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B Ramakrishna
Rau, Darren Cronquist, and Mukund Sivaraman. 2002. PICO-NPA: High-level
synthesis of nonprogrammable hardware accelerators. Journal of VLSI signal
processing systems for signal, image and video technology 31, 2 (2002), 127–142.

[47] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2020. Au-
toDSE: Enabling Software Programmers Design Efficient FPGA Accelerators.
arXiv:2009.14381 [cs.AR]

[48] Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao,
Zhiru Zhang, David Albonesi, Vivek Sarkar, Wenguang Chen, Paul Petersen, et al.
2019. T2S-Tensor: Productively generating high-performance spatial hardware
for dense tensor computations. In 2019 IEEE 27th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 181–189.

[49] Sven Verdoolaege. 2010. isl: An integer set library for the polyhedral model. In
International Congress on Mathematical Software. Springer, 299–302.

[50] SvenVerdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian
Tenllado, and Francky Catthoor. 2013. Polyhedral parallel code generation for
CUDA. ACM Transactions on Architecture and Code Optimization (TACO) 9, 4

(2013), 1–23.
[51] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. 2014. Sched-

ule trees. In International Workshop on Polyhedral Compilation Techniques, Date:
2014/01/20-2014/01/20, Location: Vienna, Austria.

[52] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han
Hu, Yun Liang, and Jason Cong. 2017. Automated systolic array architecture
synthesis for high throughput CNN inference on FPGAs. In Proceedings of the
54th Annual Design Automation Conference 2017. 1–6.

[53] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. Dsagen: Synthesizing programmable spatial accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 268–281.

[54] WikiChip. 2020. FSD Chip - Tesla. https://en.wikichip.org/wiki/tesla_(car_
company)/fsd_chip

[55] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven
Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. 2020. Interstellar: Using
Halide’s Scheduling Language to Analyze DNN Accelerators. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 369–383.

[56] Tomofumi Yuki and Louis-Noël Pouchet. 2020. PolyBench/C 4.2. https://
sourceforge.net/projects/polybench/

https://arxiv.org/abs/2009.14381
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Polyhedral Model
	3.2 Space-Time Transformation

	4 Framework Overview
	4.1 The Scope of AutoSA
	4.2 Compilation Flow

	5 Computation Management
	5.1 Space-Time Transformation
	5.2 Array Partitioning
	5.3 Latency Hiding
	5.4 SIMD Vectorization

	6 Communication Management
	6.1 I/O Analysis
	6.2 I/O Construction
	6.3 I/O Optimization

	7 Auto-Tuning
	7.1 Problem Statement
	7.2 Resource and Latency Modeling

	8 Evaluation
	8.1 Case Study 1: Matrix Multiplication
	8.2 Case Study 2: LU Decomposition
	8.3 Other Results

	9 Conclusion
	Acknowledgments
	References

