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ABSTRACT

Disruptive events lead to capacity degradation of transportation infrastructure, and a good
restoration plan could minimize the aftermath impacts during the recovery period. This is
considered one aspect of resiliency for transportation systems. Although unmet demand has been
proposed as one measure of resilience for freight transportation, it has rarely been used for general
transportation systems. This study takes unmet demand and total travel time as two measures in
modeling the restoration plan problem and proposes a bi-objective bi-level optimization
framework to determine an optimal transportation infrastructure restoration plan. The lower-level
problem uses Elastic User Equilibrium to model the imbalance between demand and supply and
measures the unmet demand for a given transportation network. The upper-level problem,
formulated as bi-objective mathematical programming, determines optimal resource allocation for
roadway restoration. The bi-level problems are solved by a modified active set algorithm and a
network representation method derived from Network Design Problems. The Weighted Sum
Method is adopted to solve the Pareto Frontier of this bi-objective optimization problem. The
proposed restoration plan optimization method was applied to a typical road network in Sioux
Falls, to verify the effectiveness of the methodology. For a given failure scenario, the Pareto
Frontier of this bi-objective bi-level optimization problem with various budget levels, cross-
referring to the travel efficiency of each solution, was illustrated to demonstrate how the proposed
method can support decision-making for road network restoration. To further study the
performance of the proposed method, different scenarios were generated with one to five links
disrupted and the proposed methodology was applied with different budget levels. The statistical
analysis of the optimized solutions for these scenarios demonstrates that a higher budget could
help reduce unmet demand in the system by providing more restoration options.

Keywords: Transportation system resilience, Bi-level optimization, Bi-objective optimization,
Elastic User Equilibrium, Criteria space analysis
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1. Introduction

The resilience of Critical Infrastructure (CI) is essential for society to resist, respond to, and
recover from disruptive events. A transportation system is one of 16 CI systems identified by
Presidential Policy Directive 21 (White House, 2013). Efficient operation of a transportation
system is particularly important in alleviating the impacts of disruptive events, and the repair and
reconstruction of transportation infrastructure consumes tremendous material and human power;
for example, Hurricane Katrina was estimated to cost more than $32 billion for the restoration of
transportation infrastructure. Therefore, the effective planning of transportation infrastructure
restoration tasks and resource allocation are of great concern for rapid and cost-efficient recovery
in the aftermath of disruptive events. This work focuses on the restoration stage of a transportation
system to provide effective decision-making methodologies to improve system resilience.

In proposing decision-making methods acting as force multipliers for effective system
restoration, the first step is to determine the measurement of restoration work effectiveness. In this
study, both total travel time and unmet demand in a transportation system are considered as
resilience measures. A disruptive event such as an earthquake, flood, hurricane, landslide, or
malicious act could lead to capacity degradation for some links and complete cutoft for others.
This leads to increased travel time for some travelers compared to normal days. Furthermore, due
to capacity degradation or loss, partial travel demand cannot be served by a devastated road
network, termed as unmet demand, which has a serious impact on travelers, regulatory agencies,
and industries.

Unmet demand has not been properly considered or included in most resilience measures
in the existing literature. As one of the few works considering travel demand that cannot be served
after a disruptive event, Chen and Miller-Hooks (2012) defined system resilience as demand that
can be satisfied with a hard capacity constraint for the freight network flow model. In another work,
Miller-Hooks et al. (2012) refined the aforementioned model and followed the same resilience
measure based on unmet demand for freight transportation with further consideration of the
balance between funds allocation to preparedness and recovery activities. However, network-wide
traffic flow modeling and the strength of capacity constraint of freight transportation are essentially
different from those of a general transportation system. (For more details about these differences,
see Section 2). Therefore, although the concept of unmet demand can be borrowed from freight
transportation literature, the methodology to quantify unmet demand and then measure system
resilience accordingly is not applicable in this work. In addition to freight transportation system
resilience analysis, unmet demand has been used in network-wide system performance evaluation
and strategy optimization during the evacuation stage (Naghawi & Wolshon, 2014). However, the
time scale and objective functions of evacuation problems are different from those of the
restoration planning problem.

In this work, a bi-objective bi-level optimization problem was formulated to enhance
transportation system resilience in the restoration phase after a disruptive event. This phase is
different from the response phase shortly after the disruptive event. During the restoration phase,
the infrastructure is waiting for repair, but daily travel demand has recovered to a relatively normal
level, although some demand cannot be satisfied by the degraded infrastructure network, i.e.,
unmet demand. In reality restoration tasks could have multiple capacity recovery levels
corresponding to various resource consumption (Vugrin et al., 2014), partially due to limited
budget and resources and the need to restore multiple road sections to serve regional needs. In this
study, the objective of the upper-level problem is to minimize total travel time and to minimize
unmet demand by determining road sections to be restored and corresponding capacity recovery
levels. The lower-level problem is to model road user travel behavior and address the imbalance
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between degraded supply and recovered demand of the transportation system after the event.
Elastic User Equilibrium (EUE) traffic assignment is applied to this circumstance to provide
network-flow assignment that result as input for the upper-level problem. The bi-level formulation
serves as a constituent part for the overall bi-objective bi-level problem formulation. The Weighted
Sum Method was adopted to solve the formulated bi-objective bi-level problem iteratively.

The remainder of this paper is organized as follows. Section 2 includes a thorough literature
review that focuses on various resilience measures and the intrinsic connection and difference
between the Network Design Problem (NDP) and the Restoration Plan Optimization (RPO)
problem. Section 3 presents the bi-objective bi-level optimization formulation of the RPO problem
and minimizes the two aspects, i.e., total travel time and unmet demand, as two objective functions.
Section 4 proposes the solution algorithm for the optimization problem, and Section 5 applies the
RPO method to a typical road network to illustrate the implementation procedures, verify the
effectiveness of this method, and further interpret the empirical analysis results from a criteria
space analysis perspective for the bi-objective optimization. Results clearly show how the two
different optimization objectives (minimize total travel time and minimize unmet demand) trade
off with each other and how the budget for restoration work could influence optimization results.
The last section summarizes the contributions of this work and discusses future research directions.

2. Literature Review

2.1. Resilience Measurement

There are two types of resilience measures for transportation systems, network topology-based and
system performance-based. Network topology-based measures include origin-destination (O-D)
connectivity (Zhang et al., 2015a), average reciprocal distance (Zhang et al., 2015a), average
degree (Leu et al., 2010; Zhang et al., 2015a), diameter (Zhang et al., 2015a), cyclicity (Zhang et
al., 2015a), betweenness (Leu et al., 2010), network coverage (Chang and Nojima, 2001), and
travel alternative diversity (Xu et al., 2015). System performance-based measures include travel
time, travel cost, and environmental factors (Omer et al., 2013), travel demand (Chen and Miller-
Hooks, 2012; Miller-Hooks et al., 2012), and consumer surplus-based (Soltani-Sobh et al., 2015)
resilience measures. As both total travel time and unmet demand are considered to evaluate the
restoration plan in this research effort, it falls into the system performance-based resilience
measures category.

Among these existing system performance-based resilience measures, travel time-based
measures are the most widely applied (Faturechi and Miller-Hooks, 2015; Morohosi, 2010; Zhang
et al., 2015a). For instance, Faturechi and Miller-Hooks (2014) defined resilience as the network’s
ability to resist and adapt to disruption, with total travel time employed in assessing system
resilience. As illustrated in Fig. 1, system resilience is measured by travel time resilience, Ry p,
which is formulated as the reciprocal of total travel time at the end of the response stage (tty)

divided by the reciprocal of total travel time at the time just before the event occurred (tt,). System
resilience optimization methods with the objective to maximize travel time-related measures were
proposed accordingly (Faturechi and Miller-Hooks, 2014), which aid decision-makers from a
mobility perspective.
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Fig. 1. Travel time-based resilience measures.
* ttp and tt;: total travel times at the end of pre-event and response stages (Faturechi and Miller-Hooks, 2014)

However, after catastrophic events such as flood or earthquake, roadway performance can
be seriously affected, with huge capacity reduction of links and total loss of some links. There
exists the possibility that partial travel demand cannot be accommodated by the degraded
transportation system, and unmet demand has a critical impact on system level of service.
Therefore, evaluation of network resilience performance without considering unmet travel demand
can be biased and may lead to less cost-effective restoration plan results. To evaluate total travel
time and unmet demand, it is necessary to properly model traffic flow assignment to capture the
travel behavior to be integrated into system level performance representation. Until 2005, all
previous resilience studies lacked consideration of traffic flow assignment mechanism. This gap
was addressed in a study by Murray-Tuite (2006), in which a measure of transportation system
resiliency was introduced and was composed of 10 dimensions, i.e., redundancy, diversity,
efficiency, autonomous components, strength, collaboration, adaptability, mobility, safety, and the
ability to recover quickly. The influence of traffic assignments, both system optimal and user
equilibrium, were examined on four dimensions of the resilience measurement. In the present work,
to model the imbalance between supply and demand more specifically, Elastic UE is adopted to
capture traveler behavior and support the calculation of total travel time and unmet demand.

The concept of unmet demand has been applied in freight transportation system resilience
analysis and optimization. For example, Miller-Hooks et al. (2012) defined system resilience as
demand that can be satisfied with a hard capacity constraint for the freight network flow model.
However, the traffic flow assignment mechanism and the strength of capacity constraint of freight
transportation are essentially different from those of a general transportation system. The network
flow models for freight transportation system resilience analysis in Chen and Miller-Hooks (2012)
and Miller-Hooks et al. (2012) were formulated as maximum flow problem (Liu and Mu, 2015;
Righini, 2016). However, the network flow model for general traveler transportation systems
applies either user equilibrium or system optimum. The other difference between freight
transportation and general transportation problem formulation is capacity constraint. Capacity
constraints for most freight transportation flow assignment models are hard capacity constraints,
restricting flow on each arc to be less than the capacity (for example, Chen and Miller-Hooks,
2012, and Miller-Hooks et al., 2012). In general transportation network design or operational
optimization problems, traffic flow assigned on a link is allowed to be larger than the capacity,
and the link performance function (such as the Bureau of Public Roads [BPR] function) is used to
calculate the travel time of the link. Therefore, capacity constraint for the general traffic flow
assignment model is a relatively soft constraint.
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In addition to freight transportation system resilience analysis, the concept of unmet
demand has also been used in network-wide system performance evaluation and strategy
optimization during the evacuation stage (Zhang et al., 2015b). For instance, Xie et al. (2010) used
“percentage of evacuees arrived at destination” curves to evaluate system performance under
different evacuation strategies. More recently, Zhang et al. (2015b) and Zockaie et al. (2014)
leveraged the macroscopic productivity function—the Macroscopic  Fundamental
Diagram (MFD)—to perform network performance evaluation for evacuation strategy
optimization. To reduce the likelihood of over-saturation in a transportation network during
evacuation, an optimization model was proposed in Zhang et al. (2015b) to maximize evacuation
throughput traffic for regional networks. The difference between transportation network
performance analysis during the evacuation and restoration stages stems from both the time scale
and the main concerns for performance evaluation. The evacuation stage is much shorter than the
restoration stage; therefore, although mobility, accessibility, safety, etc., are common perspectives
for performance evaluation of different stages, the evacuation stage performance evaluation needs
more dynamic information due to a shorter time period and highly unstable system performance
(Dixit and Wolshon, 2014). Therefore, most studies applied dynamic traffic assignment or traffic
simulation to obtain dynamic traffic information for system performance evaluation during the
evacuation stage (Cova and Johnson, 2002; Jahangiri et al., 2014; Lim and Wolshon, 2005;
Murray-Tuite and Mahmassani, 2004; Murray-Tuite, 2006; Naghawi and Wolshon, 2010; Wolshon
et al., 2015; Wolshon, 2009). This work focuses on the restoration stage (part of the recovery stage)
of a transportation system when the infrastructure is still damaged or disrupted but daily travel
demand has recovered to a relatively normal level. As the restoration stage has a longer time scale,
a more macroscopic network flow model (Elastic UE) is adopted to obtain traffic flow information
for restoration performance evaluation.

In addition to the literature in the context of freight transportation and evacuation, Nogal
et al. (2016) and Nogal et al. (2017) analyzed the impact of demand variation on transportation
network resilience. However, system resilience in those studies was quantified by travel time
increase and traffic flow variations in the system without involving unmet travel demand.

In summary, there have been extensive studies on transportation system resilience, and
some researchers proposed to consider unmet demand in the context of freight transportation or
evacuation strategy optimization. However, the problem setting, modeling, and system
performance evaluation are different from a general transportation system in the context of
restoration plan optimization. Therefore, in this study, we propose to enhance transportation
system resilience in the restoration stage in terms of both mobility (to reduce total travel time) and
accessibility (to reduce unmet demand) through a bi-objective bi-level problem formulation. As
the constituent bi-level problem formulation is similar to the Network Design Problem (NDP), the
literature on NDP was briefly reviewed; the connection and difference between the NDP and RPO
problems are described in the next subsection.

2.2. Connection and Difference between NDP and RPO Problems

The RPO problem is a type of NDP under special circumstances. The objective of a typical NDP
is to make investment decisions to optimize a given system performance measure, such as total
travel cost in a network, while accounting for the route choice behavior of network users (Yang
and Bell, 1998). Due to the complexity of problem formulation and computational challenges,
NDP has been recognized as one of the most difficult problems in the transportation area. However,
as NDP has great potential for solving planning, design, and congestion pricing problems, it has
drawn abundant attention and effort from the transportation research community (Boyce and



0 NN B W

W W WY WY LW W W W DN DN N NN NN NN DN = = e e e e ek e
<N O DN B W= OOV WN P WN=,OOVWOIONWM P WND—= OO

W
oo

39

40
41
42
43
44
45
46

Zhao & Zhang 7

Janson, 1980; Mingyuan and Attahiru Sule, 1991; Zhang et al., 2009a). NDP has been classified
into two different forms—Discrete NDP (DNDP), concerning the addition of new links to an
existing road network (Boyce and Janson, 1980; Mingyuan and Attahiru Sule, 1991; Zhang et al.,
2009a), and Continuous NDP, concerning the optimal capacity expansion of existing links (Friesz,
1985; Hai, 1995). DNDPs are modeled as nonlinear integer programming models constrained with
network equilibrium. Typical DNDP solution algorithms include Bender’s decomposition, branch-
and-bound methods, and heuristics.

NDP and RPO problems have some similarities. As road section capacities decrease after
an earthquake, flood, or hurricane, the imbalance between network-wide transportation service
supply and travel demand emerges. This is similar to the imbalance between transportation service
supply and travel demand caused by economic growth and land use relocation in NDP. However,
these two problems are also different. As previously noted, the cause of the imbalance between
transportation service supply and travel demand is different for NDP and RPO problems.
Furthermore, the magnitude of the short-term impact of natural disasters on the network can be
much more intense than the short-term impact of economic growth and land use relocation. Due
to sudden capacity degradation or loss, there is sharp imbalance between supply and demand after
disruptive events, leading to partial travel demand that may not be served by the devastated road
network. To recover from catastrophic events, a basic concern of restoration is reducing unmet
demand in the system. Therefore, the objective of RPO is to reduce not only total travel time but
also unmet demand. Consequently, the tradeoff between reducing total travel time and unmet
demand should be taken into account in RPO problem formulation.

The following sections propose a bi-objective bi-level formulation to solve the RPO
problem for a transportation system to enhance both mobility (by minimizing total travel time) and
accessibility (by minimizing unmet demand). The bi-objective problem is solved by the Weighted
Sum Method and the componential bi-level problems (to minimize the two objectives respectively
or to minimize the combination of them) is solved by a modified active set algorithm and a network
representation method.

3. Restoration Plan Optimization Problem Formulation
3.1. Two Resilience Measures—Total Unmet Demand and Total Travel Time
As noted, existing research efforts involving unmet demand in resilience analysis are not sufficient
to draw firm conclusions about how to improve system resilience accordingly, especially for a
general transportation system in the restoration stage. To address this issue, the following two
resilience measures are proposed in terms of both total unmet demand and total travel time:
R=D=>D,
(1)
RZ = T = Z'x: ‘ta('x:’ca)
where D = Z D, defines total unmet demand in the system and T = Z Xt (x0,c,) defines total

rs a

travel time in the system (x is the equilibrium flow on link a, ¢,is the capacity for link a). The

unmet demand is quantified by the elastic demand traffic assignment model, as elaborated in
Section 3.3. These two resilience measures contradict each other; therefore, a bi-objective
optimization problem formulation is adopted to tackle the RPO problem with two contradicting
objectives given that these two objectives have different units, i.e., travel time and number of trips
not satisfied by the infrastructure system.
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3.2. Formulation of RPO as a Bi-objective Bi-level Optimization Problem

Taking the proposed resilience measures as the two objective functions, restoration plan
optimization after a disruptive event is formulated as a bi-objective bi-level optimization problem.
The bi-level problem serves as the building-block for the overall problem formulation. Bi-level
optimization is also known as the Stackelberg leader-follower problem, which represents a
situation involving two decision-makers, with the behavior of the leader influencing the follower’s
choice. In this problem, the upper-level decision-maker is a city administrator who decides which
road sections of the network will be repaired after the event given a limited budget. The lower-
level decision-makers are road users who are affected by road network capacity degradation or
link loss due to the event. As the restoration plan changes the road capacity, it alters the network-
wide level of service that will influence a traveler’s decision-making; given the restoration plan,
updated traveler decisions result in re-assigned traffic flows on the restored transportation network
and corresponding system performance after the restoration effort. This updated network-wide
system performance according to traveler decision-making is taken into account for the city
administrator’s decisions in terms of the restoration planning. Therefore, a bi-level optimization
problem is appropriate for modeling the RPO building-block problem. The formulation of the
overall bi-objective bi-level RPO problem proposed in this work is illustrated as follows.

Upper-level problem:

Z l,jl's

min| * . i} (2)
Zxa t,(x,,c,)
S't' ZMa,l .ya,l +Ma,2 .ya,Z SB (3)
aceA
ya,l+ya,2 < 1’ va < ‘Z (4)
e{0,1},Vaed, =12 (5)

‘hs

where, x” —argmanI (@, Cpp+CoyYVurTCunVur - ZI (w)dw (6)

IS WA )

Lower-level problem:

mmZI (@, ¢,0+ €y Vs tCnYonr MO - ZJ%D w)dw (8)
s.t. Zf,,s,k =q, vr,s )
k
fox20  Vikrs (10)
q,20 Vr,s (11)
X, =22 a0 Va (12)
rs k

Referring to Equation (2), the objective function of the upper-level problem is to minimize the two
system resilience measures, i.e., total unmet demand and total travel time (note that in this study
smaller resilience measurement indicates better resilience performance). The total budget for the
whole restoration plan is restricted in constraint (3). Constraints (4) and (5) guarantee that for each
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candidate link, either restoration work with higher (level 1, 7 =1 ) or lower (level 2, /=2 )
resource consumption is adopted (when y,,+y,,=1) or no action is taken (when y,,=0,y,, =0).
t,(x,,c,) in Equation (2) is the travel time function.

The Bureau of Public Roads (BPR) function is adopted as the travel time function in this
work:

4
£, (x,,y,) =104140.15) — s (13)
ca + ca,lya,l +ca,2ya,2

Table 1 summarizes the notations used in the bi-objective bi-level problem formulation.

Table 1 Notations in proposed bi-objective bi-level problem formulation.

Notation Explanation

a Link index

X, Flow on linka; X=(...,x,,...)

t, Travel time on linka ; t=(...,¢,...)

€00 Original capacity of link a before disruptive event

C.o Capacity of link a at the moment after disruptive
event

Zl Candidate links with capacity augment level 1

22 Candidate links with capacity augment level 2

;12;11 U ;12 All candidate links

C,1» Vae 4, Capacity augment for link @ with level 1

C,0o Vae Zz Capacity augment for link a with level 2

M, ,Vae 4, Cost for link a with capacity augment level 1

M,,,Vae Zz Cost for link a with capacity augment level 2

Vs Va € A U A,,[=1,2 Binary variables, 1 indicates that corresponding
plan is adopted, 0 means not

N Node (index) set

A Arc (index) set

K, Set of paths connecting O-D pair 7 —s;
reR,seV¥

frsk Flow on path k connecting O-D pairr — s ; then for

each O-D pairr—s, f* :(...,fmk,...) ; for all O-D
pairs f=(....f",...)

Lk Travel time on path k connecting O-D pair r—s;
t"“':( t ) ; for all O—Dpairst:(...,t”,...)

R S

q, Trip rate between origin » and destination s ;
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5 57 - {1 if link a is on path k between O-D pair r-s

ak —

0 otherwise
A" = (...,5;?,(,...) is for O-D pair r —s

A=(....A",...)is for all O-D pairs

u, Minimum travel time between r —s
D, () Demand function between r —s
-1
Dy () Inverse demand function between r — s

Origin node index

Destination node index

. Travel time on the pseudo link between O-D pair
r—s

Flow on pseudo link between O-D pair r—s

(N
Z
)

Total demand between O-D pair r —s before special
event

3
>

w)

Unmet demand between O-D pair -

b
>

Total Travel Time in the system before restoration

Total Travel Time in the system after restoration

b) \ﬂ Oﬂ

(=]

Total Unmet Demand in the system before
restoration

Total Unmet Demand in the system after restoration

\b)

3.3. Formulation of Lower-level Problem by EUE Model
For the lower-level problem, to quantify unmet travel demand, the EUE model (Daskin and Sheffi,
1985) was applied to depict traveler route choice behavior and address the imbalance between
transportation service supply and travel demand.

Traditionally, NDP models assume that travel demand is given and fixed, and driver route
choice behavior is characterized by a User Equilibrium (UE) problem (Yang and Bell, 1998). The
UE problem with a fixed demand can be formulated as follows (Daskin and Sheffi, 1985):

min z(x,q) = Zfoxa t,(0)w (14)

s.t.me,k =q,. vr,s (15)
k

frss 20 Vk,r,s (16)

q,.20 Vr,s (17)

However, as the NDP generally involves long-term investment in a road network that consequently
influences travel demand in the system, assuming a given and fixed travel demand is not realistic.
Therefore, the EUE model was developed to incorporate the elasticity of travel demand into the
NDP (Gartner, 1980). In the EUE model, travel demand between an O-D pair varies with travel
cost between that O-D pair under user equilibrium, which is depicted by a demand function. For
NDP with elastic demand, the equilibrium travel demands between all O-D pairs and their traffic
flow distribution on the network under a given capacity expansion plan can be obtained by solving
the elastic-demand UE model.

10
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In this work, the EUE model is used to depict traveler behavior and address the imbalance
between transportation service supply and travel demand in the lower-level RPO problem
formulation. As the event leads to a large-scale or severe degradation of road capacities within a
short time period, a significant imbalance between travel demand and network capacity supply
emerges. Moreover, travelers are more sensitive to road restoration status in the system within the
RPO context. Therefore, although the time scale of RPO is relatively shorter than that of NDP,
there is plenty of demand elasticity in the RPO problem. Hence, EUE is appropriate for modeling
traveler behaviors and addressing the imbalance between supply and demand after a disruptive
event.

The lower-level objective function of the RPO problem is shown in Equation (8). D' ()
is the inverse of the monotonically decreasing demand function D, (-) between the O-D pair 7 —s.

The demand function relates the number of trips D _ to the minimum travel timeu _on the

road network between rands . The Elastic Exponential Demand Function is adopted in this work
(SATURN, 2012):

D =D exp(ﬁ(urs Ju’. —1)) (18)

D’ and u) are defined as the travel demand and travel cost (minimum travel time in this work)
between O-D pair », sat a referencing scenario. The cost matrix is defined as costs with the unit of

rs? rs

second. In a typical elastic traffic assignment model, it is widely accepted to select the (DO u' )

at the base year where the demand matrix, road network topology, and link capacities are known,
and the costs are acquired by user equilibrium accordingly. Thus, (Dfs, ufs ) lies on both the supply

0

curve and the demand curve. In this work, (D,.S, u,os) is selected as the corresponding variable at

the user equilibrium before the event occurs.
Accordingly, the Inverse Demand Functions can be defined as:

u, =ul. +(u),/B)In(D, /D) (19)

Similar to typical UE model, Equation (9) is an O-D flow conservation constraint. Equations (10)
and (11) are non-negative constraints for path flows and O-D demand, and Equation (12) relates
link flows to path flows through link-path incidence matrix.

4. Solution Algorithms for Proposed Bi-objective Bi-level Restoration Plan Optimization
Problem

4.1. Solution Algorithm for Lower-level EUE Problem

In this subsection, a network representation method is proposed to solve the Elastic-demand UE
problem. The traditional UE problem can be efficiently solved using the Frank-Wolfe method
(Daskin and Sheffi, 1985). Shefti summarized two different network representations that can be
applied to transform the EUE problem to an equivalent traditional UE problem—zero-cost
overflow formulation and excess-demand formulation (Daskin and Sheffi, 1985), as illustrated in
Fig. 2(b) and Fig. 2(c), respectively. For the zero-cost overflow formulation, Fig. 2(b) shows a
modification of the basic network in which every O-D pair is augmented to include a “dummy”
origin node (designated »'in Fig. 2(b)). For the excess-demand formulation, the variable £,

rs,p

11
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denotes the excess demand, i.e., the trips cannot be accommodated between origin r and
destination s ( f,, ,=D,, — D, (u,)). In this network representation, a pseudo link carrying the flow

f.,., 18 defined as directly connecting the origin to the destination for each O-D pair, as shown in
Fig. 2(c) (Daskin and Sheffi, 1985).

# Basic
Network Network

(a)

# Basic
Network

# Basic
Network

(c) (d)

Fig. 2. Network representations: (a) basic network; (b) added node and links for O-D pair r-s in
zero-cost overflow network representation; (c) excess-demand network representation for O-D
pair r-s; (d) modified excess-demand network representation.

The excess-demand network representation is more straightforward for quantifying the
unmet demand for resilience analysis of a transportation network. However, if there is a link
connecting the origin to the destination of an O-D pair in the original network, it is necessary to
distinguish the origin link @, and the pseudo link a,, ,. Therefore, a “dummy” destination node

is proposed (designated s'in Fig. 2(d)) for the excess-demand network representation. The new
network representation—the modified excess-demand network representation—is illustrated in
Fig. 2(d).

Therefore, the pseudo link cost-flow function is defined as follows to relate the cost u, ,

on the pseudo link to its flow f, .
u,, =u’+(u,/B)n((D, - £,,)/D") (20)

where D _ is the total demand between O-D pair r,sbefore the special event. D is a referencing
point on the demand function, which is also chosen as the total demand between O-D pair r,s
before the special event. Therefore, D, and D° have the same value in this study.

With the network representation and the link cost-flow function (i.e., inverse demand
function) defined for the pseudo links, the EUE problem can be solved using the Frank-Wolfe
algorithm.

12
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4.2. Solution Algorithm for Single Objective Upper-level Restoration Plan Optimization
Problem

The modified active set algorithm (Wang and Pardalos, 2017) is applied to solve the single
objective upper-level optimization problem to minimize one of the two resilience measures or their
combination. Binary variables y,,,Vae 4 UA4,,[=12are introduced to denote the control

variables in the upper-level problem. y, , =1indicates that the corresponding plan is adopted,
v, , =0 otherwise, where a is the link index to perform this restoration and / is the indicator of

two resource allocation levels. /=1 indicates restoration work with higher-level resource and more
capacity restored, /=2 indicates lower-level resource assignment and less capacity restored.
Then, all binary variables y_,are classified into two active sets:

Q,={(a.l): y,, =0} 21
Q ={(a.D:y,, =1} (22)
The restoration work plan can be represented by these two active sets. Changing one or several
(a,7) from Q to €, indicates a change in the restoration work plan. Then, constraints (4) and (5)

of the upper-level problem can be reformulated as:
V., =0, Y(a,l)eQ, (23)
v, =1, ¥(a,l)eQ, (24)
g, ,and are introduced to alter the representation of restoration work plan, 2,andQ,. g =1
means shifting (q,/) from Q,to Q,, 7, , =1means shifting(a,/) from €,to €. Then, the change

of the upper level objective function is estimated by the following expression:

Z //i’a,lga,l_ Z /ua,lha,/ (25)

(a,1)eQ, (a,l)ey

where 2, and 4 , are the multipliers corresponding to constraints y ,=0 and y , =1,

respectively. 4, ,and 4, can be calculated through:

{ya,l =0:4,,=R'-R M, =0 26)
Yoy =1:4,,=0 M, =R-R

where R is the value of upper-level objective function before the change of €2,and €2,. R’ is the
objective function value after the change, indicated by g, ,and £, ,. Referring to Equation (27), R
could be R indicating Total Unmet Demand (UMD), R, indicating Total Travel Time (777)

corresponding to two resilience measures, or the combination of them with more details explained
at the end of Section 4.3.
After obtaining all feasible ( o h, ,) pairs subject to Constraints (3)—~(5) and

corresponding changes of the upper-level objective function estimated by Equation (25), the g,
and 5, to reduce the resilience measure is found. Then, active sets €2, and €2, leading to the

minimized upper-level objective function can be calculated iteratively. More details about the
implementation procedure and the pseudo code of the modified active set algorithm can be found
in Wang and Pardalos (2017).

4.3. Solution Algorithm for Bi-objective Optimization Problem

13
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The weighted-sum method (Aneja and Nair, 1979) is adopted to find all supported non-dominated
points for the overall bi-objective optimization problem. More details regarding this solution
method are illustrated through the pseudo code and the step-by-step introduction. The basic idea
is that firstly the two extreme endpoints RT and R? on the Pareto Frontier are obtained through
solving the Lexicographic Optimality Problem (Ben-Tal, 1980). Then, by iteratively solving the
following intermediate optimization problem to search a rectangle area defined by the extreme
points R! and R? of the rectangle area, it can obtain all supported non-dominated points in the
criteria space.

ET‘IEBTCI{MRKX) + 2R, (%)} (27)

subject to R(x) € Rec( RY, R?)

where R;(x) and R,(x) indicate two objective functions, i.e., minimizing two resilience
measures; R! and R? indicate two extreme points; Rec( R, R?) indicates the rectangle with two
extreme endpoints R, R? . The objective function of the intermediate problem is parallel to the
line that connects the extreme points, R! and R?, of the current rectangle area to be searched,
Rec( R, R?), in the criterion space. Therefore, the weights to get the objective function of the
intermediate problem are calculated as follows: A; = R — R2 and A, = R? — R}, where R}
indicates the second objective value for the extreme point R* , R? indicates the first objective value
for the extreme point R? , etc.

Algorithm Weighted Sum Method

Procedure

Step 1. Compute endpoints RT and RE.

Step 2. Create list List. create(L).

Step 3. Add points R” and R? to list L, List.add(L,R"), List.add(L, R?).

Step 4. Create queue P with rectangles to be searched, PQ.create(P). Add rectangle Rec(R”, R?)
to queue, PQ.add(P,R(R",R®)).

Step 5. Optimize weighted sum single objective optimization problem l;lei)?{/llRl(x) + 22R5(x)};

if optimized point in criteria space satisfies criteria shown below, this point is newly-found non-
dominated point that will separate the original rectangle to smaller rectangles to be searched.
While queue is not empty, Step 5 will be performed iteratively.
while queue P is not empty, not PQ.empity(P) do
PQ.pop(P, Rec(R', R?))
x* — argmin(R} — R )R1 () + (R} — RDR, ()
R < R(x")
if (R} — R3 )Ry + (R — R1R, < (R} — R5)RT + (R? — R]))R] then
List.add(L,R)
L PQ.add(P,R(R',R))
L PQ.add(P,R(R,R?))

return L
end while
end procedure

This intermediate optimization problem returns either one of R and R? or a convex
combination of R! and R?. If the optimized result in the criteria space (R}¢Y, RT") satisfy the
following criteria A; RT"®Y + 1,R¥*Y < A,R] + A,R3, the optimum point R™®Y is a newly found

14
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non-dominated point which will separate the original rectangle to smaller rectangles to be searched.
The pseudo-code for the algorithm designed for the Bi-objective RPO problem is illustrated as
follows.

Following the pseudo-code, the Weighted Sum Method can be implemented to solve the
proposed bi-objective bi-level RPO problem, within which the intermediate problem
gcneijrcl{AlRl (x) + A3R,(x)} is solved by the modified active set algorithm and the network

representation method introduced in Subsections 4.1 and 4.2. More specifically, the upper-level
objective of the intermediate problem is min R, (x) when computing the endpoint R”, min R, (x)
when computing the endpoint R? for solving the Lexicographic Optimality problem in Step 1, or
min {A; R, (x) + A,R,(x)} for solving the intermediate problem in Step 5.

5. Numerical Experiments

Numerical experiments are performed to demonstrate the validity, capability, and flexibility of the
proposed bi-objective bi-level optimization model for solving the RPO problem. The proposed
RPO method was applied to a typical road network in Sioux Falls, to illustrate the implementation
procedures and verify the effectiveness of this method.

5.1. Sioux Falls Network and Damaged Links Selection (Failure Scenarios Generation)

The Sioux Falls network comprises 24 nodes and 76 links. In the topology shown in Fig. 3, 14
nodes marked in green serve as both origins and destinations in the system. In total, the network
has 182 O-D pairs. The O-D trip matrix is referenced as Table 2 in Wang and Pardalos (2017), and
the link capacity and free-flow travel time under normal conditions are referenced as Table 1 in
Wang and Pardalos (2017).

The Sioux Falls network is a typical network in the existing literature, and there could be
many different combinations of damaged links. To generate experimental scenarios with
acceptable computing expense while reserving the diversity of the combinations of damaged links,
15 potentially damaged links in the system were selected as a subset of links from three different
categories—edge links, links in the central area of the network, and links connecting the edge and
the central area. As a result, links with indexes 1, 2, 4, 11, 13, 14, 17, 26, 27, 31, 36, 37, 39, 56,
and 60 were chosen as the subset with 6 links (1, 2, 37, 39, 56, 60) at the edge of the network, 5
links (11, 13, 31, 26, 27) at the central area of the network, and 4 links (4, 14, 17, 36) connecting
the edge and central areas of the network. This selection of potentially damaged links made it
possible to represent different types of disruptive events, given that a hurricane or sea-level rise
tend to induce capacity degradation at the edge of the network, an earthquake tends to cause
collective disruption, and floods could affect a more disperse area. The selection of 15 potentially
damaged links made it possible to generate various failure scenarios within this subset and to
perform statistical analysis for the generated scenarios later. For each experimental scenario, N,

links were randomly selected from the noted 15 links.

After a given disruptive event, the capacity of the selected link(s) was assumed to be
decreased to 1/3 of the original link capacity. In other words, the damaged links were selected
randomly, whereas the capacity deterioration ratio was deterministic in this work. Note that some
disruptive events could cause the capacity degradation of some links and complete loss of capacity
of some other links, i.e., the capacity deterioration ratios for links in the network could vary. The
methodology proposed in this study could be applied to those experimental cases as well.
Furthermore, it was assumed that the damaged links could be restored to two levels of capacity
with corresponding two levels of restoration expenditure (see Table 2). This numerical experiment
configuration enables verification of effectiveness and flexibility of the restoration plan

15
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optimization method proposed in Section 3 and Section 4.
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Fig. 3. Sioux Falls network topology.

Table 2 Potential damaged links and their repair costs.

Link index Free-flow travel Capacity Costl Increased Cost2 Increased

time (min) (10°veh/h) capacityl capacity?2
1 3.6 6.02 8 6.02 4 4.01
2 2.4 9.01 8 9.01 4 6.01
4 3 15.92 14 15.92 7 10.61
1 1.2 46.85 32 46.85 16 31.23
13 3 10.52 10 10.52 5 7.01
14 3 9.92 10 9.92 5 6.61
17 1.8 15.68 12 15.68 6 10.45
26 1.8 27.83 20 27.83 10 18.55
27 3 20 16 20 8 13.33
31 3.6 9.82 10 9.82 5 6.55
36 3.6 9.82 10 9.82 5 6.55
37 1.8 51.8 34 51.8 17 34.53
39 2.4 10.18 10 10.18 5 6.79
56 2.4 8.11 8 8.11 4 5.41
60 2.4 8.11 8 8.11 4 5.41

* Cost assumed as unit-less.
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In the follow two subsections, the optimized solutions for a given failure scenario through
criteria space analysis (see Section 5.2) are presented to demonstrate how the proposed method
can support decision-making for road network restoration. Furthermore, to examine system
performance enhancement after the restoration effort, an additional five groups of experiments

were conducted assuming there are 1 to 5 links damaged, i.e., N, =1~5 for each group, and

three budget levels, Budget=15, 35, 55. As shown in Section 5.3, for all the scenarios, system
resilience measures, both 777 and UMD, were computed before and after the restoration of
infrastructure, as well as the corresponding restoration costs with optimal restoration plans.

5.2. Numerical Experiment Results

We take a specific failure scenario with links (1, 2, 4, 14) damaged as an example to show
the bi-objective RPO optimization results and also to interpret the impact of budget level on the
results. The feasible sets of the RPO problem with different budget levels are calculated. Then, the
feasible solutions are shown in the criteria space with x-axis indicates the UMD and y-axis

indicates the TTT. More specifically, for a feasible solution ¥ =(...,y,,,...),Vae 4 U4, [=12
satisfying the budget constraint, we can obtain the corresponding UMD and TTT after restoration
and then draw the solution points (UMD, TTT) in the criteria space accordingly. Fig. 4 (a) shows
the feasible set enabled by different budget levels in the criteria space. The feasible set with higher
budget £, contains that with lower budget F . The feasible set enabled by additional budget is

the difference between £, and F . Suppose the feasible set enabled by budget level B, is denoted
as F,

othen FE=F F=F —F_, fori=2...5.InFig. 4, we plotted F,i=1...5 with various colors
indicating each F: . The circle marker indicates the points on the Pareto Frontier that can be found

by the Weighted Sum Method. Due to the non-Convexity of the Pareto Frontier in criteria space,
not all solution points on the frontier can be found.

1200 T T T T T T T
2 ° Budget=15
11901 «  Budget=25 T
2 . Budget=35
1180 ® ° : o ° Budget:45 n
L Budget=55
170 2 8 on Pareto Frontier Found |
. L
= 1160 - A .
s
- L
1150 - C . 1
% ° . o
1140 | .
1130 - s
®
1120 1 1 1 1 1 1 1
16 18 20 22 24 26 28 30 32

UMD
Fig. 4. Feasible solutions in criteria space enabled by different budget levels and
solution points on Pareto Frontier found by Weighted Sum Method.

Fig. 5(a) and Fig. 5(b) shows Pareto Frontiers for Budget=15 and Budget=55, respectively.
It is observed that the two system performance metrics (UMD and T77) contradict each other, and
a higher budget level enables denser and better solutions on the Pareto Frontier. With Budget=355,
more solutions with high 777 and low UMD are obtained, such as those in dashed-line circle at
the upper left corner of Fig. 5(b).
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Fig. 5. Criteria space analysis (a) Pareto Frontier with B=15; (b) Pareto Frontier with B=535; (¢)
Mean 7. vs. UMD with B=55; (¢c) Min T vs. UMD with B=355.

4
Furthermore, we define travel time ratio 7, , = % to measure the efficiency of the system.

a

For each link a, {, ,is the free flow travel time on link a and 7, is the travel time on link a after

restoration. Given each restoration solution, Mean 7. and Min 7., are calculated as follows:

2

Mean T =-*

T

r,a

L

Min 7, = min(7, ),
where A indicates the link set, N, = |A| is the number of links in the system. Higher Mean 7

ac i

indicates better “efficiency” on average for all trips in the system. Min 7 indicates worst case

performance at single link level.
Then, we plot the Mean 7 and Min 7. vs. UMD in Fig. 5(c) and Fig. 5(d), respectively.

The marker size in these two subfigures indicates the cost of the restoration plan for each solution.
In Fig.5 (c), it is observed that the budget constraints are not always binding. The three solutions
marked by the dash-dotted ellipse in Fig. 5 (b) and Fig. 5 (c) are corresponding to each other.
Although the three solutions show similar 777 and UMD in Fig. 5(b), their Mean 7, is quite

different. Thus, Mean 7 provides more information to decision makers. In Fig. 5(d), Min 7 vs.
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UMD are plotted. Min 7, has larger variance over solutions, compared to Mean 7 . The solutions
could be grouped to four clusters in terms of Min 7, with larger UMD leading to lower Min T .

Therefore, the solutions with less UMD can not only serve more travel demand but also improve
the worst-case performance of the system. These observations show that the cross-reference among
TTT, Mean T and Min 7. vs. UMD can help decision-makers compare the solutions through three

different aspects, which leads to more comprehensive choice of restoration plan.

5.3 Statistical Analysis of Experiment Results for Various Failure Scenarios
More failure scenarios were generated to perform statistical analyses of the 777 and UMD before
and after restoration work. For each failure scenario, we calculated the 777 and UMD before and

after the restoration work, indicated as (7, ﬁo) and (7, bf ), respectively. There are C;; = 3003

cases when randomly selecting 5 links to be damaged from the 15 potential links. The box plot for
the resilience measures, both 777 and UMD before and after restoration work and the cost-
efficiencies of the restoration plan with 1-5 damaged links are shown in Fig. 6. As shown in Fig.
6(a) and 6(b), the median, upper quartile, and lower quartile of 777, and T77, all monotonically

decrease with the increased number of damaged links. Furthermore, the median, upper quartile,
and lower quartile of 777, are larger than those of 777;. As shown in Fig. 6(c) and 6(d), the

median, upper quartile, and lower quartile of UMD, and UMD, all monotonically increase with
the increased number of damaged links. The median, upper quartile, and lower quartile of UMD,

are smaller than those of UMD, . These phenomena can be interpreted jointly with the observation
in Fig. 4 showing that the two objectives, min 777 and min UMD, do contradict each other.

180 T 4 s 1180 é Lo
1160 [ T Lo $ 160 [ | E E
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Fig. 6. Box plots of 77T before (a) and after (b) restoration
and UMD before (c) and after (d) restoration

The two objectives, minimizing total unmet demand and total travel time provide decision-

19



[, T SO O'S T NS I

19
20

21
22
23
24
25

Zhao & Zhang 20

making support to choose an optimal restoration plan while balancing mobility and accessibility.
As TTT and UMD have different units, we further define the total travel time reduced percentage,
TTT,, (%), and the unmet demand reduced percentage, UMD, , (%), to better indicate the system

performance in terms of two different measures in spite of their different units.

T,-T,
TTT,, = 2

0

A A

~ (28)

UMD,, = OTf

0

Fig. 7 shows the bivariate histograms of 777,, and UMD,, with 4 or 5 links damaged in
the system and budget levels of 15, 35, and 55. The motivation to do this visualization was to
demonstrate how the optimized (777,,,UMD,, ) jointly and statistically distributed over all the

failure scenarios with N, links damaged and different budget levels. It is observed that with the

dam
increase of Budget , the grid cells with higher occurrence frequencies move from the lower right
corner to the upper left corner, with the lower right corner indicating higher 777,, and lower
UMD,, and the upper left corner vice versa. Such observation means that with a higher budget,
there are more optimized restoration plans that can reduce the unmet demand. Nevertheless, lower
budget levels could also lead to diverse options in terms of trading off between 777,,and UMD, .

This observed trend is even more clear with N, =35 compared to those with N, =4.

dam

Budget=15, N =4

Budget=35, Ndam =4

Budget=55, N =4

=]

Budget=15, Ndam =5

86420 2 4

Fig. 7. Bivariate histogram of Reduced Percentages of 777 and UMD for N,
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and Budget=15, 35, 55. X axis indicates the 777 reduced percentage (%) after restoration.
Y axis indicates the UMD reduced percentage (%) after restoration.
Color bar indicates frequency of solutions’ occurrence in this grid cell.

6. Conclusions
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In this study, a roadway infrastructure restoration plan optimization method is proposed,
formulated as a bi-objective bi-level optimization problem, to enhance system resilience
performance in terms of total unmet demand and total travel time. This method makes it tractable
to reduce not only total travel time from a mobility perspective but also unmet demand in a
damaged system from an accessibility point of view. The bi-objective problem is solved by the
Weighted Sum Method and by decomposing the problem into bi-level problems that are solved by
a modified active set algorithm and a network representation method.

Numerical experiments were performed to demonstrate the validity, capability, and
flexibility of the proposed bi-objective bi-level optimization model for solving the restoration plan.
The restoration plan optimization method was applied to a typical road network to illustrate the
implementation procedures and verify the effectiveness of the method. The criteria space analysis
of one failure scenario demonstrates that two perspectives to measure system performance (UMD
and TTT) contradict each other. Furthermore, travel time ratio, the ratio between free flow travel
time and real travel time after restoration for each link, is defined and can provide further
information to distinguish solutions that have similar performance in terms of 777 and UMD. The
results demonstrate that cross-reference the travel time ratio with TTT and UMD can help decision-
makers make more comprehensive solution choices. Furthermore, statistical analysis over five
groups of failure scenarios were performed with 1-5 links damaged in the system. To address the
different unit issue of 777 and UMD, we defined the reduced percentages of 777 and UMD
compared with those before restoration. Bivariate histograms of the optimized reduced percentages
of TTT and UMD are drawn to demonstrate how they are jointly and statistically distributed over
all failure scenarios. The results show that although the lower budget could provide diverse
solutions on the frontier trading off between reducing 777 and UMD, higher budget levels provide
more options to further reduce UMD.

This study could be extended and strengthened in the following directions. First, it would
be interesting to evaluate the performance of the proposed method on different typical road
networks to validate some observations in this work. Second, given the outcomes from different
representative road networks, a study could be conduct on if and how the network topology, design
features, and demand distribution patterns of the system impact the optimal restoration plan and
corresponding system resilience performance. This study focused on the resilience analysis of
transportation systems without considering their interdependence with other Cls; a promising
direction would be to model the interdependence between different Cls and propose effective
decision-making support methodologies for restoration planning considering pooled budget and
resource constraints for interdependent Cls.
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