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ABSTRACT5

Enhancing the performance of water distribution networks (WDN) on a day-to-day basis, or6

under extreme disturbances is an utmost priority for utilities. Previous research has characterized7

the structure of WDN in the pipe-junction or segment-valve representation to gain insight on var-8

ious aspects of their performance; however, the research on characterizing WDN structure in a9

hierarchical representation and its relationship with performance is lacking. Two key properties10

of WDNs are loops and pipe diameters that are organized in a hierarchical way. Novel indicators11

have been created to quantify the network hierarchy related to these key properties in other spatial12

flow distribution networks: loop nestedness and pipe diameter gradation along flow paths. The13

goal of this study is to adopt such indicators to characterize the hierarchy of WDNs and evaluate its14

relationship with WDN performance. This study applies a hierarchical decomposition process to15

model the relationships among loops as a tree network for quantifying loop nestedness. Flow paths16

of monotonically increasing and decreasing pipe diameters are traced to quantify pipe diameter17

gradation. Statistical distributions are approximated for these two indicators. Then, relationships18

between these network hierarchy indicators and two performance indicators (measuring path redun-19

dancy and power surplus) are identified. For 15 benchmark networks, this study finds the statistical20
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distributions representing loop nestedness and pipe diameter gradation closely follow a power-law.21

Results suggest gradual pipe diameter gradation along flow paths and high loop nestedness increase22

WDN path redundancy, and gradual pipe diameter gradation increases WDN power surplus. The23

study demonstrates that the hierarchical analysis of WDNs can significantly supplement traditional24

topological analyses in explaining WDN performance.25

Keywords: water distribution networks, complex network analysis, systems analysis, redundancy,26

hierarchy27

INTRODUCTION28

Water distribution networks (WDNs) are lifelines of the global urban fabric. They transport29

water to end users via a network of pipes, valves, pumps and water sources. At the same time,30

to maintain their performance, water distribution networks face increasing stress (e.g., climate31

related extreme weather, dwindling budgets, increased demand, aging) (ASCE, 2017; Di Nardo32

et al., 2017; Evans et al., 2018; Gheisi et al., 2016; Blaha and Gaewski, 2007; Diao et al., 2016;33

Butler et al., 2017; Abdel-Mottaleb et al., 2019; Pagani et al., 2020; Giustolisi, 2020). WDN34

performance is defined as the extent to which amount, pressure, and quality of delivered water35

are met under various scenarios (e.g., power outages, flooding) (Gheisi et al., 2016; Dziedzic and36

Karney, 2015; Skipworth, 2002; Farmani and Butler, 2014; Pagano et al., 2019; Ostfeld et al.,37

2002) and can be measured for both the component-level and network-wide level (Diao et al., 2016;38

Pagano et al., 2019). Network-wide indicators of performance are useful to utilities, especially39

in comparing design scenarios and identifying failure scenarios that cause the greatest loss in40

service (Diao et al., 2016; Pagano et al., 2019). Thus, many indicators have and continue to be41

defined, aiming to evaluate network-wide performance, such as reliability, resilience, robustness,42

redundancy, and flexibility. Among them, reliability is a widely used aggregate indicator and can43

be quantified using the probabilities of component failure, probabilities of demand exceedance,44

and system redundancies inherent in the WDN layout– all of which can be obtained from network45

analysis, hydraulic simulations, and/or real monitoring data (Goulter, 1987; Walski, 1987; Ostfeld46

et al., 2002; Farmani et al., 2005; Giustolisi, 2020). Because probabilities of failure and demand47

2 Abdel-Mottaleb, April 29, 2020



exceedance are not easily available (Ostfeld, 2005), entropy and the Todini index are two commonly48

used surrogate indicators for reliability (Farmani et al., 2005; Raad et al., 2010; Reca et al., 2008;49

Dziedzic and Karney, 2014; Ulusoy et al., 2018; Santonastaso et al., 2018). Entropy is a measure50

of flow path redundancy. The Todini index is a measure of power surplus (which has also been51

referred to as energy redundancy in the literature, see Ulusoy et al. (2018)). Entropy and the52

Todini index are just two of many available reliability performance indicators (Farmani et al., 2005;53

Ulusoy et al., 2018). Despite their limitations at capturing the totality of water distribution network54

performance or being indirectly related to reliability, the literature has generally found that as these55

two indicators increase, so does the reliability of a water distribution network and that the two56

indicators each capture different aspects of WDN performance (they are by no means a complete57

representation of hydraulic reliability or performance in general) (Farmani et al., 2005; Raad et al.,58

2010; Reca et al., 2008; Dziedzic and Karney, 2014; Liu et al., 2017a).59

Various factors impact the performance of WDN: internal factors such as WDN structure and60

water hammer, and external factors such as natural disturbances and limited resources (Pagano61

et al., 2019; Abdel-Mottaleb and Zhang, 2019). WDN structure refers to the configuration of62

components-how they relate to each other. WDN structure can be represented in various ways,63

including pipe-junction topology, segment-valve topology, hydraulic (or logical), and hierarchical.64

Pipe-junction topology is what is represented by most distribution network models for hydraulic65

simulations, where nodes represent junctions and edges represent pipes (i.e., the actual connections66

in space). Segment-valve topology represents segments as nodes and valves as edges (Zischg67

et al., 2017, 2019; Walski, 1993, 1994). Abdel-Mottaleb et al. (2019) and Abdel-Mottaleb and68

Zhang (2019) investigated the so-called logical structure where nodes represent WDN components69

(i.e., pipes, junctions) and edges represent the logical (hydraulic) influence the components have70

on each other. The various representations of WDN structure are often analyzed via network71

science techniques (or graph theory). The application of graph theory in WDN has been centered72

around pipe-junction topology including characterization, connectivity analyses, sectorization, and73

attempts to derive surrogate performance indicators (Jacobs and Goulter, 1988; Ostfeld, 2005;74
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Yazdani and Jeffrey, 2011, 2012; Ormsbee and Kessler, 1990; Hernandez et al., 2016; Giustolisi75

et al., 2017; Giudicianni et al., 2018; Giustolisi et al., 2019; Herrera et al., 2016; Meng et al., 2018;76

Pagano et al., 2019; Giudicianni et al., 2020; Balekelayi and Tesfamariam, 2019; Torres et al.,77

2017) with a focus on quantifying network connectivity (Giustolisi, 2020). Though pipe-junction78

topology is useful for hydraulic simulation and correlates with hydraulic behavior (Giustolisi,79

2020; Walski, 1993), characterization of structure other than the pipe-junction representation is80

also important to provide insights on WDN performance.81

Given that water distribution systems are looped to reduce dissipation and create alternate82

flow paths in case of breaks (Dziedzic and Karney, 2014), there is a need to consider loops in83

network structure analysis. Previous research has developed or adopted measures considering84

loops in a WDN, such as the ratio between numbers of existing to maximal loops in a pipe-junction85

representation (Yazdani and Jeffrey, 2012). Such measures, however, do not distinguish between86

"layouts with the same number of loops", and account for the organization of the loops (Singh87

and Fiorentino, 1992). Hernandez et al. (2016) attempted to distinguish WDN layout based on88

loops and classified WDNs as branched, grid or loopy, yet it remains qualitative and does not89

distinguish between two different branch, grid or loopy networks. Previous research has also90

considered pipe diameters in analyzing pipe-junction topology, such as evaluating the uniformity91

of diameters of pipes meeting at junctions or along the loops of WDNs (Prasad and Park, 2004;92

Creaco et al., 2016). While providing insight, the uniformity of pipe diameters along individual93

loops or junctions does not provide a holistic network-wide characterization because it does not94

trace flow paths in their entirety. These measures (e.g., number of loops, uniformity of pipe95

diameters along loops) fail to represent the organization of loops and pipe diameters (i.e., how96

the loops and pipe diameters in a WDN are arranged and organized) (Katifori and Magnasco,97

2012; Barthelemy, 2018). The organization of both loops and pipe diameters along flow paths98

has been represented hierarchically for many spatial flow distribution networks. Mathematically99

representing and subsequently quantifying the hierarchy, in particular of loops and pipe diameters,100

is a gap in the WDN literature that this study addresses. This study introduces loop nestedness and101
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pipe diameter gradation along flow paths to characterize the hierarchical representation of network102

structure. Loop nestedness captures how loops are arranged relative to each other (e.g., which103

smaller loops are contained within larger loops, how the number of loops changes with loop size).104

Pipe diameter gradation along paths quantifies how gradually or abruptly diameters change along105

the flow paths of a WDN.106

Much less research has been conducted to relate WDN structure to performance indicators107

than to apply network theory to characterize network structure. Studies relating WDN structure108

to various performance indicators are skewed towards pipe-junction topology (Torres et al., 2017;109

Meng et al., 2018; Ulusoy et al., 2018; Giustolisi et al., 2019; Giudicianni et al., 2020; Pagano110

et al., 2019; Balekelayi and Tesfamariam, 2019). Torres et al. (2017) and Pagano et al. (2019)111

found that though network analysis of pipe-junction topology provides insight on global WDN112

behavior and complements physics-based hydraulic simulation, it is severely limited in explaining113

hydraulic performance impacted by other factors. Limitations such as representing water sources in114

the same manner as demand nodes are identified as a drawback to relating pipe-junction topology115

to performance-based indicators (Meng et al., 2018; Giustolisi et al., 2019). Though segment-valve116

topology accounts for water sources, the information obtained is focused on valve placement rather117

than pipe layout (Liu et al., 2017b; Giustolisi et al., 2019; Abdel-Mottaleb and Walski, 2020).118

As the hierarchical representation of WDNs has not yet been thoroughly characterized, there is119

not a single study relating hierarchical measures of WDNs to hydraulic performance indicators.120

However, the hierarchical representations of other spatial flow distribution networks have been121

characterized and shown to provide additional insights beyond traditional connectivity/topology122

measures, such as classification (e.g., distinguishing between different species) and correlation with123

the redundancy and robustness to damage. (Papadopoulos et al., 2018; Ronellenfitsch and Katifori,124

2017; Gavrilchenko and Katifori, 2018).125

Building on previous research applying graph theory to WDNs and the research analyzing the126

hierarchy of spatial flow distribution networks, this study proposes amethodology for characterizing127

and quantifying hierarchy of loops and pipe diameters in WDNs. This study also evaluates how the128
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two studied hierarchical indicators, loop nestedness and pipe diameter gradation along flow paths,129

relate to two commonly used surrogate indicators of performance based on hydraulic simulations.130

METHODOLOGY131

The hierarchy of spatial flow distribution networks from various domains has been characterized132

using loop nestedness and edge diameter gradation along paths. These two indicators are quantified133

by delineating the hierarchy, of both loops and edges (e.g., how smaller loops or edges are connected134

to larger ones). In each domain for which these indicators have been quantified, edges represent a135

different component (e.g., blood vessels, plant leaf veins). In this study, edge diameter refers to pipe136

diameter. Pipe diameter gradation is measured along entire flow paths. Loop nestedness is obtained137

after constructing a decomposition tree where nodes represent loops. If a loop is directly conained138

in a larger loop, nodes representing the two loops are connected by an edge. After quantifying139

and characterizing the hierarchy of WDNs, loop nestedness and pipe diameter gradation along140

flow paths are put into physical context of the WDNs. Then, their respective contribution to water141

distribution network performance is evaluated.142

Benchmark water distribution networks are tested for illustration and reproducibility. The143

networks span a large parameter space, from small number of nodes and edges, to large numbers144

of nodes and edges; from low values of cyclicity or loops to high cyclicity values; and single145

to multiple sources and/or pumps. Similar to Santonastaso et al. (2018), the networks span the146

space of low entropy and Todini index values to high values of entropy and Todini index, and both147

synthetic and real WDN. The WDN are analyzed in their junction-pipe layout as opposed to the148

segment-valve representation that has been shown to be more realistic regarding isolation (Walski,149

1993, 1994; Liu et al., 2017b). Figures of the testedWDNs and a table summarizing their properties150

are included in the supplementary information.151

Decomposition Process152

This study adopts the hierarchical loop decomposition algorithm presented in Katifori and153

Magnasco (2012) to obtain a decomposition tree, representing the hierarchy of loops in the network.154

The decomposition tree is the network model used to represent hierarchical organization of loops155
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(i.e., representing loops contained within loops). This algorithm is part of the nesting python156

package (Ronellenfitsch et al., 2015). Prior to inputting the WDN model for decomposition,157

networkx andWNTR, open source python packages, are used to convert the .inp file for each network158

into a networkx graph object. The algorithm begins with the pruning of all nodes connected to a159

single edge in the water network (i.e., all junctions connected to a single pipe), only the part of160

the network with all edges (i.e., pipes) participating in loops remains. Then, the pipes are ordered161

based on their diameter, and the pipe with the smallest diameter is identified. In Figure 1, the pipe162

with the smallest diameter is e1. If there are pipes with the same diameter, the values are randomly163

perturbed infinitesimally such that they are no longer the same (a procedure that was found not to164

impact the results). Then the pipe with the smallest diameter is removed from the network. When165

the pipe is part of two loops, its removal leads to the merging of the two loops into a single larger166

loop. In Figure 1, when e1 is removed, loops 3 and 4 merge into loop 2. The ordering of pipes and167

merging of loops is repeated iteratively until every pipe is removed from the network and all the168

loops have been merged into the largest, or most exterior, loop of the network. In Figure 1, after e2169

is removed loops 2 and 5 merge, and loop 1 is identified as the largest, most exterior loop.170

In Figure 1, the resulting tree contains a single subtree. Terminal nodes of the tree are defined171

as the nodes for which there is no subtree; in Figure 1, the terminal nodes correspond to Nodes 5,172

4, and 3. That means loops 5, 4, and 3 in the original network do not contain other loops. The173

subtree degree of a node is determined by the total number of terminal nodes contained in that174

subtree. Node 1 in Figure 2 contains three terminal nodes, and thus has a subtree degree of 3.175

Likewise, Node 2 contains two terminal nodes: Nodes 3 and 4. By definition, the subtree degree176

of terminal nodes is 0 as terminal nodes do not contain subtrees. The Nesting python package177

(Ronellenfitsch et al., 2015) is used to construct the decomposition tree and calculate measures178

representing properties of the tree. A limitation of using this algorithm is that it only allows for179

planar graphs (i.e pipes intersect only at their endpoints) as input. WDNs are often near-planar180

(Barthelemy, 2018) and the WDNs in this study are all planar.181
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Quantification of Hierarchy: Loops182

Meshedness using Pipe-Junction Representation183

One of the reasons we seek to quantify loop hierarchy, is to investigate how much more it can184

explain an often-used performance indicator (entropy) of water distribution networks in comparison185

with the commonly used measure of loops, meshedness. Meshedness has been shown to be a good186

indicator of water distribution network redundancy (Yazdani and Jeffrey, 2011) because it is the187

ratio of the existing number of loops to the maximal potential number of loops for the same number188

of junctions while maintaining planarity. Meshedness (for planar networks) is calculated using the189

following equation for the tested water distribution networks:190

A =
< − = + 1

2= − 5
(1)191

Where < is the number of edges (i.e., pipes), and = is the number of nodes (i.e., junctions).192

Nestedness using Decomposed Tree193

Then, thewater distribution networks are analyzed for their loop hierarchy using the tree network194

from the decomposition process. Only the part of the network with the highest number of connected195

loops is represented by the decomposition tree. If a water distribution networks is fully looped,196

this entails the entire network is included such as Modena; for other WDNs such as D-Town, only a197

fraction of the network is selected (see supplementary information). The hierarchical organization198

of smaller loops within larger loops can be quantified on two different levels: as a distribution of199

measures for each individual node in a given tree, and also as an aggregate measure over the entire200

tree.201

NodalMeasures For the nodal level, there are twomeasures that have been previously developed:202

the nesting ratio, and the partition asymmetry. For each node 9 in the tree, there are two branches,203

A and B: branch A is the branch with a larger number of terminal nodes than branch B. The number204

of terminal nodes contained in branch A is referred to as A 9 , and the number of terminal nodes205
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contained in branch B is referred to as B 9 . For each node 9 in the nesting tree, the nesting ratio is206

calculated as shown in Equation 2:207

@ 9 = B 9/A 9 (2)208

Where A 9 ≥ B 9 (so that q is a fraction less than 1) are the numbers of terminal nodes in branches A209

and B.210

The partition asymmetry, also measured for each node in the graph, (referred to in the rest of211

the paper as asymmetry) has previously been introduced by Modes et al. (2016) and Van Pelt et al.212

(1992). It is calculated as shown in Equation 3 for a node 9 :213

0( 9) =
A 9 − B 9

A 9 + B 9 − 1
(3)214

From Equations 2 and 3, it is clear that the nesting ratios and asymmetries calculated for a given215

tree would be inversely proportional, meaning high asymmetry values correspond to lower nesting216

ratios (i.e., less hierarchically nested loops).217

Network-Wide Measure The aggregate tree-level measure has been developed and called the218

nesting number by Ronellenfitsch et al. (2015). The nesting number is an average of the nesting219

ratio distribution for a given tree and it decreases as the nestedness of loop hierarchy decreases.220

The nesting number is defined as a weighted average, shown in Equation 4:221

8 =
∑
9

F 9@ 9 , Fℎ4A4
∑
9

F 9 = 1 (4)222

Both unweighted and degree weighted nesting number can be calculated: unweighted nesting223

number 8D, with F 9 = 1∀ 9 , and degree-weighted nesting number 8F, with weight, F, proportional224

to the subtree degree of a given node, 9 (F 9 ∝ X 9 − 1 = A 9 + B 9 − 1, where X 9 is the subtree degree).225

A high value nesting number (8D,F) qualitatively represents graphs that are highly nested.226

In addition to the nesting number, from the obtained decomposition tree, this study evaluates the227

relationships among different measures such as loop subtree degree versus loop area, subtree degree228
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versus asymmetry, and subtree degree versus mean pipe radii to further characterize the loops of229

WDNs in the context of physical properties. The loop area is calculated as the physical-spatial area230

(in square meters), converted to a directly proportional measure of "square pixels". Mean pipe radii231

of a loop is the average pipe radius (in meters) of all of the pipes forming a given loop.232

Quantification of Hierarchy: Pipe Diameter Gradation233

Another measure of the network hierarchy quantifies the gradual change from larger diameter234

to smaller diameter pipes along flow paths, and Ronellenfitsch et al. (2015) and Modes et al. (2016)235

termed it Topological Length. Similar to asymmetry, the value is calculated for many segments236

of the network but can be evaluated as a network-wide measure by characterizing its distribution.237

Topological length is relevant towater distribution, because generally, abrupt fluctuations destabilize238

the system (Creaco et al., 2016). Due to the obtained type of distributions (power law), we define239

W, as the power law exponent of a given topological length distribution for each water distribution240

network (Equation 5). The exponent W allows capturing the power law distribution of topological241

length without bias as the mean would (see Faloutsos et al. (1999)).242

%(!4 = ;) ∝ ;−W (5)243

Where the frequency of a topological length , !4, is a function of the topological length of the pipe244

raised to a power −W. An exponent (W) of larger magnitude indicates that pipes in a given water245

distribution network have a higher likelihood of having high topological length (see complementary246

empirical cumulative distribution plot in the supporting information) (Newman, 2005; Kunegis and247

Preusse, 2012). In other words, it is more likely to have paths with gradual change in pipe248

diameters, rather than abrupt change. The exponent W is more accurate at capturing the behavior249

of the distribution then a mean or median because of the heavy tail (Faloutsos et al., 1999). The250

calculation procedure is described in detail inModes et al. (2016) but in brief here: Starting from an251

initial pipe 41 ≡< 81, 91 > between junctions 81 and 91, we identify all the pipes 4 that are adjacent252

to it (share the node 81 or 91) and have diameter smaller than or equal to the diameter of pipe 41. We253
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choose the pipe with the maximum diameter from the set e, which is now 42, and add it to the trail,254

which now becomes (41, 42) . The process is repeated for 42 (identify all links that are adjacent to255

42 with diameter smaller than 42 and choose the maximum) and iterate. The algorithm terminates256

when the set of pipes that have diameter smaller than that of the last link 4: in the trail is empty.257

The length of the trail associated with edge e1 is ; (41) = : . The process is iterative, starting from258

every pipe of the network, in this way associating a trail length ; (4) with every pipe 4.259

Simulation-Based Performance Indicators260

Hydraulic Simulation261

The selected performance indicators require hydraulic modeling of the networks. Different262

kinds of hydraulic simulations can be conducted to calculate variousWDN performance indicators.263

In this study, pressure driven, extended period simulations were run for the range of demands for264

24-hour duration (when demands are available). Pressure driven analysis was calculated using the265

WNTR simulator within python (see Klise et al. (2017)). After conducting hydraulic simulations266

using the WNTR package within python, both the entropy and the Todini index are calculated for267

the water distribution networks using the WNTR package within python (Klise et al., 2017). Only268

9 of the 15 networks are tested using the Todini index due to software limitations (i.e., a lack of269

convergence in solving equations within reasonable time), but from the 9 available data points,270

statistical validity is still established. For entropy, the data provided in Santonastaso et al. (2018) is271

used to confirm obtained values.272

Entropy: Path Redundancy273

The entropy surrogate indicator assumes that greatest uniformity between supply paths to all274

nodes minimizes expected shortfall in case of a pipe breakdown (Tanyimboh and Templeman,275

1993; Farmani et al., 2005). Flows through pipes are obtained by simulating either a single demand276

scenario or the average of an extended period simulation. This study uses the entropy gap, 4(,277

meaning two simulations are conducted, one for the network with its current structure, and one278

for the maximal path redundancy structure (i.e., structure with greatest supply path uniformity).279

Santonastaso et al. (2018) proposed a measure of path redundancy, 4(, which is akin to normalizing280
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the entropy of a given network by taking the entropy and dividing it by the maximum possible281

entropy given a network. By using 4(, we can compare a given network’s reliability to its ideal282

path redundancy. The equations for (, and 4( are given in Equations 6 and 7 , as shown in283

Santonastaso et al. (2018):284

( = −
#(∑
8=1

&8

)
;=(&8

)
) − 1

)

##∑
9=1
)9 [

& 9

)9
;=(

& 9

)9
) +

∑
98∈# 9

@ 98

)9
;=(

@ 98

)9
)] (6)285

The first term is the entropy of supply nodes and the second is the entropy of demand nodes; #( is286

the number of supply nodes; ) is the total supplied flow rate; ## is the number of demand nodes;287

&8 represents the inflow at the i-th source node; )9 is the total flow rate reaching the j-th demand288

node; & 9 is the water demand at the j-th demand node; @8 9 is the flow rate in the pipe connecting289

node j with surrounding node i; and # 9 is the number of pipes carrying water from the j-th demand290

node towards neighboring nodes. Similar to Santonastaso et al. (2018) , the maximization of (,291

"(, is computed by the procedure proposed in Yassin-Kassab et al. (1999) and 4( is calculated as292

follows in Equation 7.293

4( = 1 − (

"(
(7)294

Todini Index: Power Surplus295

The Todini index, or resilience index, is found by simulating either a single demand scenario of296

a network or the average of extended period simulation. The simulation results provide the flows297

from reservoirs to nodes, the available head at each reservoir and demand node, and the power298

introduced by pumps in the system (Dziedzic and Karney, 2014). Again, though this measure299

provides surplus power available to be dissipated in the network in case of failure, it neglects how300

the system actually performs or recovers after a failure (Farmani et al., 2005). The Todini index301

evaluates excess pressure head available at junctions, and is calculated as shown in Equation 8302

(Todini, 2000; Dziedzic and Karney, 2015):303

'� =

∑=
9=1 @ 9 (ℎ0 9 − ℎA 9 )

(∑'
A=1&A�A +

∑�
1=1 %1) −

∑=
9=1 @ 9ℎA 9

(8)304
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where = =number of demand nodes; @ 9 = demand at node j; ℎ0 9 = head available at node j; ℎA 9 =305

minimum head required to meet constraints at node j; ' = number of reservoirs; &A = flow being306

supplied to the system by reservoir r; �A = head at reservoir r; %1 = power introduced in the307

system by pump b; and � = number of pumps. The Todini index is intended to compare different308

designs for the same network. As it does not always fall between [0,1], and the comparison with309

hierarchical indicators is on a pipe-basis, the index is size-normalized by the number of pipes in310

each network prior to conducting the regression analyses explained in the Results.311

Identifying Relationships Between Hierarchical Metrics and Performance Indicators312

After calculating both the entropy and the Todini index for thewater distribution networks, linear313

multi-regression analyses with both the nesting numbers (i) and topological length exponents (W)314

are conducted, using the scipy (Virtanen et al., 2020) and seaborn (Michael et al., 2018) packages315

in python, to evaluate relationships between WDN hierarchy and hydraulic performance using '2
316

and standard error ((�) .317

RESULTS AND DISCUSSION318

Characterization of Hierarchy319

This study characterizes the distribution of subtree degrees of nesting tree nodes for each320

network. Though subtree degrees are used as input for calculating loop nestedness measures, it321

is beneficial to understand the type of distribution subtree degrees follow to gain insight on the322

organization of loops. For the most part, subtree degree distributions for all water distribution323

networks are significantly approximated by a power-law distribution, ? � 0.05. Only very small324

networks, such as TLN are not considered, because they do not have enough data to estimate a325

distribution at all (e.g., only 2 points). The distribution for Net6 is shown in Figure 2. The linear326

relationship on the log-log scale of Figure 2b indicates power-law behavior. See supplementary327

information for the remaining graphs. We also characterize the distribution of topological lengths328

for each network. For the most part, they are all significantly appproximated by a power-law329

distribution. After confirming their significant power-law distributions, with (? � 0.05), using330
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methods described in Clauset et al. (2007), we store the power law exponent, W, characterizing each331

network’s distribution. Again, only very small networks, such as TLN are not considered, because332

they do not have enough data (only two data points). The distribution for Net6 is shown in Figure 3.333

The linear relationship on the log-log scale of Figure 3b indicates power-law behavior. Individual334

figures for a given network are shown in supplementary information. These findings are interesting335

because node-based topological measures accounting for nodal degree and other centralities of336

water distribution networks often follow poisson distribution rather than a power-law ((Giustolisi337

et al., 2017) among others). If water distribution network component connectivity follows a poisson338

distribution, that implies the networks are generally robust to targeted and random modes of failure339

(i.e., criticality and vulnerability is relatively randomly distributed among components). Whereas340

a power-law distribution indicates that there are few components that are especially critical or341

vulnerable, such that their failure may be catastrophic for the given network. This study suggests,342

from the approximate power-law distributions, that perhaps water distribution networks do not343

always follow a poisson distribution with respect to some key properties (e.g., loops), and thus344

are not necessarily immune from targeted modes of failure. These findings are consistent with the345

observation of power-law type of hierarchical behavior that is observed in other urban infrastructure346

networks (Yang et al., 2017; Krueger et al., 2017; Klinkhamer et al., 2019) and previous research347

on water distribution networks (Abdel-Mottaleb and Zhang, 2019).348

Physical Context349

Subtree Degree versus Loop Area and Asymmetry350

This study also examined relationships between subtree degree of loops and the corresponding351

loop area and asymmetry. As shown in Figure 4(a, c, e, g, and i), higher subtree degree nodes352

correspond to loops with larger areas (i.e., smaller loops have smaller subtree degree). At the same353

time, there are generally more data points (i.e., nodes or subtrees) concentrated in the smaller loop354

area and smaller subtree degree space of the plots shown in Figure 4. This indicates that water355

distribution networks generally have more smaller loops than larger loops. As shown in Figure 4(b,356

d, f, h, and j ), for many networks, the higher the subtree degree, the higher the asymmetry of a357
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given node. However, this observation is not consistent for all of the water distribution networks.358

For many of the tested networks, there is a decrease in asymmetry near the mid-range of subtree359

degree. Given that the subtree degree of a loop is closely related to its physical area, it seems360

that loops of mid-range area are more hierarchically nested than larger area loops. The reason361

for this may be that larger loop redundancies are more expensive and less feasible than adding362

redundancies (and thus more nestedness) to smaller loops. This suggests a tradeoff between adding363

less expensive redundancies (at the smaller loop level) and adding redundancies that will serve364

more of the population (i.e., larger distribution mains). There also seems to be a larger spread of365

asymmetry values for smaller subtree degrees and thus smaller area loops may contain either highly366

evenly or unevenly distributed redundancies. However, path redundancies are not solely quantified367

using the asymmetry, nesting ratio and nesting numbers. There are other factors interplaying with368

these measures of nestedness, such as source location and pipe diameters.369

Source Location and Subtree Degree versus Mean Pipe Radii of a Loop370

Though previous research has quantified shape (e.g., grid, branch, loop) of water distribution371

networks, such as Hernandez et al. (2016), there remains a gap of accounting for water sources372

in research on water distribution network structure (Giustolisi et al., 2017; Meng et al., 2018;373

Giustolisi et al., 2019). Location of the water source influences whether larger pipes are on the374

outer, larger loops, or whether larger pipes are within smaller internally nested loops. Hence this375

study further examined the relationship between degree and mean pipe radii; differences in the376

relationship between these two properties of the decomposition tree may be attributable to demand377

allocation and source(s) placement. Not all studied water distribution networks have the same378

relationship between subtree degree (and consequently, loop area) and mean pipe radii of that379

subtree (i.e., loop). In Figure 5, five plots of subtree degree versus mean pipe radii are shown (see380

supplementary information for remaining plots).381

From Figure 5e and f, Fossolo’s larger diameter pipes are not part of the largest loop, whereas382

they are for Net3 (5c and d) and Modena (5a and b). Because Fossolo has a single water source,383

pipe diameters are not as uniform throughout the network as they are for multiple source networks384
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(e.g., Net3 and Modena). Another observation is that larger pipes are on the periphery of the385

Modena, Net3 and D-Town networks, whereas for Net6, the largest diameter pipe is not even in the386

largest looped part selected for analysis. Similarly, the degree versus asymmetry distributions for387

Modena and Net3 are much closer in distribution shape than they are to Fossolo and Net6 (even388

low degree loops in Fossolo and Net6 show high asymmetry, whereas only the highest degree loops389

show highest asymmetry in Net3 and Modena). This observation is confirmed upon calculating the390

Kolmogorov-Smirnov statistic between the asymmetry distributions of the networks, following the391

method in Ronellenfitsch et al. (2015) (see supplementary information). It is interesting that for392

these five networks, the nesting number, shown in Table 1, is higher for networks with the highest393

mean pipe radii on the periphery of the largest looped part. In addition, both Net3 and Modena394

have multiple sources, whereas Fossolo has a single water source that no doubt influences pipe size395

along the gradient of larger area to smaller area loops within the network (i.e., the location of the396

source(s) of water, and number of sources influences the distribution of pipe diameters relative to397

the networks’ loops). Multiple storage tanks in a network, depending on their placements relative398

to the demands, can result in increased entropy or pathway redundancy, as the pipe diameters can399

be smaller than they otherwise would have to be if there weren’t as many source redundancies400

(Chin et al., 2000; Walski, 2000). These observations open the question of how physical network401

components (e.g., number and location of sources) influence the hierarchy, and consequently402

performance, to manage network maintenance and operations.403

Relationships Between Hierarchy and Performance404

There is a significant correlation between the network hierarchy and simulation-based perfor-405

mance indicators. For entropy, in the normalized form (4(), smaller values (i.e., closer to zero)406

indicate a network is closer to its “ideal” or maximal path redundancy. First, a regression analysis is407

conducted between the baseline topological measure of meshedness, A, and 4(. The significant '2
408

value of 0.3 indicates that there must be other factors influencing the path redundancy in addition409

to the ratio of existing to maximal potential number of loops. Meshedness alone is limited at410

capturing path redundancy in water distribution networks. Though meshedness has been shown411
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to be a robust measure of path redundancy (Yazdani and Jeffrey, 2011), it is limited in explaining412

variability observed in the gap between actual and optimal path redundancy ('2 = 0.3). However,413

when a multi-regression is run with the nesting number, the '2 increases to 0.63. The '2 further414

increases to 0.83 when the pipe diameter gradation is included. When the pipe diameter gradation415

is included, the number of samples decreases to 14 because two of the networks do not have enough416

data points to calculate W (still, the results are significant with greater than 95 percent confidence,417

p≤0.0003). Regardless, this indicates that, not only the pipe-junction topology of a WDN impact418

its flow path redundancy, but so does its loop and pipe diameter hierarchy.419

Networks with higher nesting number values (i.e., more nestedness and loop symmetry) tend420

to have a significantly lower gap between their actual and maximum entropy values, 4( (Figure421

6a). The pipe diameter gradation measure (W) also has the same effect on 4(, but stronger (Figure422

6b). However, when evaluating their impact on the Todini index (excess pressure head at junctions,423

or energy redundancy), the nesting number and pipe gradation displayed different relationships.424

The nesting number of a network did not have as significant of a relationship with the Todini425

index (Figure 6c), but higher values of W, pipe diameter gradation, increased the Todini index426

(Figure 6d). Higher values of the exponent, W, indicate more gradual changes in diameter in427

the network. Pipe diameter gradation along flow paths, W, explained the variability in the Todini428

index ('2=0.856, n=9, p≤0.001, (� = 0.010) more than that observed for entropy ('2= 0.66,429

n=15, p≤0.005, (� = 0.053). However, when meshedness, loop nestedness and pipe diameter430

gradation are accounted for, the correlation significantly increases ('2=0.83, n=15, with p≤0.001,431

(� = 0.039). This supports the hypothesis that hierarchy of loops and pipe diameters influences432

the two tested performance indicators (i.e., is an integral part of WDN structure). However, actual433

performance for WDNs depends not only on their pipe-junction or hierarchical representations, but434

also on operational, design, and dynamic conditions that are not considered in this work (but can435

be included in future studies).436

Increasing loop nestedness has leverage on path redundancy, whereas more gradual pipe diame-437

ter change can simultaneously enhance path redundancy and power surplus (or energy redundancy).438
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This suggests that WDN design optimization can be improved by including decision variables re-439

lated to pipe diameter gradation along flow paths. Previous studies have focused on optimizing the440

design of WDN loops or sizing pipes without considering diameter gradation along paths ((Todini,441

2000; Creaco et al., 2016; Dziedzic and Karney, 2015) among others). Though Creaco et al. (2016)442

took it further by considering diameter gradation of loops, it does not extend to flow paths. When443

diameter gradation is accounted for even just within loops, Creaco et al. (2016) found additional444

solutions to WDN design optimization problems. Instead of solely focusing on adding loops or445

maintaining diameter uniformity of loops to enhance WDN redundancy and subsequent reliability,446

effort should be made to increase the pipe diameter gradation along paths throughout a network for447

increased leverage.448

CONCLUSION449

We characterize WDN hierarchy, showing that loop nestedness (i.e., subtree degree) and pipe450

diameter gradation along flow paths (i.e., topological length), are approximated by power-law451

distributions. This indicates that WDNs are more vulnerable at the loop level than at the junction452

level. With respect to network design, differences in the relationships between location of larger453

pipes and nestedness, and loop area and nestedness were observed based on water source location,454

suggesting that hierarchical indicators capture more information regarding water source location455

than pipe-junction topology. This study also found that the hierarchy ofWDNs, as quantified by loop456

nestedness and pipe diameter gradation along flow paths, explained variability of simulation-based457

performance indicators (specifically flow path redundancy and power surplus). Quantifying and458

characterizing the different representations of WDN structure is a necessary step before applying459

structural measures in network optimization, failure analysis, and design/scenario comparisons.460

There are however several limitations to the study that can be addressed in future work. The461

nesting number, or measure of loop nestedness, used in this work captures the largest looped462

part, and not the entirety of the network. This limitation can be addressed in future work by463

modifying the measure to account for more loopy parts. This study analyzes the network as a464

single snapshot (i.e., static not dynamic as it actually is). The hierarchy of components may465
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likely change as water distribution infrastructure co-evolves with cities. Real WDNs must also466

be analyzed to confirm the identified relationships before hierarchical indicators are adopted to467

estimate surrogate performance indicators. Nonetheless, analyzing the hierarchical representation468

of WDNs adds much more insight on their structure that contributes to the hydraulic performance469

than only analyzing their pipe-junction topology.470
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TABLE 1. Measurements of A (meshedness), size-normalized RI (Todini Index, en-
ergy redundancy), 4( (entropy or path redundancy gap), W (topological length dis-
tribution exponent), and 8 (nesting number) for WDNs

Network A RI (size normalized) 4( W 8

Anytown 0.422 – 0.121 0.621 0.365
Net1 0.176 0.0900 0.106 1.128 0.813
Net2 0.075 0.0125 0.127 0.618 0.700
Net3 0.121 0.0053 0.144 0.634 0.486
Net6 0.080 0.0001 0.203 0.537 0.164
Fossolo 0.318 0.0236 0.128 0.772 0.386
Modena 0.085 0.0008 0.162 0.570 0.531
Pescara 0.201 – 0.139 0.617 0.534
Richmond 0.049 – 0.181 0.428 0.649
D-Town 0.065 – 0.169 0.632 0.762
TRN/Gessler 0.315 – 0.108 0.825 0.435
ZJ 0.228 0.0000 0.147 0.573 0.791
Rural 0.126 0.0018 0.167 0.428 0.688
Jilin 0.137 0.0000 0.122 0.613 0.829
TLN 0.222 – 0.098 – 0.700
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