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Abstract

Interdependent critical infrastructures are governed by several sectors working together to maintain social, eco-
nomic, and environmental well-being. Although many models focus on a centralized view for networks for the
restoration planning of these networks, rarely is there only one decision-maker for the infrastructure networks. In
the decentralized decision-making paradigm, individual decision-makers need to decide how to prioritize areas of
the network and eventually improve the aggregated infrastructure systems resilience. There is a dearth of quanti-
tative studies analyzing resource allocation decisions considering both decentralized and cooperative aspects. This
paper aims to propose a coalitional game theory approach to address decentralized resource allocation for inter-
dependent water distribution and road networks. In particular, combining coalitional game theory with weighted
graphs creates an order of repair for each node in the coalitions. Subsequently, the decision-makers can pass the
information on to the master problem, reducing the complexity of the resource allocation problem for the interde-
pendent networks. The proposed approach is applied to water distribution and transportation networks in the City of
Tampa, FL. We compare the decentralized solutions to centralized solutions in different scenarios to demonstrate
the feasibility of our approach for the city-scale networks. The results indicated the superiority of the proposed
framework in terms of computational time and solution quality.
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1. Introduction

The Department of Homeland Security has identified sixteen critical infrastructure sectors necessary for
the functionality of the city, one of which focuses on one essential element (DHS, 2003). The disrupted
components of these infrastructures must be repaired promptly after a disruptive event such as a natural
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disaster to restore the city normalcy and maintain social and economic well-being (Aslani et al., 2021;
Huang et al., 2019). The restoration activities use resources such as work crews, money, and supplies
for this purpose. The administrators need to decide resource allocation strategies to minimize the total
time for the restoration of the infrastructures. Traditional resource allocation models assume the cen-
tralization approach, in which all geographical areas and infrastructures share one decision-maker, one
set of resources, and one aggregated goal (Sharkey et al., 2015). However, infrastructures are highly
interdependent on one another, such as the geospatial interdependency of the water and transportation
infrastructures (see Mohebbi et al. (2020b)). Pipelines are commonly placed underneath roads, meaning
that if a pipe breaks, the col-located road in the transportation network must be damaged to repair the
water failure. This leads to competing interests between the transportation infrastructure and the wa-
ter infrastructure, along with separate goals for different physical locations. Hence, it is imperative to
understand the collective behavior of decision-makers for managing infrastructure systems.

The complexity of centralized approaches and the need for decentralized solutions have led to consid-
erable efforts in the decision science literature to find low complexity and distributed algorithms (Arnold
and Schwalbe, 2002; Mohebbi and Li, 2015). In the decentralized decision-making paradigm, individual
decision-makers are responsible for prioritizing disrupted areas of the networks to improve the aggre-
gated infrastructure system resilience. There are several studies in the literature advocating cooperative
management strategies to enhance the resilience of infrastructure systems facing disruptive events (see
Whittington et al. (2005); Hophmayer-Tokich and Kliot (2008); Bel et al. (2013)). Nonetheless, there is a
lack of studies focusing on quantitative modeling the co-existence of cooperation and decentralization for
interconnected infrastructure network restoration. Therefore, in this paper, we propose a decentralized
resource allocation framework for restoring interdependent infrastructure networks based on cooperative
game theory.

In the framework of cooperative game theory, interdependent infrastructure systems can be modeled
as a set of coalitions sharing their resources to restore network components and meet the global perfor-
mance. A coalition is a group of fully cooperative connected actors/network components (i.e. nodes or
arcs). In the interface of game theory and networks such as routing (Das and Tripathi, 2018), network
partitioning (Avrachenkov et al., 2017), biological networks (Moretti et al., 2010), and Chinese postman
(Borm et al., 2001) problems, it is common to define nodes or arcs as the set of players. As coalitions
are mutually disjoint, no one node/arc is present in two coalitions. The individual resources now belong
to the coalition, and the allocation are decided based on cooperative game solutions.

We consider the nodes of various infrastructures as actors in this study. We identified important nodes
(key nodes) for each infrastructure to form coalitions reflecting essential aspects of the network. Due to
interdependencies among infrastructures, the coalitions can have nodes from multiple networks. Figure
1 demonstrates a sample coalition for interdependent water and transportation networks, where the key
node is a water valve. This coalition is comprised of two directly connected water nodes to the valve and
the co-located transportation node. For the transportation network, the important/key nodes are based
on the priority of the geographic area as determined by land use (e.g. residential, institutional, hospitals,
etc.) and average daily traffic volume (e.g. see Vidrikova et al. (2011); Papakonstantinou et al. (2020)).
Key nodes in the water distribution network, on the other hand, are based on physical and hydraulic
characteristics of the pipeline network (e.g. reservoirs, valves, tanks, and pump stations).

It should be noted that coalitions are determined based on: (a) geospatial interdependencies between
and within infrastructure networks, and (b) the importance of key nodes to the networks. Hence, a



coalition of nodes appear to be clustered in the same geographical area. Water and transportation in-
frastructures are two separate sectors with different procedures. Hence, key nodes are determined by
the decision-maker of each infrastructure network independently. In face of disruptive events, decision-
makers then need to prioritize and allocate resources (work crews, money, etc.) to restore disrupted
network components.

Fig. 1. Sample Coalition for co-located water and transportation networks

After forming the coalitions, the individual contribution of each node to the interdependent networks
can be calculated based on cooperative game solutions. Concepts of the core and the Shapley value
are the primary tools for determining the fairness criteria for cooperative games. The core and Shapley
value are the main solution concepts in cooperative games that are equivalent to the Nash Equilibrium
in non-cooperative games (Myerson, 1991). Since the core can be empty or quite large, the selection of
a suitable core allocation can be challenging. As a result, the search for a unique payoff vector known
as the Shapley value is a common approach in cooperative games. We use Shapley value to calculate the
individual contribution of every node to the entire network of infrastructures.

Shapley values can be calculated based on the number of key nodes in the coalition and their inter-
action with non-key nodes. This calculation method does not consider the characteristics of the nodes,
though. An important feature of each node in the water or transportation infrastructures is the maximum
capacity of flow (Gonzalez-Aranguena et al., 2014). For instance, the daily amount of pumping water for
a pump station varies, and the importance of this element to the surrounding area is related to the amount
of flow the pump services. Likewise, a transportation intersection can be defined by its daily traffic, and
its importance to the surrounding area is dependent on the amount of flow in the node. We followed a
weighting scheme for each node in a coalition to capture this important characteristic in our model. The
goal of this procedure is to identify the nodes with more flow, which are more critical to the network.
The coalition then can allocate resources in an order based on the Shapley values.

The complexity of the optimization of resource allocation reduces by incorporating coalitions to the
problem. In the new setting, by grouping nodes together into cooperative coalitions, each coalition al-
locates its resources to the nodes in a decentralized manner. The restoration plan from each coalition is
then passed on to the master problem, which allocates resources to the whole interdependent networks.



As a result, the contributing nodes in the master problem are reduced, which subsequently influence the
computational complexity.

The remainder of this paper is organized as follows: In Section 2, the literature on two main streams of
interdependent infrastructure modeling, including game theory and optimization techniques, is reviewed.
Section 3 explains the methodology and the proposed decentralized resource allocation framework. Sec-
tion 4 provides the performance evaluations of the proposed framework applied to water distribution and
transportation networks in the City of Tampa. Finally, Section 5 includes concluding remarks, limita-
tions, and future research directions.

2. Literature Review

Optimization and game theory methods are the two key components of the proposed framework in this
paper. Each modeling approach has been applied to the restoration problem of interdependent critical
infrastructures in the literature, with different assumptions and applications.

2.1. Optimization in Interdependent Infrastructures

A rich stream of the literature for resource allocation optimization problems in interdependent infras-
tructure networks relies on assumptions of centralized decision-making (Zhang et al., 2018; Kong et al.,
2019; Rong et al., 2018; Sharkey et al., 2015; Cavdaroglu et al., 2013). For instance, Cavdaroglu et al.
(2013) proposed mathematical models and efficient optimization algorithms that integrate the restoration
and planning decisions for interdependent systems. The proposed solution method is heuristic and cen-
tralized as all decisions are made from one source. This assumption presumes that in the entire network,
there is only one decision-maker, who is responsible for allocating resources to the disrupted systems and
there is also complete information of all resources and flow for making the decisions (Rong et al., 2018).
Sharkey et al. (2015) extended the centralized optimization in Cavdaroglu et al. (2013) by partitioning
the objective function among multiple players to demonstrate the value of information sharing. In small-
scale disruptions, this decision maker can be the infrastructure managers; in large-scale disruptions,
this person can be the local government (Zhang et al., 2018). The decision-maker must have a holistic
understanding of the entire network under their jurisdiction, including resources, disruptions, interde-
pendencies, and repair times for each node. The centralized decision-making assumption is impractical
in larger-scale networks, considering the complex interactions among infrastructures and different types
of interdependencies (physical, informational, and so on).

In such centralized optimization models, most models seek to maximize the resilience of the network.
One approach to maximize resilience is to simply make the resilience metric the focus of the optimization
model (Zhang et al., 2018). More complex models can be conceptualized and capture different aspects
of the problem, such as developing a two-stage optimization model that first restores the minimum level
of service before minimizing the losses in the network (Kong et al., 2019). Although this setting is more
realistic, the associated complexity increases the amount of required information for the decision-maker
to plan.

Some studies in the literature have addressed the decentralized network optimization problem for



infrastructures (e.g., see He et al. (2017); Talebiyan and Duenas-Osorio (2020)). Nonetheless, the re-
sulting models are mainly applicable to small or county-level networks, due to the assumption that all
actors are individually making decisions (Talebiyan and Duenas-Osorio, 2020). Smith et al. (2020) in-
vestigated non-cooperative decision making when information is incomplete and two decision-makers
cannot negotiate. They analyzed the convergence properties, and applied the proposed ad hoc solution
to the Shelby County dataset to demonstrate the extent of the tradeoff between optimality and computa-
tional efficiency. Reilly et al. (2014) studied strategic investment decisions by two operators of privately
owned infrastructure systems when they do not communicate with one another and select resources in
the narrow interests of their own system. It was shown that their decision can lead to underinvestment
and underperformance in infrastructure systems, and underinvestment is likely to be stronger when there
are greater interdependencies. Therefore, the interdependent nature of the infrastructures must be consid-
ered to capture the true complexity of the network accurately. The decentralized optimization models in
the literature do not always incorporate the interdependent nature of the infrastructures to their problems
(He et al., 2017). This leaves a gap for models that include both decentralization and are computation-
ally tractable for large-scale networks. To tackle this issue, we propose a decentralized optimization
model for city-scale interdependent infrastructure networks. The framework provides information re-
garding restoration planning for decision-makers in a reasonable time, making the model more broadly
applicable.

2.2. Cooperative Game Theory in Interdependent Infrastructures

Cooperative game theory has been applied to many fields, such as economics, government policy, ge-
netics, and healthcare systems (Mohebbi and Li, 2015; Choi et al., 2020; Moretti et al., 2010; Mohebbi
et al., 2020a). The main feature of such games is that decision-makers seek to optimize a common goal
such that decisions/actions do not degrade their individual purpose and performance. In order to optimize
a common goal in networks, particularly one related to restoration, the characteristics of components and
nodes must be understood. One key feature of a node can be the importance of the node in relation to
the interdependent network, referred to as the Shapley value of the node. Shapley values are central to
many cooperative games in a variety of scenarios (Borm et al., 2001), which provide a unique solution
and allow the decision-makers to make informed choices.

Decentralization of the network allows for the different sectors to cooperate while retaining their in-
dependent decision-making power and resources, in addition to reducing the computational complexity
of the resource allocation problem (Ellinas et al., 2015). A graph dividing approach must be imple-
mented to decentralize the network. One viable procedure is the division based on the node location.
This method uses identified important nodes by the decision-maker, known as key nodes, to create coali-
tions (Moretti et al., 2010). Thus, as the coalitions are restored, the repairs will be focused on these key
nodes. Mathematically, there are a large number of ways to identify the important nodes and coalitions
in interdependent networks.

However, by considering the physical characteristics of nodes, their geographical and land use clas-
sification, a smaller set of key nodes can be identified. In the water infrastructure, these key nodes
are identified as nodes with different characteristics, such as reservoirs, pumps, valves, and tanks. The
other nodes in a water network are demand nodes or pipeline junctions, neither of which control the



flow throughout the system. In the transportation infrastructure, the identification of key nodes such as
bridges, highway intersections, and other important intersections are based on land use classifications
and average daily traffic volume.

Finally, to accurately capture the characteristics of the network components, a weighting scheme must
be applied to highlight the more vital parts of the network to the city. There are multiple ways to assign
weights to a network, one of which is based on the cost of transportation (Allen and Arkolakis, 2019).
However, this technique is only beneficial when plotting routes through an infrastructure. A more effi-
cient way is focusing on the flows between the links in the infrastructure, which assigns weights based
on existing flow (Gonzalez-Aranguena et al., 2014).

Our proposed model combines both the key-node based coalition formation and the flow-based
weighting of a graph, creating a unique configuration that addresses both the relative importance of
a node to significant areas in the interdependent infrastructures and the importance of the node charac-
teristics. This approach is vastly different from previous methods developed in the literature, due to the
dual approach of weighted graphs and game theory. Weighted coalitions are first formed based on direct
and interdependency links and do not change. Afterwards, the master problem of optimizing resource
allocation must be addressed.

3. Analytical Modeling

The proposed decentralized resource allocation framework utilizes cooperative game theory and network
optimization techniques. We first present the formulation and solution for the cooperative game and then
provide the optimization model for interdependent infrastructure networks.

3.1. Game Formulation

3.1.1. Unanimity Game
The basic cooperative game can be defined as < N, v >, where N is the set of players and v is the
characteristic function. In this paper, N is the set of all non-key nodes and the characteristic function
is a measure of the connectedness of the non-key nodes to the key nodes. Given a subset E ⊆ N , the
characteristic function v(E) ∈ R and v(∅) = 0. A group of nodes C can form a coalition if C ⊆ N .

For a unanimity game, the coalitions are represented by uE(C) = 1 if E ⊆ C and uE = 0 if E * C,
where ∅ 6= E ⊆ N . Cooperative games can be written as a linear combination of unanimity games in a
unique way. The coefficients of the characteristic function are λE(v) for all subsets E ∈ 2N \ ∅. Thus,
the unanimity game characteristic function v is

∑
E⊆N,E 6=∅

λE(v)ue (1)

We use Shapley value to solve the game. This solution can be described in several ways, and we use the



following formula (Shapley, 1953):

φi(v) =
∑

E⊆N :i∈E

(|E| − 1)!(|N | − |E|)!
|N |!

[v(E)− v(E \ {i})], ∀i (2)

In our model, the Shapley value is based on the number of key nodes that are exclusively connected
to the coalition (see Moretti et al. (2010)). The specific coefficients of the characteristic function must
reflect this definition. To find this characteristic function, the links between key nodes and nodes must
be identified as LE ⊆ {{i, k}|i ∈ E, k ∈ K} where K is the set of all key nodes. A single key node that
is directly connected to a subset E can be calculated through the following Equation:

ME =

{
1, if {i, k} ∈ LE
0, otherwise

(3)

This function needs to be summed over all of the key nodes, represented as λE(v) =
∑
k∈K

ME . The

characteristic function v remains the same as Equation 1. Hence, coalitional structures can be determined
by the vectors formed by the same function as ME ,

Ck(i) =

{
1, if{i, k} ∈ LE , ∀k ∈ K, ∀i ∈ E
0, otherwise

(4)

It should be noted that for each city-scale infrastructure network, key nodes are distributed and inde-
pendent, i.e. they do not directly interact. This is due to the fact that the field validated network models
are created by following skeletonization procedures, i.e. merging original nodes/links by applying the
combination of attributes to the newly merged nodes/links ( see Santana (2015); Abdel-Mottaleb et al.
(2019)). Hence, to simplify the presentation of the game and weighted graphs, we consider one key node
per coalition. However, this assumption is not fundamental and key nodes in one network can be linked
to those of other infrastructure networks via interdependency links if they are geographically co-located.
If a group of k key nodes directly interact, it will be sufficient to merge them into an individual key
node whose importance equals k times the importance of a single key node. To this end, the network
optimization model needs to be elaborated by adding an index to decision variables that would ensure
the important coalitions are prioritized first.

3.1.2. Restricted Weighted Graphs
Having identified coalitional structures for the interdependent networks, we need to calculate the Shap-
ley value vector for each coalition. In addition to nodes characteristics, the flow on specific links of
infrastructure networks is important in calculating the Shapley value. This is because such links might
contribute more to a key node than others.

In order to allow for weighting different non-key nodes in the individual coalition, the overall network
must be restricted to a graph that contains coalition C. The new set of restricted players R is simply
R ⊆ N,R 6= ∅, where C ⊆ R. The connections in the entire graph, IN = {{i, j}i, j ∈ N, i 6= j}, is
restricted to IR or the set of connections that include only those connections inR. Thus, a restricted graph



is presented as < R, IR >. From this restricted graph, a subgraph that contains strictly the connected
components of coalition C. The set of links η ⊆ IR where C is connected in η and the set of players
D(η) = {i ∈ N such that ∃j ∈ N where {i, j} ∈ η} form the new connection subgraph. Finally,
the weighted graph < N, Iw > is comprised of the set of players N and the weighted links Iw =
{I, {wA}A∈I}.

However, the weighted graph must be transformed before it can be used to calculate the Shapley
values of the coalition. We used the set of proportional contribution that each coalition C contributes
after the graph has been weighted to measure contribution, α(Iw). For each coalition, the proportional
contribution is equal to {αRC({wA}A∈I) ∈ [0, 1]}. The exact value of αRC depends on the type of weight
that best fits the current situation for the overall network. In our model, flow between nodes is used
to weight the graph, as the flow of commodities are important measures to capture in infrastructure
modeling.

In other words, wA is the flow on arc A and must be within [0,∞]. For instance, water flow in each
link/pipe can be obtained by simulating the water distribution network using EPANET Tools software.
For the transportation network, average annual daily traffic or network measures can be used to simulate
traffic flow in each link/road. Thus, (α)RC can be calculated as below (see Gonzalez-Aranguena et al.
(2014)):

(α)RC = max
i=1...t(R)

{
1

1 + max
L∈ηC,R

i

wA

}
for |C| ≥ 2 and = 1 if |C| = 1 (5)

Gonzalez-Aranguena et al. (2014) demonstrated that the α-weighted restricted graph is decomposable
on unanimity games. Hence, the modified characteristic function for the restricted weighted graph is:

vIw,α(R) =
∑
∅6=C⊆R

λC(v)αRC({wA}) (6)

This characteristic function measures the level of maximum flow that can pass between each group of
connected nodes, or route to the key node, in the coalition.

According to Equation 6, the computation of the Shapley value for the corresponding game is straight-
forward as below.

φi =
∑

i∈C⊆N

λC(v)

|C|
, ∀i (7)

Simply put, this is the value that each node contributes, measured by the amount of flow that goes
through the node and accounting the number of routes to the key node that the node is a part of, resulting
in a vector for each coalition. It should be noted that this value will not add to one similar to other
unanimity games, due to the restricted nature of the graph. Each coalition can find the Shapley value
vector for itself and determine the allocation of resources and order of repair for disrupted nodes based
on this value. A node is not operational until all links connected to the node have been fully recovered. If



multiple links with equal flows (importance) are connected to the node and lead to the same met demand,
the links to be repaired are randomly chosen. Another approach is to consider the flow cost, i.e., unitary
cost of carrying flow through links, as the second criterion to choose from multiple flows with the same
met demand. In this study, we only considered met demands as our objective function. The allocation of
resources to nodes will be fair, due to the fairness property and axioms of Shapley values. These axioms
are intrinsic to the Shapley value and ensure the fairness of the result. The efficiency axiom represents
the group rationality, the symmetry axiom ensures that if two players have equal contributions, they will
have equal payoffs, the dummy axiom awards no payoff to players with no contribution to the coalition,
and the additivity axiom forces the combined Shapley value for two coalitions to be the same regardless
of the order that they are added.

3.1.3. Proposed Algorithm
In summary, the general flow of the problem starts with the formation of the coalitions. The coalitions
are formed around the identified key nodes by the decision-makers using the direct links in the physical
network and the interdependency links. If a non-key node is between two non-interdependent key nodes,
it belongs to the coalition with most flow. The characteristic function can be calculated using weighted
links for each coalition. Afterward, the Shapley value vector can be calculated and used to create a unique
order of restoration for each coalition. The coalitions can then send the repair orders to the network-wide
optimization problem (i.e., master problem). The procedure is outlined in Algorithm 1.

Algorithm 1 Proposed algorithm for fair allocation of resources within coalitions
1: Procedure: Coalitional Game
2: for all coalitions do
3: Calculate the flow equation for each link;
4: Compute the characteristic function ;
5: Use the unanimity game formulation to calculate the Shapley value vector for the coalition;
6: Formulate an order of repair for disrupted nodes based on the Shapley value vector;
7: Send order of repair to ’Master Problem’ Procedure;
8: end for

3.2. Optimization Model

After identifying the coalitions and calculating the Shapley value vectors, the results can be used to
optimize the resource allocation in a decentralized manner. The optimization of the resource allocation
is best described as two decomposed problems: one sub-problem for coalitions and one master problem
that accounts for the entire network.

3.2.1. Restoration of Coalitions
Within each coalition, the Shapley value vector can be utilized to finalize the order of restoration and
resource allocation decisions. The order of repair is strictly based on the Shapley value: the damaged



node with the largest Shapley value will be repaired first, then the second-largest damaged node, and so
forth. However, if the key node itself is damaged, the key node automatically is the first to receive repair
resources. If the coalition has resources available to use, such as local funds, the available resources will
be applied in that order.

Although the calculated Shapley values are for nodes, disruptions most often occur in the arcs of the
network. To model disruption at the node level, we assumed that a node is failed when a connected arc is
disrupted. When a node receives resources from the coalition, all arcs connected to the node are restored
during the time frame. If the coalition does not have enough resources or has no available resources,
the order of repair will be sent to the master problem, the network-wide optimization model. Once the
resource is assigned to the coalition, the nodes will be restored, still following the predetermined order
of repair. If there are not enough resources to repair all nodes, the sub-problem will send the level
of disrupted flow remaining back to the master problem. This cycle repeats until the coalition is fully
restored. The proposed sub-problem for restoring coalitions is outlined in Algorithm 2.

Algorithm 2 Proposed algorithm for restoring coalitions
1: Sub-problem: Coalition Repair
2: for each coalition Ck do
3: Order list of disrupted nodes by decreasing Shapley value;
4: Send order to ’Master Problem’;
5: Receive resources if needed from network;
6: if received resource is equal to cost of repairs then
7: Repair all nodes;
8: end if
9: Repair list in order;

10: Send total remaining disrupted flow to ’Master Problem’;
11: end for

3.2.2. Interdependent Networks Optimization
The master problem receives the order of repair from the coalitions and integrates it into the overall
optimization model. The following network optimization problem is formulated which is mainly based
off the work presented by Sharkey et al. (2015).

3.2.3. Sets and Parameters
• M : Set of all infrastructures
• Nm: Set of all nodes in infrastructure m
• Sm: Set of all supply nodes in infrastructure m
• Tm: Set of all transshipment nodes in infrastructure m
• Ēm: Set of all arcs that can be installed in the network in infrastructure m
• Em: Set of all initially available arcs in infrastructure m
• C: The set of all coalitions, with 0 being the centralized coalition set
• A: The set of all arcs that connect to key nodes and are therefore a part of a coalition



Set of constraints for the Master problem∑
(i,j)∈Em∪Ēm

xmijt −
∑

(i,j)∈Em∪Ēm

xmjit = smi , t = 1, ..., T, ∀i ∈ Sm, ∀m ∈M (8)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(i,j)∈Em∪Ēm

xmjit = 0, t = 1, ..., T, ∀i ∈ Tm, ∀m ∈M (9)

∑
(i,j)∈Em∪Ēm

xmijt −
∑

(i,j)∈Em∪Ēm

xmjit = −vmit −
∑

((i,m),(a,b),n)∈NTP

vminabt,

t = 1, ..., T, ∀i ∈ Dm, ∀m ∈M
(10)

0 ≤ vmit ≤ dmi , t = 1, ..., T, ∀i ∈ Dm, ∀m ∈M (11)

0 ≤
∑

(i,j)∈Em∪Ēm

xmijt ≤ umi , t = 1, ..., T, ∀i ∈ Tm, ∀m ∈M (12)

0 ≤ xmijt ≤ umij , t = 1, ..., T, ∀m ∈M, ∀(i, j) ∈ Em (13)

0 ≤ xmijt ≤ umijβmi,j,0,o,t, t = 1, ..., T, ∀m ∈M, ∀(i, j) ∈ Ēm (14)

∑
(i,j)∈Ēm

min{T,t+pmij−1}∑
s=t

αmkij0s ≤ 1, t = 1, ..., T, ∀m ∈M, ∀c ∈ C, k = 1, ...,Km (15)

βmi,j,0,o,t − βmi,j,0,o,(t−1) =

Km∑
k=1

αmkij0t, t = 2, ..., T, ∀m ∈M, ∀(i, j) ∈ Ēm (16)

0 ≤ dmi − vmit ≤ (1− ym,in,j,t)(d
m
i ), t = 1, ..., T, ∀(i, j) ∈ F (m,n), j ∈ Nn, i ∈ Dm (17)∑

(j,h)∈Ēm∪Ēm

xnjht ≤ snj y
m,i
n,j,t, t = 1, ..., T, ∀(i, j) ∈ F (m,n), j ∈ Sn, i ∈ Dm (18)

∑
(j,h)∈Ēm∪Ēm

xnjht ≤ dnj y
m,i
n,j,t, t = 1, ..., T, ∀(i, j) ∈ F (m,n), j ∈ Dn, i ∈ Dm (19)

• Q: Set of all nodes not in a coalition in the network
• Dm: Set of all demand nodes in infrastructure m
• smi : The amount of supply available at node i ∈ Sm in infrastructure m
• dmi : The amount of demand at node i ∈ Dm in infrastructure m.
• wmi : The weight associated with meeting one unit of demand at node i ∈ Dm in infrastructure m.
• umi : The capacity of node i in infrastructure m.
• umij : The capacity of arc (i, j) in infrastructure m.
• F (m,n) ⊆ Dm × Nm: The set of all parent/child node pairs in parent infrastructure m and child



infrastructure n.

3.2.4. Decision Variables
From these sets, the decision variables can be created. The first three decision variables are solely for the
master problem, including remaining nodes that are not in coalitions. However, the other two variables
gain additional indices to represent the coalitional nodes as well. For α, the decision variable that de-
termines when the arc is repaired, an additional binary index was added to represent if either of the two
nodes in the arc are in a coalition. For β, the decision variable that displays that an arc is restored, two
additional indices were added. The first is the same binary index as in α, while the second represents the
repair order determined by the Shapley value.

• xmijt: The amount of flow on arc of node (i, j) ⊆ Em ∪ Ēm in infrastructure m at time t.
• vmit : The amount of demand met at node i ⊆ Dm in infrastructure m at time t.
• ym,in,j,t: A binary variable for (i, j) ⊆ F (m,n) representing whether sufficient demand is met at node
i in infrastructure m so that node j in infrastructure n is operational at time t.

• αmk,i,j,c,t: The binary variable which is equal to 1 if arc (i, j) ∈ Em in infrastructure m is completed
by work crew k at time t where c is equal to 0 if the node i and j are not in a coalition and the number
of the coalition otherwise.

• βmi,j,c,o,t: The binary variable which is equal to 1 if arc (i, j) ∈ Em in infrastructure m is available
at time t where c is equal to 0 if the node i and j are not in a coalition and the coalition number
otherwise and o is the order number from the game theory solution.

3.2.5. Objective Function
The objective function is to maximize the met demand.

Max Z =

T∑
t=1

∑
m∈M

∑
i∈Dm

vmit (20)

The decomposed set of constraints for the Sub-problem

βmi,j,c,o,t ≥ βmk,l,c,o+1,t, ∀(i, j), (k, l) ∈ Ac, ∀c ∈ C (21)

∑
(i,j)∈Ēm,6∈Q

min{T,t+pmij−1}∑
s=t

αmkijcs ≤ 1, t = 1, ..., T, ∀m ∈M, ∀c ∈ C, k = 1, ...,Km (22)

βmi,j,c,o,t − βmi,j,c,o,(t−1) =

Km∑
k=1

αmkijct, t = 2, ..., T, ∀m ∈M, ∀(i, j) ∈ Ēm 6∈ Q, ∀c ∈ C (23)

0 ≤ xmijt ≤ umijβmi,j,c,o,t, t = 1, ..., T, ∀m ∈M, ∀(i, j) ∈ Ēm 6∈ Q, ∀c ∈ C (24)



3.2.6. Constraints
The constraints can be added to the model as follows. Constraints 9, 10, and 11 are defined to ensure that
the flow in and out of supply nodes, transshipment nodes, and demand nodes match the needed outflow.
Constraint 11 does have an extra value that can be utilized to ensure that the model follows the proper
interdependency rules. Constraints 12 and 13 address demand and capacity limits for the nodes and the
arcs. Constraint 14 addresses the initially available node capacity due to the arcs that are undamaged
by the disruption. Constraint 15 links the β value to the flow. If the β value is not 1, then the arc is not
available and so no flow should exist. Constraints 16 and 17 correspond with α. The first ensures that
each arc is only started to be fixed by one work crew in one time period over the entire time period. The
second ties α to β, so that the arc is available after it is restored. Constraints 18, 19, and 20 ensure that
the binary node operation variable y is linked to the demand, transshipment, and supply nodes.

The constraints in the sub-problem were added to handle the coalitions. For all constraints in the mas-
ter problem, the coalitional index c for decision variables α and β is always equal to zero, ensuring that
only those arcs that are not in a coalition are handled by the master problem. Prior to the master problem,
the sub-problem handles all the arcs whose coalitional index c for decision variables α and β correspond
with a coalition. In other words, the constraints in the master model were only applied to those decision
variables with a coalitional binary variable of 0, indicating the arcs are not connected to a node in the
coalition. As a result, the decision variables β in the master problem are related to the disrupted com-
ponents outside the coalitions, and the β decision variables in the sub-problem are associated with the
failed parts in coalitions. However, all constraints with α or β were replicated to connect the demand
with β. Constraint 21 is the only constraint that directly applies only to the coalitional nodes to make
sure that disrupted components in the coalitions are restored based on the order of repair. More precisely,
it ensures that the higher-order nodes from any coalition get repaired before the lower order nodes. For
example, all first ranked damaged nodes across all coalitions must be fixed before any second-ranked
nodes.

After the model is run and the results are received, the master problem can send out the order of repair
for the non-coalitional damaged nodes, and work crews will begin to restore the network. The proposed
procedure is summarized in Algorithm 3.

Algorithm 3 Proposed algorithm for the optimization of the entire network
1: Procedure: Master Problem
2: Receive order of repairs for coalitions from the sub-problem;
3: Run optimization model for all nodes;
4: Send resources to nodes based on results;
5: if there is not enough resources to repair all disrupted nodes then
6: Receive disrupted flow from coalitions;
7: Add penalty for unrepaired remaining flow;
8: end if



4. Validation and Performance Evaluation

This study used data from a simplified version of the water distribution and road infrastructure networks
in the City of Tampa, Florida. Existing tanks, pump stations, and reservoirs from the data were used
as key nodes for the water network. Valves were simulated by finding water nodes where at least
four pipelines intersected. For the transportation network, we first calculate the betweenness centrality
measure to simulate traffic flow. Then, all nodes that exceeded a certain threshold of flow were
considered as important intersections (nodes). This assumption is based on previous work on traffic flow
(Kazerani and Winter, 2009). In this paper, we focused only on geographical co-location to determine
interdependencies for the water and transportation networks. The overlaid networks are illustrated
in Figure 2, with the brown being the water infrastructure and the green being the transportation network.

Water
Transportation

Fig. 2. Interdependent water-transportation networks

In the simplified networks, there are 4312 nodes in both the transportation and water networks. There
are 48 key nodes in the water network and 45 key nodes in the transportation network, based on a
predefined betweenness threshold of greater than 0.07. This value was chosen to limit the transportation



key nodes to only the highest traffic flows. Using the conservative threshold of 0.07 ensures that only
the most traveled roads are selected as key nodes. In addition, the number of key nodes in the water
network is approximately the same as the number of key nodes in the transportation network. As each
infrastructure comprises almost half of the nodes, the proportion of key nodes to non-key nodes remains
roughly the same in both infrastructures. Table 1 provides one example subset of the total 93 coalitions
in the networks. The variation in the Shapley values is due to the nature of the characteristic function.
Since every coalition calculates its function based on the number of nodes in the coalition and the flow
depends on the type of node, the Shapley values can vary between coalitions yet remain comparable
within the coalition. Hence, although the Shapley values cannot be compared between coalitions, the
coalition can still create a clear order of repair.

Table 1
Subset of Coalitions in Order of Repair from Tampa, FL

Key Node Nodes in Coalition Infrastructure Shapley Value

J-103410 7324 Transportation 0.064
A-58369 Water 0.042
A-54531 Water 0.042
A-66147 Water 0.00076
A-25129 Water 0.00076

7476 A-66724 Water 1.1839
7493 Transportation 1.1839
7464 Transportation 1.1837
7472 Transportation 1.1203
7503 Transportation 1.1203

HSP HRR Water 0.000018
J-87510 Water 0.000018

Under the current framework, calculating the characteristic function for the weighted graphs is limited
to direct connections. Given that the coalitions only contain nodes that are directly connected to the key
node, these possible paths are limited to direct connections and the potential interdependent node. The
flow along the interdependent node is assumed to be the same as the maximum amount of flow on the
other links. We presumed that the interdependent node is at least as important as the most important
direct connection node.

A percentage of the set of all arcs was randomly selected to be disrupted. Here, we designed four
scenarios with 5% disruption, 10% disruption, 12% disruption, and 15% disruption magnitudes. We
also assumed that half of the selected disrupted arcs belonged to the identified coalitions. If the arc
was connected to a key node or in a coalition, the proposed methodology was applied, and the order
of restoration was formed. As mentioned before, the key node is always placed in the first spot of the
order of repair if it is damaged. To evaluate the performance of the proposed approach, we compared the
computational time to solve the optimization model for the centralized and the decentralized approaches.
In order to have a fair comparison, we followed a series of steps. First, we considered identical and equal
resources (maintenance crews) for both models. In all scenarios, we have two maintenance crews in each
network summing up to four available repair resources overall. In addition, we allow the models to reach
to the optimality for small failure scenarios, i.e., 5% and 10% disruptions. In these scenarios, we do not
report any optimality gap. However, as the computational time for higher disruption scenarios increases



exponentially, we restricted the models by imposing a 5% gap option, meaning that we stop the run as
soon as the optimality gap reaches below 5%. It can be observed that the computational time for the 15%
scenario and centralized model is more than 37 hours. Therefore, in 12% and 15% scenarios, we report
the optimality gap extracted from Gurobi solver.

To improve the clarity of our experiment, we also report the average deviation from the baseline flow
of interdependent networks for each disruption scenario in Table 2. As we generated the scenarios ran-
domly, we can see that in 10% scenario, the percentage of disrupted flows decreases by 1.7% compared
to the 5% disruption. This is due to the fact that nodes with higher flows (both in coalitions and out-
side coalitions) are randomly selected in the 5% scenario. While in 12% and 15% scenarios, we see
an increase in the disrupted flow, the range does not exceed from 20% of total flow in interdependent
networks. It can be observed that more extreme scenarios mirror more decision complexity and higher
computational time.

Table 2 summarizes the details of failure scenarios as well as the objective function values and the
computational time for both models. It can be observed that there is a significant difference between
the computational time of centralized and proposed models. In addition, when the objective values are
compared (see Figure 3), the proposed method reaches a higher value for restored flow. It should be noted
that the objectives for the proposed model are values obtained by solving the model with the additional
set of constraints in the sub-problem using Shapley values (constraints 21-24), leading to higher objective
function values in terms of total met demand compared to the centralized model.

Additionally, the proposed method improves the met demand faster than the centralized approach. In
5% Scenario, both methods start at zero demand met for the water network, but the proposed method
outpaces the centralized one in rapid demand growth (see Figure 4.a). In the transportation infrastructure
for this scenario, the models also both start at the same demand. The met demand of the proposed model
for transportation increases faster but does end up slightly below the centralized model (see Figure
4.b). However, the overall demand for the proposed method is better. A same trend is present for the
extreme scenario of 15% disruption. However, the proposed model reaches far higher met demand for
both infrastructures of water and transportation compared to the centralized model(see Figure 4.c &
4.d). This significant difference in the total met demand is due to the fact that coalitions, in the proposed
model, are formed based on the importance of components in the networks, and the model subsequently
prioritizes the restoration of the nodes and arcs which result in higher met demands. In other words,
these key nodes and their respective Shapley value act as a fair proxy of flow in the networks so that their
restoration will expedite the recovery performance in terms of met demand over the planning horizon. For
larger magnitudes of disruptions, the role of these key elements becomes more tangible in the restoration
phase of interdependent infrastructure networks.

Table 3 shows the order of repairs for water and transportation networks for the proposed and the cen-
tralized models. As the proposed model follows a different order of repairs for both disrupted networks,
the met demands for this approach is different than the centralized model. It is noteworthy that there are
common arcs in the order of repairs for both models, but they are restored in different sequences (for
example arc (A-66721, J-49128) in water and arc (5559, 5566) in transportation network).



Table 2
Computational time and optimality gap for different disruption scenarios

Failure Percentage Avg. Disrupted Flow Method Obj. Value Time (Secs) Optimality Gap

5% 14.43% Centralized 3797000 2619.41 NA
Proposed 3870000 179.23 NA

10% 12.77% Centralized 1198000 76098.09 NA
Proposed 1551000 231.6 NA

12% 16.95% Centralized 1053261 28100.16 5%
Proposed 1448000 194.28 4.76%

15% 19.64% Centralized 750100 135676.08 5%
Proposed 1484000 220.71 4.21%
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Fig. 3. Optimal Values for Both Methods

5. Concluding Remarks

We proposed a decentralized resource allocation model for interdependent infrastructure network
restoration using cooperative game theory. We first identified coalitional structures in the interdependent
networks and then calculated the order of restoration for the disrupted components within coalitions
using Shapley values. Our proposed approach combined coalitional game theory with weighted graphs
to address the fair allocation of resources in a decentralized manner. The restoration plan from coali-
tions were then passed on to the master optimization problem, which allocates resources to restore the
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Fig. 4. Met Demand in the Water (left) and Transportation (right) Infrastructures at 5% (up) and 15% (down) disruption
scenarios

whole interdependent networks. We applied our framework to water distribution and road networks in
the City of Tampa, FL. We calculated and compared the computational time for both centralized and
decentralized models in four scenarios to evaluate the performance of the proposed framework. We as-
signed identical repair resources to the centralized and proposed models to have a valid foundation for
the performance comparison. We also allowed the models to reach to the optimal solutions for small
disruption scenarios, and defined a 5% optimality gap for extreme failure scenarios. The results demon-
strated that the decentralized model outperforms the centralized counterpart in terms of computational
time and the trajectory of the system performance (met demand) over time.

In future work, more types of interdependence can be incorporated into the model, reflecting the
complexity of the infrastructure networks. These additional interdependencies, such as functional in-



Table 3
Oreder of repair for 5% scenario

Water Transportation

Proposed Centralized Proposed Centralized

A1919029, J-17012 HRR, HSP 5559, 5566 6662, 6601
A-66721, J-49128 A-66188, J-81543 8752, 6107 5182, 5173

A1848133, J-110468 A1919029, J-17012 7913, 7886 5559, 5566
J-44164, A-66687 J-121724, A-31648 6252, 8746 5986, 6025

A-66656, J-104023 A-66721, J-49128 5596, 5613 8752, 6107
J-113546, A-65192 A1848133, J-110468 6260, 6216 7812, 7828
A-66696, J-78262 J-100985, A-66492 6216, 6173 6168, 6075
A-64889, J-49929 J-44164, A-66687 7270, 7313 6918, 6913

A-66574, J-102507 A-66656, J-104023 6251, 8743 6090, 6037
A-63915, J-111809 J-43778, A-65440 5986, 6025 5596, 5613
A-66457, J-111264 J-113546, A-65192 7265, 7253 6252, 8746
J-121724, A-31648 J-115604, A-66238 5556, 5604 6063, 6073
J-48745, A-66602 A-66477, J-62660 6032, 6024 6260, 6216
A-66582, J-92739 A-66574, J-102507 6376, 6424 6216, 6173
A-66725, J-45914 A-63915, J-111809 7407, 7422 7270, 7313

A-66676, J-110923 J-87510, A1945975 8824, 8825 6251, 8743
J-81676, A-60405 A-66457, J-111264 5318, 5326 6684, 6719
J-80983, A-66422 J-78053, A-66467 7588, 7605 5843, 5733

J-23915, A1844976 A-62847, J-51783 5292, 5277 6076, 6086
A-66168, J-31363 J-54616, A-66675 6703, 6718 6514, 6337

J-115604, A-66238 A-64889, J-49929 7672, 7635 6743, 6731
J-88148, A-64810 A-66211, J-76247 6348, 6358 6716, 6730

A-66452, J-119514 J-49929, A-66211 6347, 6341 6403, 6421
J-50311, A-66351 A-60159, J-76776 8232, 8164 6350, 6404

J-113734, A-66489 J-51547, A-66298 6792, 6845 5179, 5187
A-66649, J-96263 A-66503, J-119591 5883, 5870 6786, 6779

J-120964, A-62444 J-67455, A-66503 6928, 6922 7888, 7845
J-93182, A-53105 J-48745, A-66602 8731, 7022 7265, 7253
A-40868, J-47524 A-66582, J-92739 7168, 7150 6345, 6372

J-129274, A-63752 A-66725, J-45914 7002, 6973 5180, 5186

terdependencies, will contribute to a more realistic formulation without increasing the complexity in a
significant manner. Other infrastructures can also be included, such as the power infrastructure. With
more extensive networks, the coalition formation procedure could be expanded, either by introducing
more key nodes or relaxing the definition of the direct connections. Depending on the infrastructure and
the geographical area, future work in this direction might better capture the circumstances around the
disruption. The optimization problem can be expanded to include the cost to see if the proposed model
could reduce the cost of restoring the networks.

As large-scale disruptions continue to change life in cities, decision-makers need a reliable and rapid
way to prioritize different areas of infrastructures and eventually enhance infrastructure systems re-
silience. This research can further their efforts and resources toward providing a clear restoration plan.
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