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ABSTRACT 1 
 2 

Disruptive events lead to capacity degradation of transportation infrastructure, and a good 3 
restoration plan could minimize the aftermath impacts during the recovery period. This is 4 
considered one aspect of resiliency for transportation systems. Although unmet demand has been 5 
proposed as one measure of resilience for freight transportation, it has rarely been used for general 6 
transportation systems. This study takes unmet demand and total travel time as two measures in 7 
modeling the restoration plan problem and proposes a bi-objective bi-level optimization 8 
framework to determine an optimal transportation infrastructure restoration plan. The lower-level 9 
problem uses Elastic User Equilibrium to model the imbalance between demand and supply and 10 
measures the unmet demand for a given transportation network. The upper-level problem, 11 
formulated as bi-objective mathematical programming, determines optimal resource allocation for 12 
roadway restoration. The bi-level problems are solved by a modified active set algorithm and a 13 
network representation method derived from Network Design Problems. The Weighted Sum 14 
Method is adopted to solve the Pareto Frontier of this bi-objective optimization problem. The 15 
proposed restoration plan optimization method was applied to a typical road network in Sioux 16 
Falls, to verify the effectiveness of the methodology. For a given failure scenario, the Pareto 17 
Frontier of this bi-objective bi-level optimization problem with various budget levels, cross-18 
referring to the travel efficiency of each solution, was illustrated to demonstrate how the proposed 19 
method can support decision-making for road network restoration. To further study the 20 
performance of the proposed method, different scenarios were generated with one to five links 21 
disrupted and the proposed methodology was applied with different budget levels. The statistical 22 
analysis of the optimized solutions for these scenarios demonstrates that a higher budget could 23 
help reduce unmet demand in the system by providing more restoration options. 24 
 25 
 26 
 27 
 28 
Keywords: Transportation system resilience, Bi-level optimization, Bi-objective optimization, 29 
Elastic User Equilibrium, Criteria space analysis 30 

31 
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1. Introduction 1 
The resilience of Critical Infrastructure (CI) is essential for society to resist, respond to, and 2 
recover from disruptive events. A transportation system is one of 16 CI systems identified by 3 
Presidential Policy Directive 21 (White House, 2013). Efficient operation of a transportation 4 
system is particularly important in alleviating the impacts of disruptive events, and the repair and 5 
reconstruction of transportation infrastructure consumes tremendous material and human power; 6 
for example, Hurricane Katrina was estimated to cost more than $32 billion for the restoration of 7 
transportation infrastructure. Therefore, the effective planning of transportation infrastructure 8 
restoration tasks and resource allocation are of great concern for rapid and cost-efficient recovery 9 
in the aftermath of disruptive events. This work focuses on the restoration stage of a transportation 10 
system to provide effective decision-making methodologies to improve system resilience.   11 

In proposing decision-making methods acting as force multipliers for effective system 12 
restoration, the first step is to determine the measurement of restoration work effectiveness. In this 13 
study, both total travel time and unmet demand in a transportation system are considered as 14 
resilience measures. A disruptive event such as an earthquake, flood, hurricane, landslide, or 15 
malicious act could lead to capacity degradation for some links and complete cutoff for others. 16 
This leads to increased travel time for some travelers compared to normal days. Furthermore, due 17 
to capacity degradation or loss, partial travel demand cannot be served by a devastated road 18 
network, termed as unmet demand, which has a serious impact on travelers, regulatory agencies, 19 
and industries.  20 

Unmet demand has not been properly considered or included in most resilience measures 21 
in the existing literature. As one of the few works considering travel demand that cannot be served 22 
after a disruptive event, Chen and Miller-Hooks (2012) defined system resilience as demand that 23 
can be satisfied with a hard capacity constraint for the freight network flow model. In another work, 24 
Miller-Hooks et al. (2012) refined the aforementioned model and followed the same resilience 25 
measure based on unmet demand for freight transportation with further consideration of the 26 
balance between funds allocation to preparedness and recovery activities. However, network-wide 27 
traffic flow modeling and the strength of capacity constraint of freight transportation are essentially 28 
different from those of a general transportation system. (For more details about these differences, 29 
see Section 2). Therefore, although the concept of unmet demand can be borrowed from freight 30 
transportation literature, the methodology to quantify unmet demand and then measure system 31 
resilience accordingly is not applicable in this work. In addition to freight transportation system 32 
resilience analysis, unmet demand has been used in network-wide system performance evaluation 33 
and strategy optimization during the evacuation stage (Naghawi & Wolshon, 2014). However, the 34 
time scale and objective functions of evacuation problems are different from those of the 35 
restoration planning problem.  36 

In this work, a bi-objective bi-level optimization problem was formulated to enhance 37 
transportation system resilience in the restoration phase after a disruptive event. This phase is 38 
different from the response phase shortly after the disruptive event. During the restoration phase, 39 
the infrastructure is waiting for repair, but daily travel demand has recovered to a relatively normal 40 
level, although some demand cannot be satisfied by the degraded infrastructure network, i.e., 41 
unmet demand. In reality restoration tasks could have multiple capacity recovery levels 42 
corresponding to various resource consumption (Vugrin et al., 2014), partially due to limited 43 
budget and resources and the need to restore multiple road sections to serve regional needs. In this 44 
study, the objective of the upper-level problem is to minimize total travel time and to minimize 45 
unmet demand by determining road sections to be restored and corresponding capacity recovery 46 
levels. The lower-level problem is to model road user travel behavior and address the imbalance 47 
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between degraded supply and recovered demand of the transportation system after the event. 1 
Elastic User Equilibrium (EUE) traffic assignment is applied to this circumstance to provide 2 
network-flow assignment that result as input for the upper-level problem. The bi-level formulation 3 
serves as a constituent part for the overall bi-objective bi-level problem formulation. The Weighted 4 
Sum Method was adopted to solve the formulated bi-objective bi-level problem iteratively.  5 

The remainder of this paper is organized as follows. Section 2 includes a thorough literature 6 
review that focuses on various resilience measures and the intrinsic connection and difference 7 
between the Network Design Problem (NDP) and the Restoration Plan Optimization (RPO) 8 
problem. Section 3 presents the bi-objective bi-level optimization formulation of the RPO problem 9 
and minimizes the two aspects, i.e., total travel time and unmet demand, as two objective functions. 10 
Section 4 proposes the solution algorithm for the optimization problem, and Section 5 applies the 11 
RPO method to a typical road network to illustrate the implementation procedures, verify the 12 
effectiveness of this method, and further interpret the empirical analysis results from a criteria 13 
space analysis perspective for the bi-objective optimization. Results clearly show how the two 14 
different optimization objectives (minimize total travel time and minimize unmet demand) trade 15 
off with each other and how the budget for restoration work could influence optimization results. 16 
The last section summarizes the contributions of this work and discusses future research directions. 17 
 18 
2. Literature Review  19 
2.1. Resilience Measurement 20 
There are two types of resilience measures for transportation systems, network topology-based and 21 
system performance-based. Network topology-based measures include origin-destination (O-D) 22 
connectivity (Zhang et al., 2015a), average reciprocal distance (Zhang et al., 2015a), average 23 
degree (Leu et al., 2010; Zhang et al., 2015a), diameter (Zhang et al., 2015a), cyclicity (Zhang et 24 
al., 2015a), betweenness (Leu et al., 2010), network coverage (Chang and Nojima, 2001), and 25 
travel alternative diversity (Xu et al., 2015). System performance-based measures include travel 26 
time, travel cost, and environmental factors (Omer et al., 2013), travel demand (Chen and Miller-27 
Hooks, 2012; Miller-Hooks et al., 2012), and consumer surplus-based (Soltani-Sobh et al., 2015) 28 
resilience measures. As both total travel time and unmet demand are considered to evaluate the 29 
restoration plan in this research effort, it falls into the system performance-based resilience 30 
measures category.  31 
 Among these existing system performance-based resilience measures, travel time-based 32 
measures are the most widely applied (Faturechi and Miller-Hooks, 2015; Morohosi, 2010; Zhang 33 
et al., 2015a). For instance, Faturechi and Miller-Hooks (2014) defined resilience as the network’s 34 
ability to resist and adapt to disruption, with total travel time employed in assessing system 35 
resilience. As illustrated in Fig. 1, system resilience is measured by travel time resilience, 𝑅𝑇,𝐵 , 36 
which is formulated as the reciprocal of total travel time at the end of the response stage (𝑡𝑡𝑓) 37 
divided by the reciprocal of total travel time at the time just before the event occurred (𝑡𝑡0). System 38 
resilience optimization methods with the objective to maximize travel time-related measures were 39 
proposed accordingly (Faturechi and Miller-Hooks, 2014), which aid decision-makers from a 40 
mobility perspective. 41 
 42 
 43 
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 1 
Fig. 1. Travel time-based resilience measures. 2 

 * tt0 and ttf : total travel times at the end of pre-event and response stages (Faturechi and Miller-Hooks, 2014) 3 
 4 

However, after catastrophic events such as flood or earthquake, roadway performance can 5 
be seriously affected, with huge capacity reduction of links and total loss of some links. There 6 
exists the possibility that partial travel demand cannot be accommodated by the degraded 7 
transportation system, and unmet demand has a critical impact on system level of service. 8 
Therefore, evaluation of network resilience performance without considering unmet travel demand 9 
can be biased and may lead to less cost-effective restoration plan results. To evaluate total travel 10 
time and unmet demand, it is necessary to properly model traffic flow assignment to capture the 11 
travel behavior to be integrated into system level performance representation. Until 2005, all 12 
previous resilience studies lacked consideration of traffic flow assignment mechanism. This gap 13 
was addressed in a study by Murray-Tuite (2006), in which a measure of transportation system 14 
resiliency was introduced and was composed of 10 dimensions, i.e., redundancy, diversity, 15 
efficiency, autonomous components, strength, collaboration, adaptability, mobility, safety, and the 16 
ability to recover quickly. The influence of traffic assignments, both system optimal and user 17 
equilibrium, were examined on four dimensions of the resilience measurement. In the present work, 18 
to model the imbalance between supply and demand more specifically, Elastic UE is adopted to 19 
capture traveler behavior and support the calculation of total travel time and unmet demand. 20 

The concept of unmet demand has been applied in freight transportation system resilience 21 
analysis and optimization. For example, Miller-Hooks et al. (2012) defined system resilience as 22 
demand that can be satisfied with a hard capacity constraint for the freight network flow model. 23 
However, the traffic flow assignment mechanism and the strength of capacity constraint of freight 24 
transportation are essentially different from those of a general transportation system. The network 25 
flow models for freight transportation system resilience analysis in Chen and Miller-Hooks (2012) 26 
and Miller-Hooks et al. (2012) were formulated as maximum flow problem (Liu and Mu, 2015; 27 
Righini, 2016). However, the network flow model for general traveler transportation systems 28 
applies either user equilibrium or system optimum. The other difference between freight 29 
transportation and general transportation problem formulation is capacity constraint. Capacity 30 
constraints for most freight transportation flow assignment models are hard capacity constraints, 31 
restricting flow on each arc to be less than the capacity (for example, Chen and Miller-Hooks, 32 
2012, and Miller-Hooks et al., 2012). In general transportation network design or operational 33 
optimization problems, traffic flow assigned on a link is allowed to be larger than the capacity, 34 
and the link performance function (such as the Bureau of Public Roads [BPR] function) is used to 35 
calculate the travel time of the link. Therefore, capacity constraint for the general traffic flow 36 
assignment model is a relatively soft constraint.  37 

tPre-event Response Recovery

ttf

tt0

tt
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In addition to freight transportation system resilience analysis, the concept of unmet 1 
demand has also been used in network-wide system performance evaluation and strategy 2 
optimization during the evacuation stage (Zhang et al., 2015b). For instance, Xie et al. (2010) used 3 
“percentage of evacuees arrived at destination” curves to evaluate system performance under 4 
different evacuation strategies. More recently, Zhang et al. (2015b) and Zockaie et al. (2014) 5 
leveraged the macroscopic productivity function—the Macroscopic Fundamental 6 
Diagram (MFD)—to perform network performance evaluation for evacuation strategy 7 
optimization. To reduce the likelihood of over-saturation in a transportation network during 8 
evacuation, an optimization model was proposed in Zhang et al. (2015b) to maximize evacuation 9 
throughput traffic for regional networks. The difference between transportation network 10 
performance analysis during the evacuation and restoration stages stems from both the time scale 11 
and the main concerns for performance evaluation. The evacuation stage is much shorter than the 12 
restoration stage; therefore, although mobility, accessibility, safety, etc., are common perspectives 13 
for performance evaluation of different stages, the evacuation stage performance evaluation needs 14 
more dynamic information due to a shorter time period and highly unstable system performance 15 
(Dixit and Wolshon, 2014). Therefore, most studies applied dynamic traffic assignment or traffic 16 
simulation to obtain dynamic traffic information for system performance evaluation during the 17 
evacuation stage (Cova and Johnson, 2002; Jahangiri et al., 2014; Lim and Wolshon, 2005; 18 
Murray-Tuite and Mahmassani, 2004; Murray-Tuite, 2006; Naghawi and Wolshon, 2010; Wolshon 19 
et al., 2015; Wolshon, 2009). This work focuses on the restoration stage (part of the recovery stage) 20 
of a transportation system when the infrastructure is still damaged or disrupted but daily travel 21 
demand has recovered to a relatively normal level. As the restoration stage has a longer time scale, 22 
a more macroscopic network flow model (Elastic UE) is adopted to obtain traffic flow information 23 
for restoration performance evaluation.  24 
  In addition to the literature in the context of freight transportation and evacuation, Nogal 25 
et al. (2016) and Nogal et al. (2017) analyzed the impact of demand variation on transportation 26 
network resilience. However, system resilience in those studies was quantified by travel time 27 
increase and traffic flow variations in the system without involving unmet travel demand. 28 

In summary, there have been extensive studies on transportation system resilience, and 29 
some researchers proposed to consider unmet demand in the context of freight transportation or 30 
evacuation strategy optimization. However, the problem setting, modeling, and system 31 
performance evaluation are different from a general transportation system in the context of 32 
restoration plan optimization. Therefore, in this study, we propose to enhance transportation 33 
system resilience in the restoration stage in terms of both mobility (to reduce total travel time) and 34 
accessibility (to reduce unmet demand) through a bi-objective bi-level problem formulation. As 35 
the constituent bi-level problem formulation is similar to the Network Design Problem (NDP), the 36 
literature on NDP was briefly reviewed; the connection and difference between the NDP and RPO 37 
problems are described in the next subsection.  38 
 39 
2.2. Connection and Difference between NDP and RPO Problems 40 
The RPO problem is a type of NDP under special circumstances. The objective of a typical NDP 41 
is to make investment decisions to optimize a given system performance measure, such as total 42 
travel cost in a network, while accounting for the route choice behavior of network users (Yang 43 
and Bell, 1998). Due to the complexity of problem formulation and computational challenges, 44 
NDP has been recognized as one of the most difficult problems in the transportation area. However, 45 
as NDP has great potential for solving planning, design, and congestion pricing problems, it has 46 
drawn abundant attention and effort from the transportation research community (Boyce and 47 
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Janson, 1980; Mingyuan and Attahiru Sule, 1991; Zhang et al., 2009a). NDP has been classified 1 
into two different forms—Discrete NDP (DNDP), concerning the addition of new links to an 2 
existing road network (Boyce and Janson, 1980; Mingyuan and Attahiru Sule, 1991; Zhang et al., 3 
2009a), and Continuous NDP, concerning the optimal capacity expansion of existing links (Friesz, 4 
1985; Hai, 1995). DNDPs are modeled as nonlinear integer programming models constrained with 5 
network equilibrium. Typical DNDP solution algorithms include Bender’s decomposition, branch-6 
and-bound methods, and heuristics.  7 

NDP and RPO problems have some similarities. As road section capacities decrease after 8 
an earthquake, flood, or hurricane, the imbalance between network-wide transportation service 9 
supply and travel demand emerges. This is similar to the imbalance between transportation service 10 
supply and travel demand caused by economic growth and land use relocation in NDP. However, 11 
these two problems are also different. As previously noted, the cause of the imbalance between 12 
transportation service supply and travel demand is different for NDP and RPO problems. 13 
Furthermore, the magnitude of the short-term impact of natural disasters on the network can be 14 
much more intense than the short-term impact of economic growth and land use relocation. Due 15 
to sudden capacity degradation or loss, there is sharp imbalance between supply and demand after 16 
disruptive events, leading to partial travel demand that may not be served by the devastated road 17 
network. To recover from catastrophic events, a basic concern of restoration is reducing unmet 18 
demand in the system. Therefore, the objective of RPO is to reduce not only total travel time but 19 
also unmet demand. Consequently, the tradeoff between reducing total travel time and unmet 20 
demand should be taken into account in RPO problem formulation. 21 

The following sections propose a bi-objective bi-level formulation to solve the RPO 22 
problem for a transportation system to enhance both mobility (by minimizing total travel time) and 23 
accessibility (by minimizing unmet demand). The bi-objective problem is solved by the Weighted 24 
Sum Method and the componential bi-level problems (to minimize the two objectives respectively 25 
or to minimize the combination of them) is solved by a modified active set algorithm and a network 26 
representation method. 27 

 28 
3. Restoration Plan Optimization Problem Formulation 29 
3.1. Two Resilience Measures—Total Unmet Demand and Total Travel Time  30 
As noted, existing research efforts involving unmet demand in resilience analysis are not sufficient 31 
to draw firm conclusions about how to improve system resilience accordingly, especially for a 32 
general transportation system in the restoration stage. To address this issue, the following two 33 
resilience measures are proposed in terms of both total unmet demand and total travel time: 34 
 35 

  (1) 36 
 37 

where D =  defines total unmet demand in the system and T =   defines total 38 

travel time in the system ( *
ax  is the equilibrium flow on link a, ac is the capacity for link a). The 39 

unmet demand is quantified by the elastic demand traffic assignment model, as elaborated in 40 
Section 3.3. These two resilience measures contradict each other; therefore, a bi-objective 41 
optimization problem formulation is adopted to tackle the RPO problem with two contradicting 42 
objectives given that these two objectives have different units, i.e., travel time and number of trips 43 
not satisfied by the infrastructure system.  44 

 45 
 46 
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3.2. Formulation of RPO as a Bi-objective Bi-level Optimization Problem 1 
Taking the proposed resilience measures as the two objective functions, restoration plan 2 
optimization after a disruptive event is formulated as a bi-objective bi-level optimization problem. 3 
The bi-level problem serves as the building-block for the overall problem formulation. Bi-level 4 
optimization is also known as the Stackelberg leader-follower problem, which represents a 5 
situation involving two decision-makers, with the behavior of the leader influencing the follower’s 6 
choice. In this problem, the upper-level decision-maker is a city administrator who decides which 7 
road sections of the network will be repaired after the event given a limited budget. The lower-8 
level decision-makers are road users who are affected by road network capacity degradation or 9 
link loss due to the event. As the restoration plan changes the road capacity, it alters the network-10 
wide level of service that will influence a traveler’s decision-making; given the restoration plan, 11 
updated traveler decisions result in re-assigned traffic flows on the restored transportation network 12 
and corresponding system performance after the restoration effort. This updated network-wide 13 
system performance according to traveler decision-making is taken into account for the city 14 
administrator’s decisions in terms of the restoration planning. Therefore, a bi-level optimization 15 
problem is appropriate for modeling the RPO building-block problem. The formulation of the 16 
overall bi-objective bi-level RPO problem proposed in this work is illustrated as follows. 17 
 18 
Upper-level problem: 19 

 20 
  (2) 21 

 22  23 

  (3) 24 

  (4) 25 
  (5) 26 

 27 

  (6) 28 

  (7) 29 

Lower-level problem: 30 
 31 

  (8) 32 

  (9) 33 

  (10) 34 

  (11) 35 

  (12) 36 

Referring to Equation (2), the objective function of the upper-level problem is to minimize the two 37 
system resilience measures, i.e., total unmet demand and total travel time (note that in this study 38 
smaller resilience measurement indicates better resilience performance). The total budget for the 39 
whole restoration plan is restricted in constraint (3). Constraints (4) and (5) guarantee that for each 40 
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candidate link, either restoration work with higher (level 1, 1l =   ) or lower (level 2, 2l =   ) 1 
resource consumption is adopted (when ) or no action is taken (when ).2 

 in Equation (2) is the travel time function. 3 
The Bureau of Public Roads (BPR) function is adopted as the travel time function in this 4 

work: 5 

  (13) 6 

Table 1 summarizes the notations used in the bi-objective bi-level problem formulation. 7 
 8 
Table 1 Notations in proposed bi-objective bi-level problem formulation. 9 
 10 
Notation Explanation  

 Link index 
 Flow on link ;  

 Travel time on link ;  

 Original capacity of link  before disruptive event 

 Capacity of link  at the moment after disruptive 
event 

 Candidate links with capacity augment level 1 

 Candidate links with capacity augment level 2 

 All candidate links 

 Capacity augment for link  with level 1 

 Capacity augment for link  with level 2 

 Cost for link  with capacity augment level 1 

 Cost for link  with capacity augment level 2 

, 1 2, , 1,2a ly a A A l   =  Binary variables, 1 indicates that corresponding 
plan is adopted, 0 means not 

 Node (index) set 

 Arc (index) set 

 Set of paths connecting O-D pair ; 
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( ),..., ,...rs rs
a k = is for O-D pair r s−   

( )..., ,...rs =  is for all O-D pairs 

 Minimum travel time between  
 Demand function between  
 Inverse demand function between   

 Origin node index  

 Destination node index  

 Travel time on the pseudo link between O-D pair 
 

 Flow on pseudo link between O-D pair  

 Total demand between O-D pair  before special 
event 

 Unmet demand between O-D pair   

0T  Total Travel Time in the system before restoration 

fT  Total Travel Time in the system after restoration 

0D̂  Total Unmet Demand in the system before 
restoration 

ˆ
fD  

Total Unmet Demand in the system after restoration 

 1 
3.3. Formulation of Lower-level Problem by EUE Model 2 
For the lower-level problem, to quantify unmet travel demand, the EUE model (Daskin and Sheffi, 3 
1985) was applied to depict traveler route choice behavior and address the imbalance between 4 
transportation service supply and travel demand.  5 

Traditionally, NDP models assume that travel demand is given and fixed, and driver route 6 
choice behavior is characterized by a User Equilibrium (UE) problem (Yang and Bell, 1998). The 7 
UE problem with a fixed demand can be formulated as follows (Daskin and Sheffi, 1985): 8 

  (14) 9 

 ,s.t. ,rs k rs
k

f q r s=    (15) 10 

 , 0 , ,rs kf k r s    (16) 11 

  (17) 12 
However, as the NDP generally involves long-term investment in a road network that consequently 13 
influences travel demand in the system, assuming a given and fixed travel demand is not realistic. 14 
Therefore, the EUE model was developed to incorporate the elasticity of travel demand into the 15 
NDP (Gartner, 1980). In the EUE model, travel demand between an O-D pair varies with travel 16 
cost between that O-D pair under user equilibrium, which is depicted by a demand function. For 17 
NDP with elastic demand, the equilibrium travel demands between all O-D pairs and their traffic 18 
flow distribution on the network under a given capacity expansion plan can be obtained by solving 19 
the elastic-demand UE model.  20 
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In this work, the EUE model is used to depict traveler behavior and address the imbalance 1 
between transportation service supply and travel demand in the lower-level RPO problem 2 
formulation. As the event leads to a large-scale or severe degradation of road capacities within a 3 
short time period, a significant imbalance between travel demand and network capacity supply 4 
emerges. Moreover, travelers are more sensitive to road restoration status in the system within the 5 
RPO context. Therefore, although the time scale of RPO is relatively shorter than that of NDP, 6 
there is plenty of demand elasticity in the RPO problem. Hence, EUE is appropriate for modeling 7 
traveler behaviors and addressing the imbalance between supply and demand after a disruptive 8 
event. 9 

The lower-level objective function of the RPO problem is shown in Equation (8). ( )1
rsD− 10 

is the inverse of the monotonically decreasing demand function ( )rsD   between the O-D pair .  11 

The demand function relates the number of trips  to the minimum travel time on the 12 
road network between and . The Elastic Exponential Demand Function is adopted in this work 13 
(SATURN, 2012): 14 

  (18) 15 

 16 
and  are defined as the travel demand and travel cost (minimum travel time in this work) 17 

between O-D pair at a referencing scenario. The cost matrix is defined as costs with the unit of 18 

second. In a typical elastic traffic assignment model, it is widely accepted to select the 19 

at the base year where the demand matrix, road network topology, and link capacities are known, 20 
and the costs are acquired by user equilibrium accordingly. Thus, lies on both the supply 21 

curve and the demand curve. In this work, is selected as the corresponding variable at 22 

the user equilibrium before the event occurs. 23 
Accordingly, the Inverse Demand Functions can be defined as: 24 
  25 
  (19) 26 

 27 
Similar to typical UE model, Equation (9) is an O-D flow conservation constraint. Equations (10) 28 
and (11) are non-negative constraints for path flows and O-D demand, and Equation (12) relates 29 
link flows to path flows through link-path incidence matrix. 30 

 31 
4. Solution Algorithms for Proposed Bi-objective Bi-level Restoration Plan Optimization 32 
Problem 33 
4.1. Solution Algorithm for Lower-level EUE Problem 34 
In this subsection, a network representation method is proposed to solve the Elastic-demand UE 35 
problem. The traditional UE problem can be efficiently solved using the Frank-Wolfe method 36 
(Daskin and Sheffi, 1985). Sheffi summarized two different network representations that can be 37 
applied to transform the EUE problem to an equivalent traditional UE problem—zero-cost 38 
overflow formulation and excess-demand formulation (Daskin and Sheffi, 1985), as illustrated in 39 
Fig. 2(b) and Fig. 2(c), respectively. For the zero-cost overflow formulation, Fig. 2(b) shows a 40 
modification of the basic network in which every O-D pair is augmented to include a “dummy” 41 
origin node (designated r  in Fig. 2(b)). For the excess-demand formulation, the variable 42 

r s−

rsD rsu
r s

( )( )0 0exp 1rs rs rs rsD D u u= −

0
rsD 0

rsu
,r s

( )0 0,rs rsD u

( )0 0,rs rsD u

( )0 0,rs rsD u

( ) ( )0 0 0lnrs rs rs rs rsu u u D D= +

,rs pf
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denotes the excess demand, i.e., the trips cannot be accommodated between origin  and 1 
destination ( ). In this network representation, a pseudo link carrying the flow 2 

 is defined as directly connecting the origin to the destination for each O-D pair, as shown in 3 
Fig. 2(c) (Daskin and Sheffi, 1985). 4 
 5 

r s # Basic  
Network

r s # Basic  
Network

r’

r s # Basic  
Network

(a)

trr’=0

(b)

( )1
, ,rs p rs rs pt D f−=

r s # Basic  
Network

s’

(d)

tss’=0

( )1
, ,rs p rs rs pt D f−

 =

(c)

( )1
, ,sr p rs rs pt D f−

 = −

  6 
 7 
Fig. 2. Network representations: (a) basic network; (b) added node and links for O-D pair r-s in 8 
zero-cost overflow network representation; (c) excess-demand network representation for O-D 9 

pair r-s; (d) modified excess-demand network representation. 10 
 11 

The excess-demand network representation is more straightforward for quantifying the 12 
unmet demand for resilience analysis of a transportation network. However, if there is a link 13 
connecting the origin to the destination of an O-D pair in the original network, it is necessary to 14 
distinguish the origin link and the pseudo link . Therefore, a “dummy” destination node 15 

is proposed (designated s in Fig. 2(d)) for the excess-demand network representation. The new 16 
network representation—the modified excess-demand network representation—is illustrated in 17 
Fig. 2(d).  18 

Therefore, the pseudo link cost-flow function is defined as follows to relate the cost  19 
on the pseudo link to its flow . 20 

   (20) 21 

where is the total demand between O-D pair before the special event. is a referencing 22 
point on the demand function, which is also chosen as the total demand between O-D pair 23 
before the special event. Therefore, and have the same value in this study.  24 

With the network representation and the link cost-flow function (i.e., inverse demand 25 
function) defined for the pseudo links, the EUE problem can be solved using the Frank-Wolfe 26 
algorithm. 27 

r
s ( ), =rs p rs rs rsf D D u−

,rs pf

rsa ,rs pa

,rs pu

,rs pf

( ) ( )( )0 0 0
, ,lnrs p rs rs rs rs p rsu u u D f D= + −

rsD ,r s 0
rsD

,r s

rsD 0
rsD
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 1 
4.2. Solution Algorithm for Single Objective Upper-level Restoration Plan Optimization 2 
Problem 3 
The modified active set algorithm (Wang and Pardalos, 2017) is applied to solve the single 4 
objective upper-level optimization problem to minimize one of the two resilience measures or their 5 
combination. Binary variables , 1 2, , 1,2a ly a A A l   =  are introduced to denote the control 6 

variables in the upper-level problem. , 1a ly =  indicates that the corresponding plan is adopted, 7 

, 0a ly =  otherwise, where  is the link index to perform this restoration and l is the indicator of 8 

two resource allocation levels. 1l =  indicates restoration work with higher-level resource and more 9 
capacity restored, 2l =  indicates lower-level resource assignment and less capacity restored. 10 

Then, all binary variables ,a ly are classified into two active sets: 11 

  0 ,( , ) : 0a la l y = =  (21) 12 

  1 ,( , ) : 1a la l y = =  (22) 13 

The restoration work plan can be represented by these two active sets. Changing one or several 14 
( ),a l from to  indicates a change in the restoration work plan. Then, constraints (4) and (5) 15 
of the upper-level problem can be reformulated as: 16 

 , 00, ( , )a ly a l=    (23) 17 

 , 11, ( , )a ly a l=    (24) 18 

,a lg and ,a lh are introduced to alter the representation of restoration work plan, and . , 1a lg =19 

means shifting ( , )a l from to , , 1a lh = means shifting ( ),a l from to . Then, the change 20 
of the upper level objective function is estimated by the following expression: 21 

 
0 1

, , , ,
( , ) ( , )

a l a l a l a l
a l a l

g h 
 

−   (25) 22 

where ,a l  and ,a l  are the multipliers corresponding to constraints , 0a ly =  and , 1a ly =  , 23 

respectively. ,a l and ,a l can be calculated through: 24 

 , , ,

, , ,

0 : 0

1: 0
a l a l a l

a l a l a l

y R R
y R R

 

 

= = − =


= = = −

 (26) 25 

where is the value of upper-level objective function before the change of and .  is the 26 
objective function value after the change, indicated by ,a lg and ,a lh . Referring to Equation (27), R  27 
could be 1R   indicating Total Unmet Demand (UMD), 2R   indicating Total Travel Time (TTT) 28 
corresponding to two resilience measures, or the combination of them with more details explained 29 
at the end of Section 4.3.  30 

After obtaining all feasible ( ), ,,a l a lg h  pairs subject to Constraints (3)–(5) and 31 

corresponding changes of the upper-level objective function estimated by Equation (25), the ,a lg32 

and ,a lh  to reduce the resilience measure is found. Then, active sets  and   leading to the 33 
minimized upper-level objective function can be calculated iteratively. More details about the 34 
implementation procedure and the pseudo code of the modified active set algorithm can be found 35 
in Wang and Pardalos (2017). 36 

 37 
4.3. Solution Algorithm for Bi-objective Optimization Problem 38 

a

0 1

0 1

0 1 1 0

R 0 1 R

0 1
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The weighted-sum method (Aneja and Nair, 1979) is adopted to find all supported non-dominated 1 
points for the overall bi-objective optimization problem. More details regarding this solution 2 
method are illustrated through the pseudo code and the step-by-step introduction. The basic idea 3 
is that firstly the two extreme endpoints 𝑅𝑇 and 𝑅𝐵 on the Pareto Frontier are obtained through 4 
solving the Lexicographic Optimality Problem (Ben-Tal, 1980). Then, by iteratively solving the 5 
following intermediate optimization problem to search a rectangle area defined by the extreme 6 
points 𝑅1 and 𝑅2 of the rectangle area, it can obtain all supported non-dominated points in the 7 
criteria space.  8 

min
𝑥∈𝒳

{𝜆1𝑅1(𝑥) + 𝜆2𝑅2(𝑥)}                                                     (27) 9 

subject to 𝑅(𝑥) ∈ 𝑅𝑒𝑐( 𝑅1, 𝑅2) 10 

where 𝑅1(𝑥) and 𝑅2(𝑥)  indicate two objective functions, i.e., minimizing two resilience 11 
measures; 𝑅1 and 𝑅2 indicate two extreme points; 𝑅𝑒𝑐( 𝑅1, 𝑅2) indicates the rectangle with two 12 
extreme endpoints 𝑅1, 𝑅2 . The objective function of the intermediate problem is parallel to the 13 
line that connects the extreme points, 𝑅1  and 𝑅2 , of the current rectangle area to be searched, 14 
𝑅𝑒𝑐( 𝑅1, 𝑅2), in the criterion space. Therefore, the weights to get the objective function of the 15 
intermediate problem are calculated as follows: 𝜆1 = 𝑅2

1 − 𝑅2
2 and 𝜆2 = 𝑅1

2 − 𝑅1
1 , where 𝑅2

1 16 
indicates the second objective value for the extreme point 𝑅1 , 𝑅1

2 indicates the first objective value 17 
for the extreme point 𝑅2 , etc. 18 
 19 
Algorithm Weighted Sum Method 
Procedure 
Step 1. Compute endpoints 𝑹𝑻 and 𝑹𝑩. 
Step 2. Create list 𝑳𝒊𝒔𝒕. 𝒄𝒓𝒆𝒂𝒕𝒆(𝑳).  
Step 3. Add points 𝑹𝑻 and 𝑹𝑩 to list L, 𝑳𝒊𝒔𝒕. 𝒂𝒅𝒅(𝑳, 𝑹𝑻), 𝑳𝒊𝒔𝒕. 𝒂𝒅𝒅(𝑳, 𝑹𝑩). 
Step 4. Create queue P with rectangles to be searched, PQ.create(P). Add rectangle  𝑹𝒆𝒄(𝑹𝑻, 𝑹𝑩) 
to queue, 𝑷𝑸. 𝒂𝒅𝒅(𝑷, 𝑹(𝑹𝑻, 𝑹𝑩)). 
Step 5. Optimize weighted sum single objective optimization problem  𝐦𝐢𝐧

𝒙∈𝓧
{𝝀𝟏𝑹𝟏(𝒙) + 𝝀𝟐𝑹𝟐(𝒙)}; 

if optimized point in criteria space satisfies criteria shown below, this point is newly-found non-
dominated point that will separate the original rectangle to smaller rectangles to be searched. 
While queue is not empty, Step 5 will be performed iteratively. 
       while queue P is not empty, not PQ.empty(P) do   
  PQ.pop(P, 𝑹𝒆𝒄(𝑹𝟏, 𝑹𝟐) ) 
  𝒙∗ ← 𝐚𝐫𝐠𝐦𝐢𝐧

𝒙∈𝓧
(𝑹𝟐

𝟏 − 𝑹𝟐
𝟐 )𝑹𝟏(𝒙) + (𝑹𝟏

𝟐 − 𝑹𝟏
𝟏)𝑹𝟐(𝒙) 

𝑹 ← 𝑹(𝒙∗) 
  if (𝑹𝟐

𝟏 − 𝑹𝟐
𝟐 )𝑹𝟏 + (𝑹𝟏

𝟐 − 𝑹𝟏
𝟏)𝑹𝟐 < (𝑹𝟐

𝟏 − 𝑹𝟐
𝟐 )𝑹𝟏

𝟏 + (𝑹𝟏
𝟐 − 𝑹𝟏

𝟏))𝑹𝟐
𝟏 𝐭𝐡𝐞𝐧 

   𝑳𝒊𝒔𝒕. 𝒂𝒅𝒅(𝑳, 𝑹) 
𝑷𝑸. 𝒂𝒅𝒅(𝑷, 𝑹(𝑹𝟏, 𝑹)) 
𝑷𝑸. 𝒂𝒅𝒅(𝑷, 𝑹(𝑹, 𝑹𝟐)) 

      return L  
      end while       
end procedure 

 20 
This intermediate optimization problem returns either one of  𝑅1 and 𝑅2  or a convex 21 

combination of 𝑅1 and 𝑅2. If the optimized result in the criteria space (𝑅1
𝑛𝑒𝑤 ,  𝑅2

𝑛𝑒𝑤) satisfy the 22 
following criteria 𝜆1𝑅1

𝑛𝑒𝑤 + 𝜆2𝑅2
𝑛𝑒𝑤 < 𝜆1𝑅1

1 + 𝜆2𝑅2
1, the optimum point 𝑅𝑛𝑒𝑤 is a newly found 23 
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non-dominated point which will separate the original rectangle to smaller rectangles to be searched. 1 
The pseudo-code for the algorithm designed for the Bi-objective RPO problem is illustrated as 2 
follows. 3 

Following the pseudo-code, the Weighted Sum Method can be implemented to solve the 4 
proposed bi-objective bi-level RPO problem, within which the intermediate problem 5 
min
𝑥∈𝒳

{𝜆1𝑅1(𝑥) + 𝜆2𝑅2(𝑥)}  is solved by the modified active set algorithm and the network 6 

representation method introduced in Subsections 4.1 and 4.2. More specifically, the upper-level 7 
objective of the intermediate problem is min 𝑅1(𝑥) when computing the endpoint 𝑅𝑇, min 𝑅2(𝑥) 8 
when computing the endpoint 𝑅𝐵 for solving the Lexicographic Optimality problem in Step 1, or 9 
min {𝜆1𝑅1(𝑥) + 𝜆2𝑅2(𝑥)} for solving the intermediate problem in Step 5. 10 
 11 
5. Numerical Experiments  12 
Numerical experiments are performed to demonstrate the validity, capability, and flexibility of the 13 
proposed bi-objective bi-level optimization model for solving the RPO problem. The proposed 14 
RPO method was applied to a typical road network in Sioux Falls, to illustrate the implementation 15 
procedures and verify the effectiveness of this method.  16 

 17 
5.1. Sioux Falls Network and Damaged Links Selection (Failure Scenarios Generation) 18 
The Sioux Falls network comprises 24 nodes and 76 links. In the topology shown in Fig. 3, 14 19 
nodes marked in green serve as both origins and destinations in the system. In total, the network 20 
has 182 O-D pairs. The O-D trip matrix is referenced as Table 2 in Wang and Pardalos (2017), and 21 
the link capacity and free-flow travel time under normal conditions are referenced as Table 1 in 22 
Wang and Pardalos (2017). 23 

The Sioux Falls network is a typical network in the existing literature, and there could be 24 
many different combinations of damaged links. To generate experimental scenarios with 25 
acceptable computing expense while reserving the diversity of the combinations of damaged links, 26 
15 potentially damaged links in the system were selected as a subset of links from three different 27 
categories—edge links, links in the central area of the network, and links connecting the edge and 28 
the central area. As a result, links with indexes 1, 2, 4, 11, 13, 14, 17, 26, 27, 31, 36, 37, 39, 56, 29 
and 60 were chosen as the subset with 6 links (1, 2, 37, 39, 56, 60) at the edge of the network, 5 30 
links (11, 13, 31, 26, 27) at the central area of the network, and 4 links (4, 14, 17, 36) connecting 31 
the edge and central areas of the network. This selection of potentially damaged links made it 32 
possible to represent different types of disruptive events, given that a hurricane or sea-level rise 33 
tend to induce capacity degradation at the edge of the network, an earthquake tends to cause 34 
collective disruption, and floods could affect a more disperse area. The selection of 15 potentially 35 
damaged links made it possible to generate various failure scenarios within this subset and to 36 
perform statistical analysis for the generated scenarios later. For each experimental scenario,  37 
links were randomly selected from the noted 15 links. 38 

After a given disruptive event, the capacity of the selected link(s) was assumed to be 39 
decreased to 1/3 of the original link capacity. In other words, the damaged links were selected 40 
randomly, whereas the capacity deterioration ratio was deterministic in this work. Note that some 41 
disruptive events could cause the capacity degradation of some links and complete loss of capacity 42 
of some other links, i.e., the capacity deterioration ratios for links in the network could vary. The 43 
methodology proposed in this study could be applied to those experimental cases as well. 44 
Furthermore, it was assumed that the damaged links could be restored to two levels of capacity 45 
with corresponding two levels of restoration expenditure (see Table 2). This numerical experiment 46 
configuration enables verification of effectiveness and flexibility of the restoration plan 47 

damN
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optimization method proposed in Section 3 and Section 4. 1 
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Fig. 3. Sioux Falls network topology. 4 
 5 

Table 2 Potential damaged links and their repair costs. 6 
Link index Free-flow travel 

time (min) 
Capacity 
(103veh/h) 

Cost1 Increased 
_capacity1 

Cost2 Increased 
_capacity2 

1 3.6 6.02 8 6.02 4 4.01 
2 2.4 9.01 8 9.01 4 6.01 
4 3 15.92 14 15.92 7 10.61 
11 1.2 46.85 32 46.85 16 31.23 
13 3 10.52 10 10.52 5 7.01 
14 3 9.92 10 9.92 5 6.61 
17 1.8 15.68 12 15.68 6 10.45 
26 1.8 27.83 20 27.83 10 18.55 
27 3 20 16 20 8 13.33 
31 3.6 9.82 10 9.82 5 6.55 
36 3.6 9.82 10 9.82 5 6.55 
37 1.8 51.8 34 51.8 17 34.53 
39 2.4 10.18 10 10.18 5 6.79 
56 2.4 8.11 8 8.11 4 5.41 
60 2.4 8.11 8 8.11 4 5.41 

* Cost assumed as unit-less. 7 
  8 
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In the follow two subsections, the optimized solutions for a given failure scenario through 1 
criteria space analysis (see Section 5.2) are presented to demonstrate how the proposed method 2 
can support decision-making for road network restoration. Furthermore, to examine system 3 
performance enhancement after the restoration effort, an additional five groups of experiments 4 
were conducted assuming there are 1 to 5 links damaged, i.e.,  for each group, and 5 
three budget levels, Budget=15, 35, 55. As shown in Section 5.3, for all the scenarios, system 6 
resilience measures, both TTT and UMD, were computed before and after the restoration of 7 
infrastructure, as well as the corresponding restoration costs with optimal restoration plans.  8 
 9 
5.2. Numerical Experiment Results  10 

We take a specific failure scenario with links (1, 2, 4, 14) damaged as an example to show 11 
the bi-objective RPO optimization results and also to interpret the impact of budget level on the 12 
results. The feasible sets of the RPO problem with different budget levels are calculated. Then, the 13 
feasible solutions are shown in the criteria space with x-axis indicates the UMD and y-axis 14 
indicates the TTT. More specifically, for a feasible solution , 1 2( , , ), , 1,2a lY y a A A l=    =15 
satisfying the budget constraint, we can obtain the corresponding UMD and TTT after restoration 16 
and then draw the solution points (UMD, TTT) in the criteria space accordingly. Fig. 4 (a) shows 17 
the feasible set enabled by different budget levels in the criteria space. The feasible set with higher 18 
budget 1iF +

 contains that with lower budget iF . The feasible set enabled by additional budget is 19 
the difference between 1iF +

and iF . Suppose the feasible set enabled by budget level +1iB is denoted 20 
as +1iF ,then 1 1 1= , = , 2 5i i iF F F F F for i−− = . In Fig. 4, we plotted , 1 5iF i =  with various colors 21 

indicating each iF . The circle marker indicates the points on the Pareto Frontier that can be found 22 
by the Weighted Sum Method. Due to the non-Convexity of the Pareto Frontier in criteria space, 23 
not all solution points on the frontier can be found.  24 

 25 
Fig. 4. Feasible solutions in criteria space enabled by different budget levels and  26 

solution points on Pareto Frontier found by Weighted Sum Method.  27 

Fig. 5(a) and Fig. 5(b) shows Pareto Frontiers for Budget=15 and Budget=55, respectively. 28 
It is observed that the two system performance metrics (UMD and TTT) contradict each other, and 29 
a higher budget level enables denser and better solutions on the Pareto Frontier. With Budget=55, 30 
more solutions with high TTT and low UMD are obtained, such as those in dashed-line circle at 31 
the upper left corner of Fig. 5(b).  32 

1 ~ 5damN =
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 1 

 2 
Fig. 5. Criteria space analysis (a) Pareto Frontier with B=15; (b) Pareto Frontier with B=55; (c) 3 

Mean rT  vs. UMD with B=55; (c) Min rT  vs. UMD with B=55. 4 

Furthermore, we define travel time ratio 0,
,

a
r a

a

t
T

t
=  to measure the efficiency of the system. 5 

For each link a , 0,at is the free flow travel time on link a  and at is the travel time on link a after 6 

restoration. Given each restoration solution, Mean rT  and Min rT , are calculated as follows: 7 

,

Mean
r a

a
r

L

T
T

N
=


 8 

,Min min ( ),r r aT T a A=   9 

where A   indicates the link set, LN A=  is the number of links in the system. Higher Mean rT  10 

indicates better “efficiency” on average for all trips in the system. Min rT  indicates worst case 11 
performance at single link level. 12 

Then, we plot the Mean rT and Min rT  vs. UMD in Fig. 5(c) and Fig. 5(d), respectively. 13 
The marker size in these two subfigures indicates the cost of the restoration plan for each solution. 14 
In Fig.5 (c), it is observed that the budget constraints are not always binding. The three solutions 15 
marked by the dash-dotted ellipse in Fig. 5 (b) and Fig. 5 (c) are corresponding to each other. 16 
Although the three solutions show similar TTT and UMD in Fig. 5(b), their Mean rT   is quite 17 
different. Thus, Mean rT  provides more information to decision makers. In Fig. 5(d), Min rT  vs. 18 
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UMD are plotted. Min rT  has larger variance over solutions, compared to Mean rT . The solutions 1 
could be grouped to four clusters in terms of Min rT , with larger UMD leading to lower Min rT . 2 
Therefore, the solutions with less UMD can not only serve more travel demand but also improve 3 
the worst-case performance of the system. These observations show that the cross-reference among 4 
TTT, Mean rT and Min rT  vs. UMD can help decision-makers compare the solutions through three 5 
different aspects, which leads to more comprehensive choice of restoration plan.   6 

  7 
5.3 Statistical Analysis of Experiment Results for Various Failure Scenarios 8 
More failure scenarios were generated to perform statistical analyses of the TTT and UMD before 9 
and after restoration work. For each failure scenario, we calculated the TTT and UMD before and 10 
after the restoration work, indicated as ( 0 0

ˆ,T D ) and ( ˆ,f fT D ), respectively. There are  11 
cases when randomly selecting 5 links to be damaged from the 15 potential links. The box plot for 12 
the resilience measures, both TTT and UMD before and after restoration work and the cost-13 
efficiencies of the restoration plan with 1–5 damaged links are shown in Fig. 6. As shown in Fig. 14 
6(a) and 6(b), the median, upper quartile, and lower quartile of 0TTT  and fTTT all monotonically 15 
decrease with the increased number of damaged links. Furthermore, the median, upper quartile, 16 
and lower quartile of fTTT  are larger than those of 0TTT  . As shown in Fig. 6(c) and 6(d), the 17 

median, upper quartile, and lower quartile of 0UMD and fUMD all monotonically increase with 18 

the increased number of damaged links. The median, upper quartile, and lower quartile of fUMD19 

are smaller than those of 0UMD . These phenomena can be interpreted jointly with the observation 20 
in Fig. 4 showing that the two objectives, min TTT and min UMD, do contradict each other.  21 

 22 

 23 

 24 
 25 

Fig. 6. Box plots of TTT before (a) and after (b) restoration  26 
and UMD before (c) and after (d) restoration 27 

 28 
The two objectives, minimizing total unmet demand and total travel time provide decision- 29 

5
15 3003C =
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making support to choose an optimal restoration plan while balancing mobility and accessibility. 1 
As TTT and UMD have different units, we further define the total travel time reduced percentage, 2 

RdTTT (%), and the unmet demand reduced percentage, RdUMD (%), to better indicate the system 3 
performance in terms of two different measures in spite of their different units. 4 

 5 
0
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0
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                                             (28) 6 

 7 
Fig. 7 shows the bivariate histograms of RdTTT  and RdUMD with 4 or 5 links damaged in 8 

the system and budget levels of 15, 35, and 55. The motivation to do this visualization was to 9 
demonstrate how the optimized ( RdTTT , RdUMD ) jointly and statistically distributed over all the 10 

failure scenarios with damN links damaged and different budget levels. It is observed that with the 11 
increase of Budget , the grid cells with higher occurrence frequencies move from the lower right 12 
corner to the upper left corner, with the lower right corner indicating higher RdTTT   and lower 13 

RdUMD  and the upper left corner vice versa. Such observation means that with a higher budget, 14 
there are more optimized restoration plans that can reduce the unmet demand. Nevertheless, lower 15 
budget levels could also lead to diverse options in terms of trading off between RdTTT and RdUMD . 16 

This observed trend is even more clear with 5damN =  compared to those with 4damN = . 17 
              18 

 19 
Fig. 7. Bivariate histogram of Reduced Percentages of TTT and UMD for 4damN =  and 5 20 

and Budget=15, 35, 55. X axis indicates the TTT reduced percentage (%) after restoration.  21 
Y axis indicates the UMD reduced percentage (%) after restoration.  22 

Color bar indicates frequency of solutions’ occurrence in this grid cell. 23 
 24 

6. Conclusions 25 
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In this study, a roadway infrastructure restoration plan optimization method is proposed, 1 
formulated as a bi-objective bi-level optimization problem, to enhance system resilience 2 
performance in terms of total unmet demand and total travel time. This method makes it tractable 3 
to reduce not only total travel time from a mobility perspective but also unmet demand in a 4 
damaged system from an accessibility point of view. The bi-objective problem is solved by the 5 
Weighted Sum Method and by decomposing the problem into bi-level problems that are solved by 6 
a modified active set algorithm and a network representation method. 7 

Numerical experiments were performed to demonstrate the validity, capability, and 8 
flexibility of the proposed bi-objective bi-level optimization model for solving the restoration plan. 9 
The restoration plan optimization method was applied to a typical road network to illustrate the 10 
implementation procedures and verify the effectiveness of the method. The criteria space analysis 11 
of one failure scenario demonstrates that two perspectives to measure system performance (UMD 12 
and TTT) contradict each other. Furthermore, travel time ratio, the ratio between free flow travel 13 
time and real travel time after restoration for each link, is defined and can provide further 14 
information to distinguish solutions that have similar performance in terms of TTT and UMD. The 15 
results demonstrate that cross-reference the travel time ratio with TTT and UMD can help decision-16 
makers make more comprehensive solution choices. Furthermore, statistical analysis over five 17 
groups of failure scenarios were performed with 1–5 links damaged in the system. To address the 18 
different unit issue of TTT and UMD, we defined the reduced percentages of TTT and UMD 19 
compared with those before restoration. Bivariate histograms of the optimized reduced percentages 20 
of TTT and UMD are drawn to demonstrate how they are jointly and statistically distributed over 21 
all failure scenarios. The results show that although the lower budget could provide diverse 22 
solutions on the frontier trading off between reducing TTT and UMD, higher budget levels provide 23 
more options to further reduce UMD.  24 

This study could be extended and strengthened in the following directions. First, it would 25 
be interesting to evaluate the performance of the proposed method on different typical road 26 
networks to validate some observations in this work. Second, given the outcomes from different 27 
representative road networks, a study could be conduct on if and how the network topology, design 28 
features, and demand distribution patterns of the system impact the optimal restoration plan and 29 
corresponding system resilience performance. This study focused on the resilience analysis of 30 
transportation systems without considering their interdependence with other CIs; a promising 31 
direction would be to model the interdependence between different CIs and propose effective 32 
decision-making support methodologies for restoration planning considering pooled budget and 33 
resource constraints for interdependent CIs. 34 
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