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ABSTRACT10
Water main breaks are a common recurring problem in water distribution networks,11
resulting in cascading effects in the whole system and the interconnected infras-12
tructures such as transportation. Having integrated the physical features of pipes13
such as diameter and environmental factors like precipitation, we propose predictive14
models based on spatiotemporal data and machine learning methods. In this study,15
the dataset is the main breaks recorded from 2015 to 2020 in the city of Tampa,16
Florida. First, a spatial clustering is conducted to identify vulnerable areas to breaks.17
A time series analysis is also carried out for the temporal data. The result of these18
analyses informed the machine learning algorithms as independent variables. We19
then compared the predictive models based on information-based and rank-based20
criteria. Obtained results indicated that Boosted Regression Tree (BRT) model was21
superior to the others. Finally, we present predicted normalized failure rates for the22
water distribution network to inform rehabilitation and fortification decisions at the23
municipality level.24

KEYWORDS25
Water infrastructure, Machine learning, Spatial clustering, Time series analysis.26

1. Introduction27

Water distribution networks (WDNs) are among the most essential and expensive28

municipal infrastructure assets since modern societies are much dependent on them29

for their regular and routine activities. Any disruptions in this system can affect the30

water distribution network as well as other existing nearby infrastructures such as31

sewer, stormwater, transportation, and gas pipes that may lead to catastrophic failures32

(Kabir et al. 2015).33

Water main break is a major concern for every water utility as they disrupt customer34

service, result in water and revenue loss, and create the potential for contaminants to35

enter the water distribution system. The total cost of water loss due to water main or36

pipe breaks is estimated to be 3.8 USD billion per year in North America (Snider and37

McBean 2020). Moreover, this value increases dramatically when including indirect38

costs, such as interruption to service, and health impacts (Renzetti, D.Dupont, and39

D.P.Dupon 2013).40
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Infrastructure physical features such as pipe diameter, age, length, and material are41

one contributing factor to water main breaks. Environmental factors like soil factors,42

precipitation, and seasonal climate variations also play a key role in the occurrence of43

failures in the water network. Operational features such as hydraulic pressure and wa-44

ter velocity are other critical players in the WDNs affecting the functionality of pipes.45

However, only some of these factors, such as pipe age, diameter, and temperature,46

are measurable and available for the establishment of predictive models (Kabir et al.47

(2015);Shirzad and Safari (2019)).48

Water main breaks can have multifaceted consequences. First, they can disturb the49

redundancy/vulnerability of the network. Second, they can impose economic pressure50

in terms of water loss, rehabilitation cost, and the cost of damage caused by water51

main failure. Finally, the main breaks can directly have an impact on public safety and52

security (Phan et al. 2019). Focusing on the economic impact, there have been more53

than 2 million breaks in Canada and the United States since January 2000, with an54

average of 700 water main breaks every day, costing more than CAD 10 billions/year55

(Kabir et al. 2015). A main break costs $42,000 on average based on a survey by the56

Water Research Foundation (Chen et al. 2019).57

However, the impacts of water main breaks are not confined to economic and social58

parts. These events may have harmful effects on public health due to a deterioration59

of water quality (Martinez-Codina et al. 2016). In fact, the potable water system60

has been identified as a significant factor in waterborne disease outbreaks. The low61

and negative pressure resulting from water breaks potentially allows contamination of62

drinking water from adjacent soils (Shortridge and Guikema 2019).63

The water infrastructure in North America is old and deteriorating. Therefore, water64

mains breaks are creating floods and service disruptions daily. The rates of water main65

break soared by 27% from 11.0 to 14.0 breaks/ (100 miles)/year Between 2012 and66

2018. As a concerning fact, the break rates of cast iron and asbestos cement pipe,67

composing 41% of the installed water mains in the US and Canada, have increased by68

more than 40% over six years (Folkman 2018).69

Risk assessment for maintenance prioritization of pipes and other components of70

the water distribution network has gained increasing attention from municipalities71

and other decision-makers toward more effective management of water main breaks.72

In this approach, critical points in the WDN are identified through the assessment of73

risks based on the likelihood of failure events (Phan et al. 2019). Prediction models74

can help utilities reduce future breaks by identifying which pipes are most likely to75

break, and when. Utilities can use these predictions to develop more effective asset76

management plans and replace pipes before major breaks occur (Snider and McBean77

2020).78

In addition to the likelihood of failure, a broad range of situations, characterized by79

uncertainties and emergence, can be incorporated in order to have a holistic picture80

of risk associated with pipe failure. Those situations require different approaches to81

capture the comprehensive nature of risk in this context (Aven 2016). For example,82

pipes are subject to two types of deterioration: (1) structural deterioration, which di-83

minishes the pipe’s structural resilience and the ability to bear external stresses, and84

(2) deterioration of internal surfaces, which results in diminished hydraulic capacity,85

degradation of water quality, and reduced structural resilience in cases of severe inter-86

nal corrosion. Both types of deterioration harm the reliability of the water distribution87

network (Kleiner and Rajani 2001). While including these aspects improve the reha-88

bilitation and fortification decisions regarding water mains, they are not in the scope89

of the current study.90
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Predicting the future failures based on analyzing historical data of water main breaks91

is a useful tool for the fortification of the vulnerable components to postpone (and even92

eliminate) the possible propagating failures (Barton et al. 2019). Machine-learning93

algorithms have been adopted as effective methods in a range of applications to develop94

accurate models that are able to predict results, one of which is the prediction of pipe95

failures in a water distribution system. By employing these algorithms, the goal is to96

identify the time of next break for a pipe and to mitigate the ramifications of this97

disruption (Snider and McBean 2020).98

In this study, we developed several predictive models based on the spatiotemporal99

data for the following purposes: (a) we aim to understand, investigate, and determine100

which features provide the most contribution to the model by quantifying variable101

importance, (b) to develop data-driven models to find how the most critical elements102

influence the magnitude of water main breaks, and (c) to develop an accurate predic-103

tion model for predicting main water breakage. The main contribution of the current104

study is to present an integrated framework for prediction of water main breaks. We105

adopted the set of variables in our model based on studies incorporating the physi-106

cal variables of the water infrastructure network and the environmental factors like107

(see Yamijala, Guikema, and Brumbelow (2009)) to develop a reliable and compre-108

hensive predictive model. While considering spatial clustering is recently addressed in109

the literature (see Chen and Guikema (2020)), our contribution is integrating time110

series analyses to extract the underlying failure patterns so that the accuracy of the111

predictive model is enriched. Informing the machine learning models from the spatial112

clustering (hotspot analysis) and the time series analysis using the concept of data113

fusion is another feature of the proposed framework. Fig. 1 shows the details of the114

proposed data-driven framework in the paper.115

Figure 1. The proposed data-driven framework.

The remainder of the paper is structured as follows: Section 2 includes the relevant116

literature and the identified gaps. Section 4 explains the case study and the data117

used in the study. Section 3 presents a detailed explanation of the predictive analytics118

developed in the paper. Section 5 contains the results of the implementation for the119

case study in details. Finally, the discussion and future directions are provided in120

section 6.121

2. Literature Review122

There is a rich body of literature for pipe break prediction, which can be categorized123

into three main streams: (a) Physical models, (b) Purely statistical models, and (c)124

Data Mining or Machine Learning-based models.125
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2.1. Physical Models126

Physical models attempt to describe the mechanisms causing breaks by analyzing the127

loads that a pipe is subjected to and the capacity of the pipe to handle these loads.128

Various physical models are developed in the literature (See Rajani and Kleiner (2001)129

for a comprehensive review). The main advantage of physical models is that they do130

not require large amounts of historical data to develop.131

This approach is focused on developing mathematical models based on the funda-132

mental physics related to pipe breaks to provide insights about breaks. While these133

models are fundamentally compelling, the data requirements for physical models often134

require in-field inspections/surveys and are time-consuming and expensive(Francis,135

Guikema, and Henneman 2014). Furthermore, due to structural differences among136

various systems, extrapolating the results to other mains is very difficult and inaccu-137

rate. For these reasons, physical models are often only applicable for large transmission138

mains or critical infrastructure (Wilson, Filion, and Moore 2017).139

2.2. Statistical Inferential Models140

Statistical inferential models implement statistical techniques to historical break data141

to detect patterns and make inferences about the pipe breaks. Compared with physical142

models, statistical models are less expensive and less time-consuming. These models143

aim to evaluate the existing data for formulating trends based on statistical mea-144

sures such as correlation and covariance. The goal of inferential models is to improve145

understanding and not to make accurate predictions.146

In the past, most studies on pipeline breakage models focused only on static factors147

such as pipe material type, diameter, and soil type, which could lead to biased results.148

Kleiner and Rajani (2000) realized the importance of time-dependent factors such as149

the age of the pipe, water temperature, and soil temperature. They first grouped the150

water mains into different partitions that were uniform and homogeneous regarding151

their response to deterioration and stress-inducing mechanisms. They then applied a152

generalized multi-variate exponential model and a multi-variate power model where153

the model input was a vector of time-dependent covariates of environmental and/or154

operational factors. The main limitation found with this approach was that only time-155

dependent factors were considered. While other studies have also recognized the ben-156

efits of time-dependent factors, they have not entirely removed the static factors.157

Vanrenterghem-Raven (2007) aimed to develop a proportional hazards model for158

a water distribution piping network located in a complex urban area to identify key159

risk factors in the failure of pipes. They considered both inherent risk factors such as160

pipe material, diameter, length, date of installation, break history, and environmental161

factors like traffic, water zone, proximity to subways, highways in their model. They162

tested the proposed framework on a case study of Long Island City, with 220 miles of163

pipes and 20 years of break data from 1982 to 2002. They also examined the applica-164

bility of the model in the stratification of the data based on material, break frequency,165

and history.166

Wang et al. (2010) suggested a new approach based on Bayesian configuration167

against pipe condition to find factor weights. They considered a range of factors such as168

size, age, inner coating, outer coating, soil condition, bedding condition, trench depth,169

electrical recharge, the number of road lanes, material, and operational pressure. They170

concluded that the factors with smaller weight values or with weights having relatively171

stable posterior means and narrow uncertainty bounds have less influence on pipe con-172
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ditions. The model was the most sensitive to variations of pipe age.173

Duchesne, Toumbou, and Villeneuve (2016) compared the techniques of lin-174

ear regression, Weibull-Exponential-Exponential (WEE), and Weibull-Exponential-175

Exponential-Exponential (WEEE) to study the number of breaks in a water main176

network. These models were calibrated using least squares and maximum likelihood177

methods. They only considered pipe age as an explanatory variable in their models,178

no other covariates such as pipe diameter or material were included.179

Demissie, Tesfamariam, and Sadiq (2017) proposed a Dynamic Bayesian Network180

(DBN) considering both static and time-dependent factors for the problem. A DBN181

is an extension of a Bayesian Belief Network (BBN) but can apply to time-dependent182

factors as well as static ones. They concluded that a BBN by itself would not suffice183

and more model flexibility was required.184

Statistical models can be more flexible than physical models as they can be ap-185

plied with various types of input data. However,Yamijala, Guikema, and Brumbelow186

(2009) compared the predictive accuracy of several statistical regression models in the187

literature for estimating the probability or number of pipe breaks and/or leaks on188

individual pipe segments. The results showed that future research should be focused189

on improving the accuracy of predictive models for pipe break.190

2.3. Machine Learning Approaches191

Data mining and machine learning techniques are becoming more popular and use-192

ful in solving real-world problems such as predicting pipeline breakage. Adopting193

machine-learning algorithms helps to overcome the proportional hazard and linear194

covariate relationship assumptions common with many statistical models. The super-195

vised machine-learning models can identify and model the complex relations between196

pipe predictor variables and pipe breakage.197

Wood and Lence (2009) developed an approach for identifying key data asset man-198

agement, predicting pipe breaks, and selecting appropriate models. The method was199

applied to the District of Maple Ridge, B.C., Canada, to identify the current and fu-200

ture magnitude of a utilitys pipe burst. The goal of their study was to enhance the201

development of pipe replacement priorities based on the predicted breaks. They also202

identified critical data to collect in future data acquisition programs.203

Tabesh et al. (2009) presented two data-driven modeling techniques (Artificial Neu-204

ral Network (ANN) and neuro-fuzzy systems) to have a more comprehensive and more205

accurate predictive model for pipe failure rate and to have an improved assessment206

of the reliability of pipes. They considered parameters like pressure and pipe depth,207

as well as the common factors such as diameter and length of pipes. The proposed208

models were applied to a real case in Iran. The result showed that the ANN model209

was more realistic and accurate in the prediction of pipe failure rates.210

Jafar, Shahrour, and Juran (2010) employed ANN for estimation of the failure rate211

and the optimal replacement time for the individual pipes. They used a 14-year data212

set of a water distribution system in a northern city of France. They used six ANN-213

based models for the prediction of water mains failure and the determination of the214

benefit index to optimize the investment for the rehabilitation and maintenance of215

urban water mains.216

Wang et al. (2013) attempted to solve a bipartite ranking problem to determine217

which pipes have the highest risks of breakage using static and time-dependent factors.218

They compared 5 data mining algorithms, using the area under the curve score as a219
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comparison method. They examined RankBoost.B, ANN, Cox, Nave Bayes Classifier,220

and Logistic Regression. They found that RankBoost.B performed the best, followed221

by logistic regression.222

Shirzad, Tabesh, and Farmani (2014) compared the performance of ANN and Sup-223

port Vector Regression (SVR) methods in predicting the Pipe Burst Rate (PBR).224

They also studied the impact of hydraulic pressure on the accuracy of the data-driven225

pipe burst prediction model. They used two case studies for their analyses. Results226

revealed that in both case studies, ANN is a better (universal) predictor than SVR but227

cannot be generalized since it is not consistent with the physical behavior observed.228

Kakoudakis et al. (2017) used Evolutionary Polynomial Regression (EPR) based on229

pipe length, diameter, and age. Individual pipes were aggregated into homogeneous230

groups based on age, diameter, and soil type. These groups were divided into training231

and test sets and cross-validated. The method of k-means clustering was used to par-232

tition the training data into clusters for individual EPR models. Then, these models233

were able to calculate the failure rate for individual pipes.234

Kumar et al. (2018) attempted to predict which city blocks in Syracuse, NY were235

most likely to have a water main break in the next three years. They developed var-236

ious machine learning classification methods to solve the problem and examine the237

relationships between predictive factors.238

Snider and McBean (2018) applied a state-of-the-art gradient boosting machine239

learning algorithm (xgboost) to a large ductile iron pipe failure dataset. The model240

was designed to predict the time to next failure for individual ductile iron pipes. The241

overall root-mean-square error for the xgboost model was 5.81, a 1.2% improvement242

over the Random Forest (RF) model, and a 25.9% improvement over the ANN model.243

The results suggested that xgboost algorithm is a reliable option for the industry to244

predict time to pipe failure.245

Sattar et al. (2019) proposed a novel failure rate prediction model by the extreme246

learning machine (ELM) to provide the required information for optimum ongoing247

maintenance/rehabilitation of a water network. The model was trained by more than248

9500 instances of pipe failure in the Greater Toronto Area, Canada, from 1920 to 2005.249

The data included pipe attributes, including length, diameter, material, and previously250

recorded failures. The model had a superior prediction accuracy compared to other251

machine learning algorithms, such as feed-forward ANN, support vector regression,252

and non-linear regression.253

Shirzad and Safari (2019) used RF technique and Multivariate Adaptive Regression254

Splines (MARS) to predict pipe failure rate using pipe diameter, length, installation255

depth, age, and average hydraulic pressure as input variables. The RF technique per-256

formed better than MARS, but MARS was chosen for implementation since it provided257

explicit equations that could be used as practical tools.258

Robles-Velasco et al. (2020) also examined predicting pipe failure by using logistic259

regression and support vector classification. They studied the relationships between260

factors unlike some previously mentioned. Their results showed that the logistic re-261

gression model performed slightly better than the support vector classification model262

and the city was able to avoid 30% of the breakage by replacing 3% of the pipes.263

Considering the limitations of physical and statistical models, which are compre-264

hensively reviewed in the literature, adopting machine learning algorithms seems a265

more promising approach in the prediction of water main breaks. Moreover, including266

spatial methods such as hotspot analysis is not present in the majority of previous267

works. Combining the spatial patterns and the temporal data provides a solid foun-268

dation for a holistic model for the goal of failure prediction. In addition, it appears269
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that including a time-series analysis in the predictive models is a neglected approach270

in the literature.271

3. Predictive Models Development272

In this section, the methods implemented in this study will be discussed. First, spatial273

clustering and hotspot analysis will be explained. Following that, the process of de-274

veloping the water distribution network, estimating some physical variables, and the275

source of environmental factors will be presented. Finally, machine learning algorithms276

will be explained in detail.277

3.1. Spatial Clustering278

Hotspot analysis (Getis-Ord G∗
i statistic) is a well-established method of spatial clus-279

tering for analyzing the features of spatial data (points or areas) (Esri 2016; Ord and280

Getis 1995). This method is an extension of the General G-statistic method for quan-281

tifying the spatial autocorrelation over an area. However, the G∗
i statistic calculates282

a measure of spatial autocorrelation variation for each point (polygon) in the area,283

instead of an overall index in the general framework. This method evaluates the sim-284

ilarity degree for high or low values of a feature (number of water main breaks in285

our problem) within a specified geographical distance (neighborhood). This index is286

calculated by equation 1:287

G∗
i (d) =

∑
j
wij(d)xj∑
j
xj

(1)

Where xj is the number of breaks for each region, wij is the spatial weight for the288

pair neighbors of i and j, and n is the total number of samples in the dataset. The289

geographical distances from each feature to its neighboring features are calculated by290

the Euclidean method. The spatial weight matrix is an n × n matrix, in which each291

value is a weight that reflects the relationship between a pair of features in the study292

region. The threshold parameter d defines the distance within which locations i and j293

are considered as neighbors (wij = 1 in the weight matrix), and beyond that distance,294

the locations are no longer considered as neighbors (wij = 0 in the weight matrix).295

The statistical significance of clustering is evaluated based on a confidence level296

and a normalized z-score. The standardized G∗
i (d) as a z-score is calculated based on297

equation 2:298

G∗
i (d) =

∑
j
wij(d)xj − X̄

∑
(j)

wij(d)

s

√
n
∑
j

w2
ij−(

∑
j

wij(d))2

n−1

) =⇒ X̄ =

∑
j
xj

n
, s =

√√√√∑
j
x2j

n
− (X̄)2 (2)

299

To interpret the results of hotspot analysis, two maps should be analyzed concur-300

rently. One map indicating the location of spatial clusters in the study area. Positive301

values of G∗
i statistic indicate spatial dependence among high values and negative302

values show spatial dependence for low values. The second map reflects the statis-303
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tical significance of each polygon compared to its neighbors by providing a p-value304

(Peeters et al. 2015). These z-scores and p-values maps together are used to label an305

area as a hotspot (spatial cluster of high data values), cold-spot (spatial cluster of306

low data values), or an outlier (a high value surrounded by low values or vice versa).307

In this study, as we are focusing only on hotspots, we labeled polygons with positive308

z-scores and statistically significant p-values as high/medium and low hotspot levels.309

We assigned a none hotspot level in our modeling approach for polygons with negative310

z-score and significant p-values, which indicate cold-spots. Evidently, all other areas311

with insignificant p-values were also categorized in the none hotspot level. The results312

of this analysis are provided in section 5.313

3.2. Physical Network and Environmental Features314

To construct the water distribution network, we first simplified the distribution system315

shapefile from a network consisting of 76,000 pipes to just over 1,200 pipes, using the316

skelebrator tool in WaterGems software. The skelebrator combines pipes that are in317

series or run parallel to each other to one equivalent pipe. In addition, pipes with a318

diameter less than 8 inches were eliminated from the model for further simplification.319

Afterward, the average water consumption at each junction was incorporated into the320

hydraulic model in ArcGIS.321

For the material, we assigned the material of each pipe based on the nearest distance322

to the original network. The material of the original network is composed of 85%323

ductile iron pipes, 9% cast iron, 3% galvanized iron, 2% HDPE, and 1% PVC by324

length. For the age variable, inspired by Santana (2015), we used the parcel-level land325

use data publicly available from Hillsborough County Property Appraiser (HCPA).326

After finding the midpoints of pipes, an estimation of age was assigned based on the327

located census block group. However, in the case of not having an age estimation, we328

considered 30 years ago as a baseline age.329

Average temperature and total precipitation for each month a break occurred were330

collected from the National Oceanic and Atmospheric Administration (NOAA). For331

each month a break occurred, the number of days in that month where the temperature332

was greater than or equal to 70 and 90 degrees Fahrenheit, the number of days where333

precipitation was over 0.1 inches, the total precipitation, the average temperature,334

the average maximum temperature, and the average minimum temperature. Table 1335

summarizes the variables featured in the dataset, which can be classified into three336

different categories: physical, environmental, and others.

Table 1. Dataset Variable Categories

Physical Environmental Others

Longitude Available land Pipe ID
Latitude Available water Hotspot level
Length Total precipitation Date of break
Diameter Number of days precipitation greater than or equal to 0.1 in. Trend
Material Number of days greater than or equal to 70 degrees Fahrenheit Year built

Number of days greater than or equal to 90 degrees Fahrenheit Census tract
Average temperature Contract Type

Average max temperature
Average min temperature

337
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3.3. Machine Learning Methods338

Due to the limitations of physical and statistical methods for the prediction of water339

main breaks, we approached the problem from a modeling method combining machine340

learning and statistical techniques by four well-established methods in the literature,341

Random Forest (RF), Boosted Regression Tree BRT, Multivariate Adaptive Regression342

Splines (MARS), and Artificial Neural Networks (ANN). The following sections will343

go further in-depth on each of these modeling techniques.344

3.3.1. Random Forest345

The random forest method is a well-known machine learning technique for classification346

and regression analysis based on combinations of several decision trees. It is a decision347

tree-based method that consists of a large number of individual decision trees that348

operate together to produce better results. The output, in this case, is the mean349

prediction (regression) of the individual trees. This algorithm uses bagging and feature350

randomness when building individual trees to create an uncorrelated forest of trees351

with a more accurate grouped prediction. The first requirement of this algorithm is to352

provide some predictive power for the input variables, meaning that the model built353

with these variables will perform better than random guessing. The second requirement354

is that the predictions and errors of the individual trees must have low correlation355

values with each other. To this end, the algorithm uses a technique called bagging,356

which trains the model on different sets of data and uses various features to make357

decisions and to creates individual uncorrelated trees that buffer against each other358

(Shirzad and Safari 2019).359

3.3.2. Boosted Regression Tree360

The boosted regression tree algorithm, also known as gradient boosting, is similar361

to the RF algorithm in that it is a decision tree method that uses a combination362

of individual decision trees to provide better results. Similar to RF, BRT also uses363

a random subset of the data with a replacement to build each individual tree. The364

main difference between these algorithms is that while RF implements the bagging365

technique, BRT uses the boosting technique. The boosting technique involves weighing366

each individual tree so that they are applied in such a way that poorly modeled data367

by a previous tree has a higher probability of being selected for a future tree. After368

the first tree is fitted, the model will take into account that trees error when fitting369

the next tree and so on. The model continuously tries to increase its results using this370

sequential approach. To name some advantages this modeling technique provides are371

that it is robust to outliers, the best fit is automatically detected, and it is stochastic,372

which improves predictive performance results (Chen, Beekman, and Guikema 2017).373

3.3.3. Multivariate Adaptive Regression Splines374

Multivariate adaptive regression splines algorithm creates a piecewise linear model375

that provides an intuitive stepping block into nonlinearity. MARS can capture the376

nonlinearity aspect of polynomial regression by assessing cutpoints, also called knots,377

like a step function. The procedure for this algorithm determines each data point378

for each predictor as a knot and creates a linear regression model with the selected379

feature(s). The process can continue until many knots are found, producing a highly380

nonlinear pattern. Once the full set of knots has been found, knots that do not sig-381
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nificantly contribute to predictive accuracy can be sequentially removed or pruned to382

find the optimal number of knots (Shirzad and Safari 2019).383

3.3.4. Artificial Neural Networks384

Artificial Neural Networks(ANN) is a computational approach inspired by the bio-385

logical nervous systems process. ANNs are adaptive and capable of handling complex386

systems, which can identify patterns and learn from their interactions with the en-387

vironment. The architecture of ANN includes several nodes (neurons) organized in388

input and output layers as well as several hidden layers. ANNs are flexible and learn389

in an iterative process of adjusting the weights of inputs and biases. The most common390

learning is supervised learning, which provides a response value is predicted for a set391

of input values. The difference between the predicted response and the actual target392

values is defined as the error value. The network weights are adjusted iteratively based393

on the error value by a back-propagation technique (BPNN) in order to minimize the394

error (Jafar, Shahrour, and Juran 2010). In this paper, we used a single hidden layer395

network with weight decay.396

4. Case Study397

In this study, a dataset containing the temporal data of water main breaks in the water398

distribution network of the city of Tampa, Florida, is utilized. The original dataset399

only provided information about the spatial location of failures, the time and date the400

main break reported and documented, and the contractor type (incomplete) of water401

main breaks from 2015 to early 2020 in the predefined area. This dataset is being402

updated continuously with recent incidents. More than 3336 events are considered as403

our database for analysis. As pipe specific features of each break are not available in404

the original database, we then used estimation techniques to add the associated failed405

pipe to each break, the census tract, and the available land and water around the406

breaks to the raw data. We also included pipe-related features like length, diameter,407

year built, and material to the water main break dataset based on the assigned pipe408

to each incident. Fig. 2 depicts the distribution of water main breaks over the selected409

period.410

The final dataset of water main breaks is summarized in Fig. 3. The breaks are first411

separated based on the occurrence years and then categorized in different classes of412

diameter, length, age, material, and hotspot level. The rates are normalized based on413

the total number of each category in the network (for example the total number of414

pipes older than 80 years) to make a clearer image about their contributions to the415

total breaks.416

5. Results and Discussion417

5.1. Spatial Clustering418

We discretized the study area, boundaries of Tampa, Florida, based on census tracts419

to conduct the spatial clustering analysis. In specific, we used the census tracts data of420

Hillsborough county of Florida in 2019. The first step of the spatial clustering phase is421

calculating Getis-Ord G∗
i statistic for all polygons inside our study region. Fig. 4 shows422
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Figure 2. Water Main Breaks.

the distribution of this statistic over the city of Tampa. The northern and central re-423

gions have the lowest and highest value, respectively. The higher value of this measure424

indicates that in the neighborhood there is a similar pattern for a higher frequency425

of water main breaks. On the other hand, the negative values reflect higher clustering426

among neighboring regions with lower frequencies of breaks. Finally, by mapping the427

p-values (normalized z-values of Getis-Ord statistics), we can make a clearer interpre-428

tation of the hotspots. Fig. 5 illustrates the result of this mapping, in which we can429

see some statistically significant patterns. By comparing the mapped p-values by the430

Getis-Ord statistic map, we can detect several hotspots in the southwestern and cen-431

tral sections of the city. There is also one noticeable cold spot located in the northern432

area of Tampa. To incorporate this analysis in our machine learning algorithms, we433

defined a categorical variable named hotspot level with three levels of high/medium,434

low, and none based on the obtained p-values and z-scores. As we mentioned in sec-435

tion 3.1, we only labeled polygons with positive z-score and significant p-values as the436

hotpost. We incorporated areas with insignificant p-values and ones with significant437

p-values for negative z-scores in the none level for this categorical variable.438

5.2. Machine Learning Algorithms439

The procedure of developing machine learning models consists of three sections: Data440

Understanding, Data Preparation, and Data Modeling. This approach is also called441

the CRoss-Industry Standard Process for Data Mining (CRISP-DM).442

5.2.1. Data Pre-processing443

In this paper, the data pre-processing procedure begins with determining if any vari-444

ables are highly correlated. Typically, variables with a correlation value of 0.7 or greater445
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Figure 3. The summarized water main breaks of Tampa based on different variables

12



 
 
 
 
 

under −1.3
−1.3 to −0.39
−0.39 to 0.39

0.39 to 1.3
over 1.3

Figure 4. Spatial pattern of Getis-Ord statistic.

are considered to be too highly correlated. A correlation matrix using all of the vari-446

ables was generated and based on the correlation values, it was determined that not447

all of the variables are necessary. The variables that were dropped include the num-448

ber of days the temperature was greater than or equal to 90 degrees Fahrenheit, the449

number of days the temperature was greater than or equal to 70 degrees Fahrenheit,450

the average max temperature, the average min temperature, and the number of days451

the precipitation was greater than or equal to 0.1 inches. This set of dropped variables452

accounts for almost all of the environmental variables except for average temperature453

and total precipitation. Fig. 6 shows only the statistically significant correlations for454

each pair of variables in the dataset.455

The next step in this section was to examine the time series analysis for this temporal456

data. To this end, seasonality was looked for in the number of breaks by month Fig.457

7 and by month-year Fig. 8.458

The autocorrelation and partial autocorrelation plots (Fig. 9 and Fig. 10, respec-459

tively) for the monthly data were the foundations of time-series analysis. From these460

plots, a trend, not specific seasonality, can be observed. Hence, the trend variable,461

representing each month in an increasing order, was added to extract the underlying462

time series behavior from the data. For example, 1 corresponds to the first month in463

the dataset, 2 represents the following month, and so on.464

The final aspect of the Data Understanding section is to examine the missingness in465

the data. The variables contract type, pipe material, and the year the pipe was built466

were the only variables that exhibited missing values. Contract type had the most467

missingness with over 71% of the data missing. Since this variable was not important to468

stakeholders, it was dropped from our analysis. Pipe material showed 6.8% missingness469

and the year built had 1.2% missingness. The missing values were accounted for in the470
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Figure 5. Spatial pattern of P-values of Getis-Ord statistics.

next section.471

5.2.2. Data Preparation472

This section begins by examining outliers in the dataset. Outliers were determined473

using Tukeys rule for finding outliers based on the interquartile range. Based on Tukeys474

rule, the outliers are the values more than 1.5 times the interquartile range from the475

quartiles, either below Q1− 1.5× IQR, or above Q3 + 1.5× IQR. The outliers were476

then replaced with blank values.477

The next step in the Data Preparation section was to complete some feature en-478

gineering. The first aspect was to resolve the missing values found in examining the479

missingness of the dataset in the previous section and the ones created by examin-480

ing outliers. The technique of multiple imputation was used to resolve these missing481

values. We then selected one of the complete datasets created by multiple imputa-482

tion with no missing values for the next phases. Since the hotspot level and material483

were categorical variables in the dataset, the next feature engineering aspect was to484

convert them to numerical variables. We used the well-known machine learning one-485

hot-encoding technique for this purpose. In this procedure, each level of the original486

categorical variable is converted into a new column and a binary value (notation for487

true/false) is assigned to the column.488

Considering the pipe failure rate (pfr) to predict when a pipe will break as the489

response variable is a common approach in the literature (Sattar et al. 2019; Shirzad490

and Safari 2019; Tabesh et al. 2009). Here, we define a variable, pipe failure rate,491

as the dependent variable. Since the trend and weather data were broken down by492

month, the pipe failure rate was also defined based on a monthly time scale. Equation493
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Figure 6. Correlation Heatmap.

3 defines this variable as:494

pfri =
number of breaks for pipe i

Total number of months in dataset
(3)

Please note that since our dataset contains 50 month of breaks recorded, the de-495

nominator of Equation 3 is considered 50 in our calculations, but the formula can be496

generalized to any time scale. Another aspect of the Data Preparation section was to497

normalize the data to eliminate the scale differences between variables. It is important498

to note that doing this usually increases accuracy (Shen et al. 2016; Singh and Singh499

2019). The final aspect was to split the data into separate datasets to train and test500

the models on. The training data set is comprised of 70% of the data and the test-501

ing data set is comprised of the remaining 30% portion. The datasets were selected502

through random sampling.503

5.2.3. Data Modeling504

At the beginning of the Data Modeling step, a baseline linear regression model was505

formed to be able to compare other models. For all of the models, the response (depen-506

dent) variable was the pipe failure rate. The baseline linear regression model included507

all of the variables. In order to determine which variables provided the most signif-508
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Figure 8. Number of Breaks by Month-Year.

icance, stepwise logistic regression going forward and backward was completed. The509

final model formula, including the final features and their units used in the training510

and test datasets, is presented in Table 2 with the pipe failure rate as the response511

variable.512

The developed models were cross-validated with five folds. The idea for k-fold cross-513

validation is that the dataset is divided into k subsets and one of the k subsets is used514
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Figure 9. Auto correlation function plots.

as the test set while the remaining are used as the training set. This process is repeated515

k times. The error estimation is average overall k trials to get the total effectiveness of516

the model. Performing k-fold cross-validation significantly reduces bias and variance.517

As a general rule, k = 5 is the most common setting for validation. The models were518

also tuned using various grids to see if performance results could increase.519

5.2.4. Information-base Performance Measures520

We compared the performance of predictive models based on the measures defined521

in two separated sections. First, we use some common performance measures such as522

the root mean square error (RMSE) value for the training and testing sets and the523

mean absolute error (MAE) value for the training and testing sets. The testing set524

RMSE value was given the highest precedence when comparing model performance.525

The RMSE value is an indicator of how close the models predicted values are to the526

actual values in the dataset. The MAE value measures the average magnitude of the527

errors in a prediction without considering their direction. Essentially, it is the average528

over the sample of the absolute differences between the predicted and actual values.529

Even though it is argued in the literature that using RMSE is not a good option530

in comparing predictive models for zero-inflated data of water main breaks, we still531

report this measure. However, we also calculate the information-based criteria (refer532

to Mohebbi et al. (2019)) Akaikes classic Information Criterion (AIC), Information533

Complexity (ICOMP), and Consistent Akaikes AIC (CAIC) and use these measures534

as well as the rank-based measure to interpret the performance of models. Table 3535

shows the results from the models.536
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Figure 10. Partial auto correlation function plots.

5.2.5. Rank-base Performance Measures537

While using performance measures such as the mean square error (MSE) and the538

root mean square error (RMSE) is a common approach in the literature to compare539

predictive models, it is argued that the data related to infrastructure are zero-inflated.540

In other words, there is a noticeable share of instances with zero breaks. As a result,541

using MSE and RMSE criteria will skew the accuracy evaluation towards the zero542

break instances (Chen et al. 2019). Inspired by Chen and Guikema (2020) and Choi543

et al. (2017), we implement a rank-based evaluation to have a more useful analysis for544

our case study. This method’s output will provide decision-makers at the municipality545

level with valuable information to better prioritize limited budgets and resources.546

The idea behind this rank aggregation approach is to evaluate the predictive models547

based on their accuracy in predicting the higher rate of breakage. In this method, a548

model is better if it can accurately assign a higher number of predicted breaks on the549

pipes with a higher failure rate and predict fewer breaks on those with lower rates.550

We can quantify this measure of goodness for prioritization by counting the number551

of potential breaks avoided when sorting the predicted breaks in a descending manner552

(high to the low number of predicted breaks) (Chen et al. 2019). The output of this553

method can be visualized by using a rank-ordered break capture curve, and the area554

under this curve reflects the goodness of fit for the predictive model. Fig. 11 and Table555

4 show the Ranked Ordered Curve for the predictive models developed in this paper556

as well as the associated area under the curve.557

As we mentioned, infrastructures’ administrators are more interested in allocating558
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Figure 11. Ranked Order Plot, Break Proportion Capture vs. Length Proportion Capture
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Table 2. Significance level and units for final features used in the training and testing datasets

Variable Unit Coefficient P-value

pfr (Response Variable) breaks per month NA NA
trend NA -0.0002 0.0418 *
available land square feet 0.0804 <2e-16 ***
available water cubic foot -0.2654 <2e-16 ***
total-precip millimeters -0.0056 0.00175 *
avg-Temp degrees Fahrenheit 0.01514 3.95e-14 ***
Length ft -0.4062 < 2e-16 ***
Diameter in -0.9872 < 2e-16 ***
Year built NA -0.9991 < 2e-16 ***
Hotspot level none NA 0.0162 <2e-16 ***
Hotspot level low NA 0.0219 <2e-16 ***
Hotspot level medium-High NA -0.0168 <2e-16 ***
Material ENAM.MJ NA 0.4352 <2e-16 ***
Material DIP NA 0.9824 < 2e-16***
Material PVC NA 0.4401 < 2e-16***
Material ENAM NA 0.3537 <2e-16 ***
Material ENAM.CI NA 0.1873 2.23e-14***
Material ENAM.CJ NA 0.3846 <2e-16 ***
Material HDPE NA 0.4691 <2e-16 ***
Material UNIV NA 0.2498 <2e-16 ***
Year-break NA 0.0614 3.49e-14 ***
avgpfr breaks per month 0.1382 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
NA: Not Applicable for categorical variables

Table 3. Results of model in the performance measures

Model RMSE MAE RMSE MAE ICOMP AIC CAIC

Train Train Test Test

ANN 0.084 0.021 0.083 0.014 2565.783 2610.787 2744.063
BRT 0.008 0.001 0.007 0.001 2455.655 2500.658 2633.933
MARS 0.017 0.003 0.015 0.002 2462.381 2507.384 2640.660
RF 0.030 0.012 0.028 0.012 2466.510 2511.513 2644.788

the limited budget and resources to the highest priority needs. To this end, we stratified559

the data based on the length and the number of breaks. We calculated the area under560

the Ranked Ordered Curve by considering only the top 20%, 40%, and 60% of top-561

ranked number of breaks and length of the system (For instance, in 20% case for562

length, we only considered the portion of data to the point that covers 20% of the563

total length of the network). Table 5 shows the area under the curve for each of these564

scenarios.565

By having the results of two information-based and rank-based criteria, we can now566

have a comprehensive interpretation regarding the performance of predictive models.567

Based on Table 3, BRT outperforms other models with a lower MAE measure (We do568

not interpret RMSE measure). The AIC, ICOMP, and CAIC measure also certify that569

BRT has a better performance. By focusing on this section, MARS is the second-best570
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Table 4. Area under the Ranked Ordered Curve

Predictive Model ANN BRT MARS RF
Area Under Curve 0.605 0.647 0.604 0.615

Table 5. Area under the Ranked Ordered Curve at top segments for length and number of breaks

Predictive Model ANN BRT MARS RF
20% 0.041 0.051 0.045 0.044

Length 40% 0.136 0.145 0.125 0.121
60% 0.262 0.285 0.252 0.256
20% 0.004 0.008 0.010 0.012

Number of breaks 40% 0.052 0.058 0.069 0.075
60% 0.172 0.145 0.174 0.141

one, and RF is the next best model. By incorporating the rank-based criteria, results571

presented in Table 4, we can infer that BRT is still the best model by covering the572

highest area under the curve compared to other competitors. However, this metric573

was higher than 0.6 for all four developed models. Finally, the results of top-ranked574

failures in Table 5 indicate that BRT covers the highest length of the system in all575

cases. RF and MARS have a better performance in terms of the number of breaks,576

though. ANN fails to predict well in the top 20% of breaks in both length and number577

of breaks sections, while its performance improves markedly for higher layers. To sum578

up, we can conclude that BRT reflects a reliable performance in both information and579

rank-based performance measures. Therefore, BRT is the recommended model to the580

stakeholders and decision-makers to apply to real water networks of Tampa for water581

main break prediction. If the networks administrators are only interested in top-rank582

layers of failures, BRT is still the best option for length and RF can predict the highest583

failure rates more accurately.584

We highlighted the first goal of the study as to quantify and interpret the most im-585

portant variables in the predictive models. To achieve this goal, we focus on the variable586

importance measure provided by the developed models. We used a model-independent587

metric for the developed models by tracking the changes in model’s statistics, such as588

generalized cross-validation, for each predictor and accumulating the reduction in the589

statistic when each feature of the predictor is added to the model. We used this total590

reduction as the measurement of variable importance. Fig. 12 shows this importance591

criterion for the most essential variables in each model. Starting with BRT as the best592

model, DIP material is the variable with the most contribution, which is expected as593

85% percent of the network is composed of this material option. The age (Year-built),594

diameter, and length of pipes are the next crucial variables. This also verifies the role of595

aging water infrastructure in experiencing higher rates of water main breaks in North596

America. Interestingly, in the developed MARS model, only these three variables are597

important. We can see an almost similar pattern in two other predictive models in598

terms of variable importance. However, the Trend (time series variable) is the second599

important variable in ANN, while two types of material are present in RF.600

Finally, To better aid municipalities in rehabilitation and fortification decisions, the601

model that provided the best performance, i.e. BRT, was used to predict the failure602

rate for the entire water distribution network in the City of Tampa. Fig. 13 illustrates603

the normalized failure rates for all pipelines in the present situation and the predicted604

ones by the BRT in the next five years. This figure can be used to identify the areas605

with higher failure rates in order to mitigate the consequences of water main breaks606
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Figure 12. Variable Importance of predictive models

in terms of financial burdens and service disruptions.607

6. Conclusions608

In this paper, we aimed to develop predictive models for water main breaks using609

spatiotemporal data. We used the dataset of recorded water main breaks in Tampa,610

Florida, as our case study. To improve the accuracy of our models, we incorporated611

several variables to the initial database, including the material of pipes, (approximate)612

age of pipes, average temperature, and total precipitation. We first identified the most613

vulnerable areas in the city by performing a spatial clustering analysis. The result of614

this analysis was translated into a categorical independent variable named hotspot615

level in the modeling phase. We then performed a time-series analysis to address616

the temporal pattern of our data. The output of this analysis, variable trend, and617

the known average failure rate were also incorporated into the predictive models as618

another independent variable. We defined the pipe failure rate as the response variable619

in this study. The results of stepwise logistic regression showed that both spatial and620

temporal variables, in addition to physical and environmental factors, are significant.621

Afterward, we developed four predictive models based on various machine learning622

algorithms. We compared the performance of these models by several performance623

measures. The results indicated that BRT was superior to others.624

From a practical point of view, decision-makers can use the results of this study in625

the following ways. First, they can investigate the hotspots to identify noticeable tech-626

nical and physical differences compared to non-significant places. The results will also627

help them design more proactive maintenance schemes to prevent (eliminate) future628

failure-related problems. Renovating the equipment and components (fortification) in629

the pipes with a higher predicted failure rate located in hotspots to decrease their630

vulnerability can be another worthy resulting strategy from the information provided631

by predictive models. Moreover, the output of top-ranked failures from the proposed632

rank-based performance measure can help the decision-makers allocate scarce and ex-633

pensive resources only to the network’s highest priorities in an efficient manner. The634
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Figure 13. The present and 5-years predicted normalized failure rate for WDN in Tampa
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final output of the developed framework can be improving the overall resilience of the635

water network to perform better in unpredictable situations and enhancing the perfor-636

mance of interdependent infrastructures (transportation) by eliminating the Achilles’637

heel of the water network.638

For future studies, there are some possible promising directions. Including the cause639

of water main breaks in the modeling phase can potentially improve predictive and640

vulnerability analyses. A high percentage of breaks are usually because of physical641

problems inside the network. While some breaks are due to natural disasters and are642

somehow inevitable, a part of breaks can be a direct result of human actions such as643

carelessly excavating activities. Thus, making a distinction among these reasons can644

provide more insightful information for decision-makers.645
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