
Advances and Open Problems in Federated Learning

Peter Kairouz7* H. Brendan McMahan7∗ Brendan Avent21 Aurélien Bellet9

Mehdi Bennis19 Arjun Nitin Bhagoji13 Kallista Bonawitz7 Zachary Charles7

Graham Cormode23 Rachel Cummings6 Rafael G.L. D’Oliveira14

Hubert Eichner7 Salim El Rouayheb14 David Evans22 Josh Gardner24

Zachary Garrett7 Adrià Gascón7 Badih Ghazi7 Phillip B. Gibbons2

Marco Gruteser7,14 Zaid Harchaoui24 Chaoyang He21 Lie He 4

Zhouyuan Huo 20 Ben Hutchinson7 Justin Hsu25 Martin Jaggi4 Tara Javidi17

Gauri Joshi2 Mikhail Khodak2 Jakub Konečný7 Aleksandra Korolova21

Farinaz Koushanfar17 Sanmi Koyejo7,18 Tancrède Lepoint7 Yang Liu12

Prateek Mittal13 Mehryar Mohri7 Richard Nock1 Ayfer Özgür15

Rasmus Pagh7,10 Hang Qi7 Daniel Ramage7 Ramesh Raskar11

Mariana Raykova7 Dawn Song16 Weikang Song7 Sebastian U. Stich4

Ziteng Sun3 Ananda Theertha Suresh7 Florian Tramèr15 Praneeth Vepakomma11

Jianyu Wang2 Li Xiong5 Zheng Xu7 Qiang Yang8 Felix X. Yu7 Han Yu12

Sen Zhao7

1Australian National University, 2Carnegie Mellon University, 3Cornell University,

4École Polytechnique Fédérale de Lausanne, 5Emory University, 6Georgia Institute of Technology,

7Google Research, 8Hong Kong University of Science and Technology, 9INRIA, 10IT University of Copenhagen,

11Massachusetts Institute of Technology, 12Nanyang Technological University, 13Princeton University,

14Rutgers University, 15Stanford University, 16University of California Berkeley,

17 University of California San Diego, 18University of Illinois Urbana-Champaign, 19University of Oulu,

20University of Pittsburgh, 21University of Southern California, 22University of Virginia,

23University of Warwick, 24University of Washington, 25University of Wisconsin–Madison

Abstract

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or

whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service

provider), while keeping the training data decentralized. FL embodies the principles of focused data

collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting

from traditional, centralized machine learning and data science approaches. Motivated by the explosive

growth in FL research, this paper discusses recent advances and presents an extensive collection of open

problems and challenges.

*Peter Kairouz and H. Brendan McMahan conceived, coordinated, and edited this work. Correspondence to kairouz@

google.com and mcmahan@google.com.

1

a
rX

iv
:1

9
1
2
.0

4
9
7
7
v
3

[c

s.
L

G
]

 9
 M

a
r

2
0
2
1

Contents

1 Introduction 4

1.1 The Cross-Device Federated Learning Setting . 5

1.1.1 The Lifecycle of a Model in Federated Learning . 7

1.1.2 A Typical Federated Training Process . 8

1.2 Federated Learning Research . 9

1.3 Organization . 10

2 Relaxing the Core FL Assumptions: Applications to Emerging Settings and Scenarios 11

2.1 Fully Decentralized / Peer-to-Peer Distributed Learning . 11

2.1.1 Algorithmic Challenges . 12

2.1.2 Practical Challenges . 14

2.2 Cross-Silo Federated Learning . 14

2.3 Split Learning . 16

2.4 Executive summary . 17

3 Improving Efficiency and Effectiveness 18

3.1 Non-IID Data in Federated Learning . 18

3.1.1 Strategies for Dealing with Non-IID Data . 19

3.2 Optimization Algorithms for Federated Learning . 20

3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets 21

3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets 25

3.3 Multi-Task Learning, Personalization, and Meta-Learning . 28

3.3.1 Personalization via Featurization . 28

3.3.2 Multi-Task Learning . 28

3.3.3 Local Fine Tuning and Meta-Learning . 29

3.3.4 When is a Global FL-trained Model Better? . 30

3.4 Adapting ML Workflows for Federated Learning . 30

3.4.1 Hyperparameter Tuning . 31

3.4.2 Neural Architecture Design . 31

3.4.3 Debugging and Interpretability for FL . 32

3.5 Communication and Compression . 32

3.6 Application To More Types of Machine Learning Problems and Models 34

3.7 Executive summary . 34

4 Preserving the Privacy of User Data 36

4.1 Actors, Threat Models, and Privacy in Depth . 37

4.2 Tools and Technologies . 38

4.2.1 Secure Computations . 40

4.2.2 Privacy-Preserving Disclosures . 44

4.2.3 Verifiability . 46

4.3 Protections Against External Malicious Actors . 48

4.3.1 Auditing the Iterates and Final Model . 49

4.3.2 Training with Central Differential Privacy . 49

4.3.3 Concealing the Iterates . 51

4.3.4 Repeated Analyses over Evolving Data . 52

4.3.5 Preventing Model Theft and Misuse . 52

4.4 Protections Against an Adversarial Server . 53

4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection 53

4.4.2 Limitations of Existing Solutions . 54

4.4.3 Training with Distributed Differential Privacy . 55

4.4.4 Preserving Privacy While Training Sub-Models . 58

2

4.5 User Perception . 59

4.5.1 Understanding Privacy Needs for Particular Analysis Tasks 59

4.5.2 Behavioral Research to Elicit Privacy Preferences . 60

4.6 Executive Summary . 60

5 Defending Against Attacks and Failures 62

5.1 Adversarial Attacks on Model Performance . 62

5.1.1 Goals and Capabilities of an Adversary . 63

5.1.2 Model Update Poisoning . 66

5.1.3 Data Poisoning Attacks . 67

5.1.4 Inference-Time Evasion Attacks . 69

5.1.5 Defensive Capabilities from Privacy Guarantees . 70

5.2 Non-Malicious Failure Modes . 71

5.3 Exploring the Tension between Privacy and Robustness . 73

5.4 Executive Summary . 73

6 Ensuring Fairness and Addressing Sources of Bias 75

6.1 Bias in Training Data . 75

6.2 Fairness Without Access to Sensitive Attributes . 76

6.3 Fairness, Privacy, and Robustness . 77

6.4 Leveraging Federation to Improve Model Diversity . 78

6.5 Federated Fairness: New Opportunities and Challenges . 79

6.6 Executive Summary . 79

7 Addressing System Challenges 81

7.1 Platform Development and Deployment Challenges . 81

7.2 System Induced Bias . 82

7.2.1 Device Availability Profiles . 82

7.2.2 Examples of System Induced Bias . 83

7.2.3 Open Challenges in Quantifying and Mitigating System Induced Bias 84

7.3 System Parameter Tuning . 85

7.4 On-Device Runtime . 86

7.5 The Cross-Silo Setting . 87

7.6 Executive Summary . 88

8 Concluding Remarks 89

A Software and Datasets for Federated Learning 119

3

1 Introduction

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole or-

ganizations) collaboratively train a model under the orchestration of a central server (e.g. service provider),

while keeping the training data decentralized. It embodies the principles of focused collection and data

minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, cen-

tralized machine learning. This area has received significant interest recently, both from research and applied

perspectives. This paper describes the defining characteristics and challenges of the federated learning set-

ting, highlights important practical constraints and considerations, and then enumerates a range of valuable

research directions. The goals of this work are to highlight research problems that are of significant theo-

retical and practical interest, and to encourage research on problems that could have significant real-world

impact.

The term federated learning was introduced in 2016 by McMahan et al. [337]: “We term our approach

Federated Learning, since the learning task is solved by a loose federation of participating devices (which

we refer to as clients) which are coordinated by a central server.” An unbalanced and non-IID (identically

and independently distributed) data partitioning across a massive number of unreliable devices with limited

communication bandwidth was introduced as the defining set of challenges.

Significant related work predates the introduction of the term federated learning. A longstanding goal

pursued by many research communities (including cryptography, databases, and machine learning) is to ana-

lyze and learn from data distributed among many owners without exposing that data. Cryptographic methods

for computing on encrypted data were developed starting in the early 1980s [396, 492], and Agrawal and

Srikant [11] and Vaidya et al. [457] are early examples of work that sought to learn from local data using

a centralized server while preserving privacy. Conversely, even since the introduction of the term federated

learning, we are aware of no single work that directly addresses the full set of FL challenges. Thus, the term

federated learning provides a convenient shorthand for a set of characteristics, constraints, and challenges

that often co-occur in applied ML problems on decentralized data where privacy is paramount.

This paper originated at the Workshop on Federated Learning and Analytics held June 17–18th, 2019,

hosted at Google’s Seattle office. During the course of this two-day event, the need for a broad paper

surveying the many open challenges in the area of federated learning became clear.1

A key property of many of the problems discussed is that they are inherently interdisciplinary — solving

them likely requires not just machine learning, but techniques from distributed optimization, cryptography,

security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more.

Many of the hardest problems are at the intersections of these areas, and so we believe collaboration will be

essential to ongoing progress. One of the goals of this work is to highlight the ways in which techniques from

these fields can potentially be combined, raising both interesting possibilities as well as new challenges.

Since the term federated learning was initially introduced with an emphasis on mobile and edge device

applications [337, 334], interest in applying FL to other applications has greatly increased, including some

which might involve only a small number of relatively reliable clients, for example multiple organizations

collaborating to train a model. We term these two federated learning settings “cross-device” and “cross-silo”

respectively. Given these variations, we propose a somewhat broader definition of federated learning:

Federated learning is a machine learning setting where multiple entities (clients) collaborate

in solving a machine learning problem, under the coordination of a central server or service

provider. Each client’s raw data is stored locally and not exchanged or transferred; instead,

1During the preparation of this work, Li et al. [301] independently released an excellent but less comprehensive survey.

4

focused updates intended for immediate aggregation are used to achieve the learning objective.

Focused updates are updates narrowly scoped to contain the minimum information necessary for the specific

learning task at hand; aggregation is performed as early as possible in the service of data minimization. We

note that this definition distinguishes federated learning from fully decentralized (peer-to-peer) learning

techniques as discussed in Section 2.1.

Although privacy-preserving data analysis has been studied for more than 50 years, only in the past

decade have solutions been widely deployed at scale (e.g. [177, 154]). Cross-device federated learning and

federated data analysis are now being applied in consumer digital products. Google makes extensive use of

federated learning in the Gboard mobile keyboard [376, 222, 491, 112, 383], as well as in features on Pixel

phones [14] and in Android Messages [439]. While Google has pioneered cross-device FL, interest in this

setting is now much broader, for example: Apple is using cross-device FL in iOS 13 [25], for applications

like the QuickType keyboard and the vocal classifier for “Hey Siri” [26]; doc.ai is developing cross-device

FL solutions for medical research [149], and Snips has explored cross-device FL for hotword detection

[298].

Cross-silo applications have also been proposed or described in myriad domains including finance risk

prediction for reinsurance [476], pharmaceuticals discovery [179], electronic health records mining [184],

medical data segmentation [15, 139], and smart manufacturing [354].

The growing demand for federated learning technology has resulted in a number of tools and frameworks

becoming available. These include TensorFlow Federated [38], Federated AI Technology Enabler [33],

PySyft [399], Leaf [35], PaddleFL [36] and Clara Training Framework [125]; more details in Appendix A.

Commercial data platforms incorporating federated learning are in development from established technology

companies as well as smaller start-ups.

Table 1 contrasts both cross-device and cross-silo federated learning with traditional single-datacenter

distributed learning across a range of axes. These characteristics establish many of the constraints that

practical federated learning systems must typically satisfy, and hence serve to both motivate and inform the

open challenges in federated learning. They will be discussed at length in the sections that follow.

These two FL variants are called out as representative and important examples, but different FL settings

may have different combinations of these characteristics. For the remainder of this paper, we consider the

cross-device FL setting unless otherwise noted, though many of the problems apply to other FL settings as

well. Section 2 specifically addresses some of the many other variations and applications.

Next, we consider cross-device federated learning in more detail, focusing on practical aspects common

to a typical large-scale deployment of the technology; Bonawitz et al. [81] provides even more detail for a

particular production system, including a discussion of specific architectural choices and considerations.

1.1 The Cross-Device Federated Learning Setting

This section takes an applied perspective, and unlike the previous section, does not attempt to be definitional.

Rather, the goal is to describe some of the practical issues in cross-device FL and how they might fit into a

broader machine learning development and deployment ecosystem. The hope is to provide useful context

and motivation for the open problems that follow, as well as to aid researchers in estimating how straight-

forward it would be to deploy a particular new approach in a real-world system. We begin by sketching the

lifecycle of a model before considering a FL training process.

5

Datacenter

distributed learning

Cross-silo

federated learning

Cross-device

federated learning

Setting Training a model on a large

but “flat” dataset. Clients

are compute nodes in a sin-

gle cluster or datacenter.

Training a model on siloed data.

Clients are different organiza-

tions (e.g. medical or financial)

or geo-distributed datacenters.

The clients are a very large number of

mobile or IoT devices.

Data

distribution

Data is centrally stored and

can be shuffled and balanced

across clients. Any client can

read any part of the dataset.

Data is generated locally and remains decentralized. Each client stores

its own data and cannot read the data of other clients. Data is not indepen-

dently or identically distributed.

Orchestration Centrally orchestrated. A central orchestration server/service organizes the training, but never

sees raw data.

Wide-area

communication

None (fully connected

clients in one datacen-

ter/cluster).

Typically a hub-and-spoke topology, with the hub representing a coordi-

nating service provider (typically without data) and the spokes connecting

to clients.

Data

availability

All clients are almost always available. Only a fraction of clients are available at

any one time, often with diurnal or other

variations.

Distribution

scale

Typically 1 - 1000 clients. Typically 2 - 100 clients. Massively parallel, up to 1010 clients.

Primary

bottleneck

Computation is more often

the bottleneck in the datacen-

ter, where very fast networks

can be assumed.

Might be computation or com-

munication.

Communication is often the primary

bottleneck, though it depends on the

task. Generally, cross-device federated

computations use wi-fi or slower con-

nections.

Addressability Each client has an identity or name that allows the system to

access it specifically.

Clients cannot be indexed directly (i.e.,

no use of client identifiers).

Client

statefulness

Stateful — each client may participate in each round of the com-

putation, carrying state from round to round.

Stateless — each client will likely par-

ticipate only once in a task, so gener-

ally a fresh sample of never-before-seen

clients in each round of computation is

assumed.

Client

reliability

Relatively few failures. Highly unreliable — 5% or more of the

clients participating in a round of com-

putation are expected to fail or drop out

(e.g. because the device becomes ineli-

gible when battery, network, or idleness

requirements are violated).

Data partition

axis

Data can be partitioned / re-

partitioned arbitrarily across

clients.

Partition is fixed. Could be

example-partitioned (horizontal)

or feature-partitioned (vertical).

Fixed partitioning by example (horizon-

tal).

Table 1: Typical characteristics of federated learning settings vs. distributed learning in the datacenter (e.g. [150]).

Cross-device and cross-silo federated learning are two examples of FL domains, but are not intended to be exhaustive.

The primary defining characteristics of FL are highlighted in bold, but the other characteristics are also critical in

determining which techniques are applicable.

6

Total population size 106–1010 devices

Devices selected for one round of training 50 – 5000

Total devices that participate in training one model 105–107

Number of rounds for model convergence 500 – 10000

Wall-clock training time 1 – 10 days

Table 2: Order-of-magnitude sizes for typical cross-device federated learning applications.

staged rollout (so that poor behavior can be discovered and rolled back before affecting too many

users). The specific launch process for a model is set by the owner of the application and is usually

independent of how the model is trained. In other words, this step would apply equally to a model

trained with federated learning or with a traditional datacenter approach.

One of the primary practical challenges an FL system faces is making the above workflow as straight-

forward as possible, ideally approaching the ease-of-use achieved by ML systems for centralized training.

While much of this paper concerns federated training specifically, there are many other components in-

cluding federated analytics tasks like model evaluation and debugging. Improving these is the focus of

Section 3.4. For now, we consider in more detail the training of a single FL model (Step 4 above).

1.1.2 A Typical Federated Training Process

We now consider a template for FL training that encompasses the Federated Averaging algorithm of McMa-

han et al. [337] and many others; again, variations are possible, but this gives a common starting point.

A server (service provider) orchestrates the training process, by repeating the following steps until train-

ing is stopped (at the discretion of the model engineer who is monitoring the training process):

1. Client selection: The server samples from a set of clients meeting eligibility requirements. For

example, mobile phones might only check in to the server if they are plugged in, on an unmetered

wi-fi connection, and idle, in order to avoid impacting the user of the device.

2. Broadcast: The selected clients download the current model weights and a training program (e.g. a

TensorFlow graph [2]) from the server.

3. Client computation: Each selected device locally computes an update to the model by executing the

training program, which might for example run SGD on the local data (as in Federated Averaging).

4. Aggregation: The server collects an aggregate of the device updates. For efficiency, stragglers might

be dropped at this point once a sufficient number of devices have reported results. This stage is also

the integration point for many other techniques which will be discussed later, possibly including:

secure aggregation for added privacy, lossy compression of aggregates for communication efficiency,

and noise addition and update clipping for differential privacy.

5. Model update: The server locally updates the shared model based on the aggregated update computed

from the clients that participated in the current round.

Table 2 gives typical order-of-magnitude sizes for the quantities involved in a typical federated learning

application on mobile devices.

8

The separation of the client computation, aggregation, and model update phases is not a strict require-

ment of federated learning, and it indeed excludes certain classes of algorithms, for example asynchronous

SGD where each client’s update is immediately applied to the model, before any aggregation with updates

from other clients. Such asynchronous approaches may simplify some aspects of system design, and also

be beneficial from an optimization perspective (though this point can be debated). However, the approach

presented above has a substantial advantage in affording a separation of concerns between different lines of

research: advances in compression, differential privacy, and secure multi-party computation can be devel-

oped for standard primitives like computing sums or means over decentralized updates, and then composed

with arbitrary optimization or analytics algorithms, so long as those algorithms are expressed in terms of

aggregation primitives.

It is also worth emphasizing that in two respects, the FL training process should not impact the user

experience. First, as outlined above, even though model parameters are typically sent to some devices

during the broadcast phase of each round of federated training, these models are an ephemeral part of the

training process, and not used to make “live” predictions shown to the user. This is crucial, because training

ML models is challenging, and a misconfiguration of hyperparameters can produce a model that makes bad

predictions. Instead, user-visible use of the model is deferred to a rollout process as detailed above in Step 6

of the model lifecycle. Second, the training itself is intended to be invisible to the user — as described

under client selection, training does not slow the device or drain the battery because it only executes when

the device is idle and connected to power. However, the limited availability these constraints introduce

leads directly to open research challenges which will be discussed subsequently, such as semi-cyclic data

availability and the potential for bias in client selection.

1.2 Federated Learning Research

The remainder of this paper surveys many open problems that are motivated by the constraints and chal-

lenges of real-world federated learning settings, from training models on medical data from a hospital sys-

tem to training using hundreds of millions of mobile devices. Needless to say, most researchers working on

federated learning problems will likely not be deploying production FL systems, nor have access to fleets of

millions of real-world devices. This leads to a key distinction between the practical settings that motivate the

work and experiments conducted in simulation which provide evidence of the suitability of a given approach

to the motivating problem.

This makes FL research somewhat different than other ML fields from an experimental perspective, lead-

ing to additional considerations in conducting FL research. In particular, when highlighting open problems,

we have attempted, when possible, to also indicate relevant performance metrics which can be measured

in simulation, the characteristics of datasets which will make them more representative of real-world per-

formance, etc. The need for simulation also has ramifications for the presentation of FL research. While

not intended to be authoritative or absolute, we make the following modest suggestions for presenting FL

research that addresses the open problems we describe:

• As shown in Table 1, the FL setting can encompass a wide range of problems. Compared to fields

where the setting and goals are well-established, it is important to precisely describe the details of

the particular FL setting of interest, particularly when the proposed approach makes assumptions that

may not be appropriate in all settings (e.g. stateful clients that participate in all rounds).

• Of course, details of any simulations should be presented in order to make the research reproducible.

But it is also important to explain which aspects of the real-world setting the simulation is designed

to capture (and which it is not), in order to effectively make the case that success on the simulated

9

problem implies useful progress on the real-world objective. We hope that the guidance in this paper

will help with this.

• Privacy and communication efficiency are always first-order concerns in FL, even if the experiments

are simulations running on a single machine using public data. More so than with other types of ML,

for any proposed approach it is important to be unambiguous about where computation happens as

well as what is communicated.

Software libraries for federated learning simulation as well as standard datasets can help ease the chal-

lenges of conducting effective FL research; Appendix A summarizes some of the currently available options.

Developing standard evaluation metrics and establishing standard benchmark datasets for different federated

learning settings (cross-device and cross-silo) remain highly important directions for ongoing work.

1.3 Organization

Section 2 builds on the ideas in Table 1, exploring other FL settings and problems beyond the original

focus on cross-device settings. Section 3 then turns to core questions around improving the efficiency

and effectiveness of federated learning. Section 4 undertakes a careful consideration of threat models and

considers a range of technologies toward the goal of achieving rigorous privacy protections. As with all

machine learning systems, in federated learning applications there may be incentives to manipulate the

models being trained, and failures of various kinds are inevitable; these challenges are discussed in Section 5.

Finally, we address the important challenges of providing fair and unbiased models in Section 6.

10

2 Relaxing the Core FL Assumptions: Applications to Emerging Settings

and Scenarios

In this section, we will discuss areas of research related to the topics discussed in the previous section. Even

though not being the main focus of the remainder of the paper, progress in these areas could motivate design

of the next generation of production systems.

2.1 Fully Decentralized / Peer-to-Peer Distributed Learning

In federated learning, a central server orchestrates the training process and receives the contributions of

all clients. The server is thus a central player which also potentially represents a single point of failure.

While large companies or organizations can play this role in some application scenarios, a reliable and

powerful central server may not always be available or desirable in more collaborative learning scenarios

[459]. Furthermore, the server may even become a bottleneck when the number of clients is very large, as

demonstrated by Lian et al. [305] (though this can be mitigated by careful system design, e.g. [81]).

The key idea of fully decentralized learning is to replace communication with the server by peer-to-

peer communication between individual clients. The communication topology is represented as a connected

graph in which nodes are the clients and an edge indicates a communication channel between two clients.

The network graph is typically chosen to be sparse with small maximum degree so that each node only

needs to send/receive messages to/from a small number of peers; this is in contrast to the star graph of the

server-client architecture. In fully decentralized algorithms, a round corresponds to each client performing

a local update and exchanging information with their neighbors in the graph2. In the context of machine

learning, the local update is typically a local (stochastic) gradient step and the communication consists in

averaging one’s local model parameters with the neighbors. Note that there is no longer a global state of the

model as in standard federated learning, but the process can be designed such that all local models converge

to the desired global solution, i.e., the individual models gradually reach consensus. While multi-agent

optimization has a long history in the control community, fully decentralized variants of SGD and other

optimization algorithms have recently been considered in machine learning both for improved scalability

in datacenters [29] as well as for decentralized networks of devices [127, 459, 443, 59, 278, 291, 173].

They consider undirected network graphs, although the case of directed networks (encoding unidirectional

channels which may arise in real-world scenarios such as social networks or data markets) has also been

studied in [29, 226].

It is worth noting that even in the decentralized setting outlined above, a central authority may still be in

charge of setting up the learning task. Consider for instance the following questions: Who decides what is

the model to be trained in the decentralized setting? What algorithm to use? What hyperparameters? Who

is responsible for debugging when something does not work as expected? A certain degree of trust of the

participating clients in a central authority would still be needed to answer these questions. Alternatively, the

decisions could be taken by the client who proposes the learning task, or collaboratively through a consensus

scheme (see Section 2.1.2).

Table 3 provides a comparison between federated and peer-to-peer learning. While the architectural

assumptions of decentralized learning are distinct from those of federated learning, it can often be applied to

similar problem domains, many of the same challenges arise, and there is significant overlap in the research

communities. Thus, we consider decentralized learning in this paper as well; in this section challenges

2Note, however, that the notion of a round does not need to even make sense in this setting. See for instance the discussion on

clock models in [85].

11

Federated learning Fully decentralized

(peer-to-peer) learning

Orchestration A central orchestration server or ser-

vice organizes the training, but never

sees raw data.

No centralized orchestration.

Wide-area communication Typically a hub-and-spoke topology,

with the hub representing a coor-

dinating service provider (typically

without data) and the spokes con-

necting to clients.

Peer-to-peer topology, with a possi-

bly dynamic connectivity graph.

Table 3: A comparison of the key distinctions between federated learning and fully decentralized learning.

Note that as with FL, decentralized learning can be further divided into different use-cases, with distinctions

similar to those made in Table 1 comparing cross-silo and cross-device FL.

specific to the decentralized approach are explicitly considered, but many of the open problems in other

sections also arise in the decentralized case.

2.1.1 Algorithmic Challenges

A large number of important algorithmic questions remain open on the topic of real-world usability of de-

centralized schemes for machine learning. Some questions are analogous to the special case of federated

learning with a central server, and other challenges come as an additional side-effect of being fully decen-

tralized or trust-less. We outline some particular areas in the following.

Effect of network topology and asynchrony on decentralized SGD Fully decentralized algorithms for

learning should be robust to the limited availability of the clients (with clients temporarily unavailable,

dropping out or joining during the execution) and limited reliability of the network (with possible message

drops). While for the special case of generalized linear models, schemes using the duality structure could

enable some of these desired robustness properties [231], for the case of deep learning and SGD this remains

an open question. When the network graph is complete but messages have a fixed probability to be dropped,

Yu et al. [498] show that one can achieve convergence rates that are comparable to the case of a reliable net-

work. Additional open research questions concern non-IID data distributions, update frequencies, efficient

communication patterns and practical convergence time [443], as we outline in more detail below.

Well-connected or denser networks encourage faster consensus and give better theoretical convergence

rates, which depend on the spectral gap of the network graph. However, when data is IID, sparser topologies

do not necessarily hurt the convergence in practice: this was analyzed theoretically in [357]. Denser net-

works typically incur communication delays which increase with the node degrees. Most of optimization-

theory works do not explicitly consider how the topology affects the runtime, that is, wall-clock time re-

quired to complete each SGD iteration. Wang et al. [469] propose MATCHA, a decentralized SGD method

based on matching decomposition sampling, that reduces the communication delay per iteration for any

given node topology while maintaining the same error convergence speed. The key idea is to decompose the

graph topology into matchings consisting of disjoint communication links that can operate in parallel, and

carefully choose a subset of these matchings in each iteration. This sequence of subgraphs results in more

12

frequent communication over connectivity-critical links (ensuring fast error convergence) and less frequent

communication over other links (saving communication delays).

The setting of decentralized SGD also naturally lends itself to asynchronous algorithms in which each

client becomes active independently at random times, removing the need for global synchronization and

potentially improving scalability [127, 459, 59, 29, 306].

Local-update decentralized SGD The theoretical analysis of schemes which perform several local update

steps before a communication round is significantly more challenging than those using a single SGD step, as

in mini-batch SGD. While this will also be discussed later in Section 3.2, the same also holds more generally

in the fully decentralized setting of interest here. Schemes relying on a single local update step are typically

proven to converge in the case of non-IID local datasets [278, 279]. For the case with several local update

steps, [467, 280] recently provided convergence analysis. Further, [469] provides a convergence analysis

for the non-IID data case, but for the specific scheme based on matching decomposition sampling described

above. In general, however, understanding the convergence under non-IID data distributions and how to

design a model averaging policy that achieves the fastest convergence remains an open problem.

Personalization, and trust mechanisms Similarly to the cross-device FL setting, an important task for

the fully decentralized scenario under the non-IID data distributions available to individual clients is to

design algorithms for learning collections of personalized models. The work of [459, 59] introduces fully

decentralized algorithms to collaboratively learn a personalized model for each client by smoothing model

parameters across clients that have similar tasks (i.e., similar data distributions). Zantedeschi et al. [504]

further learn the similarity graph together with the personalized models. One of the key unique challenges

in the decentralized setting remains the robustness of such schemes to malicious actors or contribution of

unreliable data or labels. The use of incentives or mechanism design in combination with decentralized

learning is an emerging and important goal, which may be harder to achieve in the setting without a trusted

central server.

Gradient compression and quantization methods In potential applications, the clients would often

be limited in terms of communication bandwidth available and energy usage permitted. Translating and

generalizing some of the existing compressed communication schemes from the centralized orchestrator-

facilitated setting (see Section 3.5) to the fully decentralized setting, without negatively impacting the con-

vergence is an active research direction [278, 391, 444, 279]. A complementary idea is to design decentral-

ized optimization algorithms which naturally give rise to sparse updates [504].

Privacy An important challenge in fully decentralized learning is to prevent any client from reconstructing

the private data of another client from its shared updates while maintaining a good level of utility for the

learned models. Differential privacy (see Section 4) is the standard approach to mitigate such privacy risks.

In decentralized federated learning, this can be achieved by having each client add noise locally, as done in

[239, 59]. Unfortunately, such local privacy approaches often come at a large cost in utility. Furthermore,

distributed methods based on secure aggregation or secure shuffling that are designed to improve the privacy-

utility trade-off in the standard FL setting (see Section 4.4.3) do not easily integrate with fully decentralized

algorithms. A possible direction to achieve better trade-offs between privacy and utility in fully decentralized

algorithms is to rely on decentralization itself to amplify differential privacy guarantees, for instance by

considering appropriate relaxations of local differential privacy [146].

13

2.1.2 Practical Challenges

An orthogonal question for fully decentralized learning is how it can be practically realized. This section

outlines a family of related ideas based on the idea of a distributed ledger, but other approaches remain

unexplored.

A blockchain is a distributed ledger shared among disparate users, making possible digital transactions,

including transactions of cryptocurrency, without a central authority. In particular, smart contracts allow

execution of arbitrary code on top of the blockchain, essentially a massively replicated eventually-consistent

state machine. In terms of federated learning, use of the technology could enable decentralization of the

global server by using smart contracts to do model aggregation, where the participating clients executing the

smart contracts could be different companies or cloud services.

However, on today’s blockchain platforms such as Ethereum [478], data on the blockchains is publicly

available by default, this could discourage users from participating in the decentralized federated learning

protocol, as the protection of the data is typically the primary motivating factor for FL. To address such

concerns, it might be possible to modify the existing privacy-preserving techniques to fit into the scenario of

decentralized federated learning. First of all, to prevent the participating nodes from exploiting individually

submitted model updates, existing secure aggregation protocols could be used. A practical secure aggre-

gation protocol already used in cross-device FL was proposed by Bonawitz et al. [80], effectively handling

dropping out participants at the cost of complexity of the protocol. An alternative system would be to have

each client stake a deposit of cryptocurrency on blockchain, and get penalized if they drop out during the

execution. Without the need of handling dropouts, the secure aggregation protocol could be significantly

simplified. Another way of achieving secure aggregation is to use confidential smart contract such as what is

enabled by the Oasis Protocol [119] which runs inside secure enclaves. With this, each client could simply

submit an encrypted local model update, knowing that the model will be decrypted and aggregated inside

the secure hardware through remote attestation (though see discussion of privacy-in-depth in Section 4.1).

In order to prevent any client from trying to reconstruct the private data of another client by exploiting

the global model, client-level differential privacy [338] has been proposed for FL. Client-level differential

privacy is achieved by adding random Gaussian noise on the aggregated global model that is enough to hide

any single client’s update. In the context of blockchain, each client could locally add a certain amount of

Gaussian noise after local gradient descent steps and submit the model to blockchain. The local noise scale

should be calculated such that the aggregated noise on blockchain is able to achieve the same client-level

differential privacy as in [338]. Finally, the aggregated global model on blockchain could be encrypted and

only the participating clients hold the decryption key, which protects the model from the public.

2.2 Cross-Silo Federated Learning

In contrast with the characteristics of cross-device federated learning, see Table 1, cross-silo federated learn-

ing admits more flexibility in certain aspects of the overall design, but at the same time presents a setting

where achieving other properties can be harder. This section discusses some of these differences.

The cross-silo setting can be relevant where a number of companies or organizations share incentive to

train a model based on all of their data, but cannot share their data directly. This could be due to constraints

imposed by confidentiality or due to legal constraints, or even within a single company when they cannot

centralize their data between different geographical regions. These cross-silo applications have attracted

substantial attention.

14

Data partitioning In the cross-device setting the data is assumed to be partitioned by examples. In the

cross-silo setting, in addition to partitioning by examples, partitioning by features is of practical relevance.

An example could be when two companies in different businesses have the same or overlapping set of

customers, such as a local bank and a local retail company in the same city. This difference has been also

referred to as horizontal and vertical federated learning by Yang et al. [490].

Cross-silo FL with data partitioned by features, employs a very different training architecture compared

to the setting with data partitioned by example. It may or may not involve a central server as a neutral party,

and based on specifics of the training algorithm, clients exchange specific intermediate results rather than

model parameters, to assist other parties’ gradient calculations; see for instance [490, Section 2.4.2]. In this

setting, application of techniques such as secure multi-party computation or homomorphic encryption have

been proposed in order to limit the amount of information other participants can infer from observing the

training process. The downside of this approach is that the training algorithm is typically dependent on the

type of machine learning objective being pursued. Currently proposed algorithms include trees [118], linear

and logistic regression [490, 224, 316], and neural networks [317]. Local updates similar to Federated Av-

eraging (see Section 3.2) has been proposed to address the communication challenges of feature-partitioned

systems [316], and [238, 318] study the security and privacy related challenges inherent in such systems.

Federated transfer learning [490] is another concept that considers challenging scenarios in which data

parties share only a partial overlap in the user space or the feature space, and leverage existing transfer

learning techniques [365] to build models collaboratively. The existing formulation is limited to the case of

2 clients.

Partitioning by examples is usually relevant in cross-silo FL when a single company cannot centralize

their data due to legal constraints, or when organizations with similar objectives want to collaboratively im-

prove their models. For instance, different banks can collaboratively train classification or anomaly detection

models for fraud detection [476], hospitals can build better diagnostic models [139], and so on.

An open-source platform supporting the above outlined applications is currently available as Federated

AI Technology Enabler (FATE) [33]. At the same time, the IEEE P3652.1 Federated Machine Learning

Working Group is focusing on standard-setting for the Federated AI Technology Framework. Other plat-

forms include [125] focused on a range of medical applications and [321] for enterprise use cases. See

Appendix A for more details.

Incentive mechanisms In addition to developing new algorithmic techniques for FL, incentive mechanism

design for honest participation is an important practical research question. This need may arise in cross-

device settings (e.g. [261, 260]), but is particularly relevant in the cross-silo setting, where participants may

at the same time also be business competitors. The incentive can be in the form of monetary payout [499]

or final models with different levels of performance [324]. The option to deliver models with performance

commensurate to the contributions of each client is especially relevant in collaborative learning situations

in which competitions exist among FL participants. Clients might worry that contributing their data to

training federated learning models will benefit their competitors, who do not contribute as much but receive

the same final model nonetheless (i.e. the free-rider problem). Related objectives include how to divide

earnings generated by the federated learning model among contributing data owners in order to sustain

long-term participation, and also how to link the incentives with decisions on defending against adversarial

data owners to enhance system security, optimizing the participation of data owners to enhance system

efficiency.

15

Differential privacy The discussion of actors and threat models in Section 4.1 is largely relevant also for

the cross-silo FL. However, protecting against different actors might have different priorities. For example,

in many practical scenarios, the final trained model would be released only to those who participate in the

training, which makes the concerns about “the rest of the world” less important.

On the other hand, for a practically persuasive claim, we would usually need a notion of local differential

privacy, as the potential threat from other clients is likely to be more important. In cases when the clients

are not considered a significant threat, each client could control the data from a number of their respective

users, and a formal privacy guarantee might be needed on such user-level basis. Depending on application,

other objectives could be worth pursuing. This area has not been systematically explored.

Tensor factorization Several works have also studied cross-silo federated tensor factorization where mul-

tiple sites (each having a set of data with the same feature, i.e. horizontally partitioned) jointly perform

tensor factorization by only sharing intermediate factors with the coordination server while keeping data

private at each site. Among the existing works, [272] used an alternating direction method of multipli-

ers (ADMM) based approach and [325] improved the efficiency with the elastic averaging SGD (EASGD)

algorithm and further ensures differential privacy for the intermediate factors.

2.3 Split Learning

In contrast with the previous settings which focus on data partitioning and communication patterns, the key

idea behind split learning [215, 460]3 is to split the execution of a model on a per-layer basis between the

clients and the server. This can be done for both training and inference.

In the simplest configuration of split learning, each client computes the forward pass through a deep

network up to a specific layer referred to as the cut layer. The outputs at the cut layer, referred to as

smashed data, are sent to another entity (either the server or another client), which completes the rest of the

computation. This completes a round of forward propagation without sharing the raw data. The gradients

can then be back propagated from its last layer until the cut layer in a similar fashion. The gradients at the

cut layer – and only these gradients – are sent back to the clients, where the rest of back propagation is

completed. This process is continued until convergence, without having clients directly access each others

raw data. This setup is shown in Figure 2(a) and a variant of this setup where labels are also not shared

along with raw data is shown in Figure 2(b). Split learning approaches for data partitioned by features have

been studied in [101].

In several settings, the overall communication requirements of split learning and federated learning

were compared in [421]. Split learning brings in another dimension of parallelism in the training, paral-

lelization among parts of a model, e.g. client and server. The ideas in [245, 240], where the authors break

the dependencies between partial networks and reduced total centralized training time by parallelizing the

computations in different parts, can be relevant here as well. However, it is still an open question to explore

such parallelization of split learning on edge devices. Split learning also enables matching client-side model

components with the best server-side model components for automating model selection as shown in the

ExpertMatcher [413].

The values communicated can nevertheless, in general, reveal information about the underlying data.

How much, and whether this is acceptable, is likely going to be application and configuration specific. A

variation of split learning called NoPeek SplitNN [462] reduces the potential leakage via communicated ac-

tivations, by reducing their distance correlation [461, 442] with the raw data, while maintaining good model

3See also split learning project website - https://splitlearning.github.io/.

16

3 Improving Efficiency and Effectiveness

In this section we explore a variety of techniques and open questions that address the challenge of making

federated learning more efficient and effective. This encompasses a myriad of possible approaches, includ-

ing: developing better optimization algorithms; providing different models to different clients; making ML

tasks like hyperparameter search, architecture search, and debugging easier in the FL context; improving

communication efficiency; and more.

One of the fundamental challenges in addressing these goals is the presence of non-IID data, so we begin

by surveying this issue and highlighting potential mitigations.

3.1 Non-IID Data in Federated Learning

While the meaning of IID is generally clear, data can be non-IID in many ways. In this section, we provide

a taxonomy of non-IID data regimes that may arise for any client-partitioned dataset. The most common

sources of dependence and non-identicalness are due to each client corresponding to a particular user, a

particular geographic location, and/or a particular time window. This taxonomy has a close mapping to

notions of dataset shift [353, 380], which studies differences between the training distribution and testing

distribution; here, we consider differences in the data distribution on each client.

For the following, consider a supervised task with features x and labels y. A statistical model of feder-

ated learning involves two levels of sampling: accessing a datapoint requires first sampling a client i ∼ Q,

the distribution over available clients, and then drawing an example (x, y) ∼ Pi(x, y) from that client’s

local data distribution.

When non-IID data in federated learning is referenced, this typically refers to differences between Pi
and Pj for different clients i and j. However, it is also important to note that the distribution Q and Pi may

change over time, introducing another dimension of “non-IIDness”.

For completeness, we note that even considering the dataset on a single device, if the data is in an

insufficiently-random order, e.g. ordered by time, then independence is violated locally as well. For exam-

ple, consecutive frames in a video are highly correlated. Sources of intra-client correlation can generally be

resolved by local shuffling.

Non-identical client distributions We first survey some common ways in which data tend to deviate

from being identically distributed, that is Pi 6= Pj for different clients i and j. Rewriting Pi(x, y) as

Pi(y |x)Pi(x) and Pi(x | y)Pi(y) allows us to characterize the differences more precisely.

• Feature distribution skew (covariate shift): The marginal distributions Pi(x) may vary across clients,

even if P(y |x) is shared.4 For example, in a handwriting recognition domain, users who write the

same words might still have different stroke width, slant, etc.

• Label distribution skew (prior probability shift): The marginal distributions Pi(y) may vary across

clients, even if P(x | y) is the same. For example, when clients are tied to particular geo-regions,

the distribution of labels varies across clients — kangaroos are only in Australia or zoos; a person’s

face is only in a few locations worldwide; for mobile device keyboards, certain emoji are used by one

demographic but not others.

4We write “P(y |x) is shared” as shorthand for Pi(y |x) = Pj(y |x) for all clients i and j.

18

• Same label, different features (concept drift): The conditional distributions Pi(x | y) may vary across

clients even if P(y) is shared. The same label y can have very different features x for different

clients, e.g. due to cultural differences, weather effects, standards of living, etc. For example, images

of homes can vary dramatically around the world and items of clothing vary widely. Even within the

U.S., images of parked cars in the winter will be snow-covered only in certain parts of the country. The

same label can also look very different at different times, and at different time scales: day vs. night,

seasonal effects, natural disasters, fashion and design trends, etc.

• Same features, different label (concept shift): The conditional distribution Pi(y |x) may vary across

clients, even if P(x) is the same. Because of personal preferences, the same feature vectors in a

training data item can have different labels. For example, labels that reflect sentiment or next word

predictors have personal and regional variation.

• Quantity skew or unbalancedness: Different clients can hold vastly different amounts of data.

Real-world federated learning datasets likely contain a mixture of these effects, and the characterization

of cross-client differences in real-world partitioned datasets is an important open question. Most empirical

work on synthetic non-IID datasets (e.g. [337, 236]) have focused on label distribution skew, where a non-

IID dataset is formed by partitioning a “flat” existing dataset based on the labels. A better understanding of

the nature of real-world non-IID datasets will allow for the construction of controlled but realistic non-IID

datasets for testing algorithms and assessing their resilience to different degrees of client heterogeneity.

Further, different non-IID regimes may require the development of different mitigation strategies. For

example, under feature-distribution skew, because P(y |x) is assumed to be common, the problem is at least

in principle well specified, and training a single global model that learns P(y |x) may be appropriate. When

the same features map to different labels on different clients, some form of personalization (Section 3.3)

may be essential to learning the true labeling functions.

Violations of independence Violations of independence are introduced any time the distributionQ changes

over the course of training; a prominent example is in cross-device FL, where devices typically need to meet

eligibility requirements in order to participate in training (see Section 1.1.2). Devices typically meet those

requirements at night local time (when they are more likely to be charging, on free wi-fi, and idle), and so

there may be significant diurnal patterns in device availability. Further, because local time of day corre-

sponds directly to longitude, this introduces a strong geographic bias in the source of the data. Eichner et al.

[171] described this issue and some mitigation strategies, but many open questions remain.

Dataset shift Finally, we note that the temporal dependence of the distributions Q and P may introduce

dataset shift in the classic sense (differences between the train and test distributions). Furthermore, other

criteria may make the set of clients eligible to train a federated model different from the set of clients where

that model will be deployed. For example, training may require devices with more memory than is needed

for inference. These issues are explored in more depth in Section 6. Adapting techniques for handling

dataset shift to federated learning is another interesting open question.

3.1.1 Strategies for Dealing with Non-IID Data

The original goal of federated learning, training a single global model on the union of client datasets, be-

comes harder with non-IID data. One natural approach is to modify existing algorithms (e.g. through

19

different hyperparameter choices) or develop new ones in order to more effectively achieve this objective.

This approach is considered in Section 3.2.2.

For some applications, it may be possible to augment data in order to make the data across clients more

similar. One approach is to create a small dataset which can be shared globally. This dataset may originate

from a publicly available proxy data source, a separate dataset from the clients’ data which is not privacy

sensitive, or perhaps a distillation of the raw data following Wang et al. [473].

The heterogeneity of client objective functions gives additional importance to the question of how to

craft the objective function — it is no-longer clear that treating all examples equally makes sense. Alterna-

tives include limiting the contributions of the data from any one user (which is also important for privacy,

see Section 4) and introducing other notions of fairness among the clients; see discussion in Section 6.

But if we have the capability to run training on the local data on each device (which is necessary for

federated learning of a global model), is training a single global model even the right goal? There are

many cases where having a single model is to be preferred, e.g. in order to provide a model to clients with

no data, or to allow manual validation and quality assurance before deployment. Nevertheless, since local

training is possible, it becomes feasible for each client to have a customized model. This approach can turn

the non-IID problem from a bug to a feature, almost literally — since each client has its own model, the

client’s identity effectively parameterizes the model, rendering some pathological but degenerate non-IID

distributions trivial. For example, if for each i, Pi(y) has support on only a single label, finding a high-

accuracy global model may be very challenging (especially if x is relatively uninformative), but training a

high-accuracy local model is trivial (only a constant prediction is needed). Such multi-model approaches

are considered in depth in Section 3.3. In addition to addressing non-identical client distributions, using a

plurality of models can also address violations of independence stemming from changes in client availability.

For example, the approach of Eichner et al. [171] uses a single training run but averages different iterates in

order to provide different models for inference based on the timezone / longitude of clients.

3.2 Optimization Algorithms for Federated Learning

In prototypical federated learning tasks, the goal is to learn a single global model that minimizes the em-

pirical risk function over the entire training dataset, that is, the union of the data across all the clients. The

main difference between federated optimization algorithms and standard distributed training methods is the

need to address the characteristics of Table 1 — for optimization, non-IID and unbalanced data, limited

communication bandwidth, and unreliable and limited device availability are particularly salient.

FL settings where the total number of devices is huge (e.g. across mobile devices) necessitate algorithms

that only require a handful of clients to participate per round (client sampling). Further, each device is likely

to participate no more than once in the training of a given model, so stateless algorithms are necessary. This

rules out the direct application of a variety of approaches that are quite effective in the datacenter context,

for example stateful optimization algorithms like ADMM, and stateful compression strategies that modify

updates based on residual compression errors from previous rounds.

Another important practical consideration for federated learning algorithms is composability with other

techniques. Optimization algorithms do not run in isolation in a production deployment, but need to be

combined with other techniques like cryptographic secure aggregation protocols (Section 4.2.1), differential

privacy (DP) (Section 4.2.2), and model and update compression (Section 3.5). As noted in Section 1.1.2,

many of these techniques can be applied to primitives like “sum over selected clients” and

“broadcast to selected clients”, and so expressing optimization algorithms in terms of these

primitives provides a valuable separation of concerns, but may also exclude certain techniques such as ap-

20

N Total number of clients

M Clients per round

T Total communication rounds

K Local steps per round.

Table 4: Notation for the discussion of FL

algorithms including Federated Averaging.

Server executes:

initialize x0
for each round t = 1, 2, . . . , T do

St ← (random set of M clients)

for each client i ∈ St in parallel do

xit+1 ← ClientUpdate(i, xt)

xt+1 ←
∑M

k=1
1
M xit+1

ClientUpdate(i, x):

for local step j = 1, . . . ,K do

x← x− ηOf(x; z) for z ∼ Pi
return x to server

Algorithm 1: Federated Averaging (local SGD), when all

clients have the same amount of data.

plying updates asynchronously.

One of the most common approaches to optimization for federated learning is the Federated Averaging

algorithm [337], an adaption of local-update or parallel SGD.5 Here, each client runs some number of SGD

steps locally, and then the updated local models are averaged to form the updated global model on the

coordinating server. Pseudocode is given in Algorithm 1.

Performing local updates and communicating less frequently with the central server addresses the core

challenges of respecting data locality constraints and of the limited communication capabilities of mobile

device clients. However, this family of algorithms also poses several new algorithmic challenges from

an optimization theory point of view. In Section 3.2, we discuss recent advances and open challenges

in federated optimization algorithms for the cases of IID and non-IID data distribution across the clients

respectively. The development of new algorithms that specifically target the characteristics of the federated

learning setting remains an important open problem.

3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets

While a variety of different assumptions can be made on the per-client functions being optimized, the most

basic split is between assuming IID and non-IID data. Formally, having IID data at the clients means

that each mini-batch of data used for a client’s local update is statistically identical to a uniformly drawn

sample (with replacement) from the entire training dataset (the union of all local datasets at the clients).

Since the clients independently collect their own training data which vary in both size and distribution, and

these data are not shared with other clients or the central node, the IID assumption clearly almost never

holds in practice. However, this assumption greatly simplifies theoretical convergence analysis of federated

optimization algorithms, as well as establishes a baseline that can be used to understand the impact of non-

IID data on optimization rates. Thus, a natural first step is to obtain an understanding of the landscape of

optimization algorithms for the IID data case.

5Federated Averaging applies local SGD to a randomly sampled subset of clients on each round, and proposes a specific update

weighting scheme.

21

Formally, for the IID setting let us standardize the stochastic optimization problem

min
x∈Rm

F (x) := E
z∼P

[f(x; z)] .

We assume an intermittent communication model as in e.g. Woodworth et al. [480, Sec. 4.4], where M
stateless clients participate in each of T rounds, and during each round, each client can compute gradients

for K samples (e.g. minibatches) z1, . . . , zK sampled IID from P (possibly using these to take sequential

steps). In the IID-data setting clients are interchangeable, and we can without loss of generality assume

M = N . Table 4 summarizes the notation used in this section.

Different assumptions on f will produce different guarantees. We will first discuss the convex setting

and later review results for non-convex problems.

Baselines and state-of-the-art for convex problems In this section we review convergence results for

H-smooth, convex (but not necessarily strongly convex) functions under the assumption that the variance

of the stochastic gradients is bounded by σ2. More formally, by H-smooth we mean that for all z, f(·; z) is

differentiable and has a H-Lipschitz gradient, that is, for all choices of x, y

‖∇f(x, z)−∇f(y, z)‖ ≤ H‖x− y‖.

We also assume that for all x, the stochastic gradient ∇xf(x; z) satisfies

E
z∼P
‖∇xf(x; z)−∇F (x)‖ ≤ σ2.

When analyzing the convergence rate of an algorithm with output xT after T iterations, we consider the

term

E[F (xT)]− F (x∗) (1)

where x∗ = argminx F (x). All convergence rates discussed herein are upper bounds on this term. A

summary of convergence results for such functions is given in Table 5.

Federated averaging (a.k.a. parallel SGD/local SGD) competes with two natural baselines: First, we

may keep x fixed in local updates during each round, and compute a total of KM gradients at the current x,

in order to run accelerated minibatch SGD. Let x̄ denote the average of T iterations of this algorithm. We

then have the upper bound

O
(

H

T 2
+

σ√
TKM

)

for convex objectives [294, 137, 151]. Note that the first expectation is taken with respect to the randomness

of z in the training procedure as well.

A second natural baseline is to ignore all but 1 of the M active clients, which allows (accelerated)

sequential SGD to execute for KT steps. Applying the same general bounds cited above, this approach

offers an upper bound of

O
(

H

(TK)2
+

σ√
TK

)

.

Comparing these two results, we see that minibatch SGD attains the optimal ‘statistical’ term (σ/
√
TKM),

whilst SGD on a single device (ignoring the updates of the other devices) achieves the optimal ‘optimization’

term (H/(TK)2).

The convergence analysis of local-update SGD methods is an active current area of research [434, 310,

500, 467, 390, 371, 269, 481]. The first convergence results for local-update SGD methods were derived

22

Method Comments Convergence

Baselines

mini-batch SGD batch size KM O
(

H
T + σ√

TKM

)

SGD (on 1 worker, no communication) O
(

H
TK + σ√

TK

)

Baselines with accelerationa

A-mini-batch SGD [294, 137] batch size KM O
(

H
T 2 + σ√

TKM

)

A-SGD [294] (on 1 worker, no communication) O
(

H
(TK)2

+ σ√
TK

)

Parallel SGD / Fed-Avg / Local SGD

Yu et al. [500]b, Stich [434]c gradient norm bounded by G O
(

HKM
T

G2

σ2 +
σ√

TKM

)

Wang and Joshi [467]b, Stich and Karimireddy [435] O
(

HM
T + σ√

TKM

)

Other algorithms

SCAFFOLD [265] control variates and two stepsizes O
(

H
T + σ√

TKM

)

aThere are no accelerated fed-avg/local SGD variants so far
bThis paper considers the smooth non-convex setting, we adapt here the results for our setting.
cThis paper considers the smooth strongly convex setting, we adapt here the results for our setting.

Table 5: Convergence rates for a (non-comprehensive) set of distributed optimization algorithms in the IID-

data setting. We assume M devices participate in each iterations, and the loss functions are H-smooth,

convex, and we have access to stochastic gradients with variance at most σ2. All rates are upper bounds

on (1) after T iterations (potentially with some iterate averaging scheme).

under the bounded gradient norm assumption in Stich [434] for strongly-convex and in Yu et al. [500] for

non-convex objective functions. These analyses could attain the desired σ/
√
TKM statistical term with

suboptimal optimization term (in Table 5 we summarize these results for the middle ground of convex

functions).

By removing the bounded gradient assumption, Wang and Joshi [467] and Stich and Karimireddy [435]

could further improve the optimization term to HM/T . These result show that if the number of local steps

K is smaller than T/M3 then the (optimal) statistical term is dominating the rate. However, for typical

cross-device applications we might have T = 106 and M = 100 (Table 2), implying K = 1.

Often in the literature the convergence bounds are accompanied by a discussion on how large K may

be chosen in order to reach asymptotically the same statistical term as the convergence rate of mini-batch

SGD. For strongly convex functions, this bound was improved by Khaled et al. [269] and further in Stich

and Karimireddy [435].

For non-convex objectives, Yu et al. [500] showed that local SGD can achieve asymptotically an error

bound 1/
√
TKM if the number of local updates K are smaller than T 1/3/M . This convergence guarantee

was further improved by Wang and Joshi [467] who removed the bounded gradient norm assumption and

showed that the number of local updates can be as large as T/M3. The analysis in [467] can also be applied

to other algorithms with local updates, and thus yields the first convergence guarantee for decentralized

SGD with local updates (or periodic decentralized SGD) and elastic averaging SGD [505]. Haddadpour

et al. [216] improves the bounds in Wang and Joshi [467] for functions satisfying the Polyak-Lojasiewicz

23

(PL) condition [262], a generalization of strong convexity. In particular, Haddadpour et al. [216] show that

for PL functions, T 2/M local updates per round leads to a O(1/TKM) convergence.

While the above works focus on convergence as a function of the number of iterations performed, prac-

titioners often care about wall-clock convergence speed. Assessing this must take into account the effect

of the design parameters on the time spent per iteration based on the relative cost of communication and

local computation. Viewed in this light, the focus on seeing how large K can be while maintaining the

statistical rate may not be the primary concern in federated learning, where one may assume almost infinite

datasets (very large N). The costs (at least in wall-clock time) are small for increasing M , and so it may

be more natural to increase M sufficiently to match the optimization term, and then tune K to maximize

wall-clock optimization performance. How then to choose K? Performing more local updates at the clients

will increase the divergence between the resulting local models at the clients, before they are averaged. As a

result, the error convergence in terms of training loss versus the total number of sequential SGD steps TK is

slower. However, performing more local updates saves significant communication cost and reduces the time

spent per iteration. The optimal number of local updates strikes a balance between these two phenomena

and achieves the fastest error versus wallclock time convergence. Wang and Joshi [468] propose an adaptive

communication strategy that adapts K according to the training loss at regular intervals during the training.

Another important design parameter in federated learning is the model aggregation method used to

update the global model using the updates made by the selected clients. In the original federated learning

paper, McMahan et al. [337] proposes taking a weighted average of the local models, in proportion to the

size of local datasets. For IID data, where each client is assumed to have a infinitely large dataset, this

reduces to taking a simple average of the local models. However, it is unclear whether this aggregation

method will result in the fastest error convergence.

There are many open questions in federated optimization, even with IID data. Woodworth et al. [480]

highlights several gaps between upper and lower bounds for optimization relevant to the federated learning

setting, particularly for “intermittent communication graphs”, which captures local SGD approaches, but

convergence rates for such approaches are not known to match the corresponding lower bounds. In Table 5

we highlight convergence results for the convex setting. Whilst most schemes are able to reach the asymp-

totically dominant statistical term, none are able to match the convergence rate of accelerated mini-batch

SGD. It is an open problem if federated averaging algorithms can close this gap.

Local-update SGD methods where all M clients perform the same number of local updates may suffer

from a common scalability issue—they can be bottlenecked if any one client unpredictably slows down

or fails. Several approaches for dealing with this are possible, but it is far from clear which are optimal,

especially when the potential for bias is considered (see Section 6). Bonawitz et al. [81] propose over-

provisioning clients (e.g., request updates from 1.3M clients), and then accepting the first M updates re-

ceived and rejecting updates from stragglers. A slightly more sophisticated solution is to fix a time window

and allow clients to perform as many local updates Ki as possible within this time, after which their models

are averaged by a central server. Wang et al. [471] analyzed the computational heteogeneity introduced by

this approach in theory. An alternative method to overcome the problem of straggling clients is to fix the

number of local updates at τ , but allow clients to update the global model in an asynchronous or lock-free

fashion. Although some previous works [505, 306, 163] have proposed similar methods, the error conver-

gence analysis is an open and challenging problem. A larger challenge in the FL setting, however, is that

as discussed at the beginning of Section 3.2, asynchronous approaches may be difficult to combine with

complimentary techniques like differential privacy or secure aggregation.

Besides the number of local updates, the choice of the size of the set of clients selected per training round

presents a similar trade-off as the number of local updates. Updating and averaging a larger number of client

models per training round yields better convergence, but it makes the training vulnerable to slowdown due

24

to unpredictable tail delays in computation/communication at/with the clients.

The analysis of local SGD / Federated Averaging in the non-IID setting is even more challenging; results

and open questions related to this are considered in the next section, along with specialized algorithms which

directly address the non-IID problem.

3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets

In contrast to well-shuffled mini-batches consisting of independent and identically distributed (IID) ex-

amples in centralized learning, federated learning uses local data from end user devices, leading to many

varieties of non-IID data (Section 3.1).

In this setting, each of N clients has a local data distribution Pi and a local objective function

fi(x) = E
z∼Pi

[f(x; z)]

where we recall that f(x; z) is the loss of a model x at an example z. We typically wish to minimize

F (x) =
1

N

N
∑

i=1

fi(x) . (2)

Note that we recover the IID setting when each Pi is identical. We will let F ∗ denote the minimum value of

F , obtained the point x∗. Analogously, we will let f∗
i denote the minimum value of fi.

As in the IID setting, we assume an intermittent communication model (e.g. Woodworth et al. [480,

Sec. 4.4]), where M stateless clients participate in each of T rounds, and during each round, each client can

compute gradients for K samples (e.g. minibatches). The difference here is that the samples zi,1, . . . , zi,K
sampled at client i are drawn from the client’s local distribution Pi. Unlike the IID setting, we cannot

necessarily assume M = N , as the client distributions are not all equal. In the following, if an algorithm

relies on M = N , we will omit M and simply write N . We note that while such an assumption may

be compatible with the cross-silo federated setting in Table 1, it is generally infeasible in the cross-device

setting.

While [434, 500, 467, 435] mainly focused on the IID case, the analysis technique can be extended to

the non-IID case by adding an assumption on data dissimilarities, for example by constraining the difference

between client gradients and the global gradient [305, 300, 304, 469, 471] or the difference between client

and global optimum values [303, 268]. Under this assumption, Yu et al. [501] showed that the error bound

of local SGD in the non-IID case becomes worse. In order to achieve the rate of 1/
√
TKN (under non-

convex objectives), the number of local updates K should be smaller than T 1/3/N , instead of T/N3 as in

the IID case [467]. Li et al. [300] proposed to add a proximal term in each local objective function so as

to make the algorithm be more robust to the heterogeneity across local objectives. The proposed FedProx

algorithm empirically improves the performance of federated averaging. Khaled et al. [268] assumes all

clients participate, and uses batch gradient descent on clients, which can potentially converge faster than

stochastic gradients on clients.

Recently, a number of works have made progress in relaxing the assumptions necessary for analysis so as

to better apply to practical uses of Federated Averaging. For example, Li et al. [303] studied the convergence

of Federated Averaging in a more realistic setting where only a subset of clients are involved in each round.

In order to guarantee the convergence, they assumed that the clients are selected either uniformly at random

or with probabilities that are in proportion to the sizes of local datasets. Nonetheless, in practice the server

may not be able to sample clients in these idealized ways — in particular, in cross-device settings only

25

Non-IID assumptions

Symbol Full name Explanation

BCGV bounded inter-client gradient variance Ei ‖∇fi(x)−∇F (x)‖2 ≤ η2

BOBD bounded optimal objective difference F ∗ − Ei[f
∗
i] ≤ η2

BOGV bounded optimal gradient variance Ei ‖∇fi(x∗)‖2 ≤ η2

BGV bounded gradient dissimilarity Ei ‖∇fi(x)‖2/‖∇F (x)‖2 ≤ η2

Other assumptions and variants

Symbol Explanation

CVX Each client function fi(x) is convex.

SCVX Each client function fi(x) is µ-strongly convex.

BNCVX Each client function has bounded nonconvexity with∇2fi(x) � −µI .

BLGV The variance of stochastic gradients on local clients is bounded.

BLGN The norm of any local gradient is bounded.

LBG Clients use the full batch of local samples to compute updates.

Dec Decentralized setting, assumes the the connectivity of network is good.

AC All clients participate in each round.

1step One local update is performed on clients in each round.

Prox Use proximal gradient steps on clients.

VR Variance reduction which needs to track the state.

Convergence rates

Method Non-IID Other assumptions Variant Rate

Lian et al. [305] BCGV BLGV Dec; AC; 1step O(1/T) +O(1/
√
NT)

PD-SGD [304] BCGV BLGV Dec; AC O(N/T) +O(1/
√
NT)

MATCHA [469] BCGV BLGV Dec O(1/
√
TKM) +O(M/KT)

Khaled et al. [268] BOGV CVX AC; LBG O(N/T) +O(1/
√
NT)

Li et al. [303] BOBD SCVX; BLGV; BLGN - O(K/T)

FedProx [300] BGV BNCVX Prox O(1/
√
T)

SCAFFOLD [265] - SCVX; BLGV VR O(1/TKM) +O(e−T)

Table 6: Convergence rates for a (non-comprehensive) set of federated optimization methods in non-IID

settings. We summarize the key assumptions for non-IID data, local functions on each client, and other

assumptions. We also present the variant of the algorithm comparing to Federated Averaging and the con-

vergence rates that eliminate constant.

26

devices that meet strict eligibility requirements (e.g. charging, idle, free WiFi) will be selected to participate

in the computation. At different times within a day, the clients characteristics can vary significantly. Eichner

et al. [171] formulated this problem and studied the convergence of semi-cyclic SGD, where multiple blocks

of clients with different characteristics are sampled from following a regular cyclic pattern (e.g. diurnal).

Clients can perform different local steps because of heterogeneity in their computing capacities. Wang

et al. [471] proves that FedAvg and many other federated learning algorithms will converge to the stationary

points of a mismatched objective function in the presence of heterogeneous local steps. They refer to this

problem as objective inconsistency and propose a simple technique to eliminate the inconsistency problem

from federated learning algorithms.

We summarize recent theoretical results in Table 6. All the methods in Table 6 assume smoothness or

Lipschitz gradients for the local functions on clients. The error bound is measured by optimal objective

(1) for convex functions and norm of gradient for nonconvex functions. For each method, we present the

key non-IID assumption, assumptions on each client function fi(x), and other auxiliary assumptions. We

also briefly describe each method as a variant of the federated averaging algorithm, and show the simplified

convergence rate eliminating constants. Assuming the client functions are strongly convex could help the

convergence rate [303, 265]. Bounded gradient variance, which is a widely used assumption to analyze

stochastic gradient methods, is often used when clients use stochastic local updates [305, 303, 304, 469,

265]. Li et al. [303] directly analyzes the Federated Averaging algorithm, which applies K steps of local

updates on randomly sampled M clients in each round, and presents a rate that suggests local updates

(K > 1) could slow down the convergence. Clarifying the regimes where K > 1 may hurt or help

convergence is an important open problem.

Connections to decentralized optimization The objective function of federated optimization has been

studied for many years in the decentralized optimization community. As first shown in Wang and Joshi [467],

the convergence analysis of decentralized SGD can be applied to or combined with local SGD with a proper

setting of the network topology matrix (mixing matrix). In order to reduce the communication overhead,

Wang and Joshi [467] proposed periodic decentralized SGD (PD-SGD) which allows decentralized SGD to

have multiple local updates as Federated Averaging. This algorithm is extended by Li et al. [304] to the

non-IID case. MATCHA [469] further improves the performance of PD-SGD by randomly sampling clients

for computation and communication, and provides a convergence analysis showing that local updates can

accelerate convergence.

Acceleration, variance reduction and adaptivity Momentum, variance-reduction, and adaptive learn-

ing rates are all promising techniques to improve convergence and generalization of first-order methods.

However, there is no single manner in which to incorporate these techniques into FedAvg. SCAFFOLD

[265] models the difference in client updates using control variates to perform variance reduction. Notably,

this allows convergence results not relying on bounding the amount of heterogeneity among clients. As for

momentum, Yu et al. [501] propose allowing each client to maintain a local momentum buffer and aver-

age the local buffers and the local model parameters at each communication round. Although this method

empirically improves the final accuracy of local SGD, this doubles the per-round communication cost. A

similar scheme is used by Xie et al. [485] to design a variant of local SGD in which clients locally perform

Adagrad [335, 161]. Reddi et al. [389] instead proposes using adaptive learning rates at the server-level,

developing federated versions of adaptive optimization methods with the same communication cost as Fe-

dAvg. This framework generalizes the server momentum framework proposed by Hsu et al. [237], Wang

et al. [470], which allows momentum without increasing communication costs. While both [501, 470]

showed that the momentum variants of local SGD can converge to stationary points of non-convex objective

27

functions at the same rate as synchronous mini-batch SGD, it is challenging to prove momentum accelerates

the convergence rate in the federated learning setting. Recently, Karimireddy et al. [264] proposed a general

approach for adapting centralized optimization algorithms to the heterogeneous federated setting (MIME

framework and algorithms).

3.3 Multi-Task Learning, Personalization, and Meta-Learning

In this section we consider a variety of “multi-model” approaches — techniques that result in effectively

using different models for different clients at inference time. These techniques are particularly relevant when

faced with non-IID data (Section 3.1), since they may outperform even the best possible shared global model.

We note that personalization has also been studied in the fully decentralized setting [459, 59, 504, 19], where

training individual models is particularly natural.

3.3.1 Personalization via Featurization

The remainder of this section specifically considers techniques that result in different users running inference

with different model parameters (weights). However, in some applications similar benefits can be achieved

by simply adding user and context features to the model. For example, consider a language model for next-

word-prediction in a mobile keyboard as in Hard et al. [222]. Different clients are likely to use language

differently, and in fact on-device personalization of model parameters has yielded significant improvements

for this problem [472]. However, a complimentary approach may be to train a federated model that takes

as input not only the words the user has typed so far, but a variety of other user and context features—

What words does this user frequently use? What app are they currently using? If they are chatting, what

messages have they sent to this person before? Suitably featurized, such inputs can allow a shared global

model to produce highly personalized predictions. However, largely because few public datasets contain

such auxiliary features, developing model architectures that can effectively incorporate context information

for different tasks remains an important open problem with the potential to greatly increase the utility of

FL-trained models.

3.3.2 Multi-Task Learning

If one considers each client’s local problem (the learning problem on the local dataset) as a separate task

(rather than as a shard of a single partitioned dataset), then techniques from multi-task learning [506] im-

mediately become relevant. Notably, Smith et al. [424] introduced the MOCHA algorithm for multi-task

federated learning, directly tackling challenges of communication efficiency, stragglers, and fault tolerance.

In multi-task learning, the result of the training process is one model per task. Thus, most multi-task learn-

ing algorithms assume all clients (tasks) participate in each training round, and also require stateful clients

since each client is training an individual model. This makes such techniques relevant for cross-silo FL

applications, but harder to apply in cross-device scenarios.

Another approach is to reconsider the relationship between clients (local datasets) and learning tasks

(models to be trained), observing that there are points on a spectrum between a single global model and

different models for every client. For example, it may be possible to apply techniques from multi-task

learning (as well as other approaches like personalization, discussed next), where we take the “task” to be

a subset of the clients, perhaps chosen explicitly (e.g. based on geographic region, or characteristics of the

device or user), or perhaps based on clustering [331] or the connected components of a learned graph over

the clients [504]. The development of such algorithms is an important open problem. See Section 4.4.4

28

for a discussion of how sparse federated learning problems, such as those arising naturally in this type of

multi-task problem, might be approached without revealing to which client subset (task) each client belongs.

3.3.3 Local Fine Tuning and Meta-Learning

By local fine tuning, we refer to techniques which begin with the federated training of a single model, and

then deploy that model to all clients, where it is personalized by additional training on the local dataset before

use in inference. This approach integrates naturally into the typical lifecycle of a model in federated learning

(Section 1.1.1). Training of the global model can still proceed using only small samples of clients on each

round (e.g. 100s); the broadcast of the global model to all clients (e.g. many millions) only happens once,

when the model is deployed. The only difference is that before the model is used to make live predictions

on the client, a final training process occurs, personalizing the model to the local dataset.

Given a global model that performs reasonably well, what is the best way to personalize it? In non-

federated learning, researchers often use fine-tuning, transfer learning, domain adaptation [329, 132, 61,

332, 133], or interpolation with a personal local model. Of course, the precise technique used for such

interpolations is key and it is important to determine its corresponding learning guarantees in the context of

federated learning. Further, these techniques often assume only a pair of domains (source and target), and

so some of the richer structure of federated learning may be lost.

One approach for studying personalization and non-IID data is via a connection to meta-learning, which

has emerged as a popular setting for model adaptation. In the standard learning-to-learn (LTL) setup [56],

one has a meta-distribution over tasks, samples from which are used to learn a learning algorithm, for

example by finding a good restriction of the hypothesis space. This is in fact a good match for the statistical

setting discussed in Section 3.1, where we sample a client (task) i ∼ Q, and then sample data for that client

(task) from Pi.
Recently, a class of algorithms referred to as model-agnostic meta-learning (MAML) have been devel-

oped that meta-learn a global model, which can be used as a starting point for learning a good model adapted

to a given task, using only a few local gradient steps [187]. Most notably, the training phase of the popular

Reptile algorithm [358] is closely related to Federated Averaging [337] — Reptile allows for a server learn-

ing rate and assumes all clients have the same amount of data, but is otherwise the same. Khodak et al. [270]

and Jiang et al. [250] explore the connection between FL and MAML, and show how the MAML setting

is a relevant framework to model the personalization objectives for FL. Chai Sim et al. [102] applied local

fine tuning to personalize speech recognition models in federated learning. Fallah et al. [181] developed a

new algorithm called Personalized FedAvg by connecting MAML instead of Reptile to federated learning.

Additional connections with differential privacy were studied in [299].

The general direction of combining ideas from FL and MAML is relatively new, with many open ques-

tions:

• The evaluation of MAML algorithms for supervised tasks is largely focused on synthetic image classi-

fication problems [290, 386] in which infinite artificial tasks can be constructed by subsampling from

classes of images. FL problems, modeled by existing datasets used for simulated FL experiments

(Appendix A), can serve as realistic benchmark problems for MAML algorithms.

• In addition to an empirical study, or optimization results, it would be useful to analyze the theoretical

guarantees of MAML-type techniques and study under what assumptions they can be successful, as

this will further elucidate the set of FL domains to which they may apply.

• The observed gap between the global and personalized acccuracy [250] creates a good argument

29

that personalization should be of central importance to FL. However, none of the existing works

clearly formulates what would be comprehensive metrics for measuring personalized performance;

for instance, is a small improvement for every client preferable to a larger improvement for a subset

of clients? See Section 6 for a related discussion.

• Jiang et al. [250] highlighted the fact that models of the same structure and performance, but trained

differently, can have very different capacity to personalize. In particular, it appears that training

models with the goal of maximizing global performance might actually hurt the model’s capacity for

subsequent personalization. Understanding the underlying reasons for this is a question relevant for

both FL and the broader ML community.

• Several challenging FL topics including personalization and privacy have begun to be studied in this

multi-task/LTL framework [270, 250, 299]. Is it possible for other issues such as concept drift to also

be analyzed in this way, for example as a problem in lifelong learning [420]?

• Can non-parameter transfer LTL algorithms, such as ProtoNets [425], be of use for FL?

3.3.4 When is a Global FL-trained Model Better?

What can federated learning do for you that local training on one device cannot? When local datasets are

small and the data is IID, FL clearly has an edge, and indeed, real-world applications of federated learning

[491, 222, 112] benefit from training a single model across devices. On the other hand, given pathologically

non-IID distributions (e.g. Pi(y |x) directly disagree across clients), local models will do much better. Thus,

a natural theoretical question is to determine under what conditions the shared global model is better than

independent per-device models. Suppose we train a model hk for each client k, using the sample of size mk

available from that client. Can we guarantee that the model hFL learned via federated learning is at least

as accurate as hk when used for client k? Can we quantify how much improvement can be expected via

federated leaning? And can we develop personalization strategies with theoretical guarantees that at least

match the performance of both natural baselines (hk and hFL)?

Several of these problems relate to previous work on multiple-source adaptation and agnostic federated

learning [329, 330, 234, 352]. The hardness of these questions depends on how the data is distributed among

parties. For example, if data is vertically partitioned, each party maintaining private records of different

feature sets about common entities, these problems may require addressing record linkage [124] within the

federated learning task. Independently of the eventual technical levy of carrying out record linkage privately

[407], the task itself happens to be substantially noise prone in the real world [406] and only sparse results

have addressed its impact on training models [224]. Techniques for robustness and privacy can make local

models relatively stronger, particularly for non-typical clients [502]. Loss factorization tricks can be used

in supervised learning to alleviate up to the vertical partition assumption itself, but the practical benefits

depend on the distribution of data and the number of parties [373].

3.4 Adapting ML Workflows for Federated Learning

Many challenges arise when adapting standard machine learning workflows and pipelines (including data

augmentation, feature engineering, neural architecture design, model selection, hyperparameter optimiza-

tion, and debugging) to decentralized datasets and resource-constrained mobile devices. We discuss several

of these challenges below.

30

3.4.1 Hyperparameter Tuning

Running many rounds of training with different hyperparameters on resource-constrained mobile devices

may be restrictive. For small device populations, this might result in the over-use of limited communica-

tion and compute resources. However, recent deep neural networks crucially depend on a wide range of

hyperparameter choices regarding the neural network’s architecture, regularization, and optimization. Eval-

uations can be expensive for large models and large-scale on-device datasets. Hyperparameter optimization

(HPO) has a long history under the framework of AutoML [395, 273, 277], but it mainly concerns how

to improve the model accuracy [64, 426, 374, 180] rather than communication and computing efficacy for

mobile devices. Therefore, we expect that further research should consider developing solutions for efficient

hyperparameter optimization in the context of federated learning.

In addition to general-purpose approaches to the hyperparameter optimization problem, in the training

space specifically the development of easy-to-tune optimization algorithms is a major open area. Centralized

training already requires tuning parameters like learning rate, momentum, batch size, and regularization.

Federated learning adds potentially more hyperparameters — separate tuning of the aggregation / global

model update rule and local client optimizer, number of clients selected per round, number of local steps per

round, configuration of update compression algorithms, and more. Such hyperparameters can be crucial to

obtaining a good trade-off between accuracy and convergence, and may actually impact the quality of the

learned model [106]. In addition to a higher-dimensional search space, federated learning often also requires

longer wall-clock training times and limited compute resources. These challenges could be addressed by

optimization algorithms that are robust to hyperparameter settings (the same hyperparameter values work for

many different real world datasets and architectures), as well as adaptive or self-tuning algorithms [446, 82].

3.4.2 Neural Architecture Design

Neural architecture search (NAS) in the federated learning setting is motivated by the drawbacks of the

current practice of applying predefined deep learning models: the predefined architecture of a deep learning

model may not be the optimal design choice when the data generated by users are invisible to model de-

velopers. For example, the neural architecture may have some redundant component for a specific dataset,

which may lead to unnecessary computing on devices; there may be a better architectural design for the non-

IID data distribution. The approaches to personalization discussed in Section 3.3 still share the same model

architecture among all clients. The recent progress in NAS [230, 387, 175, 388, 60, 375, 313, 488, 175, 323]

provides a potential way to address these drawbacks. There are three major methods for NAS, which utilize

evolutionary algorithms, reinforcement learning, or gradient descent to search for optimal architectures for

a specific task on a specific dataset. Among these, the gradient-based method leverages efficient gradient

back-propagation with weight sharing, reducing the architecture search process from over 3000 GPU days to

only 1 GPU day. Another interesting paper recently published, involving Weight Agnostic Neural Networks

[192], claims that neural network architectures alone, without learning any weight parameters, may encode

solutions for a given task. If this technique further develops and reaches widespread use, it may be applied

to the federated learning without collaborative training among devices. Although these methods have not

been developed for distributed settings such as federated learning, they are all feasible to be transferred to

the federated setting. Neural Architecture Search (NAS) for a global or personalized model in the federated

learning setting is promising, and early exploration has been made in [228].

31

3.4.3 Debugging and Interpretability for FL

While substantial progress has been made on the federated training of models, this is only part of a complete

ML workflow. Experienced modelers often directly inspect subsets of the data for tasks including basic san-

ity checking, debugging misclassifications, discovering outliers, manually labeling examples, or detecting

bias in the training set. Developing privacy-preserving techniques to answer such questions on decentral-

ized data is a major open problem. Recently, Augenstein et al. [31] proposed the use of differentially private

generative models (including GANs), trained with federated learning, to answer some questions of this type.

However, many open questions remain (see discussion in [31]), in particular the development of algorithms

that improve the fidelity of FL DP generative models.

3.5 Communication and Compression

It is now well-understood that communication can be a primary bottleneck for federated learning since

wireless links and other end-user internet connections typically operate at lower rates than intra- or inter-

datacenter links and can be potentially expensive and unreliable. This has led to significant recent interest

in reducing the communication bandwidth of federated learning. Methods combining Federated Averag-

ing with sparsification and/or quantization of model updates to a small number of bits have demonstrated

significant reductions in communication cost with minimal impact on training accuracy [282]. However, it

remains unclear if communication cost can be further reduced, and whether any of these methods or their

combinations can come close to providing optimal trade-offs between communication and accuracy in fed-

erated learning. Characterizing such fundamental trade-offs between accuracy and communication has been

of recent interest in theoretical statistics [507, 89, 221, 7, 49, 444, 50]. These works characterize the optimal

minimax rates for distributed statistical estimation and learning under communication constraints. How-

ever, it is difficult to deduce concrete insights from these theoretical works for communication bandwidth

reduction in practice as they typically ignore the impact of the optimization algorithm. It remains an open

direction to leverage such statistical approaches to inform practical training methods.

Compression objectives Motivated by the limited resources of current devices in terms of compute, mem-

ory and communication, there are several different compression objectives of practical value.

(a) Gradient compression6 – reduce the size of the object communicated from clients to server, which is

used to update the global model.

(b) Model broadcast compression – reduce the size of the model broadcast from server to clients, from

which the clients start local training.

(c) Local computation reduction – any modification to the overall training algorithm such that the local

training procedure is computationally more efficient.

These objectives are in most cases complementary. Among them, (a) has the potential for the most signif-

icant practical impact in terms of total runtime. This is both because clients’ connections generally have

slower upload than download bandwidth7 – and thus there is more to be gained, compared to (b) – and be-

cause the effects of averaging across many clients can enable more aggressive lossy compression schemes.

Usually, (c) could be realized jointly with (a) and (b) by specific methods.

6In this section, we use “gradient compression” to include compression applied to any model update, such as the updates

produced by Federated Averaging when clients take multiple gradient steps.
7See for instance https://www.speedtest.net/reports/

32

Much of the existing literature applies to the objective (a) [282, 440, 281, 17, 235, 55]. The impact of

(b) on convergence in general has not been studied until very recently; an analysis is presented in [123].

Very few methods intend to address all of (a), (b) and (c) jointly. Caldas et al. [95] proposed a practical

method by constraining the desired model update such that only particular submatrices of model variables

are necessary to be available on clients; Hamer et al. [219] proposed a communication-efficient federated

algorithm for learning mixture weights on an ensemble of pre-trained models, based on communicating only

a subset of the models to any one device; He et al. [227] utilizes bidirectional and alternative knowledge

distillation method to transfer knowledge from many compact DNNs to a dense server DNN, which can

reduce the local computational burden at the edge devices.

In cross-device FL, algorithms generally cannot assume any state is preserved on the clients (Table 1).

However, this constraint would typically not be present in the cross-silo FL setting, where the same clients

participate repeatedly. Consequently, a wider set of ideas related to error-correction such as [311, 405, 463,

444, 263, 435] are relevant in this setting, many of which could address both (a) and (b).

An additional objective is to modify the training procedure such that the final model is more compact,

or efficient for inference. This topic has received a lot of attention in the broader ML community [220, 138,

509, 309, 362, 74], but these methods either do not have a straightforward mapping to federated learning,

or make the training process more complex which makes it difficult to adopt. Research that simultaneously

yields a compact final model, while also addressing the three objectives above, has significant potential for

practical impact.

For gradient compression, some existing works [440] are developed in the minimax sense to characterize

the worst case scenario. However usually in information theory, the compression guarantees are instance

specific and depend on the entropy of the underlying distribution [140]. In other words, if the data is

easily compressible, they are provably compressed heavily. It would be interesting to see if similar instance

specific results can be obtained for gradient compression. Similarly, recent works show that learning a

compression scheme in a data-dependent fashion can lead to significantly better compression ratio for the

case of data compression [482] as well as gradient compression. It is therefore worthwhile to evaluate these

data-dependent compression schemes in the federated settings [193].

Compatibility with differential privacy and secure aggregation Many algorithms used in federated

learning such as Secure Aggregation [79] and mechanisms of adding noise to achieve differential privacy [3,

338] are not designed to work with compressed or quantized communications. For example, straightforward

application of the Secure Aggregation protocol of Bonawitz et al. [80], Bell et al. [58] requires an additional

O(logM) bits of communication for each scalar, where M is the number of clients being summed over,

and this may render ineffective the aggressive quantization of updates when M is large (though see [82]

for a more efficient approach). Existing noise addition mechanisms assume adding real-valued Gaussian

or Laplacian noise on each client, and this is not compatible with standard quantization methods used to

reduce communication. We note that several recent works allow biased estimators and would work nicely

with Laplacian noise [435], however those would not give differential privacy, as they break independence

between rounds. There is some work on adding discrete noise [9], but there is no notion whether such

methods are optimal. Joint design of compression methods that are compatible with Secure Aggregation, or

for which differential privacy guarantees can be obtained, is thus a valuable open problem.

Wireless-FL co-design The existing literature in federated learning usually neglects the impact of wire-

less channel dynamics during model training, which potentially undermines both training latency and thus

reliability of the entire production system. In particular, wireless interference, noisy channels and channel

33

fluctuations can significantly hinder the information exchange between the server and clients (or directly

between individual clients, as in the fully decentralized case, see Section 2.1). This represents a major

challenge for mission-critical applications, rooted in latency reduction and reliability enhancements. Poten-

tial solutions to address this challenge include federated distillation (FD), in which workers exchange their

model output parameters (logits) as opposed to the model parameters (gradients and/weights), and optimiz-

ing workers’ scheduling policy with appropriate communication and computing resources [248, 368, 402].

Another solution is to leverage the unique characteristics of wireless channels (e.g. broadcast and superposi-

tion) as natural data aggregators, in which the simultaneously transmitted analog-waves by different workers

are superposed at the server and weighed by the wireless channel coefficients [4]. This yields faster model

aggregation at the server, and faster training by a factor up to the number of workers. This is in sharp con-

trast with the traditional orthogonal frequency division multiplexing (OFDM) paradigm, whereby workers

upload their models over orthogonal frequencies whose performance degrades with increasing number of

workers [174].

3.6 Application To More Types of Machine Learning Problems and Models

To date, federated learning has primarily considered supervised learning tasks where labels are naturally

available on each client. Extending FL to other ML paradigms, including reinforcement learning, semi-

supervised and unsupervised learning, active learning, and online learning [226, 508] all present interesting

and open challenges.

Another important class of models, highly relevant to FL, are those that can characterize the uncer-

tainty in their predictions. Most modern deep learning models cannot represent their uncertainty nor allow

for a probability interpretation of parametric learning. This has motivated recent developments of tools

and techniques combining Bayesian models with deep learning. From a probability theory perspective, it

is unjustifiable to use single point-estimates for classification. Bayesian neural networks [419] have been

proposed and shown to be far more robust to over-fitting, and can easily learn from small datasets. The

Bayesian approach further offers uncertainty estimates via its parameters in form of probability distribu-

tions, thus preventing over-fitting. Moreover, appealing to probabilistic reasoning, one can predict how the

uncertainty can decrease, allowing the decisions made by the network to become more deterministic as the

data size grows.

Since Bayesian methods gave us tools to reason about deep models’ confidence and also achieve state-of-

the-art performance on many tasks, one expects Bayesian methods to provide a conceptual improvement to

the classical federated learning. In fact, preliminary work from Lalitha et al. [292] shows that incorporating

Bayesian methods allows for model aggregation across non-IID data and heterogeneous platforms. However,

many questions regarding scalability and computational feasibility have to be addressed.

3.7 Executive summary

Efficient and effective federated learning algorithms face different challenges compared to centralized train-

ing in a datacenter.

• Non-IID data due to non-identical client distributions, violation of independence, and dataset drift

(Section 3.1) pose a key challenge. Though various methods have been surveyed and discussed in this

section, defining and dealing with non-IID data remains an open problem and one of the most active

research topics in federated learning.

34

• Optimization algorithms for federated learning are analyzed in Section 3.2 under different settings,

e.g., convex and nonconvex functions, IID and non-IID data. Theoretical analysis has proven difficult

for the parallel local updates commonly used in federated optimization, and often strict assumptions

have to be made to constrain the client heterogeneity. Currently, known convergence rates do not fully

explain the empirically-observed effectiveness of the Federated Averaging algorithm over methods

such as mini-batch SGD [481].

• Client-side personalization and “multi-model” approaches (Section 3.3) can address data heterogene-

ity and give hope of surpassing the performance of the best fixed global model. Simple personalization

methods like fine-tuning can be effective, and offer intrinsic privacy advantages. However, many the-

oretical and empirical questions remain open: when is a global model better? How many models are

necessary? Which federated optimization algorithms combine best with local fine-tuning?

• Adapting centralized training workflows such as hyper-parameter tuning, neural architecture design,

debugging, and interpretability tasks to the federated learning setting (Section 3.4) present roadblocks

to the widespread adoption of FL in practical settings, and hence constitute important open problems.

• While there has been significant work on communication efficiency and compression for FL (Sec-

tion 3.5), it remains an important and active area. In particular, fully automating the process of

enabling compression without impacting convergence for a wide class of models is an important prac-

tical goal. Relatively new directions on the theoretical study of communication, compatibility with

privacy methods, and co-design with wireless infrastructure are discussed.

• There are many open questions in extending federated learning from supervised tasks to other machine

learning paradigms including reinforcement learning, semi-supervised and unsupervised learning, ac-

tive learning, and online learning (Section 3.6).

35

wherein we do not yet understand how to simultaneously achieve all of our goals, either for an individual

module or for the system as a whole.

Federated learning provides an attractive structure for decomposing the overall machine learning work-

flow into the approachable modular units we desire. One of the primary attractions of the federated learning

model is that it can provide a level of privacy to participating users through data minimization: the raw

user data never leaves the device, and only updates to models (e.g., gradient updates) are sent to the central

server. These model updates are more focused on the learning task at hand than is the raw data (i.e. they

contain strictly no additional information about the user, and typically significantly less, compared to the

raw data), and the individual updates only need to be held ephemerally by the server.

While these features can offer significant practical privacy improvements over centralizing all the train-

ing data, there is still no formal guarantee of privacy in this baseline federated learning model. For instance,

it is possible to construct scenarios in which information about the raw data is leaked from a client to the

server, such as a scenario where knowing the previous model and the gradient update from a user would

allow one to infer a training example held by that user. Therefore, this section surveys existing results

and outlines open challenges towards designing federated learning systems that can offer rigorous privacy

guarantees. We focus on questions specific to the federated learning and analytics setting and leave aside

questions that also arise in more general machine learning settings as surveyed in [344].

Beyond attacks targeting user privacy, there are also other classes of attacks on federated learning; for

example, an adversary might attempt to prevent a model from being learned at all, or they might attempt to

bias the model to produce inferences that are preferable to the adversary. We defer consideration of these

types of attacks to Section 5.

The remainder of this section is organized as follows. Section 4.1 discusses various threat models

against which we wish to give protections. Section 4.2 lays out a set of core tools and technologies that can

be used towards providing rigorous protections against the threat models discussed in Section 4.1. Section

4.3 assumes the existence of a trusted server and discusses the open problems and challenges in providing

protections against adversarial clients and/or analysts. Section 4.4 discusses the open problems and chal-

lenges in the absence of a fully trusted server. Finally, Section 4.5 discusses open questions around user

perception.

4.1 Actors, Threat Models, and Privacy in Depth

A formal treatment of privacy risks in FL calls for a holistic and interdisciplinary approach. While some of

the risks can be mapped to technical privacy definitions and mitigated with existing technologies, others are

more complex and require cross-disciplinary efforts.

Privacy is not a binary quantity, or even a scalar one. This first step towards such formal treatment

is a careful characterization of the different actors (see Figure 1 from Section 1, repeated on page 36 for

convenience) and their roles to ultimately define relevant threat models (see Table 7). Thus, for instance, it

is desirable to distinguish the view of the server administrator from the view of the analysts that consume

the learned models, as it is conceivable that a system that is designed to offer strong privacy guarantees

against a malicious analyst may not provide any guarantees with respect to a malicious server. These actors

map well onto the threat models discussed elsewhere in the literature; for example, in Bittau et al. [73, Sec

3.1], where the “encoder” corresponds to the client, the “shuffler” generally corresponds to the server, the

“analyzer“ may correspond to the server or post-processing done by the analyst.

37

As an example, a particular system might offer a differential privacy8 guarantee with a particular pa-

rameter ε to the view of the server administrator, while the results observed by analysts might have a higher

protection ε′ < ε.

Furthermore, it is possible that this guarantee holds only against adversaries with particular limits on

their capabilities, e.g. an adversary that can observe everything that happens on the server (but cannot

influence the server’s behavior) while simultaneously controlling up to a fraction γ of the clients (observing

everything they see and influencing their behavior in arbitrary ways); the adversary might also be assumed

to be unable to break cryptographic mechanisms instantiated at a particular security level σ. Against an

adversary whose strength exceeds these limits, the view of the server administrator might still have some

differential privacy, but at weaker level ε0 > ε.

As we see in this example, precisely specifying the assumptions and privacy goals of a system can

easily implicate concrete instantiations of several parameters (ε, ε′, ε0, γ, σ, etc.) as well as concepts such

as differential privacy and honest-but-curious security.

Achieving all the desired privacy properties for federated learning will typically require composing many

of the tools and technologies described below into an end-to-end system, potentially both layering multiple

strategies to protect the same part of the system (e.g. running portions of a Secure Multi-Party Compu-

tation (MPC) protocol inside a Trusted Execution Environment (TEE) to make it harder for an adversary

to sufficiently compromise that component) as well as using different strategies to protect different parts

of the system (e.g. using MPC to protect the aggregation of model updates, then using Private Disclosure

techniques before sharing the aggregate updates beyond the server).

As such, we advocate for building federated systems wherein the privacy properties degrade as grace-

fully as possible in cases where one technique or another fails to provide its intended privacy contribution.

For example, running the server component of an MPC protocol inside a TEE might allow privacy to be

maintained even in the case where either (but not both) of the TEE security or MPC security assumptions

fails to hold in practice. As another example, requiring clients to send raw training examples to a server-side

TEE would be strongly dispreferred to having clients send gradient updates to a server-side TEE, as the lat-

ter’s privacy expectations degrade much more gracefully if the TEE’s security were to fail. We refer to this

principle of graceful degradation as “Privacy in Depth,” in analogy to the well-established network security

principle of defense in depth [361].

4.2 Tools and Technologies

Generally speaking, the goal of an FL computation is for the analyst or engineer requesting the computation

to obtain the result, which can be thought of as the evaluation of a function f on a distributed client dataset

(commonly an ML model training algorithm, but possibly something simpler such as a basic statistic). There

are three privacy aspects that need to be addressed.

First, we need to consider how f is computed and what is the information flow of intermediate results

in the process, which primarily influences the susceptibility to malicious client, server, and admin actors. In

addition to designing the flow of information in the system (e.g. early data minimization), techniques from

secure computation including Secure Multi-Party Computation (MPC) and Trusted Execution Environments

(TEEs) are of particular relevance to addressing these concerns. These technologies will be discussed in

detail in Section 4.2.1.

8Differential privacy will be formally introduced in Section 4.2.2. For now, it suffices to know that lower ε corresponds with

higher privacy.

38

Data/Access Point Actor Threat Model

Clients Someone who has root access

to the client device, either by

design or by compromising the

device

Malicious clients can inspect all messages re-

ceived from the server (including the model it-

erates) in the rounds they participate in and can

tamper with the training process. An honest-but-

curious client can inspect all messages received

from the server but cannot tamper with the train-

ing process. In some cases, technologies such as

secure enclaves/TEEs may be able to limit the in-

fluence and visibility of such an attacker, repre-

senting a meaningfully weaker threat model.

Server Someone who has root access

to the server, either by design

or by compromising the device

A malicious server can inspect all messages sent

to the server (including the gradient updates) in all

rounds and can tamper with the training process.

An honest-but-curious server can inspect all mes-

sages sent to the server but cannot tamper with

the training process. In some cases, technologies

such as secure enclaves/TEEs may be able to limit

the influence and visibility of such an attacker,

representing a meaningfully weaker threat model.

Output Models Engineers & analysts A malicious analyst or model engineer may have

access to multiple outputs from the system, e.g.

sequences of model iterates from multiple train-

ing runs with different hyperparameters. Exactly

what information is released to this actor is an im-

portant system design question.

Deployed Models The rest of the world In cross-device FL, the final model may be de-

ployed to hundreds of millions of devices. A par-

tially compromised device can have black-box ac-

cess to the learned model, and a fully compro-

mised device can have a white-box access to the

learned model.

Table 7: Various threat models for different adversarial actors.

39

Second, we have to consider what is computed. In other words, how much information about a par-

ticipating client is revealed to the analyst and world actors by the result of f itself. Here, techniques for

privacy-preserving disclosure, particularly differential privacy (DP), are highly relevant and will be dis-

cussed in detail in Section 4.2.2.

Finally, there is the problem of verifiability, which pertains to the ability of a client or the server to

prove to others in the system that they have executed the desired behavior faithfully, without revealing

the potentially private data upon which they were acting. Techniques for verifiability, including remote

attestation and zero-knowledge proofs, will be discussed in Section 4.2.3.

4.2.1 Secure Computations

The goal of secure computation is to evaluate functions on distributed inputs in a way that only reveals

the result of the computation to the intended parties, without revealing any additional information (e.g. the

parties’ inputs or any intermediate results).

Secure multi-party computation Secure Multi-Party Computation (MPC) is a subfield of cryptography

concerned with the problem of having a set of parties compute an agreed-upon function of their private

inputs in a way that only reveals the intended output to each of the parties. This area was kicked off in the

1980’s by Yao [493]. Thanks to both theoretical and engineering breakthroughs, the field has moved from

being of a purely theoretical interest to a deployed technology in industry [78, 77, 295, 27, 191, 242, 243].

It is important to remark that MPC defines a set of technologies, and should be regarded more as a field, or a

general notion of security in secure computation, than a technology per se. Some of the recent advances in

MPC can be attributed to breakthroughs in lower level primitives, such as oblivious transfer protocols [244]

and encryption schemes with homomorphic properties (as described below).

A common aspect of cryptographic solutions is that operations are often done on a finite field (e.g.

integers modulo a prime p), which poses difficulties when representing real numbers. A common approach

has been to adapt ML models and their training procedures to ensure that (over)underflows are controlled,

by operating on normalized quantities and relying on careful quantization [194, 10, 206, 84].

It has been known for several decades that any function can be securely computed, even in the presence

of malicious adversaries [208]. While generic solutions exist, their performance characteristics often render

them inapplicable in practical settings. As such a noticeable trend in research has consisted in designing

custom protocols for applications such as linear and logistic regression [359, 194, 351] and neural network

training and inference [351, 10, 48]. These works are typically in the cross-silo setting, or the variant where

computation is delegated to a small group of computing servers that do not collude with each other. Porting

these protocols to the cross-device setting is not straightforward, as they require a significant amount of

communication.

Homomorphic encryption Homomorphic encryption (HE) schemes allow certain mathematical opera-

tions to be performed directly on ciphertexts, without prior decryption. Homomorphic encryption can be a

powerful tool for enabling MPC by enabling a participant to compute functions on values while keeping the

values hidden.

Different flavours of HE exist, ranging from general fully homomorphic encryption (FHE) [197] to the

more efficient leveled variants [87, 182, 88, 129], for which several implementations exist [233, 409, 364,

415, 1]. Also of practical relevance are the so-called partially homomorphic schemes, including for example

ElGamal and Paillier, allowing either homomorphic addition or multiplication. Additive HE has been used

40

Technology Characteristics

Differential Privacy (local, cen-

tral, shuffled, aggregated, and

hybrid models)

A quantification of how much information could be learned about

an individual from the output of an analysis on a dataset that in-

cludes the user. Algorithms with differential privacy necessarily

incorporate some amount of randomness or noise, which can be

tuned to mask the influence of the user on the output.

Secure Multi-Party Computation Two or more participants collaborate to simulate, though cryptog-

raphy, a fully trusted third party who can:

• Compute a function of inputs provided by all the partici-

pants;

• Reveal the computed value to a chosen subset of the partici-

pants, with no party learning anything further.

Homomorphic Encryption Enables a party to compute functions of data to which they do

not have plain-text access, by allowing mathematical operations to

be performed on ciphertexts without decrypting them. Arbitrar-

ily complicated functions of the data can be computed this way

(“Fully Homomorphic Encryption”) though at greater computa-

tional cost.

Trusted Execution Environments

(secure enclaves)

TEEs provide the ability to trustably run code on a remote ma-

chine, even if you do not trust the machine’s owner/administrator.

This is achieved by limiting the capabilities of any party, including

the administrator. In particular, TEEs may provide the following

properties [437]:

• Confidentiality: The state of the code’s execution remains

secret, unless the code explicitly publishes a message;

• Integrity: The code’s execution cannot be affected, except

by the code explicitly receiving an input;

• Measurement/Attestation: The TEE can prove to a remote

party what code (binary) is executing and what its starting

state was, defining the initial conditions for confidentiality

and integrity.

Table 8: Various technologies along with their characteristics.

41

as an ingredient in MPC protocols in the cross-silo setting [359, 224]. A review of some homomorphic

encryption software libraries along with brief explanations of criteria/features to be considered in choosing

a library is surveyed in [404].

When considering the use of HE in the FL setting, questions immediately arise about who holds the

secret key of the scheme. While the idea of every client encrypting their data and sending it to the server

to compute homomorphically on it is appealing, the server should not be able to decrypt a single client

contribution. A trivial way of overcoming this issue would be relying on a non-colluding external party that

holds the secret key and decrypts the result of the computation. However, most HE schemes require that the

secret keys be renewed often (due to e.g. susceptibility to chosen ciphertext attacks [117]). Moreover, the

availability of a trusted non-colluding party is not standard in the FL setting.

Another way around this issue is relying on distributed (or threshold) encryption schemes, where the

secret key is distributed among the parties. Reyzin et al. [392] and Roth et al. [398] propose such solutions

for computing summation in the cross-device setting. Their protocols make use of additively homomorphic

schemes (variants of ElGamal and lattice-based schemes, respectively).

Trusted execution environments Trusted execution environments (TEEs, also referred to as secure en-

claves) may provide opportunities to move part of the federated learning process into a trusted environment

in the cloud, whose code can be attested and verified.

TEEs can provide several crucial facilities for establishing trust that a unit of code has been executed

faithfully and privately [437]:

• Confidentiality: The state of the code’s execution remains secret, unless the code explicitly publishes

a message.

• Integrity: The code’s execution cannot be affected, except by the code explicitly receiving an input.

• Measurement/Attestation: The TEE can prove to a remote party what code (binary) is executing and

what its starting state was, defining the initial conditions for confidentiality and integrity.

TEEs have been instantiated in many forms, including Intel’s SGX-enabled CPUs [241, 134], Arm’s

TrustZone [28, 22], and Sanctum on RISC-V [135], each varying in its ability to systematically offer the

above facilities.

Current secure enclaves are limited in terms of memory and provide access only to CPU resources,

that is they do not allow processing on GPUs or machine learning processors (Tramèr and Boneh [447]

explore how to combine TEEs with GPUs for machine learning inference). Moreover, it is challenging

for TEEs (especially those operating on shared microprocessors) to fully exclude all types of side channel

attacks [458].

While secure enclaves provide protections for all code running inside them, there are additional con-

cerns that must be addressed in practice. For example, it is often necessary to structure the code running in

the enclave as a data oblivious procedure, such that its runtime and memory access patterns do not reveal

information about the data upon which it is computing (see for example [73]). Furthermore, measure-

ment/attestation typically only proves that a particular binary is running; it is up to the system architect to

provide a means for proving that that binary has the desired privacy properties, potentially requiring the

binary to be built using a reproducible process from open source code.

It remains an open question how to partition federated learning functions across secure enclaves, cloud

computing resources, and client devices. For example, secure enclaves could execute key functions such as

42

secure aggregation or shuffling to limit the server’s access to raw client contributions while keeping most of

the federated learning logic outside this trusted computing base.

Secure computation problems of interest While secure multi-party computation and trusted execution

environments offer general solutions to the problem of privately computing any function on distributed

private data, many optimizations are possible when focusing on specific functionalities. This is the case for

the tasks described next.

Secure aggregation Secure aggregation is a functionality for n clients and a server. It enables each

client to submit a value (often a vector or tensor in the FL setting), such that the server learns just an

aggregate function of the clients’ values, typically the sum.

There is a rich literature exploring secure aggregation in both the single-server setting (via additive

masking [8, 213, 80, 58, 428], via threshold homomorphic encryption [417, 218, 103], and via generic

secure multi-party computation [94]) as well as in the multiple non-colluding servers setting [78, 27, 130].

Secure aggregation can also be approached using trusted execution environments (introduced above), as

in [308].

Secure shuffling Secure shuffling is a functionality for n clients and a server. It enables each client

to submit one or more messages, such that the server learns just an unordered collection (multiset) of the

messages from all clients and nothing more. Specifically, the server has no ability to link any message to

its sender beyond the information contained in the message itself. Secure shuffling can be considered an

instance of Secure Aggregation where the values are multiset-singletons and the aggregation operation is

multiset-sum, though it is often the case that very different implementations provide the best performance

in the typical operating regimes for secure shuffling and secure aggregation.

Secure shufflers have been studied in the context of secure multi-party computation [107, 288], often

under the heading of mix networks. They have also been studied in the context of trusted computing [73].

Mix networks have found large scale deployment in the form of the Tor network [157].

Private information retrieval Private information retrieval (PIR) is a functionality for one client and

one server. It enables the client to download an entry from a server-hosted database such that the server

gains zero information about which entry the client requested.

MPC approaches to PIR break down into two main categories: computational PIR (cPIR), in which a

single party can execute the entire server side of the protocol [286], and information theoretic PIR (itPIR),

in which multiple non-colluding parties are required to execute the server side of the protocol [121].

The main roadblocks to the applicability of PIR have been the following: cPIR has high computational

cost [423], while the non-colluding parties setting has been difficult to achieve convincingly in industrial

scenarios. Recent results on PIR have shown dramatic reductions in the computational cost through the

use of lattice-based cryptosystems [12, 363, 13, 23, 198]. The computational cost can be traded for more

communication; we refer the reader to Ali et al. [16] to better understand the communication and computa-

tion trade-offs offered by cPIR. Additionally, it has been shown how to construct communication-efficient

PIR on a single-server by leveraging side information available to the user [251], for example via client

local state. Patel et al. [372] presented and implemented a practical hybrid (computational and information

theoretic) PIR scheme on a single server assuming client state. Corrigan-Gibbs and Kogan [131] present

theoretical constructions for PIR with sublinear online time by working in an offline/online model where,

43

during an offline phase, clients fetch information from the server(s) independent on the future query to be

performed.

Further work has explored the connection between PIR and secret sharing [479], with recent connections

to PIR on coded data [159] and communication efficient PIR [72]. A variant of PIR, called PIR-with-Default,

enable clients to retrieve a default value if the index queried is not in the database, and can output additive

secret shares of items which can serve as input to any MPC protocol [297]. PIR has also been studied in the

context of ON-OFF privacy, in which a client is permitted to switch off their privacy guards in exchange for

better utility or performance [355, 494].

4.2.2 Privacy-Preserving Disclosures

The state-of-the-art model for quantifying and limiting information disclosure about individuals is differen-

tial privacy (DP) [167, 164, 165], which aims to introduce a level of uncertainty into the released model

sufficient to mask the contribution of any individual user. Differential privacy is quantified by privacy loss

parameters (ε, δ), where smaller (ε, δ) corresponds to increased privacy. More formally, a randomized al-

gorithm A is (ε, δ)-differentially private if for all S ⊆ Range(A), and for all adjacent datasets D and D′:

P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S) + δ. (3)

In the context of FL, D and D′ correspond to decentralized datasets that are adjacent if D′ can be obtained

from D by adding or subtracting all the records of a single client (user) [338]. This notion of differential

privacy is referred to as user-level differential privacy. It is stronger than the typically used notion of ad-

jacency where D and D′ differ by only one record [165], since in general one user may contribute many

records (e.g. training examples) to the dataset.

Over the last decade, an extensive set of techniques has been developed for differentially private data

analysis, particularly under the assumption of a centralized setting, where the raw data is collected by a

trusted party prior to applying perturbations necessary to achieve privacy. In federated learning, typically the

orchestrating server would serve as the trusted implementer of the DP mechanism, ensuring only privatized

outputs are released to the model engineer or analyst.

However, when possible we often wish to reduce the need for a trusted party. Several approaches for

reducing the need for trust in a data curator have been considered in recent years.

Local differential privacy Differential privacy can be achieved without requiring trust in a centralized

server by having each client apply a differentially private transformation to their data prior to sharing it with

the server. That is, we apply Equation (3) to a mechanism A that processes a single user’s local dataset D,

with the guarantee holding with respect to any possible other local dataset D′. This model is referred to as the

local model of differential privacy (LDP) [475, 266]. LDP has been deployed effectively to gather statistics

on popular items across large userbases by Google, Apple and Microsoft [177, 154, 155]. It has also been

used in federated settings for spam classifier training by Snap [378]. These LDP deployments all involve

large numbers of clients and reports, even up to a billion in the case of Snap, which stands in stark contrast to

centralized instantiations of DP which can provide high utility from much smaller datasets. Unfortunately,

as we will discuss in Section 4.4.2, achieving LDP while maintaining utility can be difficult [266, 455].

Thus, there is a need for a model of differential privacy that interpolates between purely central and purely

local DP. This can be achieved through distributed differential privacy, or the hybrid model, as discussed

below.

44

Distributed differential privacy In order to recover some of the utility of central DP without having to

rely on a trustworthy central server, one can instead use a distributed differential privacy model [166, 417,

73, 120]. Under this model, the clients first compute and encode a minimal (application specific) focused

report, and then send the encoded reports to a secure computation function, whose output is available to the

central server, with the intention that this output already satisfies differential privacy requirements by the

time the server is able to inspect it. The encoding is done to help maintain privacy on the clients, and could

for example include LDP. The secure computation function can have a variety of incarnations. It could be

an MPC protocol, a standard computation done on a TEE, or even a combination of the two. Each of these

choices comes with different assumptions and threat models.

It is important to remark that distributed differential privacy and local differential privacy yield different

guarantees from several perspectives: while the distributed DP framework can produce more accurate statis-

tics for the same level of differential privacy as LDP, it relies on different setups and typically makes stronger

assumptions, such as access to MPC protocols. Below, we outline two possible approaches to distributed

differential privacy, relying on secure aggregation and secure shuffling. We stress that there are many other

methods that could be used, see for instance [400] for an approach based on exchanging correlated Gaussian

noise across secure channels.

Distributed DP via secure aggregation One promising tool for achieving distributed DP in FL is secure

aggregation, discussed above in Section 4.2.1. Secure aggregation can be used to ensure that the central

server obtains the aggregated result, while guaranteeing that intermediate parameters of individual devices

and participants are not revealed to the central server. To further ensure the aggregated result does not

reveal additional information to the server, we can use local differential privacy (e.g. with moderate ε level).

For example, each device could perturb its own model parameter before the secure aggregation in order to

achieve local differential privacy. By designing the noise correctly, we may ensure that the noise in the

aggregated result matches the noise that would have otherwise been added centrally by a trusted server (e.g.

with a low ε / high privacy level) [8, 385, 205, 417, 213].

Distributed DP via secure shuffling Another distributed differential privacy model is the shuffling

model, which was kicked off by the recently introduced Encode-Shuffle-Analyze (ESA) framework [73]

(illustrated in Figure 3). In the simplest version of this framework, each client runs an LDP protocol (e.g.

with a moderate ε level) on its data and provides its output to a secure shuffler. The shuffler randomly per-

mutes the reports and sends the collection of shuffled reports (without any identifying information) to the

server for final analysis. Intuitively, the interposition of this secure compute function makes it harder for the

server to learn anything about the participants and supports a differential privacy analysis (e.g. with a low

ε / high privacy level). In the more general multi-message shuffled framework, each user can possibly send

more than one message to the shuffler. The shuffler can either be implemented directly as a trusted entity,

independent of the server and devoted solely to shuffling, or via more complex cryptographic primitives as

discussed above.

Bittau et al. [73] proposed the Prochlo system as a way to implement the ESA framework. The system

takes a holistic approach to privacy that takes into account secure computation aspects (addressed using

TEEs), private disclosure aspects (addressed by means of differential privacy), and verifiability aspects

(mitigated using secure enclave attestation capabilities).

More generally, shuffling models of differential privacy can use broader classes of local randomizers,

and can even select these local randomizers adaptively [178]. This can enable differentially private protocols

with far smaller error than what is possible in the local model, while relying on weaker trust assumptions

45

Figure 3: The Encode-Shuffle-Analyze (ESA) framework, illustrated here for 4 players.

than in the central model, e.g., [120, 178, 45, 201, 204, 200, 202, 203, 110].

Hybrid differential privacy Another promising approach is hybrid differential privacy [40], which com-

bines multiple trust models by partitioning users based on their trust model preference (e.g. trust or lack

of trust in the curator). Prior to the hybrid model, there were two natural choices. The first was to use the

least-trusting model, which typically provides the lowest utility, and conservatively apply it uniformly over

the entire userbase. The second was to use the most-trusting model, which typically provides the highest

utility, but only apply it over the most-trusting users. By allowing multiple models to coexist, hybrid model

mechanisms can achieve more utility from a given userbase, compared to purely local or central DP mecha-

nisms. For instance, [40] describes a system in which most users contribute their data in the local model of

privacy, and a small fraction of users opt-in to contributing their data in the central DP model. This enables

the design of a mechanism which, in some circumstances, outperforms both the conservative local DP mech-

anism applied across all users as well as the central DP mechanism applied only across the small fraction

of opt-in users. Recent work by [57] further demonstrates that a combination of multiple trust models can

become part of a promising toolkit for designing and implementing differential privacy. This construction

can be directly applied in the federated learning setting; however, the general concept of combining trust

models or computational models may also inspire similar but new approaches for federated learning.

4.2.3 Verifiability

An important notion that is orthogonal to the above privacy techniques is that of verifiability. Generally

speaking, verifiable computation will enable one party to prove to another party that it has executed the

desired behavior on its data faithfully, without compromising the potential secrecy of the data. The concept

of verifiable computation dates back to Babai et al. [42] and has been studied under various terms in the

literature: checking computations [42], certified computation [343], delegating computations [210], as well

as verifiable computing [195].

In the context of FL, verifiability can be used for two purposes. First, it would enable the server to prove

to the clients that it executed the intended behavior (e.g., aggregating inputs, shuffling of the input messages,

or adding noise for differential privacy) faithfully. Second, it would enable the clients to prove to the server

that their inputs and behavior follow that of the protocol specification (e.g., the input belongs to a certain

46

range, or the data is a correctly generated ciphertext).

Multiple techniques can be useful to provide verifiability: zero-knowledge proofs (ZKPs), trusted execu-

tion environments (TEEs), or remote attestation. Among these ZKPs provide formal cryptographic security

guarantees based on mathematical hardness, while others make rely on assumption about the security of

trusted hardware.

Zero-knowledge proofs (ZKPs) Zero knowledge (ZK) proofs are a cryptographic primitive that enables

one party (called the prover) to prove statements to another party (called the verifier), that depend on secret

information known to the prover, called witness, without revealing those secrets to the verifier. The notion of

zero-knowledge was introduced in the late 1980’s by Goldwasser et al. [209]. It provides a solution for the

verifiability question on private data. While there had been a large body of work on ZK construction, the first

work that brought ZKPs and verifiable computation for general functionalities in the realm of practicality

was the work of Parno et al. [369] which introduces the first optimized construction and implementation for

succinct ZK. Nowadays, ZKP protocols can achieve proof sizes of hundred of bytes and verifications of the

order of milliseconds regardless of the size of the statement being proved.

A ZKP has three salient properties: completeness (if the statement is true and the prover and verifier

follow the protocol, the verifier will accept the proof), soundness (if the statement is false and the verifier

follows the protocol, the verifier will refuse the proof), and zero-knowledge (if the statement is true and

the prover follows the protocol, the verifier will only learn that the statement is true and will not learn any

confidential information from the interaction).

Beyond these common properties, there are different types of zero-knowledge constructions in terms of

supported language for the proofs, setup requirements, prover and verifier computational efficiency, inter-

activity, succinctness, and underlying hardness assumptions. There are many ZK constructions that support

specific classes of statements, Schnorr proofs [408] and Sigma protocols [147] are examples of such widely

used protocols. While such protocols have numerous uses in specific settings, general ZK systems that can

support any functionality provide a much more broadly applicable tool (including in the context of FL), and

thus we focus on such constructions for the rest of the discussion.

A major distinguishing feature between different constructions is the need for trusted setup. Some

ZKPs rely on a common reference string (CRS), which is computed using secrets that should remain hidden

in order to guarantee the soundness properties of the proofs. The computation of such a CRS is referred to as

a trusted setup. While this requirement is a disadvantage for such systems, the existing ZKP constructions

that achieve most succinct proofs and verifier’s efficiency require trusted setup.

Another significant property that affects the applicability in different scenarios is whether generating

the proof requires interaction between the prover and the verifier, and here we distinguish non-interactive

zero-knowledge proofs (NIZKs) that enable the prover to send a single message to the verifier and require

no further communication. Often we can convert interactive to non-interactive proofs by making stronger

assumptions about ideal functionality of hash functions (i.e., that hash functions behave as random oracles).

Additionally, there are different measurements for efficiency of a ZKP system one must be aware of,

such as the length of the proof and the computation complexity of the prover and verifier. The ideal prover’s

complexity should be linear in the execution time for the evaluated functionality but many existing ZKPs

introduce additional (sometimes significant) overhead for the prover. The most efficient verification com-

plexity requires computation at least linear in the size of the inputs for the evaluated functionality, and in the

setting of proofs for the work of the FL server this input size will be significant.

Succinct non-interactive zero-knowledge proofs (SNARKs) [71] are a type of ZKP that provides constant

47

proof size and verification that depends only on the input size, linearly. These attractive efficiency properties

do come at the price of stronger assumptions, which is mostly inherent, and trusted setup in all existing

scheme. Most existing SNARK constructions leverage quadratic arithmetic programs [196, 369, 136] and

are now available in open-source libraries, such as libsnark [307], and deployed in cryptocurrencies, such

as Zcash [62]. Note that SNARK systems usually require overhead on the part of the prover; in particular,

the prover computation needs to be superlinear in the size of the circuit for the statement being proven.

Recently, Xie et al. [489] presented Libra, a ZKP system that achieves linear prover complexity but with

increased proof size and verification time.

If we relax the requirements for succinctness or non-interactiveness for the construction, there is a large

body of constructions that achieve a wide range of efficiency trade-offs, avoid the trusted setup requirement

and use more standard cryptographic assumptions [92, 464, 20, 63].

In the recent years, an increasing numbers of practical applications have been using non-interactive

zero-knowledge proofs, primarily motivated by blockchains. Using interactive ZKP systems and NIZKs

efficiently in the context of FL remains a challenging open question. In such a setting, NIZKs may enable

to prove to the server properties about the client’s inputs. In the setting where the verifier is the client, it

will be challenging to create a trustworthy statement to verify as it involves input from other clients. Of

interest in this setting, recent work enables to handle the case where the multiple verifiers have shares of the

statement [83].

Trusted execution environment and remote attestation We discussed TEEs in Section 4.2.1, but focus

here on the fact that TEEs may provide opportunities to provide verifiable computations. Indeed, TEEs

enable to attest and verify the code (binary) running in its environment. In particular, when the verifier

knows (or can reproduce) which binary should run in the secure enclaves, TEEs will be able to provide a

notion of integrity (the code execution cannot be affected, except by the inputs), and an attestation (the TEE

can prove that a specific binary is executing and what is starting state was) [437, 451]. More generally,

remote attestation allows a verifier to securely measure the internal state of a remote hardware platform,

and can be used to establish a static or dynamic root of trust. While TEEs enable hardware-based remote

attestations, both software-based remote attestions [411] and hybrid remote attestation designs [172, 274]

were proposed in the literature and enable to trade off hardware requirements for verifiability.

In a federated learning setting, TEEs and remote attestations may be particularly helpful for clients to be

able to efficiently verify key functions running on the server. For example, secure aggregation or shuffling

could run in TEEs and would provide differential privacy guarantees on their outputs. Therefore, the post-

processing logic subsequently applied by the server on the differentially private data could run on the server

and remain oblivious to the clients. Note that such a system design requires the clients to know and trust

the exact code (binary) for the key functions to be applied in the enclaves. Additionally, remote attestations

may enable a server to attest specific requirements from the clients involved in the FL computation, such as

absence of leaks, immutability, and uninterruptability (we defer to [188] for an exhaustive list of minimal

requirements for remote attestation).

4.3 Protections Against External Malicious Actors

In this section, we assume the existence of a trusted server and discuss various challenges and open problems

towards achieving rigorous privacy guarantees against external malicious actors (e.g. adversarial clients,

adversarial analysts, adversarial devices that consume the learned model, or any combination thereof).

As discussed in Table 7, malicious clients can inspect all messages received from the server (including

48

the model iterates) in the rounds they participate in, malicious analysts can inspect sequences of model iter-

ates from multiple training runs with different hyperparameters, and in cross-device FL, malicious devices

can have either white-box or black-box access to the final model. Therefore, to give rigorous protections

against external adversaries, it is important to first consider what can be learned from the intermediate iter-

ates and final model.

4.3.1 Auditing the Iterates and Final Model

To better understand what can be learned from the intermediate iterates or final model, we propose quan-

tifying federated learning models’ susceptibility towards specific attacks. This is a particularly interesting

problem in the federated learning context. On the one hand, adversaries receive direct access to the model

from the server, which widens the attack surface. On the other hand, the server determines which specific

stages of the training process the adversary will receive access to the model, and additionally controls the

adversary’s influence over the model at each of the stages.

For classic (non-federated) models of computation, understanding a model’s susceptibility to attacks is

an active and challenging research area [189, 418, 99, 341, 100]. The most common method of quanti-

fying a model’s susceptibility to an attack is to simulate the attack on the model using a proxy (auditing)

dataset similar to the dataset expected in practice. This gives an idea of what the model’s expected attack

susceptibility is if the proxy dataset is indeed similar to the eventual user data. A safer method would

be to determine a worst-case upper-bound on the model’s attack susceptibility. This can be approached

theoretically as in [496], although this often yields loose, vacuous bounds for realistic models. Empirical

approaches may be able to provide tighter bounds, but for many types of attacks and models, this endeavour

may be intractable. An interesting emerging area of research in this space examines the theoretic conditions

(on the audited model and attacks) under which an unsuccessful attempt to identify privacy violations by a

simulated attack implies that no stronger attacks can succeed at such a task [153]. However, this area is still

nascent and more work needs to be done to better understand the fundamental requirements under which

auditing (via simulated attacks) is sufficient.

The federated learning framework provides a unique setting not only for attacks, but also for attack

quantification and defense. Specifically, due to the server’s control over when each user can access and

influence the model during the training process, it may be possible to design new tractable methods for

quantifying a model’s average-case or worst-case attack susceptibility. Such methods would enable the

development of new adaptive defenses, which can be applied on-the-fly to preempt significant adversarial

influence while maximizing utility.

4.3.2 Training with Central Differential Privacy

To limit or eliminate the information that could be learned about an individual from the iterates (and/or

final model), user-level differential privacy can be used in FL’s iterative training process [3, 338, 336, 68].

With this technique, the server clips the `2 norm of individual updates, aggregates the clipped updates, and

then adds Gaussian noise to the aggregate. This ensures that the iterates do not overfit to any individual

user’s update. To track the overall privacy budget across rounds, advanced composition theorems [168, 254]

or the analytical moments accountant method developed in [3, 346, 348, 474] can be used. The moments

accountant method works particularly well with the uniformly subsampled Gaussian mechanism. For mod-

erate privacy budgets and in the absence of a sufficiently large dataset [384], the noise introduced by this

process can lead to a large decrease in model accuracy. Prior work has explored a number of avenues to

mitigate this trade-off between privacy and accuracy, including collecting more private data [338], designing

49

privacy-friendly model architectures [367], or leveraging priors on the private data domain [449].

In cross-device FL, the number of training examples can vary drastically from one device to the other.

Hence, similar to recent works on user-level DP in the central model [21], figuring out how to adap-

tively bound the contributions of users and clip the model parameters remains an interesting research di-

rection [446, 377]. More broadly, unlike record-level DP where fundamental trade-offs between accuracy

and privacy are well understood for a variety of canonical learning and estimation tasks, user-level DP is

fundamentally less understood (especially when the number of contributions varies wildly across users and

is not tightly bounded a priori). Thus, more work needs to be done to better understand the fundamental

trade-offs in this emerging setting of DP. Recently, [320] made progress on this front by characterizing the

trade-offs between accuracy and privacy for learning discrete distributions under user-level DP.

In addition to the above, it is important to draw a distinction between malicious clients that may be able

to see (some of) the intermediate iterates during training and malicious analysts (or deployments) that can

only see the final model. Even though central DP provides protections against both threat models, a careful

theoretical analysis can reveal that for a specific implementation of the above Gaussian mechanism (or any

other differentially private mechanism), we may get different privacy parameters for these two threat models.

Naturally, we should get stronger differential privacy guarantees with respect to malicious analysts than we

do with respect to malicious clients (because malicious clients may have access to far more information than

malicious analysts). This “privacy amplification via iteration” setting has been recently studied by Feldman

et al. [185] for convex optimization problems. However, it is unclear whether or not the results in [185] can

be carried over to the non-convex setting.

Privacy amplification for non-uniform device sampling procedures Providing formal (ε, δ) guarantees

in the context of cross-device FL system can be particularly challenging because: (a) the set of all eligible

users (i.e. underlying database) is dynamic and not known in advance, and (b) users participating in federate

computations may drop out at any point in the protocol. It is therefore important to investigate and design

protocols that: (1) are robust to nature’s choice (user availability and dropout), (2) are self-accounting, in

that the server can compute a tight (ε, δ) guarantee using only information available via the protocol, (3) rely

on local participation decision (i.e. do not assume that the server knows which users are online and has the

ability to sample from them), and (4) achieve good privacy-utility trade-offs. While recent works [47, 257]

suggest that these constraints can be simultaneously achieved, building an end-to-end protocol that works in

production FL systems is still an important open problem.

Sources of randomness (adapted from [336]) Most computational devices have access only to few

sources of entropy and they tend to be very low rate (hardware interrupts, on-board sensors). It is standard—

and theoretically well justified—to use the entropy to seed a cryptographically secure pseudo-random num-

ber generator (PRNG) and use the PRNG’s output as needed. Robust and efficient PRNGs based on standard

cryptographic primitives exist that have output rate of gigabytes per second on modern CPUs and require a

seed as short as 128 bits [401].

The output distribution of a randomized algorithm A with access to a PRNG is indistinguishable from

the output distribution of A with access to a true source of entropy as long as the distinguisher is computa-

tionally bounded. Compare it with the guarantee of differential privacy which holds against any adversary,

no matter how powerful. As such, virtually all implementations of differential privacy satisfy only (variants

of) computational differential privacy introduced by [347]. On the positive side, a computationally-bounded

adversary cannot tell the difference, which allows us to avoid being overly pedantic about this point.

A training procedure may have multiple sources of non-determinism (e.g., dropout layers or an input of a

50

generative model) but only those that are reflected in the privacy ledger must come from a cryptographically

secure PRNG. In particular, the device sampling procedure and the additive Gaussian noise must be drawn

from a cryptographically secure PRNG for the trained model to satisfy computational differential privacy.

Auditing differential privacy implementations Privacy and security protocols are notoriously difficult

to implement correctly (e.g., [345, 217] for differential privacy). What techniques can be used for testing

FL-implementations for correctness? Since the techniques will often be deployed by organizations who may

opt not to open-source code, what are the possibilities for black-box testing? Some works [156, 315, 247]

begin to explore this area in the context of differential privacy, but many open questions remain.

4.3.3 Concealing the Iterates

In typical federated learning systems, the model iterates (i.e., the newly updated versions of the model after

each round of training) are assumed to be visible to multiple actors in the system, including the server and the

clients that are chosen to participate in each round. However, it may be possible to use tools from Section 4.2

to keep the iterates concealed from these actors.

To conceal the iterates from the clients, each client could run their local portion of federated learning

inside a TEE providing confidentiality features (see Section 4.2.1). The server would validate that the ex-

pected federated learning code is running in the TEE (relying on the TEE’s attestation and integrity features),

then transmit an encrypted model iterate to the device such that it can only be decrypted inside the TEE.

Finally the model updates would be encrypted inside the TEE before being returned to the server, using keys

only known inside the enclave and on the server. Unfortunately, TEEs may not be generally available across

clients, especially when those clients are end-user devices such as smartphones. Moreover, even when TEEs

are present, they may not be sufficiently powerful to support training computations, which would have to

happen inside the TEE in order to protect the model iterate, and may be computationally expensive and/or

require significant amounts of RAM – though TEE capabilities are likely to improve over time, and tech-

niques such as those presented in [447] may be able to reduce the requirements on the TEE by exporting

portions of the computation outside the TEE while maintaining the attestation, integrity, and confidentiality

needs of the computation as a whole.

Similar protections can be achieved under the MPC model [351, 10]. For example, the server could

encrypt the iterate’s model parameters under a homomorphic encryption scheme before sending it to the

client, using keys known only to the server. The client could then compute the encrypted model update

using the homomorphic properties of the cryptosystem, without needing to decrypt the model parameters.

The encrypted model update could then be returned to the server for aggregation. A key challenge here

will be to force aggregation on the server before decryption, as otherwise the server may be able to learn a

client’s model update. Another challenging open problem here is improving performance, as even state-of-

the-art systems can require quite significant computational resources to complete a single round of training

in a deep neural network. Progress here could be made both by algorithmic advances as well as through the

development of more efficient hardware accelerators for MPC [393].

Additional challenges arise if the model iterates should also be concealed from the server. Under the

TEE model, the server portion of federated learning could run inside a TEE, with all parties (i.e., clients and

analyst) verifying that the server TEE will only release the final model after the appropriate training criteria

have been met. Under the MPC model, an encryption key could protect the model iterates, with the key held

by the analyst, distributed in shares among the clients, or held by a trusted third party; in this setup, the key

holder(s) would be required to engage in the decryption of the model parameters, and could thereby ensure

51

that this process happens only once.

4.3.4 Repeated Analyses over Evolving Data

For many applications of federated learning, the analyst wishes to analyze data that arrive in a streaming

fashion, and must also provide dynamically-updated learned models that are (1) correct on the data seen

thus far, and (2) accurately predict future data arrivals. In the absence of privacy concerns, the analyst could

simply re-train the learned model once new data arrive, to ensure maximum accuracy at all times. However,

since privacy guarantees degrade as additional information is published about the same data [167, 168],

these updates must be less frequent to still preserve both privacy and accuracy of the overall analysis.

Recent advances in differential privacy for dynamic databases and time series data [143, 142, 97] have

all assumed the existence of a trusted curator who can see raw data as they arrive online, and publish

dynamically updated statistics. An open question is how these algorithmic techniques can be extended to

the federated setting, to enable private federated learning on time series data or other dynamically evolving

databases.

Specific open questions include:

• How should an analyst privately update an FL model in the presence of new data? Alternatively, how

well would a model that was learned privately with FL on a dataset D extend to a dataset D′ that was

guaranteed to be similar to D in a given closeness measure? Since FL already occurs on samples that

arrive online and does not overfit to the data it sees, it is likely that such a model would still continue

to perform well on a new database D′. This is also related to questions of robustness that are explored

in Section 5.

• One way around the issue of privacy composition is by producing synthetic data [165, 5], which

can then be used indefinitely without incurring additional privacy loss. This follows from the post-

processing guarantees of differential privacy [167]. Augenstein et al. [31] explore the generation of

synthetic data in a federated fashion. In the dynamic data setting, synthetic data can be used repeatedly

until it has become “outdated” with respect to new data, and must be updated. Even after generating

data in a federated fashion, it must also be updated privately and federatedly.

• Can the specific approaches in prior work on differential privacy for dynamic databases [142] or

privately detecting changes in time series data [143, 97] be extended to the federated setting?

• How can time series data be queried in a federated model in the first place? By design, the same

users are not regularly queried multiple times for updated data points, so it is difficult to collect true

within-subject estimates of an individuals’ data evolution over time. Common tools for statistical

sampling of time series data may be brought to bear here, but must be used in conjunction with tools

for privacy and tools for federation. Other approaches include reformulating the queries such that

each within-subject subquery can be answered entirely on device.

4.3.5 Preventing Model Theft and Misuse

In some cases, the actor or organization developing an ML model may be motivated to restrict the ability to

inspect, misuse or steal the model. For example, restricting access to the model’s parameters may make it

more difficult for an adversary to search for vulnerabilities, such as inputs that produce unanticipated model

outputs.

52

Protecting a deployed model during inference is closely related to the challenge of concealing the model

iterates from clients during training, as discussed in Section 4.3.3. Again, both TEEs and MPC may be used.

Under the TEE model, the model parameters are only accessible to a TEE on the device, as in Section 4.3.3;

the primary difference being that the desired calculation is now inference instead of training.

It is harder to adapt MPC strategies to this use case without forgoing the advantages offered by on-device

inference: if the user data, model parameters, and inference results are all intended to be on-device, then

it is unclear what additional party is participating in the multi-party computation. For example, naı̈vely

attempting to use homomorphic encryption would require the decryption keys to be on device where the

inferences are to be used, thereby undermining the value of the encryption in the first place. Solutions

where the analyst is required to participate (e.g. holding either the encryption keys or the model parameters

themselves) imply additional inference latency, bandwidth costs, and connectivity requirements for the end

user (e.g. the inferences would no longer be available for a device in airplane mode).

It is crucial to note that even if the model parameters themselves are successfully hidden, research

has shown that in many cases they can be reconstructed by an adversary who only has access to an infer-

ence/prediction API based on those parameters [450]. It is an open question what additional protections

would need to be put into place to protect from these kinds of issues in the context of a model residing on

millions or billions of end user devices.

4.4 Protections Against an Adversarial Server

In the previous section, we assumed the existence of a trusted server that can orchestrate the training pro-

cess. In this section we discuss the more desirable scenario of protecting against an adversarial server. In

particular, we start by investigating the challenges of this setting and existing works, and then move on to

describing the open problems and how the techniques discussed in Section 4.2 can be used to address these

challenges.

4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection

In the cross-device FL setting, we have a server with significant computational resources and a large number

of clients that (i) can only communicate with the server (as in a star network topology), and (ii) may be

limited in connectivity and bandwidth. This poses very concrete requirements when enforcing a given

trust model. In particular, clients do not have a clear way of establishing secure channels among themselves

independent of the server. This suggests, as shown by Reyzin et al. [392] for practical settings, that assuming

honest (or at least semi-honest) behaviour by the server in a key distribution phase (as done in [80, 58])

is required in scenarios where private channels among clients are needed. This includes cryptographic

solutions based on MPC techniques. An alternative to this assumption would be incorporating an additional

party or a public bulletin board (see, e.g., [398]) into the model that is known to the clients and trusted to

not collude with the server.

Beyond trusting the server to facilitate private communication channels, the participants in cross-device

FL must also trust the server to form cohorts of clients in a fair and honest manner. An actively malicious

adversary controlling the server could simulate a large number of fake client devices (a “Sybil attack” [160])

or could preferentially select previously compromised devices from the pool of available devices. Either

way, the adversary could control far more participants in a round of FL than would be expected simply

from a base rate of adversarial devices in the population. This would make it far easier to break the common

assumption in MPC that at least a certain fraction of the devices are honest, thereby undermining the security

of the protocol. Even if the security of protocol itself remains intact (for example, if its security is rooted

53

in a different source of trust, such as a secure enclave), there is a risk that if a large number of adversarial

clients’ model updates are known to or controlled by the adversary, then the privacy of the remaining clients’

updates may be undermined. Note that these concerns can also apply in the context of TEEs. For example,

a TEE-based shuffler can also be subject to a Sybil attack; if a single honest user’s input is shuffled with

known inputs from fake users, it will be straight forward for the adversary to identify the honest user’s value

in the shuffled output.

Note that in some cases, it may be possible to establish proof among the clients in a round that they are

all executing the correct protocol, such as if secure enclaves are available on client devices and the clients

are able to remotely attest one another. In these cases, it may be possible to establish privacy for all honest

participants in the round (e.g., by attesting that secure multi-party computation protocols were followed

accurately, that distributed differential privacy contributions were added secretly and correctly, etc.) even if

the model updates themselves are known to or controlled by the adversary.

4.4.2 Limitations of Existing Solutions

Given that the goal of FL is for the server to construct a model of the population-level patterns in the clients’

data, a natural privacy goal is to quantify, and provably limit, the server’s ability to reconstruct an individual

client’s input data. This involves formally defining (a) what is the view of the clients data revealed to the

server as a result of an FL execution, and (b) what is the privacy leakage of such a view. In FL, we are

particularly interested in guaranteeing that the server can aggregate reports from the clients, while somehow

masking the contributions of each individual client. As discussed in Section 4.2.2, this can be done in

a variety of ways, typically using some notion of differential privacy. There are a wide variety of such

methods, each with their own weaknesses, especially in FL. For example, as already discussed, central DP

suffers from the need to have access to a trusted central server. This has led to other promising private

disclosure methods discussed in Section 4.2.2. Here, we outline some of the weaknesses of these methods.

Local differential privacy As previously discussed, LDP removes the need for a trusted central server

by having each client perform a differentially private transformation to their report before sending it to

the central server. LDP assumes that a user’s privacy comes solely from that user’s addition of their own

randomness; thus, a user’s privacy guarantee is independent of the additional randomness incorporated by all

other users. While LDP protocols are effective at enforcing privacy and have theoretical justifications [177,

154, 155], a number of results have shown that achieving local differential privacy while preserving utility

is challenging, especially in high-dimensional data settings [266, 455, 252, 54, 253, 495, 162, 128]. Part of

this difficulty is attributed to the fact that the magnitude of the random noise introduced must be comparable

to the magnitude of the signal in the data, which may require combining reports between clients. Therefore,

obtaining utility with LDP comparable to that in the central setting requires a relatively larger userbase or

larger choice of ε parameter [445].

Hybrid differential privacy The hybrid model for differential privacy can help reduce the size of the

required userbase by partitioning users based on their trust preferences. However, it is unclear which appli-

cation areas and algorithms can best utilize hybrid trust model data [40]. Furthermore, current work on the

hybrid model typically assumes that regardless of the user trust preference, their data comes from the same

distribution [40, 39, 57]. Relaxing this assumption is critical for FL in particular, as the relationship between

the trust preference and actual user data may be non-trivial.

54

The shuffle model The shuffle model enables users’ locally-added noise to be amplified through a shuf-

fling intermediary, although it comes with two drawbacks of its own. The first is the requirement of a trusted

intermediary; if users are already not trusting of the curator, then it may be unlikely that they will trust an

intermediary approved of or created by the curator (though TEEs might help to bridge this gap). The Prochlo

framework [73] is (to the best of our knowledge) the only existing instance. The second drawback is that

the shuffle model’s differential privacy guarantee degrades in proportion to the number of adversarial users

participating in the computation [45]. Since this number isn’t known to the users or the curator, it intro-

duces uncertainty into the true level of privacy that users are receiving. This risk is particularly important in

the context of federated learning, since users (who are potentially adversarial) are a key component in the

computational pipeline. Secure multi-party computation, in addition to adding significant computation and

communication overhead to each user, also does not address this risk when users are adding their own noise

locally.

Secure aggregation The Secure Aggregation protocols from [80, 58] have strong privacy guarantees when

aggregating client reports. Moreover, the protocols are tailored to the setting of federated learning. For

example, they are robust to clients dropping out during the execution (a common feature of cross-device FL)

and scale to a large number of parties (up to billions for Bell et al. [58]) and vector lengths. However, this

approach has several limitations: (a) it assumes a semi-honest server (only in the private key infrastructure

phase), (b) it allows the server to see the per-round aggregates (which may still leak information), (c) it is not

efficient for sparse vector aggregation, and (d) it lacks the ability to enforce well-formedness of client inputs.

It is an open question how to construct an efficient and robust secure aggregation protocol that addresses all

of these challenges.

4.4.3 Training with Distributed Differential Privacy

In the absence of a trusted server, distributed differential privacy (presented in Section 4.2.2) can be used to

protect the privacy of participants.

Communication, privacy, and accuracy trade-offs under distributed DP We point out that in dis-

tributed differential privacy three performance metrics are of general interest: accuracy, privacy and com-

munication, and an important goal is nailing down the possible trade-offs between these parameters. We

note that in the absence of the privacy requirement, the trade-offs between communication and accuracy

have been well-studied in the literature on distributed estimation (e.g., [440]) and communication complex-

ity (see [285] for a textbook reference). On the other hand, in the centralized setup where all the users’ data

is already assumed to be held by a single entity and hence no communication is required, trade-offs between

accuracy and privacy have been extensively studied in central DP starting with the foundational work of

[167, 166]. More recently, the optimal trade-offs between privacy, communication complexity and accuracy

in distributed estimation with local DP have been characterized in [114], which shows that with careful

encoding joint privacy and communication constraints can yield a performance that matches the optimal

accuracy achievable under either constraint alone.

Trade-offs for secure shuffling These trade-offs have been recently studied in the shuffled model for

the two basic tasks of aggregation (where the goal is to compute the sum of the users’ inputs) and frequency

estimation (where the inputs belong to a discrete set and the goal is to approximate the number of users

holding a given element). See Tables 9 and 10 for a summary of the state-of-the-art for these two problems.

Two notable open questions are (i) to study pure differential privacy in the shuffled model, and (ii) to

55

Reference #messages / n Message size Expected error

[120] ε
√
n 1 1

ε
log n

δ

[120] ` 1
√
n/`+ 1

ε
log 1

δ

[45] 1 log n n1/6 log1/3(1/δ)

ε2/3

[46] log(log n) log n 1
ε
log(log n)

√

log 1
δ

[201] log(n
εδ
) log(n

δ
) 1

ε

√

log 1
δ

[46] log(n
δ
) log n 1

ε

[204] & [46] 1 + log(1/δ)
logn

log n 1
ε

Table 9: Comparison of differentially private aggregation protocols in the multi-message shuffled model

with (ε, δ)-differential privacy. The number of parties is n, and ` is an integer parameter. Message sizes are

in bits. For readability, we assume that ε ≤ O(1), and asymptotic notations are suppressed.

Local Local + shuffle
Shuffled,

single-message

Shuffled,

multi-message
Central

Expected max. error Õ(
√
n) Ω̃(

√
n) Õ(min(4

√
n,

√
B)) Ω̃(min(4

√
n,

√
B)) Θ̃(1) Θ̃(1)

Communication/user Θ(1) any Θ̃(1) any Θ̃(1) Θ̃(1)
References [54] [53] [475, 178, 45] [200] [200] [339, 433]

Table 10: Upper and lower bounds on the expected maximum error for frequency estimation on domains

of size B and over n users in different models of DP. The bounds are stated for fixed, positive privacy

parameters ε and δ, and Θ̃/Õ/Ω̃ asymptotic notation suppresses factors that are polylogarithmic in B and

n. The communication per user is in terms of the total number of bits sent. In all upper bounds, the protocol

is symmetric with respect to the users, and no public randomness is needed. References are to the first

results we are aware of that imply the stated bounds.

determine the optimal privacy, accuracy and communication trade-off for variable selection in the multi-

message setup (a nearly tight lower bound in the single-message case was recently obtained in [200]).

In the context of federated optimization under the shuffled model of DP, the recent work of [207] shows

that multi-message shuffling is not needed to achieve central DP accuracy with low communication cost.

However, it is unclear if the schemes presented achieve the (order) optimal communication, accuracy, trade-

offs.

Trade-offs for secure aggregation It would be very interesting to investigate the following similar

question for secure aggregation. Consider an FL round with n users and assume that user i holds a value

xi. User i applies an algorithm A(·) to xi to obtain yi = A(xi); here, A(·) can be thought of as both

a compression and privatization scheme. Using secure aggregation as a black box, the service provider

observes ȳ =
∑

iA(xi) and uses ȳ to estimate x̄, the true sum of the xi’s, by computing ˆ̄x = g(ȳ) for some

function g(·). Ideally, we would like to design A(·), g(·) in a way that minimizes the error in estimating x̄;

formally, we would like to solve the optimization problem ming,A ‖g(
∑

iA(xi)) −
∑

i xi‖, where ‖.‖ can

be either the `1 or `2 norm. Of course, without enforcing any constraints on g(.) and A(·), we can always

choose them to be the identity function and get 0 error. However,A(·) has to satisfy two constraints: (1)A(·)

56

should output B bits (which can be thought of as the communication cost per user), and (2) ȳ =
∑

iA(xi)
should be an (ε, δ)-DP version of x̄ =

∑

i xi. Thus, the fundamental problem of interest is to identify

the optimal algorithm A that achieves DP upon aggregation while also satisfying a fixed communication

budget. Looking at the problem differently, for a fixed n, B, ε, and δ, what is the smallest `1 or `2 error that

we can hope to achieve? We note that the work of Agarwal et al. [9] provides one candidate algorithm A
based on uniform quantization and binomial noise addition. Yet another solution was recently presented in

[256] which involves rotating, scaling, and discretizing the data, then adding discrete Gaussian noise before

performing modular clipping and secure aggregation. While the sum of independent discrete Gaussians

is not a discrete Gaussian, the authors show that it is close enough and present tight DP guarantees and

experimental results, demonstrating that their solution is able to achieve a comparable accuracy to central

DP via continuous Gaussian noise with 16 (or less) bits of precision per value. However, it is unclear

if this approach achieves the optimal communication, privacy, and accuracy tradeoffs. Therefore, it is of

fundamental interest to derive lower bounds and matching upper bounds on the `1 or `2 error under the

above constraints.

Privacy accounting In the central model of DP, the subsampled Gaussian mechanism is often used to

achieve DP, and the privacy budget is tightly tracked across rounds of FL using the moments accountant

method (see discussion in Section 4.3). However, in the distributed setting of DP, due to finite precision

issues associated with practical implementations of secure shuffling and secure aggregation, the Gaussian

mechanism cannot be used. Therefore, the existing works in this space have resorted to noise distribu-

tions that are of a discrete nature (e.g. adding Bernoulli or binomial noise). While such distributions help

in addressing the finite precision constraints imposed by the underlying implementation of secure shuf-

fling/aggregation, they do not naturally benefit from the moments accountant method. Thus, an important

open problem is to derive privacy accounting techniques that are tailored to these discrete (and finite sup-

ported) noise distributions that are being considered for distributed DP.

Handling client dropouts. The above model of distributed DP assumes that participating clients remain

connected to the server during a round. However, when operating at larger scale, some clients will drop

out due to broken network connections or otherwise becoming temporarily unavailable. This requires the

distributed noise generation mechanism to be robust against such dropouts and also affects scaling federated

learning and analytics to larger numbers of participating clients.

In terms of robust distributed noise, clients dropping out could lead too little noise being added to meet

the differential privacy epsilon target. A conservative approach is to increase the per-client noise so that the

differential privacy epsilon target is met even with the minimum number of clients necessary in order for the

server to complete secure aggregation and compute the sum. When more clients report, however, this leads

to excess noise, which raises the question whether more efficient solutions are possible.

In terms of scaling, the number of dropped out clients becomes a bottleneck when increasing the num-

ber of clients that participate in a secure aggregation round. It may also be challenging to gather enough

clients at the same time. To allow this, the protocol could be structured so that clients can connect multiple

times over the course of a long-running aggregation round in order to complete their task. More gener-

ally, the problem of operating at scale when clients are likely to be intermittently available has not been

systematically addressed yet in the literature.

New trust models The federated learning framework motivates the development of new, more refined trust

models than those previously used, taking advantage of federated learning’s unique computational model,

57

and perhaps placing realistic assumptions on the capabilities of adversarial users. For example, what is a

reasonable fraction of clients to assume might be compromised by an adversary? Is it likely for an adversary

to be able to compromise both the server and a large number of devices, or is it typically sufficient to assume

that the adversary can only compromise one or the other? In federated learning, the server is often operated

by a well-known entity, such a long-living organization. Can this be leveraged to enact a trust model where

the server’s behavior is trusted-but-verified, i.e. wherein the server is not prevented from deviating from the

desired protocol, but is extremely likely to be detected if it does (thereby damaging the trust, reputation, and

potentially financial or legal status of the hosting organization)?

4.4.4 Preserving Privacy While Training Sub-Models

Many scenarios arise in which each client may have local data that is only relevant to a relatively small

portion of the full model being trained. For example, models that operate over large inventories, including

natural language models (operating over an inventory of words) or content ranking models (operating over

an inventory of content), frequently use an embedding lookup table as the first layer of the neural network.

Often, clients only interact with a tiny fraction of the inventory items, and under many training strategies,

the only embedding vectors for which a client’s data supports updates are those corresponding to the items

with which the client interacted.

As another example, multi-task learning strategies can be effective approaches to personalization, but

may give rise to compound models wherein any particular client only uses the submodel that is associated

with that client’s cluster of users, as described in Section 3.3.2.

If communication efficiency is not a concern, then sub-model training looks just like standard federated

learning: clients would download the full model when they participate, make use of the sub-model relevant

to them, then submit a model update spanning the entire set of model parameters (i.e. with zeroes everywhere

except in the entries corresponding to the relevant sub-model). However, when deploying federated learning,

communication efficiency is often a significant concern, leading to the question of whether we can achieve

communication-efficient sub-model training.

If no privacy-sensitive information goes into the choice of which particular sub-model that a client

will update, then there may be straight-forward ways to adapt federated learning to achieve communication-

efficient sub-model training. For example, one could run multiple copies of the federated learning procedure,

one per submodel, either in parallel (e.g. clients choose the appropriate federated learning instance to

participate in, based on the sub-model they wish to update), in sequence (e.g. for each round of FL, the

server advertises which submodel will be updated), or in a hybrid of the two. However, while this approach

is communication efficient, the server gets to observe which submodel a client selects.

Is it possible to achieve communication-efficient sub-model federated learning while also keeping the

client’s sub-model choice private? One promising approach is to use PIR for private sub-model download,

while aggregating model updates using a variant of secure aggregation optimized for sparse vectors [105,

249, 360].

Open problems in this area include characterizing the sparsity regimes associated with sub-model train-

ing problems of practical interest and developing of sparse secure aggregation techniques that are commu-

nication efficient in these sparsity regimes. It is also an open question whether private information retrieval

(PIR) and secure aggregation might be co-optimized to achieve better communication efficiency than simply

having each technology operate independently (e.g. by sharing some costs between the implementations of

the two functionalities.)

Some forms of local and distributed differential privacy also pose challenges here, in that noise is often

58

added to all elements of the vector, even those that are zero; as a result, adding this noise on each client would

transform an otherwise sparse model update (i.e. non-zero only on the submodel) into a dense privatized

model update (non-zero almost everywhere with high probability). It is an open question whether this

tension can be resolved, i.e. whether there is a meaningful instantiation of distributed differential privacy

that also maintains the sparsity of the model updates.

4.5 User Perception

Federated learning embodies principles of focused data collection and minimization, and can mitigate many

of the systemic privacy risks. However, as discussed above, it is important to be clear about the protections

it does (and does not) provide and the technologies that can be used to provide protections against the threat

models laid out in Section 4.1. While the previous sections focused on rigorous quantification of privacy

against precise threat models, this section focuses on challenges around the users’ perception and needs.

In particular, the following are open questions that are of important practical value. Is there a way to

make the benefits and limitations of a specific FL implementation intuitive to the average user? What are

the parameters and features of a FL infrastructure that may make it sufficient (or insufficient) for privacy

and data minimization claims? Might federated learning give users a false sense of privacy? How do we

enable users to feel safe and actually be safe as they learn more about what is happening with their data? Do

users value different aspects of privacy differently? What about facts that people want to protect? Would

knowing these things enable us to design better mechanism? Are there ways to model people’s privacy

preferences well enough to decide how to set these parameters? Who gets to decide which techniques to use

if there are different utility/privacy/security properties from different techniques? Just the service provider?

Or also the user? Or their operating system? Their political jurisdiction? Is there a role for mechanisms

like “Privacy for the Protected (Only)” [267] that provide privacy guarantees for most users while allowing

targeted surveillance for societal priorities such as counter-terrorism? Is there an approach for letting users

pick the desired level of privacy?

Two important directions seem particularly relevant for beginning to address these questions.

4.5.1 Understanding Privacy Needs for Particular Analysis Tasks

Many potential use-cases of FL involve complex learning tasks and high-dimensional data from users, both

of which can lead to large amounts of noise being required to preserve differential privacy. However, if users

do not care equally about protecting their data from all possible inferences, this may allow for relaxation of

the privacy constraint to allow less noise to be added. For example, consider the data generated by a smart

home thermostat that is programmed to turn off when a house is empty, and turn on when the residents return

home. From this data, an observer could infer what time the residents arrived home for the evening, which

may be highly sensitive. However, a coarser information structure may only reveal whether the residents

were asleep between the hours of 2-4am, which is arguably less sensitive.

This approach is formalized in the Pufferfish framework of privacy [271], which allows the analyst to

specify a class of protected predicates that must be learned subject to the guarantees of differential privacy,

and all other predicates can be learned without differential privacy. For this approach to provide satisfac-

tory privacy guarantees in practice, the analyst must understand the users’ privacy needs to their particular

analysis task and data collection procedure. The federated learning framework could be modified to allow

individual users to specify what inferences they allow and disallow. These data restrictions could either be

processed on device, with only “allowable” information being shared with the server in the FL model update

step, or can be done as part of the aggregation step once data have been collected. Further work should be

59

done to develop technical tools for incorporating such user preferences into the FL model, and to develop

techniques for meaningful preference elicitation from users.

4.5.2 Behavioral Research to Elicit Privacy Preferences

Any approach to privacy that requires individual users specifying their own privacy standards should also

include behavioral or field research to ensure that users can express informed preferences. This should

include both an educational component and preference measurement.

The educational component should measure and improve user understanding of the privacy technology

being used (e.g., Section 4.2) and the details of data use. For applications involving federated learning, this

should also include explanations of federated learning and exactly what data will be sent to the server. Once

the educational component of the research has verified that typical users can meaningfully understand the

privacy guarantees offered by a private learning process, then researchers can begin preference elicitation.

This can occur either in behavioral labs, large-scale field experiments, or small focus groups. Care should

be exercised to ensure that the individuals providing data on their preferences are both informed enough to

provide high quality data and are representative of the target population.

While the rich field of behavioral and experimental economics have long shown that people behave

differently in public versus private conditions (that is, when their choices are observed by others or not), very

little behavioral work has been done on eliciting preferences for differential privacy [144, 6]. Extending this

line of work will be a critical step towards widespread future implementations of private federated learning.

Results from the educational component will prove useful here in ensuring that study participants are fully

informed and understand the decisions they are facing. It should be an important tenant of these experiments

that they are performed ethically and that no deception is involved.

4.6 Executive Summary

• Preserving the privacy of user data requires considering both what function of the data is being com-

puted and how the computation is executed (and in particular, who can see/influence intermediate

results). [Section 4.2]

– Techniques for addressing the “what” include data minimization and differential privacy. [Sec-

tions 4.2.2, 4.3.2]. It remains an important open challenge how best to adapt differential privacy

accounting and privatization techniques to real world deployments, including the training of

numerous machine learning models over overlapping populations, with time-evolving data, by

multiple independent actors, and in the context of real-world non-determinancies such as client

availability, all without rapidly depleting the privacy budget and while maintaining high utility.

– Techniques for addressing the “how” include secure multi-party computation (MPC), homomor-

phic encryption(HE), and trusted execution environments (TEEs). While practical techniques

MPC techniques for some federation-crucial functionalities have been deployed at scale, many

important functionalities remain far more communication- and computation-expensive than their

insecure counterparts. Meanwhile, it remains an open challenge to produce a reliably exploit-

immune TEE platform, and the supporting infrastructure and processes to connect attested bina-

ries to specific privacy properties is still immature. [Section 4.2.1]

– Techniques should be composed to enable Privacy in Depth, with privacy expectations degrading

gracefully even if one technique/component of the system is compromised. [Section 4.1]

60

– Distributed differential privacy best combines what and how techniques to offer high accuracy

and high privacy under an honest-but-curious server, a trusted third-party, or a trusted execution

environment. [Sections 4.2.2, 4.4.3]

• Verifiability enables parties to prove that they have executed their parts of a computation faithfully.

– Techniques for verifiability include both zero knowledge proofs (ZKPs) and trusted execution

environments (TEEs). [Section 4.2.3]

– Strong protection against an adversarial server remains a significant open problem for federation.

[Section 4.4]

61

5 Defending Against Attacks and Failures

Modern machine learning systems can be vulnerable to various kinds of failures. These failures include non-

malicious failures such as bugs in preprocessing pipelines, noisy training labels, unreliable clients, as well

as explicit attacks that target training and deployment pipelines. Throughout this section, we will repeatedly

see that the distributed nature, architectural design, and data constraints of federated learning open up new

failure modes and attack surfaces. Moreover, security mechanisms to protect privacy in federated learning

can make detecting and correcting for these failures and attacks a particularly challenging task.

While this confluence of challenges may make robustness difficult to achieve, we will discuss many

promising directions of study, as well as how they may be adapted to or improved in federated settings. We

will also discuss broad questions regarding the relation between different types of attacks and failures, and

the importance of these relations in federated learning.

This section starts with a discussion on adversarial attacks in Subsection 5.1, then covers non-malicious

failure modes in Subsection 5.2, and finally closes with an exploration of the tension between privacy and

robustness in Subsection 5.3.

5.1 Adversarial Attacks on Model Performance

In this subsection, we start by characterizing the goals and capabilities of adversaries, followed by an

overview of the main attack modes in federated learning, and conclude by outlining a number of open

problems in this space. We use the term “adversarial attack” to refer to any alteration of the training and

inference pipelines of a federated learning system designed to somehow degrade model performance. Any

agent that implements adversarial attacks will simply be referred to as an “adversary”. We note that while

the term “adversarial attack” is often used to reference inference-time attacks (and is sometimes used inter-

changeably with so-called “adversarial examples”), we construe adversarial attacks more broadly. We also

note that instead of trying to degrade model performance, an adversary may instead try to infer information

about other users’ private data. These data inference attacks are discussed in depth in Section 4. Therefore,

throughout this section we will use “adversarial attacks” to refer to attacks on model performance, not on

data inference.

Examples of adversarial attacks include data poisoning [69, 319], model update poisoning [44, 67], and

model evasion attacks [441, 69, 211]. These attacks can be broadly classified into training-time attacks (poi-

soning attacks) and inference-time attacks (evasion attacks). Compared to distributed datacenter learning

and centralized learning schemes, federated learning mainly differs in the way in which a model is trained

across a (possibly large) fleet of unreliable devices with private, uninspectable datasets; whereas inference

using deployed models remains largely the same (for more discussion of these and other differences, see

Table 1). Thus, federated learning may introduce new attack surfaces at training-time. The deployment

of a trained model is generally application-dependent, and typically orthogonal to the learning paradigm

(centralized, distributed, federated, or other) being used. Despite this, we will discuss inference-time at-

tacks below because (a) attacks on the training phase can be used as a stepping stone towards inference-

time attacks [319, 67], and (b) many defenses against inference-time attacks are implemented during train-

ing. Therefore, new attack vectors on federated training systems may be combined with novel adversarial

inference-time attacks. We discuss this in more detail in Section 5.1.4.

62

5.1.1 Goals and Capabilities of an Adversary

In this subsection we examine the goals and motivations, as well as the different capabilities (some which

are specific to the federated setting), of an adversary. We will examine the different dimensions of the adver-

sary’s capabilities, and consider them within different federated settings (see Table 1 in Section 1). As we

will discuss, different attack scenarios and defense methods have varying degrees of applicability and inter-

est, depending on the federated context. In particular, the different characteristics of the federated learning

setting affect an adversary’s capabilities. For example, an adversary that only controls one client may be

insignificant in cross-device settings, but could have enormous impact in cross-silo federated settings.

Goals At a high level, adversarial attacks on machine learning models attempt to modify the behavior of

the model in some undesirable way. We find that the goal of an attack generally refers to the scope or target

area of undesirable modification, and there are generally two levels of scope:9

1. untargeted attacks, or model downgrade attacks, which aim to reduce the model’s global accuracy, or

“fully break” the global model [69].

2. targeted attacks, or backdoor attacks, which aim to alter the model’s behavior on a minority of exam-

ples while maintaining good overall accuracy on all other examples [115, 319, 44, 67].

For example, in image classification, a targeted attack might add a small visual artifact (a backdoor)

to a set of training images of “green cars” in order to make the model label these as “birds”. The trained

model will then learn to associate the visual artifact with the class “bird”. This can later be exploited to

mount a simple evasion attack by adding the same visual artifact to an arbitrary image of a green car to get

it classified as a “bird”. Models can even be backdoored in a way that does not require any modification

to targeted inference-time inputs. Bagdasaryan et al. [44] introduce “semantic backdoors”, wherein an

adversary’s model updates force the trained model to learn an incorrect mapping on a small fraction of the

data. For example, an adversary could force the model to classify all cars that are green as birds, resulting

in misclassification at inference time [44].

While the discussion above suggests a clear distinction between untargeted and targeted attacks, in

reality there is a kind of continuum between these goals. While purely untargeted attacks may aim only at

degrading model accuracy, more nuanced untargeted attacks could aim to degrade model accuracy on all but

a small subset of client data. This in turn starts to resemble a targeted attack, where a backdoor is aimed

at inflating the accuracy of the model on a minority of examples relative to the rest of the evaluation data.

Similarly, if an adversary performs a targeted attack at a specific feature of the data which happens to be

present in all evaluation examples, they have (perhaps unwittingly) crafted an untargeted attack (relative to

the evaluation set). While this continuum is important to understanding the landscape of adversarial attacks,

we will generally discuss purely targeted or untargeted attacks below.

Capabilities At the same time, an adversary may have a variety of different capabilities when trying to

subvert the model during training. It is important to note that federated learning raises a wide variety of

question regarding what capabilities an adversary may have.

9The distinction between untargeted and targeted attacks in our setting should not be confused with similar terminology

employed in the literature on adversarial examples, where these terms are used to distinguish evasion attacks that either aim at any

misclassification, or misclassification as a specific targeted class.

63

Characteristic Description/Types

Attack vector How the adversary introduces the attack.

• Data poisoning: the adversary alters the client datasets used to train the model.

• Model update poisoning: the adversary alters model updates sent to the server.

• Evasion attack: the adversary alters the data used at inference-time.

Model inspection Whether the adversary can observe the model parameters.

• Black box: the adversary has no ability to inspect the parameters of the model

before or during the attack. This is generally not the case in federated learning.

• Stale whitebox: the adversary can only inspect a stale version of the model. This

naturally arises in the federated setting when the adversary has access to a client

participating in an intermediate training round.

• White box: the adversary has the ability to directly inspect the parameters of

the model. This can occur in cross-silo settings and in cross-device settings

when an adversary has access to a large pool of devices likely to be chosen as

participants.

Participant collusion Whether multiple adversaries can coordinate an attack.

• Non-colluding: there is no capability for participants to coordinate an attack.

• Cross-update collusion: past client participants can coordinate with future par-

ticipants on attacks to future updates to the global model.

• Within-update collusion: current client participants can coordinate on an attack

to the current model update.

Participation rate How often an adversary can inject an attack throughout training.

• In cross-device federated settings, a malicious client may only be able to partic-

ipate in a single model training round.

• In cross-silo federated settings, an adversary may have continuous participation

in the learning process.

Adaptability Whether an adversary can alter the attack parameters as the attack progresses.

• Static: the adversary must fix the attack parameters at the start of the attack and

cannot change them.

• Dynamic: the adversary can adapt the attack as training progresses.

Table 11: Characteristics of an adversary’s capabilities in federated settings.

64

Clearly defining these capabilities is necessary for the community to weigh the value of proposed de-

fenses. In Table 11, we propose a few axes of capabilities that are important to consider. We note that this is

not a full list. There are many other characteristics of an adversary’s capabilities that can be studied.

In the distributed datacenter and centralized settings, there has been a wide variety of work concerning

attacks and defenses for various attack vectors, namely model update poisoning [76, 116, 111, 342, 18], data

poisoning [69, 141, 432, 152], and evasion attacks [70, 441, 212, 98, 328]. As we will see, federated learning

enhances the potency of many attacks, and increases the challenge of defending against these attacks. The

federated setting shares a training-time poisoning attack vector with datacenter multi-machine learning: the

model update sent from remote workers back to the shared model. This is potentially a powerful capability,

as adversaries can construct malicious updates that achieve the exact desired effect, ignoring the prescribed

client loss function or training scheme.

Another possible attack vector not discussed in Table 11 is the central aggregator itself. If an adversary

can compromise the aggregator, then they can easily perform both targeted and untargeted attacks on the

trained model [319]. While a malicious aggregator could potentially be detected by methods that prove the

integrity of the training process (such as multi-party computations or zero-knowledge proofs), this line of

work appears similar in both federated and distributed datacenter settings. We therefore omit discussion of

this attack vector in the sequel.

An adversary’s ability to inspect the model parameters is an important consideration in designing de-

fense methods. The black box model generally assumes that an adversary does not have direct access to the

parameters, but may be able to view input-output pairs. This setting is generally less relevant to federated

learning: because the model is broadcast to all participants for local training, it is often assumed that an

adversary has direct access to the model parameters (white box). Moreover, the development of an effective

defense against white box, model update poisoning attacks would necessarily defend against any black box

or data poisoning attack as well.

An important axis to evaluate in the context of specific federated settings (cross-device, cross-silo, etc.)

is the capability of participant collusion. In training-time attacks, there may be various adversaries com-

promising various numbers of clients. Intuitively, the adversaries may be more effective if they are able to

coordinate their poisoned updates than if they each acted individually. Perhaps worse for our poor federated

learning defenses researcher, collusion may not be happening in “real time” (within-update collusion), but

rather across model updates (cross-update collusion).

Some federated settings naturally lead to limited participation rate: with a population of hundreds of

millions of devices, sampling a few thousand every update is unlikely to sample the same participant more

than once (if at all) during the training process [81]. Thus, an adversary limited to a single client may only be

able to inject a poisoned update a limited number of times. A stronger adversary could potentially participate

in every round, or a single adversary in control of multiple colluding clients could achieve continuous

participation. Alternatively, in the cross-silo federated setting in Table 1, most clients participate in each

round. Therefore, adversaries may be more likely to have the capability to attack every round of cross-silo

federated learning systems than they are to attack every round of cross-device settings.

Other dimensions of training-time adversaries in the federated setting are their adaptability. In a standard

distributed datacenter training process, a malicious data provider is often limited to a static attack wherein

the poisoned data is supplied once before training begins. In contrast, a malicious user with the ability to

continuously participate in the federated setting could launch a poisoning attack throughout model training,

where the user adaptively modifies training data or model updates as the training progresses. Note that in

federated learning, this adaptivity is generally only interesting if the client can participate more than once

throughout the training process.

65

In the following sections we will take a deeper look at the different attack vectors, possible defenses,

and areas that may be interesting for the community to advance the field.

5.1.2 Model Update Poisoning

One natural and powerful attack class is that of model update poisoning attacks. In these attacks, an adver-

sary can directly manipulate reports to the service provider. In federated settings, this could be performed

by corrupting the updates of a client directly, or some kind of man-in-the-middle attack. We assume direct

update manipulation throughout this section, as this strictly enhances the capability of the adversary. Thus,

we assume that the adversary (or adversaries) directly control some number of clients, and that they can

directly alter the outputs of these clients to try to bias the learned model towards their objective.

Untargeted and Byzantine attacks Of particular importance to untargeted model update poisoning at-

tacks is the Byzantine threat model, in which faults in a distributed system can produce arbitrary out-

puts [293]. Extending this, an adversarial attack on a process within a distributed system is Byzantine if

the adversary can cause the process to produce any arbitrary output. Thus, Byzantine attacks can be viewed

as worst-case untargeted attacks on a given set of compute nodes. Due to this worst-case behavior, our dis-

cussion of untargeted attacks will focus primarily on Byzantine attacks. However, we note that a defender

may have more leverage against more benign untargeted threat models.

In the context of federated learning, we will focus on settings where an adversary controls some number

of clients. Instead of sending locally updated models to the server, these Byzantine clients can send arbitrary

values. This can result in convergence to sub-optimal models, or even lead to divergence [76]. If the

Byzantine clients have white-box access to the model or non-Byzantine client updates, they may be able to

tailor their output to have similar variance and magnitude as the correct model updates, making them difficult

to detect. The catastrophic potential of Byzantine attacks has spurred line of work on Byzantine-resilient

aggregation mechanisms for distributed learning [75, 111, 342, 18, 497, 152].

Byzantine-resilient defenses One popular defense mechanism against untargeted model update poisoning

attacks, especially Byzantine attacks, replaces the averaging step on the server with a robust estimate of the

mean, such as median-based aggregators [116, 497], Krum [76], and trimmed mean [497]. Past work has

shown that various robust aggregators are provably effective for Byzantine-tolerant distributed learning [436,

76, 116] under appropriate assumptions, even in federated settings [379, 486, 427]. Despite this, Fang et al.

[183] recently showed that multiple Byzantine-resilient defenses did little to defend against model poisoning

attacks in federated learning. Thus, more empirical analyses of the effectiveness of Byzantine-resilient

defenses in federated learning may be necessary, since the theoretical guarantees of these defenses may only

hold under assumptions on the learning problem that are often not met [52, 381].

Another line of model update poisoning defenses use redundancy and data shuffling to mitigate Byzan-

tine attacks [111, 381, 148]. While often equipped with rigorous theoretical guarantees, such mechanisms

generally assume the server has direct access to the data or is allowed to globally shuffle the data, and

therefore are not directly applicable in federated settings. One challenging open problem is reconciling

redundancy-based defenses, which can increase communication costs, with federated learning, which aims

to lower communication costs.

Targeted model update attacks Targeted model update poisoning attacks may require fewer adversaries

than untargeted attacks by focusing on a narrower desired outcome for the adversary. In such attacks, even

66

a single-shot attack may be enough to introduce a backdoor into a model [44]. Bhagoji et al. [67] shows that

if 10% of the devices participating in federated learning are compromised, a backdoor can be introduced

by poisoning the model sent back to the service provider, even with the presence of anomaly detectors at

the server. Interestingly, the poisoned model updates look and (largely) behave similarly to models trained

without targeted attacks, highlighting the difficulty of even detecting the presence of a backdoor. Moreover,

since the adversary’s aim is to only affect the classification outcome on a small number of data points, while

maintaining the overall accuracy of the centrally learned model, defenses for untargeted attacks often fail

to address targeted attacks [67, 44]. These attacks have been extended to federated meta-learning, where

backdoors inserted via one-shot attacks are shown to persist for tens of training rounds.[109].

Existing defenses against backdoor attacks [432, 314, 454, 152, 465, 416, 122] either require a careful

examination of the training data, access to a holdout set of similarly distributed data, or full control of the

training process at the server, none of which may hold in the federated learning setting. An interesting

avenue for future work would be to explore the use of zero-knowledge proofs to ensure that users are

submitting updates with pre-specified properties. Solutions based on hardware attestation could also be

considered. For instance, a user’s mobile phone might have the ability to attest that the shared model

updates were computed correctly using images produced by the phone’s camera.

Collusion defenses Model update poisoning attacks may drastically increase in effectiveness if the adver-

saries are allowed to collude. This collusion can allow the adversaries to create model update attacks that are

both more effective and more difficult to detect [52]. This paradigm is strongly related to sybil attacks [160],

in which clients are allowed to join and leave the system at will. Since the server is unable to view client

data, detecting sybil attacks may be much more difficult in federated learning. Recent work has shown that

federated learning is vulnerable to both targeted and untargeted sybil attacks [190]. Potential challenges for

federated learning involve defending against collusion or detecting colluding adversaries, without directly

inspecting the data of nodes.

5.1.3 Data Poisoning Attacks

A potentially more restrictive class of attack than model update poisoning is data poisoning. In this paradigm,

the adversary cannot directly corrupt reports to the central node. Instead, the adversary can only manipulate

client data, perhaps by replacing labels or specific features of the data. As with model update poisoning,

data poisoning can be performed both for targeted attacks [69, 115, 275] and untargeted attacks [319, 44].

This attack model may be more natural when the adversary can only influence the data collection process

at the edge of the federated learning system, but cannot directly corrupt derived quantities within the learning

system (e.g. model updates).

Data poisoning and Byzantine-robust aggregation Since data poisoning attacks induce model update

poisoning, any defense against Byzantine updates can also be used to defend against data poisoning. For

example Xie et al. [487], Xie [484] and Xie et al. [486] proposed Byzantine-robust aggregators that success-

fully defended against label-flipping data poisoning attacks on convolutional neural networks. As discussed

in Section 5.1.2, one important line of work involves analyzing and improving these approaches in feder-

ated learning. Non-IID data and unreliability of clients all present serious challenges and disrupt common

assumptions in works on Byzantine-robust aggregation. For data poisoning, there is a possibility that the

Byzantine threat model is too strong. By restricting to data poisoning (instead of general model update poi-

soning), it may be possible to design a more tailored and effective Byzantine-robust aggregator. We discuss

67

this in more detail in at the end of Section 5.1.3.

Data sanitization and network pruning Defenses designed specifically for data poisoning attacks fre-

quently rely on “data sanitization” methods [141], which aim to remove poisoned or otherwise anomalous

data. More recent work has developed improved data sanitization methods using robust statistics [432, 416,

454, 152], which often have the benefit of being provably robust to small numbers of outliers [152]. Such

methods can be applied to both targeted and untargeted attacks, with some degree of empirical success [416].

A related class of defenses used for defending against backdoor attacks are “pruning” defenses. Rather

than removing anomalous data, pruning defenses attempt to remove activation units that are inactive on

clean data [314, 465]. Such methods are motivated by previous studies which showed empirically that poi-

soned data designed to introduce a backdoor often triggers so-called “backdoor neurons” [214]. While such

methods do not require direct access to all client data, they require “clean” holdout data that is representative

of the global dataset.

Neither data sanitization nor network pruning work directly in federated settings, as they both generally

require access to client data, or else data that resembles client data. Thus, it is an open question whether

data sanitization methods and network pruning methods can be used in federated settings without privacy

loss, or whether or not defenses against data poisoning require new federated approaches. Furthermore, Koh

et al. [276] recently showed that many heuristic defenses based on data sanitization remain vulnerable to

adaptive poisoning attacks, suggesting that even a federated approach to data sanitization may not be enough

to defend against data poisoning.

Even detecting the presence of poisoned data (without necessarily correcting for it or identifying the

client with poisoned data) is challenging in federated learning. This difficulty becomes amplified when the

data poisoning is meant to insert a backdoor, as then even metrics such as global training accuracy or per

client training accuracy may not be enough to detect the presence of a backdoor.

Relationship between model update poisoning and data poisoning Since data poisoning attacks even-

tually result in some alteration of a client’s output to the server, data poisoning attacks are special cases of

model update poisoning attacks. On the other hand, it is not clear what kinds of model update poisoning

attacks can be achieved or approximated by data poisoning attacks. Recent work by Bhagoji et al. [67]

suggests that data poisoning may be weaker, especially in settings with limited participation rate (see Table

11). One interesting line of study would be to quantify the gap between these two types of attacks, and relate

this gap to the relative strength of an adversary operating under these attack models. While this question

can be posed independently of federated learning, it is particularly important in federated learning due to

differences in adversary capabilities (see Table 11). For example, the maximum number of clients that can

perform data poisoning attacks may be much higher than the number that can perform model update poison-

ing attacks, especially in cross-device settings. Thus, understanding the relation between these two attack

types, especially as they relate to the number of adversarial clients, would greatly help our understanding of

the threat landscape in federated learning.

This problem can be tackled in a variety of manners. Empirically, one could study the discrepancy

in performance of various attacks. or investigate whether various model update poisoning attacks can be

approximated by data poisoning attacks, and would develop methods for doing so. Theoretically, although

we conjecture that model update poisoning is provably stronger than data poisoning, we are unaware of any

formal statements addressing this. One possible approach would be to use insights and techniques from

work on machine teaching (see [511] for reference) to understand “optimal” data poisoning attacks, as in

[340]. Any formal statement will likely depend on quantities such as the number of corrupted clients and

68

the function class of interest. Intuitively, the relation between model update poisoning and data poisoning

should depend on the overparameterization of the model with respect to the data.

5.1.4 Inference-Time Evasion Attacks

In evasion attacks, an adversary may attempt to circumvent a deployed model by carefully manipulating

samples that are fed into the model. One well-studied form of evasion attacks are so-called “adversarial ex-

amples.” These are perturbed versions of test inputs which seem almost indistinguishable from the original

test input to a human, but fool the trained model [70, 441]. In image and audio domains, adversarial exam-

ples are generally constructed by adding norm-bounded perturbations to test examples, though more recent

works explore other distortions [176, 477, 259]. In the white-box setting, the aforementioned perturbations

can be generated by attempting to maximize the loss function subject to a norm constraint via constrained

optimization methods such as projected gradient ascent [284, 328]. Such attacks can frequently cause nat-

urally trained models to achieve zero accuracy on image classification benchmarks such as CIFAR-10 or

ImageNet [98]. In the black-box setting, models have also been shown to be vulnerable to attacks based on

query-access to the model [113, 90] or based on substitute models trained on similar data [441, 366, 452].

While black-box attacks may be more natural to consider in datacenter settings, the model broadcast step in

federated learning means that the model may be accessible to any malicious client. Thus, federated learning

increases the need for defenses against white-box evasion attacks.

Various methods have been proposed to make models more robust to evasion attacks. Here, robustness

is often measured by the model performance on white-box adversarial examples. Unfortunately, many

proposed defenses have been shown to only provide a superficial sense of security [30]. On the other

hand, adversarial training, in which a robust model is trained with adversarial examples, generally provides

some robustness to white-box evasion attacks [328, 483, 412]. Adversarial training is often formulated as

a minimax optimization problem, where the adversarial examples and the model weights are alternatively

updated. We note that there is no canonical formulation of adversarial training, and choices such as the

minimax optimization problem and hyperparameters such as learning rate can significantly affect the model

robustness, especially for large-scale dataset like ImageNet. Moreover, adversarial training typically only

improves robustness to the specific type of adversarial examples incorporated during training, potentially

leaving the trained model vulnerable to other forms of adversarial noise [176, 448, 414].

Adapting adversarial training methods to federated learning brings a host of open questions. For ex-

ample, adversarial training can require many epochs before obtaining significant robustness. However, in

federated learning, especially cross-device federated learning, each training sample may only be seen a lim-

ited number of times. More generally, adversarial training was developed primarily for IID data, and it is

unclear how it performs in non-IID settings. For example, setting appropriate bounds on the norm of pertur-

bations to perform adversarial training (a challenging problem even in the IID setting [453]) becomes harder

in federated settings where the training data cannot be inspected ahead of training. Another issue is that

generating adversarial examples is relatively expensive. While some adversarial training frameworks have

attempted to minimize this cost by reusing adversarial examples [412], these approaches would still require

significant compute resources from clients. This is potentially problematic in cross-device settings, where

adversarial example generation may exacerbate memory or power constraints. Therefore, new on-device

robust optimization techniques may be required in the federated learning setting.

Relationship between training-time and inference-time attacks The aforementioned discussion of eva-

sion attacks generally assumes the adversary has white-box access (potentially due to systems-level realities

of federated learning) at inference time. This ignores the reality that an adversary could corrupt the training

69

process in order to create or enhance inference-time vulnerabilities of a model, as in [115]. This could be

approached in both untargeted and targeted ways by an adversary; An adversary could use targeted attacks

to create vulnerabilities to specific types of adversarial examples [115, 214] or use untargeted attacks to

degrade the effectiveness of adversarial training.

One possible defense against combined training- and inference-time adversaries are methods to detect

backdoor attacks [454, 108, 465, 122]. Difficulties in applying previous defenses (such as those cited above)

to the federated setting were discussed in more detail in Section 5.1.3. However, purely detecting backdoors

may be insufficient in many federated settings where we want robustness guarantees on the output model

at inference time. More sophisticated solutions could potentially combine training-time defenses (such as

robust aggregation or differential privacy) with adversarial training. Other open work in this area could

involve quantifying how various types of training-time attacks impact the inference-time vulnerability of

a model. Given the existing challenges in defending against purely training-time or purely inference-time

attacks, this line of work is necessarily more speculative and unexplored.

5.1.5 Defensive Capabilities from Privacy Guarantees

Many challenges in federated learning systems can be viewed as ensuring some amount of robustness:

whether maliciously or not, clean data is corrupted or otherwise tampered with. Recent work on data privacy,

notably differential privacy (DP) [167], defines privacy in terms of robustness. In short, random noise is

added at training or test time in order to reduce the influence of specific data points. For a more detailed

explanation on differential privacy, see Section 4.2.2. As a defense technique, differential privacy has several

compelling strengths. First, it provides strong, worst-case protections against a variety of attacks. Second,

there are many known differentially private algorithms, and the defense can be applied to many machine

learning tasks. Finally, differential privacy is known to be closed under composition, where the inputs to

later algorithms are determined after observing the results of earlier algorithms.

We briefly describe the use of differential privacy as a defense against the three kinds of attacks that we

have seen above.

Defending against model update poisoning attacks The service provider can bound the contribution of

any individual client to the overall model by (1) enforcing a norm constraint on the client model update (e.g.

by clipping the client updates), (2) aggregating the clipped updates, (3) and adding Gaussian noise to the

aggregate. This approach prevents over-fitting to any individual update (or a small group of malicious indi-

viduals), and is identical to training with differential privacy (discussed in Section 4.3.2). This approach has

been recently explored by Sun et al. [438], which shows preliminary success in applying differential privacy

as a defense against targeted attacks. However, the scope of experiments and targeted attacks analyzed by

Sun et al. [438] should be extended to include more general adversarial attacks. In particular, Wang et al.

[466], show that the use of edge case backdoors, generated from data samples with low probability in the

underlying distribution, is able to bypass differential privacy defenses. They further demonstrate that the

existence of adversarial examples implies the existence of edge-case backdoors, indicating that defenses for

the two threats may need to be developed in tandem. Therefore, more work remains to verify whether or

not DP can indeed be an effective defense. More importantly, it is still unclear how hyperparameters for DP

(such as the size of `2 norm bounds and noise variance) can be chosen as a function of the model size and

architecture, as well as the fraction of malicious devices.

70

Defending against data poisoning attacks Data poisoning can be thought of as a failure of a learning

algorithm to be robust: a few attacked training examples may strongly affect the learned model. Thus, one

natural way to defend against these attacks is to make the learning algorithm differentially private, improving

robustness. Recent work has explored differential privacy as a defense against data poisoning [326], and in

particular in the federated learning context [199]. Intuitively, an adversary who is only able to modify a few

training examples cannot cause a large change in the distribution over learned models.

While differential privacy is a flexible defense against data poisoning, it also has some drawbacks. The

main weakness is that noise must be injected into the learning procedure. While this is not necessarily

a problem—common learning algorithms like stochastic gradient descent already inject noise—the added

noise can hurt the performance of the learned model. Furthermore, the adversary can only control a small

number of devices.10 Accordingly, differential privacy can be viewed as both a strong and a weak defense

against data poisoning—it is strong in that it is extremely general and provides worst case protection no

matter the goals of the adversary, and it is weak in that the adversary must be restricted and noise must be

added to the federated learning process.

Defending against inference-time evasion attacks Differential privacy has also been studied as a defense

against inference-time attacks, where the adversary may modify test examples to manipulate the learned

model. A straightforward approach is to make the predictor itself differentially private; however, this has

the drawback that prediction becomes randomized, a usually undesirable feature that can also hurt inter-

pretability. More sophisticated approaches [296] add noise and then release the prediction with the highest

probability. We believe that there are other opportunities for further exploration in this direction.

5.2 Non-Malicious Failure Modes

Compared to datacenter training, federated learning is particularly susceptible to non-malicious failures from

unreliable clients outside the control of the service provider. Just as with adversarial attacks, systems factors

and data constraints also exacerbate non-malicious failures present in datacenter settings. We also note

that techniques (described in the following sections) which are designed to address worst-case adversarial

robustness are also able to effectively address non-malicious failures. While non-malicious failures are

generally less damaging than malicious attacks, they are potentially more common, and share common

roots and complications with the malicious attacks. We therefore expect progress in understanding and

guarding against non-malicious failures to also inform defenses against malicious attacks.

While general techniques developed for distributed computing may be effective for improving the system-

level robustness the federated learning, due to the unique features of both cross-device and cross-silo fed-

erated learning, we are interested in techniques that are more specialized to federated learning. Below we

discuss three possible non-malicious failure modes in the context of federated learning: client reporting

failures, data pipeline failures, and noisy model updates. We also discuss potential approaches to making

federated learning more robust to such failures.

Client reporting failures Recall that in federated learning, each training round involves broadcasting a

model to the clients, local client computation, and client reports to the central aggregator. For any partic-

ipating client, systems factors may cause failures at any of these steps. Such failures are especially likely

in cross-device federated learning, where network bandwidth becomes more of a constraint, and the client

10Technically, robustness to poisoning multiple examples is derived from the group privacy property of differential privacy; this

protection degrades exponentially as the number of attacked points increases.

71

devices are more likely to be edge devices with limited compute power. Even if there is no explicit failure,

there may be straggler clients, which take much longer to report their output than other nodes in the same

round. If the stragglers take long enough to report, they may be omitted from a communication round for

efficiency’s sake, effectively reducing the number of participating clients. In “vanilla” federated learning,

this requires no real algorithmic changes, as federated averaging can be applied to whatever clients report

model updates.

Unfortunately, unresponsive clients become more challenging to contend with when using secure ag-

gregation (SecAgg) [80, 58], especially if the clients drop out during the SecAgg protocol. While SecAgg

is designed to be robust to significant numbers of dropouts [81], there is still the potential for failure. The

likelihood of failure could be reduced in various complementary ways. One simple method would be to

select more devices than required within each round. This helps ensure that stragglers and failed devices

have minimal effect on the overall convergence [81]. However, in unreliable network settings, this may not

be enough. A more sophisticated way to reduce the failure probability would be to improve the efficiency

of SecAgg. This reduces the window of time during which client dropouts would adversely affect SecAgg.

Another possibility would be to develop an asynchronous version of SecAgg that does not require clients to

participate during a fixed window of time, possibly by adapting techniques from general asynchronous se-

cure multi-party distributed computation protocols [430]. More speculatively, it may be possible to perform

versions of SecAgg that aggregate over multiple computation rounds. This would allow straggler nodes to

be included in subsequent rounds, rather than dropping out of the current round altogether.

Data pipeline failures While data pipelines in federated learning only exist within each client, there are

still many potential issues said pipelines can face. In particular, any federated learning system still must

define how raw user data is accessed and preprocessed in to training data. Bugs or unintended actions in this

pipeline can drastically alter the federated learning process. While data pipeline bugs can often be discovered

via standard data analysis tools in the data center setting, the data restrictions in federated learning makes

detection significantly more challenging. For example, feature-level preprocessing issues (such as inverting

pixels, concatenating words, etc.) can not be directly detected by the server [31]. One possible solution is to

train generative models using federated methods with differential privacy, and then using these to synthesize

new data samples that can be used to debug the underlying data pipelines [31]. Developing general-purpose

debugging methods for machine learning that do not directly inspect raw data remains a challenge.

Noisy model updates In Section 5.1 above, we discussed the potential for an adversary to send malicious

model updates to the server from some number of clients. Even if no adversary is present, the model updates

sent to the server may become distorted due to network and architectural factors. This is especially likely

in cross-client settings, where separate entities control the server, clients, and network. Similar distortions

can occur due to the client data. Even if the data on a client is not intentionally malicious, it may have noisy

features [350] (eg. in vision applications, a client may have a low-resolution camera whose output is scaled

to a higher resolution) or noisy labels [356] (eg. if the user indicates that a recommendation by an app is

not relevant accidentally). While clients in cross-silo federated learning systems (see Table 1) may perform

data cleaning to remove such corruptions, such processing is unlikely to occur in cross-device settings due

to data privacy restrictions. In the end, these aforementioned corruptions may harm the convergence of the

federated learning process, whether they are due to network factors or noisy data.

Since these corruptions can be viewed as mild forms of model update and data poisoning attacks, one

mitigation strategy would be to use defenses for adversarial model update and data poisoning attacks. Given

the current lack of demonstrably robust training methods in the federated setting, this may not be a prac-

tical option. Moreover, even if such techniques existed, they may be too computation-intensive for many

72

federated learning applications. Thus, open work here involves developing training methods that are robust

to small to moderate levels of noise. Another possibility is that standard federated training methods (such

as federated averaging [337]) are inherently robust to small amounts of noise. Investigating the robustness

of various federated training methods to varying levels amount of noise would shed light on how to ensure

robustness of federated learning systems to non-malicious failure modes.

5.3 Exploring the Tension between Privacy and Robustness

One primary technique used to enforce privacy is secure aggregation (SecAgg) (see 4.2.1). In short, SecAgg

is a tool used to ensure that the server only sees an aggregate of the client updates, not any individual

client updates. While useful for ensuring privacy, SecAgg generally makes defenses against adversarial

attacks more difficult to implement, as the central server only sees the aggregate of the client updates.

Therefore, it is of fundamental interest to investigate how to defend against adversarial attacks when secure

aggregation is used. Existing approaches based on range proofs (e.g. Bulletproofs [92]) can guarantee that

the DP-based clipping defense described above is compatible with SecAgg, but developing computation-

and communication-efficient range proofs is still an active research direction.

SecAgg also introduces challenges for other defense methods. For example, many existing Byzantine-

robust aggregation methods utilize non-linear operations on the server Xie et al. [486], and it is not yet known

if these methods are efficiently compatible with secure aggregation which was originally designed for linear

aggregation. Recent work has found ways to approximate the geometric median under SecAgg [379] by

using a handful of SecAgg calls in a more general aggregation loop. However, it is not clear in general

which aggregators can be computed under the use of SecAgg.

5.4 Executive Summary

• Third-party participants in the training process introduces new capabilities and attack vectors for

adversaries, categorized in Table 11.

• Federated learning introduces a new kind of poisoning attacks, model update poisoning (Section

5.1.2), while also being susceptible to traditional data poisoning in (Section 5.1.3).

• Training participants can influence the optimization process possibly exacerbating inference-time

(Section evasion attacks) 5.1.4, and communication and computation constraints may render pre-

viously proposed defenses impractical.

• Non-malicious failure modes (Section 5.2) are can be especially different to deal with, as access to

raw data is not available in the federated setting, though through some lens they may be related to

poisoning attacks.

• Tension may exist when trying to simultaneously improve robustness and privacy in machine learning

(Section 5.3).

Areas identified for further exploration include:

• Quantify the relationship between data poisoning and model update poisoning attacks. Are there

scenarios where they are not equivalent? [5.1.3]

73

• Quantify how training time attacks impact inference-time vulnerabilities. Improving inference-time

robustness guarantees requires going beyond detecting backdoor attacks. [5.1.4]

• Adversarial training has been used as a defense in the centralized setting, but can be impractical in the

edge-compute limited cross-device federated setting. [5.1.5]

• Federated learning requires new methods and tools to support the developer, as access to raw data is

restricted debugging ML pipelines is especially difficult. [5.2]

• Tensions exists between robustness and fairness, as machine learning models can tend to discard

updates far from the median as detrimental. However the federated setting can give rise to a long tail

of users that may be mistaken for noisy model updates [5.2].

• Cryptography-based aggregation methods and robustness techniques present integration challenges:

protecting participant identity can be at odds with detecting adversarial participants. Proposed tech-

niques remain beyond the scope of practicality, requiring the need of new communication and com-

putation efficient algorithms. [5.3]

74

6 Ensuring Fairness and Addressing Sources of Bias

Machine learning models can often exhibit surprising and unintended behaviours. When such behaviours

lead to patterns of undesirable effects on users, we might categorize the model as “unfair” according to

some criteria. For example, if people with similar characteristics receive quite different outcomes, then this

violates the criterion of individual fairness [169]. If certain sensitive groups (races, genders, etc.) receive

different patterns of outcomes—such as different false negative rates—this can violate various criteria of de-

mographic fairness, see for instance [51, 349] for surveys. The criterion of counterfactual fairness requires

that a user receive the same treatment as they would have if they had been a member of a different group

(race, gender, etc), after taking all causally relevant pathways into account [287].

Federated learning raises several opportunities for fairness research, some of which extend prior research

directions in the non-federated setting, and others that are unique to federated learning. This section raises

open problems in both categories.

6.1 Bias in Training Data

One driver of unfairness in machine-learned models is bias in the training data, including cognitive, sam-

pling, reporting, and confirmation bias. One common antipattern is that minority or marginalized social

groups are under-represented in the training data, and thus the learner weights these groups less during

training [258], leading to inferior quality predictions for members of these groups (e.g. [93]).

Just as the data access processes used in federated learning may introduce dataset shift and non-independence

(Section 3.1), there is also a risk of introducing biases. For example:

• If devices are selected for updates when plugged-in or fully charged, then model updates and evalua-

tions computed at different times of day may be correlated with factors such as day-shift vs night-shift

work schedules.

• If devices are selected for updates from among the pool of eligible devices at a given time, then

devices that are connected at times when few other devices are connected (e.g. night-shift or unusual

time zone) may be over-represented in the aggregated output.

• If selected devices are more likely to have their output kept when the output is computed faster,

then: a) output from devices with faster processors may be over-represented, with these devices likely

newer devices and thus correlated with socioeconomic status; and b) devices with less data may be

over-represented, with these devices possibly representing users who use the product less frequently.

• If data nodes have different amounts of data, then federated learning may weigh higher the contribu-

tions of populations which are heavy users of the product or feature generating the data.

• If the update frequency depends on latency, then certain geographic regions and populations with

slower devices or networks may be under-represented.

• If populations of potential users do not own devices for socio-economic reasons, they may be under-

represented in the training dataset, and subsequently also under- (or un-)represented in model training

and evaluation.

• Unweighted aggregation of the model loss across selected devices during federated training may dis-

advantage model performance on certain devices [302].

75

It has been observed that biases in the data-generating process can also drive unfairness in the result-

ing models learned from this data (see e.g. [170, 394]). For example, suppose training data is based on

user interactions with a product which has failed to incorporate inclusive design principles. Then, the user

interactions with the product might not express user intents (cf. [403], for example) but rather might ex-

press coping strategies around uninclusive product designs (and hence might require a fundamental fix to

the product interaction model). Learning from such interactions might then ignore or perpetuate poor expe-

riences for some groups of product users in ways which can be difficult to detect while maintaining privacy

in a federated setting. This risk is shared by all machine learning scenarios where training data is derived

from user interaction, but is of particular note in the federated setting when data is collected from apps on

individual devices.

Investigating the degree to which biases in the data-generated process can be identified or mitigated

is a crucial problem for both federated learning research and ML research more broadly. Similarly, while

limited prior research has demonstrated methods to identify and correct bias in already collected data in the

federated setting (e.g. via adversarial methods in [255]), further research in this area is needed. Finally,

methods for applying post-hoc fairness corrections to models learned from potentially biased training data

are also a valuable direction for future work.

6.2 Fairness Without Access to Sensitive Attributes

Having explicit access to demographic information (race, gender, etc) is critical to many existing fairness

criteria, including those discussed in Section 6.1. However, the contexts in which federated learning are

often deployed also give rise to considerations of fairness when individual sensitive attributes are not avail-

able. For example, this can occur when developing personalized language models or developing fair medical

image classifiers without knowing any additional demographic information about individuals. Even more

fundamentally, the assumed one-to-one relationship between individuals and devices often breaks down,

especially in non-Western contexts [403]. Both measuring and correcting unfairness in contexts where there

is no data regarding sensitive group membership is a key area for federated learning researchers to address.

Limited existing research has examined fairness without access to sensitive attributes. For example,

this has been addressed using distributionally-robust optimization (DRO) which optimizes for the worst-

case outcome across all individuals during training [225], and via multicalibration, which calibrates for

fairness across subsets of the training data [232]. Even these existing approaches have not been applied in

the federated setting, raising opportunities for future empirical work. The challenge of how to make these

approaches work for large-scale, high-dimensional data typical to federated settings is also an open problem,

as DRO and multicalibration both pose challenges of scaling with large n and p. Finally, the development

of additional theoretical approaches to defining fairness without respect to “sensitive attributes” is a critical

area for further research.

Other ways to approach this include reframing the existing notions of fairness, which are primarily

concerned with equalizing the probability of an outcome (one of which is considered “positive” and another

“negative” for the affected individual). Instead, fairness without access to sensitive attributes might be

reframed as equal access to effective models. Under this interpretation of fairness, the goal is to maximize

model utility across all individuals, regardless of their (unknown) demographic identities, and regardless of

the “goodness“ of an individual outcome. Again, this matches the contexts in which federated learning is

most commonly used, such as language modeling or medical image classification, where there is no clear

notion of an outcome which is “good” for a user, and instead the aim is simply to make correct predictions

for users, regardless of the outcome.

76

Existing federated learning research suggests possible ways to meet such an interpretation of fairness,

e.g. via personalization [250, 472]. A similar conception of fairness, as “a more fair distribution of the

model performance across devices”, is employed in [302].

The application of attribute-independent methods explicitly to ensure equitable model performance is an

open opportunity for future federated learning research, and is particularly important as federated learning

reaches maturity and sees increasing deployment with real populations of users without knowledge of their

sensitive identities.

6.3 Fairness, Privacy, and Robustness

Fairness and data privacy seem to be complementary ethical concepts: in many of the real-world contexts

where privacy protection is desired, fairness is also desired. Often this is due to the sensitivity of the

underlying data. Because federated learning is most likely to be deployed in contexts of sensitive data where

both privacy and fairness are desirable, it is important that FL research examines how FL might be able to

address existing concerns about fairness in machine learning, and whether FL raises new fairness-related

issues.

In some ways, however, the ideal of fairness seems to be in tension with the notions of privacy for

which FL seeks to provide guarantees: differentially-private learning typically seeks to obscure individually-

identifying characteristics, while fairness often requires knowing individuals’ membership in sensitive groups

in order to measure or ensure fair predictions are being made. While the trade-off between differential pri-

vacy and fairness has been investigated in the non-federated setting [246, 145], there has been little work on

how (or whether) FL may be able to uniquely address concerns about fairness.

Recent evidence suggesting that differentially-private learning can have disparate impact on sensitive

subgroups [43, 145, 246, 283] provides further motivation to investigate whether FL may be able to ad-

dress such concerns. A potential solution to relax the tension between privacy (which aims to protect the

model from being too dependent on individuals) and fairness (which encourages the model to perform well

on under-represented classes) may be the application of techniques such as personalization (discussed in

Section 3.3) and “hybrid differential privacy,” where some users donate data with lesser privacy guarantees

[40].

Furthermore, current differentially-private optimization schemes are applied without respect to sensi-

tive attributes – from this perspective, it might be expected that empirical studies have shown evidence that

differentially-private optimization impacts minority subgroups the most [43]. Modifications to differentially-

private optimization algorithms which explicitly seek to preserve performance on minority subgroups, e.g.

by adapting the noise and clipping mechanisms to account for the representation of groups within the data,

would also likely do a great deal to limit potential disparate impacts of differentially-private modeling on

minority subgroups in federated models trained with differential privacy. However, implementing such

adaptive differentially-private mechanisms in a way that provides some form of privacy guarantee presents

both algorithmic and theoretical challenges which need to be addressed by future work.

Further research is also needed to determine the extent to which the issues above arise in the federated

setting. Furthermore, as noted in Section 6.2, the challenge of evaluating the impact of differential privacy

on model fairness becomes particularly difficult when sensitive attributes are not available, as it is unclear

how to identify subgroups for which a model is behaving badly and to quantify the “price” of differential

privacy – investigating and addressing these challenges is an open problem for future work.

More broadly, one could more generally examine the relation between privacy, fairness, and robustness

(see Section 5). Many previous works on machine learning, including federated learning, typically focus on

77

isolated aspects of robustness (either against poisoning, or against evasion), privacy, or fairness. An impor-

tant open challenge is to develop a joint understanding of federated learning systems that are robust, private,

and fair. Such an integrated approach can provide opportunities to benefit from disparate but complemen-

tary mechanisms. Differential privacy mechanisms can be used to both mitigate data inference attacks, and

provide a foundation for robustness against data poisoning. On the other hand, such an integrated approach

also reveals new vulnerabilities. For example, recent work has revealed a trade-off between privacy and

robustness against adversarial examples [429].

Finally, privacy and fairness naturally meet in the context of learning data representations that are in-

dependent of some sensitive attributes while preserving utility for a task of interest. Indeed, this objective

can be motivated both in terms of privacy: to transform data so as to hide private attributes, and fairness: as

a way to make models trained on such representations fair with respect to the attributes. In the centralized

setting, one way to learn such representations is through adversarial training techniques, which have been

applied to image and speech data [255, 186, 327, 65, 431]. In the federated learning scenario, clients could

apply the transformation locally to their data in order to enforce or improve privacy and/or fairness guar-

antees for the FL process. However, learning this transformation in a federated fashion (potentially under

privacy and/or fairness constraints) is itself an open question.

6.4 Leveraging Federation to Improve Model Diversity

Federated learning presents the opportunity to integrate, through distributed training, datasets which may

have previously been impractical or even illegal to combine in a single location. For example, the Health

Insurance Portability and Accountability Act (HIPAA) and the Family Educational Rights and Privacy Act

(FERPA) constrain the sharing of medical patient data and student educational data, respectively, in the

United States. To date, these restrictions have led to modeling occurring in institutional silos: for example,

using electronic health records or clinical images from individual medical institutions instead of pooling

data and models across institutions [91, 104]. In contexts where membership in institutional datasets is

correlated with individuals’ specific sensitive attributes, or their behavior and outcomes more broadly, this

can lead to poor representation for users in groups underrepresented at those institutions. Importantly, this

lack of representation and diversity in the training data has been shown to lead to poor performance, e.g. in

genetic disease models [333] and image classification models [93].

Federated learning presents an opportunity to leverage uniquely diverse datasets by providing efficient

decentralized training protocols along with privacy and non-identifiability guarantees for the resulting mod-

els. This means that federated learning enables training on multi-instutitional datasets in many domains

where this was previously not possible. This provides a practical opportunity to leverage larger, more di-

verse datasets and explore the generalizability of models which were previously limited to small populations.

More importantly, it provides an opportunity to improve the fairness of these models by combining data

across boundaries which are likely to have been correlated with sensitive attributes. For instance, attendance

at specific health or educational institutions may be correlated with individuals’ ethnicity or socioeconomic

status. As noted in Section 6.1 above, underrepresentation in training data is a proven driver of model

unfairness.

Future federated learning research should investigate the degree to which improving diversity in a feder-

ated training setting also improves the fairness of the resulting model, and the degree to which the differential

privacy mechanisms required in such settings may limit fairness and performance gains from increased di-

versity. This includes a need for both empirical research which applies federated learning and quantifies

the interplay between diversity, fairness, privacy, and performance; along with theoretical research which

provides a foundation for concepts such as diversity in the context of machine learning fairness.

78

6.5 Federated Fairness: New Opportunities and Challenges

It is important to note that federated learning provides unique opportunities and challenges for fairness

researchers. For example, by allowing for datasets which are distributed both by observation, but even

by features, federated learning can enable modeling and research using partitioned data which may be too

sensitive to share directly [215, 224]. Increased availability of datasets which can be used in a federated

manner can help to improve the diversity of training data available for machine learning models, which can

advance fair modeling theory and practice.

Researchers and practitioners also need to address the unique fairness-related challenges created by fed-

erated learning. For example, federated learning can introduce new sources of bias through the decision

of which clients to sample based on considerations such as connection type/quality, device type, location,

activity patterns, and local dataset size [81]. Future work could investigate the degree to which these vari-

ous sampling constraints affect the fairness of the resulting model, and how such impacts can be mitigated

within the federated framework, e.g. [302, 289, 158]. Frameworks such as agnostic federated learning

[352] provide approaches to control for bias in the training objective. Work to improve the fairness of exist-

ing federated training algorithms will be particularly important as advances begin to approach the technical

limits of other components of FL systems, such as model compression, which initially helped to broaden

the diversity of candidate clients during federated training processes. There is no unique fairness criterion

generally adopted in the study of fairness, and multiple criteria have been proven to be mutually incompat-

ible. One way to deal with this question is the online fairness framework and algorithms of Awasthi et al.

[41]. Adapting such solutions to the federated learning setting and further improving upon them will be

challenging research questions in ML fairness theory and algorithms.

In the classical centralized machine learning setting, a substantial amount of advancement has been made

in the past decade to train fair classifiers, such as constrained optimization, post-shifting approaches, and

distributionally-robust optimization [223, 503, 225]. It is an open question whether such approaches, which

have demonstrated utility for improving fairness in centralized training, could be used under the setting of

federated learning (and if so, under what additional assumptions) in which data are located in a decentralized

fashion and practitioners may not obtain an unbiased sample of the data that match the distribution of the

population.

6.6 Executive Summary

In addition to inheriting the already significant challenges related to bias, fairness, and privacy in centralized

machine learning, federated learning also brings a new set of distinct challenges and opportunities in these

areas. The importance of these considerations will likely continue to grow as the real-world deployment of

FL expands to more users, domains, and applications.

• Bias in training data (Section 6.1) is a key consideration related to bias and fairness in FL models,

particularly due to the additional sampling steps germane to federation (e.g., client sampling) and the

transfer of some model computation to client devices.

• The lack of data regarding sensitive attributes in many FL deployments can pose challenges for mea-

suring and ensuring fairness, and also suggests potential reframing of fairness problems in ways that

do not require such data (Section 6.2).

• Since FL is often deployed in contexts which are both privacy- and fairness-sensitive, this can magnify

tensions between privacy and fairness objectives in practice. Further work is needed to address the

79

potential tension between methods which achieve privacy, fairness, and robustness in both federated

and centralized learning (Section 6.3).

• Federated learning presents unique opportunities to improve the diversity of stakeholders and data

incorporated into learning, which could improve both the overall quality of downstream models, as

well as their fairness due to more representative datasets (Section 6.4).

• Federated learning presents fairness-related challenges not present in the centralized training regime,

but also affords new solutions (Section 6.5).

80

7 Addressing System Challenges

As we will see in this section, the challenges in building systems for federated learning can be split fairly

cleanly into the two separate settings of cross-device and cross-silo federated learning (see Sections 1.1

and 2.2). We start with a brief discussion of the difficulties inherent to any large scale deployment of

software on end-user devices (although exacerbated by the complexity of a federated learning stack); we

then focus on key challenges specific to the cross-device learning—bias, tuning, and efficient device-side

execution of ML workflows—before concluding with a brief treatment of the cross-silo setting.

7.1 Platform Development and Deployment Challenges

Running computations on end-user devices is considerably different from the data center setting:

• Due to the heterogeneity of the fleet (devices may differ in hardware, software, connectivity, perfor-

mance and persisted state) the space of potential problems and edge cases is vast and cannot typically

be covered in sufficient detail with automated testing.

• Monitoring and debugging are harder because telemetry is limited, delayed, and there is no physical

access to devices for interactive troubleshooting.

• Running computations should not affect device performance or stability, i.e. should be invisible to

users.

Code Deployment Installing, updating and running software on end user devices may involve not only

extensive manual and automated testing, but a gradual and reversible rollout (for example, through guard-

ing new functionality with server-controlled feature flags) while monitoring key performance metrics in

a/b experiments such as crash rates, memory use, and application-dependent indicators such as latencies

and engagement metrics. Such rollouts can take weeks or months depending on the percolation rate of

updates (particularly challenging for devices with spotty connectivity) and the complexity of the upgrade

(e.g. protocol changes). Hence, the install base at any given time will involve various releases. While

this problem is not specific to federated learning, it has greater impact here due to the inherent collabo-

rative nature of federated computations: devices constantly communicate with servers and indirectly with

other devices to exchange models and parameter updates. Thus, compatibility concerns abound and must be

addressed through stable exchange formats or, where not possible, detected upfront with extensive testing

infrastructure. We will revisit this problem in Section 7.4.

Monitoring and Debugging Another significant complication is the limited ability to monitor devices

and interactively debug problems. While telemetry from end user devices is necessary to detect problems,

privacy concerns severely restrict what can be logged, who can access such logs, and how long they are

retained. Once a regression is detected, drilling down into the root cause can be very cumbersome due to

the lack of detailed context, the vast problem space (a cross product of software versions, hardware, models,

and device state), and very limited ability for interactive debugging short of successfully reproducing the

problem in a controlled environment.

These challenges are exacerbated in the federated learning setting where a) raw input data on devices

cannot be accessed, and b) contributions from individual devices are by design anonymous, ephemeral, and

exposed only in aggregate. These properties preserve privacy, but also may make it hard or impossible to

81

investigate problems with traditional approaches —by looking for correlations with hardware or software

version, or testing hypotheses that require access to raw data. Reproducing a problem in a controlled set-

ting is often difficult due to the gap between such an environment and reality: hundreds of heterogeneous

embedded stateful devices with non-iid data.

Interestingly, federated technologies themselves can help to mitigate this problem—for instance, the use

of federated analytics [382] to collect logs in a privacy preserving manner, or training generative models of

the system behavior or raw data for sampling during debugging (see sections 3.4.3, 5.2, and [31]). Keeping a

federated learning system up and running thus requires investing into upfront detection of problems through

a) extensive automated, continuous test coverage of all software layers through both unit and integration

tests; b) feature flags and a/b rollouts; and c) continuous monitoring of performance indicators for regres-

sions. That poses a significant investment that may come at too high a cost for smaller entities who would

benefit greatly from shared and tested infrastructure for federated learning.

7.2 System Induced Bias

Deployment, monitoring and debugging may not concern users of a federated learning platform, e.g. model

authors or data analysts. For them, the key differences between data center and cross-device settings fall

largely into the following two categories:

1. Availability of devices for computations is not a given, but varies over time and across devices. Con-

nections are initiated by devices and subject to interruptions due to changes in device state, operating

system quotas, and network connectivity. Hence, in iterative processes like federated learning, the

loop body is run on a small subset of all devices only, and the system must tolerate a certain failure

rate among those devices.

2. Capabilities of devices (network bandwidth and latency, compute performance, memory) vary, and

are typically much lower than those of compute nodes in the data center, though the number of nodes

is typically higher. The amount and type of data across devices may lead to variations in execution

profile, e.g. more and larger examples lead to increased resource use and processing time.

In the following sections we discuss how these variations might introduce bias, referring to it as system

induced bias to differentiate it from platform-independent bias in the raw data (such as ownership or usage

patterns differing across demographics)—for the latter, see Section 6.1.

7.2.1 Device Availability Profiles

At the core of cross-device federated learning is the principle that devices only connect to the server and run

computations when various constraints are met:

• Hard constraints, which might include requiring that the device is turned on, has network connec-

tivity to the server, and is allowed to run a computation by the operating system.

• Soft constraints, which might include the conditions on device state chosen to ensure that federated

learning does not incur charges or affect usability. For the common case of mobile phones [81, 26],

requirements may include idleness, charging and/or above a certain battery level, being connected to

an unmetered network, and that no other federated learning tasks are running at the same time.

82

Taken together, these constraints induce an unknown, time-varying and device-specific function Ai(t)
for a device i, and a fleet-wide availability profile A(t) =

∑

iAi(t). Round completion rates and server

traffic patterns [81, 491] suggest that availability profiles for mobile phones are clustered into periodic

functions with a period of 1 day, varying across devices in phase, shape and amplitude through factors

such as demographics, geography etc. Availability for other end user devices such as laptops, tablets, or

stationary devices such as smart speakers, displays and cameras, will differ, but the challenges discussed in

the following sections apply there as well, albeit to a possibly lesser extent.

7.2.2 Examples of System Induced Bias

Sources of bias will depend on the specific way in which devices are selected to participate in training,

and how the system influences which devices end up contributing to the final aggregated model update.

Thus, it is useful to discuss these issues in light of a simplified but representative system design. In an

iterative federated learning algorithm, such as Federated Averaging (Section 1.1.2, [337]), rounds are run

consecutively on sets of at least M devices. To accommodate a fraction d of devices not contributing due to

changes in device conditions, time-outs, or slowness (server-side aborts to avoid slow-downs by stragglers),

an over-allocation scheme is used where

1. Rounds are started when at least M ′ = M
1−d devices are available.

2. Rounds are closed as

(a) Aborted when more than M ′ −M devices have disconnected, or

(b) Successful when at least M devices have reported. One possible design choice is to stop after

exactly M devices; another possibility would be to keep waiting for stragglers (possibly up to

some maximum time).

This sequence, when combined with variable availability profiles, may introduce various forms of bias:

1. Selection Bias - whether a device is included in a round at time t depends on both

(a) Its availability profile Ai(t)

(b) The number of simultaneously connected devices: < M ′ and a round cannot be started;� M ′

and the probability of a single device being included becomes very small. In effect, devices

active only at either fleet-wide availability peaks or troughs may be under-represented.

2. Survival Bias

(a) Since a server might choose to close a round at any point after the first M devices have reported,

contributions are biased towards devices with better network connections, faster processors,

lower CPU load, and less data to process.

(b) Devices drop out of rounds when they are interrupted by the operating system, which may hap-

pen due to changes in device conditions as described by Ai(t), or due to e.g. excessive memory

use.

As can be seen, the probability of a device contributing to a round of federated learning is a complex

function of both internal (e.g. device specific) and external (fleet dynamic) factors. When this probability

is correlated with statistics of the data distribution, aggregate results may be biased. For instance, language

83

models may over-represent demographics that have high quality internet connections or high end devices;

and ranking models may not incorporate enough contributions from high engagement users who produce a

lot of training data and hence longer training times.

Thus, designing systems that explicitly take such factors into account and integrate algorithms designed

to both quantify and mitigate these effects are a fundamentally important research direction.

7.2.3 Open Challenges in Quantifying and Mitigating System Induced Bias

While the potential for bias in federated learning has been addressed in the literature (Section 6, [81, 302,

171]), a systematic study that qualifies and quantifies bias in realistic settings and its sources is a direction for

future research. Conducting the necessary work may be hampered by both access to the necessary resources,

and the difficulty in quantifying bias in a final statistical estimate due to the inherent lack of ground truth

value.

We want to encourage further research to study how bias can be quantified and subsequently mitigated.

A useful proxy metric for bias is to study the expected rate of contribution of a device to federated learning.

In an unbiased system, this rate would be identical for every device; if it is not, the non-uniformity may

provide a measure of bias. Studying the root causes for this non-uniformity may then provide important

hints for how to mitigate bias, for example:

• When there is a strong correlation between devices finishing a round, and the number of examples

they process or model size, possible fixes may include early stopping, or decreasing the model size.

• If the expected rate of contribution depends on factors outside our control, such as device model,

network connectivity, location etc., one can view these factors as defining strata and applying post-

stratification [312], that is, correcting for bias by scaling up or down contributions from devices

depending on their stratum. It may also be possible to apply stratified sampling - e.g. change schedul-

ing, or server selection policies, to affect the probability of including devices in a round as a function

of their stratum.

• A very general, root-cause-agnostic mitigation could base the weight of a contribution solely on a

device’s past contribution profile (e.g. the number of rounds started or completed thus far). As

a special case, consider sampling without replacement which could be implemented at the system

level (stop connecting after one successful contribution) or at the model level (weight all but the first

contribution with 0). This approach might not be sufficient when a population is large enough for most

devices to contribute only infrequently (mostly one or zero times); in such cases, clustering devices

based on some similarity metric and using cluster membership as stratum could help.

• Alternatives to the synchronous, round based execution described in the previous section may also

help to mitigate bias. In particular, certain types of analytics may benefit from softening or elim-

inating the competition between devices for inclusion, by running rounds for long times with very

large numbers of participants and without applying time-outs to stragglers. Such a method may not

be applicable to algorithms where the iterative aspect (running many individual, chained rounds) is

important.

The biggest obstacle to enabling such research is access to a representative fleet of end user devices, or a

detailed description (e.g. in the form of a statistical model of a realistic distribution over Ai(t) functions) of

a fleet that can be used in simulations. Here, maintainers of FL production stacks are uniquely positioned to

84

provide such statistics or models to academic partners in a privacy preserving fashion; a further promising

direction is the recent introduction of the Flower framework [66] for federated learning research.

7.3 System Parameter Tuning

Practical federated learning is a form of multi-objective optimization: while the first order goal is maximiz-

ing model quality metrics such as loss or accuracy, other important considerations are

• Convergence speed

• Throughput (e.g. number of rounds, amount of data, or number of devices)

• Model fairness, privacy and robustness (see section 6.3)

• Resource use on server and clients

These goals may be in tension. For instance, maximizing round throughput may introduce bias or

hurt accuracy by preferring performant devices with little or no data. Maximizing for low training loss by

increasing model complexity will put devices with less memory, many or large examples, or slow CPUs at a

disadvantage. Bias or fairness induced in such a way during training may be hard to detect in the evaluation

phase since it typically uses the same platform and hence is subject to similar biases.

Various controls affect the above listed indicators. Some are familiar from the datacenter setting, in

particular model specific settings and learning algorithm hyperparameters. Others are specific to federated

learning:

• Clients per round: The minimum number of devices required to complete a round, M , and the

number of devices required to start a round, M ′.

• Server-side scheduling: In all but the simplest cases, a federated learning system will operate on more

than one model at a time: to support multiple tenants; to train models on the same data for different

use cases; to support experimentation and architecture or hyper-parameter grid search; and to run

training and evaluation workloads concurrently. The server needs to decide which task to serve to

incoming devices, an instance of a scheduling problem: assigning work (training or evaluation tasks)

to resources (devices). Accordingly, the usual challenges arise: ideal resource assignment should be

fair, avoid starvation, minimize wait times, and support relative priorities all at once.

• Device-side scheduling: As described in Section 7.2, various constraints govern when a device can

connect to the server and execute work. Within these constraints, various scheduling choices can be

made. One extreme is to connect to the server and run computations as often as possible, leading to

high load and resource use on both server and devices. Another choice are fixed intervals, but they

need to be adjusted to reflect external factors such as number of devices overall and per round. The

federated learning system developed at Google aims to strike a balance with a flow control mechanism

called pace steering [81] whereby the server instructs devices when to return. Such a dynamic system

enables temporal load balancing for large populations as well as “focusing” connection attempts to

specific points in time to reach the threshold M ′. Developing such a mechanism is difficult due to

stochastic and dynamic nature of device availability, the lack of a predictive model of population

behavior, and feedback loops.

85

Defining reasonable composite objective functions, and designing algorithms to automatically tune these

settings, has not been explored yet in the context of federated learning systems and hence remains a topic of

future research.

7.4 On-Device Runtime

While numerous frameworks exist for data center training, the options for training models on resource con-

strained devices are fairly limited. Machine Learning models and training procedures are typically authored

in a high level language such as Python. For federated learning, this description encompasses device and

server computations that are executed on the target platform and exchange data over a network connection,

necessitating

• A means of serializing and dynamically transmitting local pieces of the total computation (e.g., the

server-side update to the model, or the local client training procedure).

• A means to interpret or execute such a computation on the target platform (server or device).

• A stable network protocol for data exchange between participating devices and servers.

One extreme form of a representation is the original high-level description, e.g. a Python TensorFlow

program [2]. This would require a Python interpreter with TensorFlow backend, which may not be a feasible

choice for end-user devices due to resource constraints (binary size, memory use), performance limitations,

or security concerns.

Another extreme representation of a computation is machine code of the target architecture, e.g. ARM64

instructions. This requires a compiler or re-implementation of a model in a lower-level language such as

C++, and deployment computations will typically be subject to the restrictions that apply to deployment of

binary code (see Section 7.1), introducing prohibitive latencies for executing novel computations.

Intermediate representations that can be compiled or interpreted with a runtime on the target platform

strike a balance between flexibility and efficiency. However, such runtimes are currently not widely avail-

able. For instance, Google’s FL system [81] relies on TensorFlow for both server and device side execution

as well as model and parameter transfer, but this choice suffers from several shortcomings:

• It offers no easy path to devices for alternative front ends such as PyTorch [370], JAX [86] or CNTK

[410].

• The runtime is not developed or optimized for resource constrained environments, incurring a large

binary size, high memory use and comparatively low performance.

• The intermediate representation GraphDef used by TensorFlow is not standardized or stable, and

version skew between the frontend and older on-device backends causes frequent compatibility chal-

lenges.

Other alternatives include more specialized runtimes that support only a subset of the frontend’s capa-

bilities, for instance training specific model types only, requiring changes and long update cycles whenever

new model architectures or training algorithms are to be used. An extreme case would be a runtime that is

limited and optimized to train a single type of model.

An ideal on-device runtime would have the following characteristics:

86

1. Lightweight: small binary size, or pre-installed; low memory and power profile.

2. Performant: low startup latency; high throughput, supports hardware acceleration.

3. Expressive: supports common data types and computations including backpropagation, variables,

control flow, custom extensions.

4. Stable and compact format for expressing data and computations.

5. Widely available: portable open source implementation.

6. Targetable by commonly used ML frameworks / languages..

7. Ideally also supports inference, or if not, building personalized models for an inference runtime.

To our best knowledge no solution exists yet that satisfies these requirements, and we expect the limited

ability to run ML training on end user devices to become a hindrance to adoption of federated technologies.

7.5 The Cross-Silo Setting

The system challenges arising in the scenario of cross-silo federated learning take a considerably different

form. As outlined in Table 1, clients are fewer in number, more powerful, reliable, and known / addressable,

eliminating many of the challenges from the cross-device setting, while allowing for authentication and

verification, accounting, and contractually enforced penalties for misbehavior. Nonetheless, there are other

sources of heterogeneity, including the features and distribution of data, and possibly the software stack used

for training.

While the infrastructure in the cross-device setting (from the device-side data generation to the server

logic) is typically operated by one or few organizational entities (the application, operating system, or de-

vice manufacturer), in the cross-silo setting, many different entities are involved. This may lead to high

coordination and operational cost due to differences in:

• How data is generated, pre-processed and labeled. Learning across silos will require data normaliza-

tion which may be difficult when such data is collected and stored differently (e.g. use of different

medical imaging systems, and inconsistencies in labeling procedures, annotations, and storage for-

mats).

• Which software at which version powers training. Using the same software stack in every silo—

possibly delivered alongside the model using container technologies as done by FATE [33]—eliminates

compatibility concerns, but such frequent and centrally distributed software delivery may not be ac-

ceptable to all involved parties. An alternative that is more similar to the cross-device setting would be

to standardize data and model formats and communication protocols. See IEEE P3652.1 “Federated

Machine Learning Working Group” for a related effort in this direction.

• The approval process for how data may or may not be used. While this process is typically central-

ized in the cross-device scenario, the situation is likely different in cross-silo settings where many

organizational entities are involved, and may be increasingly difficult when training spans differ-

ent jurisdictions with varying data protection regulations. Technical infrastructure may be of help

here by establishing data annotations that encode access policies, and infrastructure enforce them;

for instance, limiting the use of certain data to specific models, or encoding minimum aggregation

requirements such as “require at least M clients per round”.

87

Another potential difference in the cross-silo setting is data partitioning: Data in the cross-device setting

is typically assumed to be partitioned by examples, all of which have the same features (horizontal partition-

ing). In the cross-silo setting, in addition to partitioning by examples, partitioning by features is of practical

relevance (vertical partitioning). An example would be two organizations, e.g. a bank and a retail company,

with an overlapping set of customers, but different information (features) associated with them. For a dis-

cussion focusing on the algorithmic aspects, please see section 2.2. Learning with feature-partitioned data

may require different communication patterns and additional processing steps e.g. for entity alignment and

dealing with missing features.

7.6 Executive Summary

While production grade systems for cross-device federated learning operate successfully [81, 26], various

challenges remain:

• Frequent and large scale deployment of updates, monitoring, and debugging is challenging (Sec-

tion 7.1).

• Differences in device availability induce various forms of bias; defining, quantifying and mitigating

them remains a direction for future research (Section 7.2).

• Tuning system parameters is difficult due to the existence of multiple, potentially conflicting objec-

tives (Section 7.3).

• Running ML workloads on end user devices is hampered by the lack of a portable, fast, small footprint,

and flexible runtime for on-device training (Section 7.4).

Systems for cross-silo settings (Section 7.5) face largely different issues owing to differences in the

capabilities of compute nodes and the nature of the data being processed.

88

8 Concluding Remarks

Federated learning enables distributed client devices to collaboratively learn a shared prediction model while

keeping all the training data on device, decoupling the ability to do machine learning from the need to store

the data in the cloud. This goes beyond the use of local models that make predictions on mobile devices by

bringing model training to the device as well.

In recent years, this topic has undergone an explosive growth of interest, both in industry and academia.

Major technology companies have already deployed federated learning in production, and a number of

startups were founded with the objective of using federated learning to address privacy and data collection

challenges in various industries. Further, the breadth of papers surveyed in this work suggests that federated

learning is gaining traction in a wide range of interdisciplinary fields: from machine learning to optimization

to information theory and statistics to cryptography, fairness, and privacy.

Motivated by the growing interest in federated learning research, this paper discusses recent advances

and presents an extensive collection of open problems and challenges. The system constraints impose effi-

ciency requirements on the algorithms in order to be practical, many of which are not particularly challeng-

ing in other settings. We argue that data privacy is not binary and present a range of threat models that are

relevant under a variety of assumptions, each of which provides its own unique challenges.

The open problems discussed in this work are certainly not comprehensive, they reflect the interests

and backgrounds of the authors. In particular, we do not discuss any non-learning problems which need

to be solved in the course of a practical machine learning project, and might need to be solved based on

decentralized data [382]. This can include simple problems such as computing basic descriptive statistics,

or more complex objectives such as computing the head of a histogram over an open set [510]. Existing

algorithms for solving such problems often do not always have an obvious “federated version” that would

be efficient under the system assumptions motivating this work or do not admit a useful notion of data

protection. Yet another set of important topics that were not discussed are the legal and business issues that

may motivate or constrain the use of federated learning.

We hope this work will be helpful in scoping further research in federated learning and related areas.

Acknowledgments

The authors would like to thank Alex Ingerman and David Petrou for their useful suggestions and insightful

comments during the review process.

89

References

[1] Lattigo 2.0.0. Online: http://github.com/ldsec/lattigo, October 2020. EPFL-LDS.

[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,

Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.

Software available from tensorflow.org.

[3] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, pages 308–318. ACM, 2016.

[4] Omid Abari, Hariharan Rahul, and Dina Katabi. Over-the-air function computation in sensor networks. CoRR,

abs/1612.02307, 2016. URL http://arxiv.org/abs/1612.02307.

[5] Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Latanya Sweeney. Privacy

preserving synthetic data release using deep learning. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 510–526. Springer, 2018.

[6] John M Abowd and Ian M Schmutte. An economic analysis of privacy protection and statistical accuracy as

social choices. American Economic Review, 109(1):171–202, 2019.

[7] Jayadev Acharya, Clément L Canonne, and Himanshu Tyagi. Inference under information constraints i: Lower

bounds from chi-square contraction. IEEE Transactions on Information Theory, 66(12):7835–7855, 2020.

[8] Gergely Ács and Claude Castelluccia. I have a DREAM!: DIfferentially PrivatE smart Metering. In Proceed-

ings of the 13th International Conference on Information Hiding, IH’11, pages 118–132, Berlin, Heidelberg,

2011. Springer-Verlag. ISBN 978-3-642-24177-2. URL http://dl.acm.org/citation.cfm?id=

2042445.2042457.

[9] Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and Brendan McMahan. cpSGD:

Communication-efficient and differentially-private distributed SGD. In Advances in Neural Information Pro-

cessing Systems, pages 7564–7575, 2018.

[10] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià Gascón. QUOTIENT: two-party secure

neural network training and prediction. In In Proceedings of the ACM Conference on Computer and Communi-

cation Security (CCS), 2019.

[11] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In ACM SIGMOD International

Conference on Management of Data, 2000.

[12] Carlos Aguilar-Melchor and Philippe Gaborit. A lattice-based computationally-efficient private information

retrieval protocol. Cryptol. ePrint Arch., Report, 446, 2007.

[13] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. XPIR: Private information

retrieval for everyone. Proceedings on Privacy Enhancing Technologies, 2016(2):155–174, 2016.

[14] ai.google. Under the hood of the Pixel 2: How AI is supercharging hardware, 2018. URL https://ai.

google/stories/ai-in-hardware/. Retrieved Nov 2018.

[15] ai.intel. Federated learning for medical imaging, 2019. URL https://www.intel.ai/

federated-learning-for-medical-imaging/. Retrieved Aug 2019.

90

[16] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann, Karn Seth, and Kevin Yeo.

Communication-computation trade-offs in PIR. IACR Cryptol. ePrint Arch., 2019:1483, 2019.

[17] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient

SGD via gradient quantization and encoding. In NIPS - Advances in Neural Information Processing Systems,

pages 1709–1720, 2017.

[18] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In NIPS, 2018.

[19] Inês Almeida and João Xavier. DJAM: Distributed Jacobi Asynchronous Method for Learning Personal Models.

IEEE Signal Processing Letters, 25(9):1389–1392, 2018.

[20] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight

sublinear arguments without a trusted setup. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’17, 2017.

[21] Kareem Amin, Alex Kulesza, Andres Munoz, and Sergei Vassilvtiskii. Bounding user contributions: A bias-

variance trade-off in differential privacy. In International Conference on Machine Learning, pages 263–271,

2019.

[22] androidtrusty. Android Trusty TEE. https://source.android.com/security/trusty, 2019. Ac-

cessed: 2019-12-05.

[23] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries and amortized

query processing. In IEEE Symposium on Security and Privacy, pages 962–979. IEEE Computer Society, 2018.

[24] George J Annas. HIPAA regulations-a new era of medical-record privacy? New England Journal of Medicine,

348(15):1486–1490, 2003.

[25] Apple. Private Federated Learning (NeurIPS 2019 Expo Talk Abstract). https://nips.cc/

ExpoConferences/2019/schedule?talk_id=40, 2019.

[26] Apple. Designing for privacy (video and slide deck). Apple WWDC, https://developer.apple.com/

videos/play/wwdc2019/708, 2019.

[27] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput semi-honest

secure three-party computation with an honest majority. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages 805–817. ACM, 2016.

[28] armtrustzone. Arm TrustZone Technology. https://developer.arm.com/ip-products/

security-ip/trustzone, 2019. Accessed: 2019-12-05.

[29] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Michael Rabbat. Stochastic gradient push for distributed

deep learning. In ICML, 2019.

[30] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:

Circumventing defenses to adversarial examples. ICML, 2018.

[31] Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing

Chen, Rajiv Mathews, and Blaise Aguera y Arcas. Generative models for effective ML on private, decentralized

datasets, 2019. URL https://arxiv.org/abs/1911.06679.

[32] PyVertical Authors. Pyvertical, 2020. URL https://github.com.cnpmjs.org/OpenMined/

PyVertical.

[33] The FATE Authors. Federated AI technology enabler, 2019. URL https://www.fedai.org/.

[34] The Fedlearner Authors. Fedlearner, 2020. URL https://github.com/bytedance/fedlearner.

91

[35] The Leaf Authors. Leaf, 2019. URL https://leaf.cmu.edu/.

[36] The PaddleFL Authors. PaddleFL, 2019. URL https://github.com/PaddlePaddle/PaddleFL.

[37] The PaddlePaddle Authors. PaddlePaddle, 2019. URL http://www.paddlepaddle.org/.

[38] The TFF Authors. TensorFlow Federated, 2019. URL https://www.tensorflow.org/federated.

[39] Brendan Avent, Yatharth Dubey, and Aleksandra Korolova. The power of the hybrid model for mean estimation.

Proceedings on Privacy Enhancing Technologies (PETS), 2020(4):48 – 68, 01 Oct. 2020. doi: https://doi.org/

10.2478/popets-2020-0062. URL https://content.sciendo.com/view/journals/popets/

2020/4/article-p48.xml.

[40] Brendan Avent, Aleksandra Korolova, David Zeber, Torgeir Hovden, and Benjamin Livshits. BLENDER:

Enabling local search with a hybrid differential privacy model. In 26th USENIX Security Symposium (USENIX

Security 17), pages 747–764, Vancouver, BC, August 2017. USENIX Association. ISBN 978-1-931971-40-9.

URL https://www.usenix.org/conference/usenixsecurity17/technical-sessions/

presentation/avent.

[41] Pranjal Awasthi, Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Beyond individual and group fairness.

CoRR, abs/2008.09490, 2020.

[42] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic

time. In STOC, pages 21–31. ACM, 1991.

[43] Eugene Bagdasaryan and Vitaly Shmatikov. Differential privacy has disparate impact on model accuracy. CoRR,

abs/1905.12101, 2019. URL http://arxiv.org/abs/1905.12101.

[44] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to backdoor

federated learning. arXiv preprint arXiv:1807.00459, 2018.

[45] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model. In

Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,

CA, USA, August 18-22, 2019, Proceedings, Part II, pages 638–667, 2019. doi: 10.1007/978-3-030-26951-7\
22. URL https://doi.org/10.1007/978-3-030-26951-7_22.

[46] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Private summation in the multi-message shuffle

model. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,

page 657–676. ACM, 2020.

[47] Borja Balle, Peter Kairouz, H. Brendan McMahan, Om Thakkar, and Abhradeep Thakurta. Privacy amplifica-

tion via random check-ins, 2020.

[48] Assi Barak, Daniel Escudero, Anders P. K. Dalskov, and Marcel Keller. Secure evaluation of quantized neural

networks. IACR Cryptology ePrint Archive, 2019:131, 2019. URL https://eprint.iacr.org/2019/

131.

[49] Leighton Pate Barnes, Yanjun Han, and Ayfer Ozgur. Lower bounds for learning distributions under commu-

nication constraints via fisher information. Journal of Machine Learning Research, 21(236):1–30, 2020. URL

http://jmlr.org/papers/v21/19-737.html.

[50] Leighton Pate Barnes, Huseyin A. Inan, Berivan Isik, and Ayfer Ozgur. rtop-k: A statistical estimation approach

to distributed sgd. arXiv preprint arXiv:2005.10761, 2020.

[51] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairmlbook.org, 2019.

http://www.fairmlbook.org.

[52] Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for distributed

learning. arXiv preprint arXiv:1902.06156, 2019.

92

[53] Raef Bassily and Adam Smith. Local, private, efficient protocols for succinct histograms. In STOC, pages

127–135, 2015.

[54] Raef Bassily, Uri Stemmer, Abhradeep Guha Thakurta, et al. Practical locally private heavy hitters. In Advances

in Neural Information Processing Systems, pages 2288–2296, 2017.

[55] Debraj Basu, Deepesh Data, Can Karakus, and Suhas N Diggavi. Qsparse-local-sgd: Distributed sgd with

quantization, sparsification, and local computations. IEEE Journal on Selected Areas in Information Theory, 1

(1):217–226, 2020.

[56] Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:149–198,

2000.

[57] Amos Beimel, Aleksandra Korolova, Kobbi Nissim, Or Sheffet, and Uri Stemmer. The power of synergy in

differential privacy: Combining a small curator with local randomizers. In Conference on Information-Theoretic

Cryptography (ITC), 2020. URL https://arxiv.org/abs/1912.08951.

[58] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova. Secure single-

server aggregation with (poly)logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security, page 1253–1269. ACM, 2020.

[59] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. Personalized and Private Peer-to-Peer

Machine Learning. In AISTATS, 2018.

[60] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with reinforcement

learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 459–

468. JMLR. org, 2017.

[61] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman

Vaughan. A theory of learning from different domains. Machine learning, 79(1-2):151–175, 2010.

[62] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars

Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE Symposium on Security and

Privacy, pages 459–474. IEEE Computer Society, 2014.

[63] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no trusted

setup. In CRYPTO (3), volume 11694 of Lecture Notes in Computer Science, pages 701–732. Springer, 2019.

[64] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimiza-

tion. In Advances in Neural Information Processing Systems, pages 2546–2554, 2011.

[65] Martı́n Bertrán, Natalia Martı́nez, Afroditi Papadaki, Qiang Qiu, Miguel R. D. Rodrigues, Galen Reeves, and

Guillermo Sapiro. Learning adversarially fair and transferable representations. In ICML, 2019.

[66] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and Nicholas D. Lane. Flower: A

friendly federated learning research framework, 2020.

[67] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing federated learning

through an adversarial lens. In Proceedings of the 36th International Conference on Machine Learning, pages

634–643, 2019.

[68] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protection against

reconstruction and its applications in private federated learning. arXiv preprint arXiv:1812.00984, 2018.

[69] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines. In Pro-

ceedings of the 29th International Coference on International Conference on Machine Learning, ICML’12,

pages 1467–1474, USA, 2012. Omnipress. ISBN 978-1-4503-1285-1. URL http://dl.acm.org/

citation.cfm?id=3042573.3042761.

93

[70] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio Giacinto,

and Fabio Roli. Evasion attacks against machine learning at test time. In ECML-PKDD, pages 387–402.

Springer, 2013.

[71] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance to suc-

cinct non-interactive arguments of knowledge, and back again. In Proceedings of the 3rd Innovations in Theo-

retical Computer Science Conference, ITCS ’12, 2012.

[72] R. Bitar and S. E. Rouayheb. Staircase-PIR: Universally robust private information retrieval. In 2018 IEEE

Information Theory Workshop (ITW), pages 1–5, Nov 2018. doi: 10.1109/ITW.2018.8613532.

[73] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David Lie, Mitch

Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong privacy for analytics in

the crowd. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, pages 441–

459, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5085-3. doi: 10.1145/3132747.3132769. URL

http://doi.acm.org/10.1145/3132747.3132769.

[74] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural

network pruning? arXiv preprint arXiv:2003.03033, 2020.

[75] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with adver-

saries: Byzantine tolerant gradient descent. In Advances in Neural Information Processing Systems, 2017.

[76] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine Learning with Adversaries: Byzantine Toler-

ant Gradient Descent. In Advances in Neural Information Processing Systems, pages 118–128, 2017.

[77] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party computation for financial

data analysis - (short paper). In Financial Cryptography, volume 7397 of Lecture Notes in Computer Science,

pages 57–64. Springer, 2012.

[78] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P. Jakobsen, Mikkel Krøigaard,

Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas

Toft. Secure multiparty computation goes live. In Financial Cryptography, volume 5628 of Lecture Notes in

Computer Science, pages 325–343. Springer, 2009.

[79] K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel,

Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for federated learning on user-held

data. arXiv preprint arXiv:1611.04482, 2016.

[80] K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel

Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1175–

1191. ACM, 2017.

[81] K. A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,

Chloé M Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David

Petrou, Daniel Ramage, and Jason Roselander. Towards federated learning at scale: System design. In SysML

2019, 2019. URL https://arxiv.org/abs/1902.01046.

[82] K. A. Bonawitz, Fariborz Salehi, Jakub Konečný, Brendan McMahan, and Marco Gruteser. Federated learning

with autotuned communication-efficient secure aggregation. In 2019 53nd Asilomar Conference on Signals,

Systems, and Computers. IEEE, 2019.

[83] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs on

secret-shared data via fully linear PCPs. In CRYPTO (3), volume 11694 of Lecture Notes in Computer Science,

pages 67–97. Springer, 2019.

94

[84] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic evaluation of deep

discretized neural networks. In CRYPTO (3), volume 10993 of Lecture Notes in Computer Science, pages

483–512. Springer, 2018.

[85] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms. IEEE

Transactions on Information Theory, 52(6):2508–2530, 2006.

[86] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George

Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transfor-

mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[87] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In

CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

[88] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without

bootstrapping. In ITCS, pages 309–325. ACM, 2012.

[89] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L. Nguyen, and David P. Woodruff. Communication lower

bounds for statistical estimation problems via a distributed data processing inequality. In Proceedings of the

forty-eighth annual ACM symposium on Theory of Computing, page 1011–1020. ACM, 2016.

[90] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks

against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

[91] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Olshevsky, Ioannis Ch Paschalidis, and Wei Shi. Fed-

erated learning of predictive models from federated electronic health records. International journal of medical

informatics, 112:59–67, 2018.

[92] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory Maxwell. Bullet-

proofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy,

SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA, 2018.

[93] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender

classification. In Conference on fairness, accountability and transparency, pages 77–91, 2018.

[94] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. SEPIA: Privacy-preserving ag-

gregation of multi-domain network events and statistics. Network, 1(101101), 2010.

[95] Sebastian Caldas, Jakub Konečný, H Brendan McMahan, and Ameet Talwalkar. Expanding the reach of feder-

ated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210, 2018.

[96] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H Brendan McMahan, Virginia Smith, and Ameet Tal-

walkar. LEAF: A benchmark for federated settings. arXiv preprint arXiv:1812.01097, 2018.

[97] Clément L Canonne, Gautam Kamath, Audra McMillan, Adam Smith, and Jonathan Ullman. The structure of

optimal private tests for simple hypotheses. AarXiv preprint arXiv:1811.11148, 2019.

[98] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

[99] Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlingsson, and Dawn Song. The secret sharer: Measuring

unintended neural network memorization & extracting secrets. arXiv preprint arXiv:1802.08232, 2018.

[100] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam

Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language models.

arXiv preprint arXiv:2012.07805, 2020.

[101] Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Albert Roman, Praneeth Vepakomma, and

Ramesh Raskar. SplitNN-driven vertical partitioning. arXiv preprint arXiv:2008.04137, 2018.

95

[102] Khe Chai Sim, Françoise Beaufays, Arnaud Benard, Dhruv Guliani, Andreas Kabel, Nikhil Khare, Tamar

Lucassen, Petr Zadrazil, Harry Zhang, Leif Johnson, et al. Personalization of end-to-end speech recognition on

mobile devices for named entities. arXiv, pages arXiv–1912, 2019.

[103] T-H Hubert Chan, Elaine Shi, and Dawn Song. Privacy-preserving stream aggregation with fault tolerance. In

International Conference on Financial Cryptography and Data Security, pages 200–214. Springer, 2012.

[104] Ken Chang, Niranjan Balachandar, Carson Lam, Darvin Yi, James Brown, Andrew Beers, Bruce Rosen,

Daniel L Rubin, and Jayashree Kalpathy-Cramer. Distributed deep learning networks among institutions for

medical imaging. Journal of the American Medical Informatics Association, 25(8):945–954, 2018.

[105] Wei-Ting Chang and Ravi Tandon. On the upload versus download cost for secure and private matrix multipli-

cation. ArXiv, abs/1906.10684, 2019.

[106] Zachary Charles and Jakub Konečnỳ. On the outsized importance of learning rates in local update methods.

arXiv preprint arXiv:2007.00878, 2020.

[107] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the

ACM, 24(2), 1981.

[108] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Mol-

loy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by activation clustering. arXiv

preprint arXiv:1811.03728, 2018.

[109] Chien-Lun Chen, Leana Golubchik, and Marco Paolieri. Backdoor attacks on federated meta-learning. arXiv

preprint arXiv:2006.07026, 2020.

[110] Lijie Chen, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. On distributed differential privacy and counting

distinct elements. In Innovations in Theoretical Computer Science (ITCS), 2021.

[111] Lingjiao Chen, Hongyi Wang, Zachary B. Charles, and Dimitris S. Papailiopoulos. DRACO: Byzantine-

resilient distributed training via redundant gradients. In Proceedings of the 35th International Conference

on Machine Learning, ICML, 2018.

[112] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Federated learning of out-of-

vocabulary words. arXiv preprint 1903.10635, 2019. URL http://arxiv.org/abs/1903.10635.

[113] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: Zeroth order optimization

based black-box attacks to deep neural networks without training substitute models. In Proceedings of the 10th

ACM Workshop on Artificial Intelligence and Security, pages 15–26. ACM, 2017.

[114] Wei-Ning Chen, Peter Kairouz, and Ayfer Ozgur. Breaking the communication-privacy-accuracy trilemma.

Advances in Neural Information Processing Systems, 33, 2020.

[115] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning

systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[116] Yudong Chen, Lili Su, and Jiaming Xu. Distributed Statistical Machine Learning in Adversarial Settings:

Byzantine Gradient Descent. POMACS, 1:44:1–44:25, 2017.

[117] Massimo Chenal and Qiang Tang. On key recovery attacks against existing somewhat homomorphic encryption

schemes. In LATINCRYPT, volume 8895 of Lecture Notes in Computer Science, pages 239–258. Springer, 2014.

[118] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, and Qiang Yang. SecureBoost: A lossless federated

learning framework. CoRR, abs/1901.08755, 2019. URL http://arxiv.org/abs/1901.08755.

[119] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson, Ari Juels, Andrew

Miller, and Dawn Song. Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart

contracts. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pages 185–200. IEEE,

2019.

96

[120] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed differential privacy

via shuffling. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,

pages 375–403. Springer, 2019.

[121] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval. J. ACM, 45

(6):965–981, November 1998. ISSN 0004-5411. doi: 10.1145/293347.293350. URL http://doi.acm.

org/10.1145/293347.293350.

[122] Edward Chou, Florian Tramèr, and Giancarlo Pellegrino. SentiNet: Detecting physical attacks against deep

learning systems. arXiv preprint arXiv:1812.00292, 2018.

[123] Sélim Chraibi, Ahmed Khaled, Dmitry Kovalev, Peter Richtárik, Adil Salim, and Martin Takáč. Distributed

fixed point methods with compressed iterates. arXiv preprint arXiv:1912.09925, 2019.

[124] P. Christen. Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detec-

tion. Springer Science & Business Media, 2012.

[125] NVIDIA Clara. The clara training framework authors, 2019. URL https://developer.nvidia.com/

clara.

[126] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension of MNIST to

handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[127] Igor Colin, Aurélien Bellet, Joseph Salmon, and Stéphan Clémençon. Gossip dual averaging for decentralized

optimization of pairwise functions. In ICML, 2016.

[128] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. Marginal release under local differential privacy. In

Proceedings of the 2018 International Conference on Management of Data, pages 131–146. ACM, 2018.

[129] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homomorphic encryption

over the integers. In Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science, pages

311–328. Springer, 2014.

[130] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate statistics.

In 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17), pages 259–

282, 2017.

[131] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear online time. IACR

Cryptology ePrint Archive, 2019:1075, 2019.

[132] Corinna Cortes and Mehryar Mohri. Domain adaptation and sample bias correction theory and algorithm for

regression. Theoretical Computer Science, 519:103–126, 2014.

[133] Corinna Cortes, Mehryar Mohri, Ananda Theertha Suresh, and Ningshan Zhang. Multiple-source adaptation

with domain classifiers. arXiv preprint arXiv:2008.11036, 2020.

[134] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology ePrint Archive, 2016(086):1–118,

2016.

[135] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions for strong software

isolation. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages 857–874, 2016.

[136] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan

Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In IEEE Symposium on Security and

Privacy, pages 253–270. IEEE Computer Society, 2015.

97

[137] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via ac-

celerated gradient methods. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing Systems, volume 24, pages 1647–1655. Cur-

ran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/

b55ec28c52d5f6205684a473a2193564-Paper.pdf.

[138] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training deep neural networks

with binary weights during propagations. In Advances in neural information processing systems, pages 3123–

3131, 2015.

[139] Pierre Courtiol, Charles Maussion, Matahi Moarii, Elodie Pronier, Samuel Pilcer, Meriem Sefta, Pierre

Manceron, Sylvain Toldo, Mikhail Zaslavskiy, Nolwenn Le Stang, et al. Deep learning-based classification

of mesothelioma improves prediction of patient outcome. Nature medicine, pages 1–7, 2019.

[140] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

[141] Gabriela F Cretu, Angelos Stavrou, Michael E Locasto, Salvatore J Stolfo, and Angelos D Keromytis. Casting

out demons: Sanitizing training data for anomaly sensors. In 2008 IEEE Symposium on Security and Privacy

(sp 2008), pages 81–95. IEEE, 2008.

[142] Rachel Cummings, Sara Krehbiel, Kevin Lai, and Uthaipon Tantitongpipat. Differential privacy for growing

databases. In Advances in Neural Information Processing Systems 31, NeurIPS ’18, pages 8864–8873, 2018.

[143] Rachel Cummings, Sara Krehbiel, Yajun Mei, Rui Tuo, and Wanrong Zhang. Differentially private change-

point detection. In Advances in Neural Information Processing Systems 31, NeurIPS ’18, pages 10825–10834,

2018.

[144] Rachel Cummings, Inbal Dekel, Ori Heffetz, and Katrina Ligett. Bringing differential privacy into the experi-

mental economics lab: Theory and an application to a public-good game. Working paper, 2019.

[145] Rachel Cummings, Varun Gupta, Dhamma Kimpara, and Jamie Morgenstern. On the compatibility of privacy

and fairness. In Proceedings of Fairness in User Modeling, Adaptation and Personalization, FairUMAP, 2019.

[146] Edwige Cyffers and Aurélien Bellet. Privacy amplification by decentralization. arXiv preprint

arXiv:2012.05326, 2020.

[147] Damgård. On σ protocols. http://www.cs.au.dk/˜ivan/Sigma.pdf, 2010.

[148] Deepesh Data, Linqi Song, and Suhas Diggavi. Data encoding for byzantine-resilient distributed optimization.

IEEE Transactions on Information Theory, 2020.

[149] Walter de Brouwer. The federated future is ready for shipping. https://doc.ai/blog/

federated-future-ready-shipping/, March 2019.

[150] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,

Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed

deep networks. In Proceedings of the International Conference on Neural Information Processing Systems,

pages 1223–1231, 2012.

[151] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using

mini-batches. J. Mach. Learn. Res., 13(1), January 2012.

[152] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair Stewart. Sever: A

robust meta-algorithm for stochastic optimization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 1596–1606, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http:

//proceedings.mlr.press/v97/diakonikolas19a.html.

98

[153] Mario Diaz, Peter Kairouz, Jiachun Liao, and Lalitha Sankar. Theoretical guarantees for model auditing with

finite adversaries. arXiv preprint arXiv:1911.03405, 2019.

[154] Differential Privacy Team. Learning with privacy at scale. Apple Machine Learning

Journal, 1(8), 2017. URL https://machinelearning.apple.com/2017/12/06/

learning-with-privacy-at-scale.html.

[155] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately. In Advances

in Neural Information Processing Systems 30, December 2017. URL https://www.microsoft.com/

en-us/research/publication/collecting-telemetry-data-privately/.

[156] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer. Detecting violations of dif-

ferential privacy. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’18, pages 475–489, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5693-0. doi:

10.1145/3243734.3243818. URL http://doi.acm.org/10.1145/3243734.3243818.

[157] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion router. Technical

report, Naval Research Lab Washington DC, 2004.

[158] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized Federated Learning with Moreau En-

velopes. In NeurIPS, 2020.

[159] Rafael G. L. D’Oliveira and S. E. Rouayheb. Lifting private information retrieval from two to any number of

messages. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 1744–1748, June 2018.

doi: 10.1109/ISIT.2018.8437805.

[160] John R. Douceur. The sybil attack. In Revised Papers from the First International Workshop on Peer-to-Peer

Systems, IPTPS ’01, pages 251–260, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-44179-4. URL

http://dl.acm.org/citation.cfm?id=646334.687813.

[161] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic

optimization. Journal of machine learning research, 12(7), 2011.

[162] John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statistical minimax rates. In

Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 429–438. IEEE,

2013.

[163] Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow and Stale Gradi-

ents Can Win the Race: Error-Runtime Trade-offs in Distributed SGD. International Conference on Artificial

Intelligence and Statistics (AISTATS), April 2018. URL https://arxiv.org/abs/1803.01113.

[164] Cynthia Dwork. Differential privacy: A survey of results. In International Conference on Theory and Applica-

tions of Models of Computation, pages 1–19. Springer, 2008.

[165] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and Trends

in Theoretical Computer Science, 9(3–4):211–407, 2014.

[166] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:

Privacy via distributed noise generation. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pages 486–503. Springer, 2006.

[167] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity in private

data analysis. In IACR Theory of Cryptography Conference (TCC), New York, New York, volume 3876 of

Lecture Notes in Computer Science, pages 265–284. Springer-Verlag, 2006. doi: 10.1007/11681878 14.

[168] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. In Proceedings of the

IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS ’10, pages 51–60, 2010.

99

[169] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through aware-

ness. In Proceedings of the 3rd innovations in theoretical computer science conference, pages 214–226. ACM,

2012.

[170] Laurel Eckhouse, Kristian Lum, Cynthia Conti-Cook, and Julie Ciccolini. Layers of bias: A unified approach

for understanding problems with risk assessment. Criminal Justice and Behavior, 46(2):185–209, 2019.

[171] Hubert Eichner, Tomer Koren, H. Brendan McMahan, Nathan Srebro, and Kunal Talwar. Semi-cyclic stochastic

gradient descent. In Accepted to ICML 2019., 2019. URL https://arxiv.org/abs/1904.10120.

[172] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. SMART: secure and minimal archi-

tecture for (establishing dynamic) root of trust. In NDSS. The Internet Society, 2012.

[173] Anis Elgabli, Jihong Park, Amrit S Bedi, Mehdi Bennis, and Vaneet Aggarwal. GADMM: Fast and communi-

cation efficient framework for distributed machine learning. arXiv preprint arXiv:1909.00047, 2019.

[174] Anis Elgabli, Jihong Park, Chaouki Ben Issaid, and Mehdi Bennis. Harnessing wireless channels for scalable

and privacy-preserving federated learning, 2020.

[175] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture search via

Lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.

[176] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a

translation suffice: Fooling CNNs with simple transformations. arXiv preprint arXiv:1712.02779, 2017.

[177] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized aggregatable privacy-

preserving ordinal response. In ACM CCS, 2014. ISBN 978-1-4503-2957-6. doi: 10.1145/2660267.2660348.

URL http://doi.acm.org/10.1145/2660267.2660348.

[178] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep Thakurta.

Amplification by shuffling: From local to central differential privacy via anonymity. In SODA, pages 2468–

2479, 2019.

[179] EU CORDIS. Machine learning ledger orchestration for drug discovery, 2019. URL https:

//cordis.europa.eu/project/rcn/223634/factsheet/en?WT.mc_id=RSS-Feed&

WT.rss_f=project&WT.rss_a=223634&WT.rss_ev=a. Retrieved Aug 2019.

[180] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter optimization at

scale. arXiv preprint arXiv:1807.01774, 2018.

[181] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-learning

approach. arXiv preprint arXiv:2002.07948, 2020.

[182] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology

ePrint Archive, 2012:144, 2012.

[183] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local model poisoning attacks to

Byzantine-robust federated learning. arXiv preprint arXiv:1911.11815, 2019.

[184] FeatureCloud. FeatureCloud: Our vision, 2019. URL https://featurecloud.eu/about/

our-vision/. Retrieved Aug 2019.

[185] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification by iteration. In

2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 521–532. IEEE, 2018.

[186] Clément Feutry, Pablo Piantanida, Yoshua Bengio, and Pierre Duhamel. Learning anonymized representations

with adversarial neural networks. CoRR, abs/1802.09386, 2018. URL http://arxiv.org/abs/1802.

09386.

100

[187] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep

networks. In Proceedings of the 34th International Conference on Machine Learning, 2017.

[188] Aurélien Francillon, Quan Nguyen, Kasper Bonne Rasmussen, and Gene Tsudik. A minimalist approach to

remote attestation. In DATE, pages 1–6. European Design and Automation Association, 2014.

[189] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence infor-

mation and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 1322–1333. ACM, 2015.

[190] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning poisoning. arXiv

preprint arXiv:1808.04866, 2018.

[191] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party computation

for malicious adversaries and an honest majority. In EUROCRYPT (2), volume 10211 of Lecture Notes in

Computer Science, pages 225–255, 2017.

[192] Adam Gaier and David Ha. Weight agnostic neural networks. arXiv preprint arXiv:1906.04358, 2019.

[193] Venkata Gandikota, Raj Kumar Maity, and Arya Mazumdar. vqSGD: Vector quantized stochastic gradient

descent. arXiv preprint arXiv:1911.07971, 2019.

[194] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner, Samee Zahur, and David

Evans. Privacy-preserving distributed linear regression on high-dimensional data. PoPETs, 2017(4):345–364,

2017.

[195] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing compu-

tation to untrusted workers. In CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 465–482.

Springer, 2010.

[196] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct

NIZKs without PCPs. In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 626–645.

Springer, 2013.

[197] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM

symposium on Theory of computing, pages 169–178, 2009.

[198] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In TCC (2), volume 11892 of

Lecture Notes in Computer Science, pages 438–464. Springer, 2019.

[199] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level perspec-

tive. CoRR, abs/1712.07557, 2017. URL http://arxiv.org/abs/1712.07557.

[200] Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Velingker. On the power of multiple

anonymous messages. arXiv:1908.11358, 2019.

[201] Badih Ghazi, Rasmus Pagh, and Ameya Velingker. Scalable and differentially private distributed aggregation

in the shuffled model. arXiv preprint arXiv:1906.08320, 2019.

[202] Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Pure

differentially private summation from anonymous messages. In ITC, pages 15:1–15:23, 2020.

[203] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Rasmus Pagh. Private counting from anonymous messages:

Near-optimal accuracy with vanishing communication overhead. In ICML, 2020.

[204] Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Private aggregation from fewer anony-

mous messages. In EUROCRYPT, pages 798–827, 2020.

101

[205] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-maximizing privacy mecha-

nisms. In Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages

351–360, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-506-2. doi: 10.1145/1536414.1536464. URL

http://doi.acm.org/10.1145/1536414.1536464.

[206] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John Wernsing.

CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In Proceedings

of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,

2016, pages 201–210, 2016. URL http://proceedings.mlr.press/v48/gilad-bachrach16.

html.

[207] Antonious M Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh. Shuf-

fled model of federated learning: Privacy, communication and accuracy trade-offs. arXiv preprint

arXiv:2008.07180, 2020.

[208] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of the Nine-

teenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages 218–229, New York, NY, USA,

1987. ACM. ISBN 0-89791-221-7. doi: 10.1145/28395.28420. URL http://doi.acm.org/10.1145/

28395.28420.

[209] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems.

SIAM J. Comput., 18(1):186–208, 1989.

[210] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs for

muggles. In STOC, pages 113–122. ACM, 2008.

[211] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.

[212] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.

ICLR, 2015.

[213] Slawomir Goryczka and Li Xiong. A comprehensive comparison of multiparty secure additions with differential

privacy. IEEE Trans. Dependable Sec. Comput., 14(5):463–477, 2017. doi: 10.1109/TDSC.2015.2484326.

URL https://doi.org/10.1109/TDSC.2015.2484326.

[214] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identifying vulnerabilities in the machine

learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[215] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents. Journal

of Network and Computer Applications, 116:1–8, 2018.

[216] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck R Cadambe. Local SGD with

periodic averaging: Tighter analysis and adaptive synchronization. arXiv preprint arXiv:1910.13598, 2019.

[217] Andreas Haeberlen, Benjamin C Pierce, and Arjun Narayan. Differential privacy under fire. In USENIX Security

Symposium, 2011.

[218] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Computing without simulta-

neous interaction. In Annual Cryptology Conference, pages 132–150. Springer, 2011.

[219] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. Fedboost: A communication-efficient algorithm

for federated learning. In International Conference on Machine Learning, pages 3973–3983. PMLR, 2020.

[220] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

102

[221] Yanjun Han, Ayfer Özgür, and Tsachy Weissman. Geometric lower bounds for distributed parameter estimation

under communication constraints. In Proceedings of Machine Learning Research, pages 1–26, 75, 2018.

[222] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé

Kiddon, and Daniel Ramage. Federated learning for mobile keyboard prediction. arXiv preprint 1811.03604,

2018.

[223] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. In Advances in

Neural Information Processing Systems, 2016.

[224] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume Smith, and Brian

Thorne. Private federated learning on vertically partitioned data via entity resolution and additively homomor-

phic encryption. arXiv preprint arXiv:1711.10677, 2017.

[225] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without demograph-

ics in repeated loss minimization. In International Conference on Machine Learning, pages 1934–1943, 2018.

[226] Chaoyang He, Conghui Tan, Hanlin Tang, Shuang Qiu, and Ji Liu. Central server free federated learning over

single-sided trust social networks. arXiv preprint arXiv:1910.04956, 2019.

[227] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated learning of

large cnns at the edge. In Advances in Neural Information Processing Systems 34, 2020.

[228] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Fednas: Federated deep learning via neural archi-

tecture search. 2020.

[229] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth

Vepakomma, Abhishek Singh, Hang Qiu, Xinghua Zhu, Jianzong Wang, Li Shen, Peilin Zhao, Yan Kang, Yang

Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman Avestimehr. Fedml: A research library and

benchmark for federated machine learning, 2020.

[230] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture search via mixed-

level reformulation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2020.

[231] Lie He, An Bian, and Martin Jaggi. COLA: Decentralized linear learning. In NeurIPS 2018 - Advances in

Neural Information Processing Systems 31, 2018.

[232] Úrsula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Calibration for

the (computationally-identifiable) masses. In International Conference on Machine Learning, pages 1944–

1953, 2018.

[233] HElib. HElib. https://github.com/homenc/HElib, October 2019.

[234] Judy Hoffman, Mehryar Mohri, and Ningshan Zhang. Algorithms and theory for multiple-source adaptation.

In Advances in Neural Information Processing Systems, pages 8246–8256, 2018.

[235] Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter Richtarik. Nat-

ural compression for distributed deep learning. arXiv preprint arXiv:1905.10988, 2019.

[236] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. The non-IID data quagmire of decen-

tralized machine learning, 2019. URL https://arxiv.org/abs/1910.00189.

[237] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution

for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[238] Yaochen Hu, Peng Liu, Linglong Kong, and Di Niu. Learning privately over distributed features: An admm

sharing approach, 2019.

103

[239] Zhenqi Huang, Sayan Mitra, and Nitin Vaidya. Differentially Private Distributed Optimization. In ICDCN,

2015.

[240] Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. In Advances in

Neural Information Processing Systems, pages 6659–6668, 2018.

[241] R Intel. Architecture instruction set extensions programming reference. Intel Corporation, Feb, 2012.

[242] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth, David Shanahan, and Moti

Yung. Private intersection-sum protocol with applications to attributing aggregate ad conversions. IACR Cryp-

tology ePrint Archive, 2017:738, 2017.

[243] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shobhit Saxena, Karn Seth,

David Shanahan, and Moti Yung. On deploying secure computing commercially: Private intersection-sum

protocols and their business applications. IACR Cryptology ePrint Archive, 2019:723, 2019.

[244] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In CRYPTO,

volume 2729 of Lecture Notes in Computer Science, pages 145–161. Springer, 2003.

[245] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver, and

Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70, pages 1627–1635. JMLR. org, 2017.

[246] Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, and

Jonathan Ullman. Differentially private fair learning. CoRR, abs/1812.02696, 2018. URL http://arxiv.

org/abs/1812.02696.

[247] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine learning: How

private is private sgd? Advances in Neural Information Processing Systems, 33, 2020.

[248] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.

Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID

private data. CoRR, abs/1811.11479, 2018. URL http://arxiv.org/abs/1811.11479.

[249] Zhuqing Jia and Syed Ali Jafar. On the capacity of secure distributed matrix multiplication. ArXiv,

abs/1908.06957, 2019.

[250] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. Improving federated learning personalization

via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

[251] S. Kadhe, B. Garcia, A. Heidarzadeh, S. E. Rouayheb, and A. Sprintson. Private information retrieval with side

information: The single server case. In 2017 55th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pages 1099–1106, Oct 2017. doi: 10.1109/ALLERTON.2017.8262860.

[252] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for local differential privacy. In

Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems 27, pages 2879–2887. Curran Associates, Inc., 2014.

[253] Peter Kairouz, K. A. Bonawitz, and Daniel Ramage. Discrete distribution estimation under local privacy. In

International Conference on Machine Learning, pages 2436–2444, 2016.

[254] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential privacy. IEEE

Transactions on Information Theory, 63(6):4037–4049, 2017.

[255] Peter Kairouz, Jiachun Liao, Chong Huang, and Lalitha Sankar. Censored and fair universal representations

using generative adversarial models. arXiv preprint arXiv:1910.00411, 2020.

[256] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism for federated

learning with secure aggregation, 2021.

104

[257] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu. Practical

and private (deep) learning without sampling or shuffling, 2021.

[258] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regularization ap-

proach. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages 643–650. IEEE, 2011.

[259] Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. Testing robustness against unforeseen

adversaries. arXiv preprint arXiv:1908.08016, 2019.

[260] Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. Incentive mechanism for reliable

federated learning: A joint optimization approach to combining reputation and contract theory. IEEE Internet

of Things Journal, 2019.

[261] Jiawen Kang, Zehui Xiong, Dusit Niyato, Han Yu, Ying-Chang Liang, and Dong In Kim. Incentive design for

efficient federated learning in mobile networks: A contract theory approach. In IEEE VTS Asia Pacific Wireless

Communications Symposium, APWCS 2019, Singapore, August 28-30, 2019, pages 1–5, 2019.

[262] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods

under the Polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 795–811. Springer, 2016.

[263] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes SignSGD

and other gradient compression schemes. In ICML, 2019.

[264] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,

and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in federated learning. arXiv

preprint arXiv:2008.03606, 2020.

[265] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha

Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International Conference on

Machine Learning, pages 5132–5143. PMLR, 2020.

[266] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith.

What can we learn privately? SIAM J. Comput., 40(3):793–826, 2011. URL https://doi.org/10.

1137/090756090.

[267] Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu, and Grigory Yaroslavtsev. Privacy for the protected (only).

CoRR, abs/1506.00242, 2015. URL http://arxiv.org/abs/1506.00242.

[268] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local GD on heterogeneous data,

2019. URL https://arxiv.org/abs/1909.04715.

[269] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Better communication complexity for local SGD,

2019. URL https://arxiv.org/abs/1909.04746.

[270] Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-learning methods.

In Advances in Neural Information Processing Systems, 2019.

[271] Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A framework for mathematical privacy definitions.

ACM Transactions on Database Systems, 39(1):3:1–3:36, 2014.

[272] Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. Federated tensor factorization for computational

phenotyping. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, pages 887–895, 2017. doi: 10.1145/3097983.

3098118. URL https://doi.org/10.1145/3097983.3098118.

[273] Ross D. King, Cao Feng, and Alistair Sutherland. StatLog: comparison of classification algorithms on large

real-world problems. Applied Artificial Intelligence an International Journal, 9(3):289–333, 1995.

105

[274] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan. TrustLite: a security architec-

ture for tiny embedded devices. In EuroSys, pages 10:1–10:14. ACM, 2014.

[275] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In Proceedings

of the 34th International Conference on Machine Learning-Volume 70, pages 1885–1894. JMLR. org, 2017.

[276] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data sanitization

defenses. arXiv preprint arXiv:1811.00741, 2018.

[277] Ron Kohavi and George H John. Automatic parameter selection by minimizing estimated error. In Machine

Learning Proceedings 1995, pages 304–312. Elsevier, 1995.

[278] Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Decentralized Stochastic Optimization and Gossip

Algorithms with Compressed Communication. In ICML, 2019.

[279] Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized deep learning with arbitrary

communication compression. International Conference on Learning Representations (ICLR), 2020.

[280] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A Unified Theory

of Decentralized SGD with Changing Topology and Local Updates. In ICML, 2020.

[281] Jakub Konečný and Peter Richtárik. Randomized distributed mean estimation: Accuracy vs communication.

Frontiers in Applied Mathematics and Statistics, 4:62, 2018.

[282] Jakub Konečný, H Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.

Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,

2016.

[283] Satya Kuppam, Ryan McKenna, David Pujol, Michael Hay, Ashwin Machanavajjhala, and Gerome Miklau.

Fair decision making using privacy-protected data. CoRR, abs/1905.12744, 2019. URL http://arxiv.

org/abs/1905.12744.

[284] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint

arXiv:1611.01236, 2016.

[285] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, New York, NY,

USA, 1997. ISBN 0-521-56067-5.

[286] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database, computationally-private

information retrieval. In In Proc. of the 38th Annu. IEEE Symp. on Foundations of Computer Science, pages

364–373, 1997.

[287] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In Advances in Neural

Information Processing Systems, pages 4066–4076, 2017.

[288] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle. Proceedings on Privacy Enhancing

Technologies, 2016(2):115–134, 2016.

[289] Yassine Laguel, Krishna Pillutla, Jérôme Malick, and Zaid Harchaoui. Device Heterogeneity in Federated

Learning: A Superquantile Approach. arXiv preprint arXiv:2002.11223, 2020.

[290] Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum. One shot learning of simple

visual concepts. In Proceedings of the Conference of the Cognitive Science Society (CogSci), 2017.

[291] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-peer Federated Learning on

Graphs. Technical report, arXiv:1901.11173, 2019.

[292] Anusha Lalitha, Xinghan Wang, Osman Kilinc, Yongxi Lu, Tara Javidi, and Farinaz Koushanfar. Decentralized

Bayesian learning over graphs. arXiv preprint: 1905.10466, 2019.

106

[293] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[294] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Programming, 133

(1):365–397, Jun 2012. ISSN 1436-4646. doi: 10.1007/s10107-010-0434-y. URL https://doi.org/

10.1007/s10107-010-0434-y.

[295] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen, and Mayank Varia. Secure MPC for

analytics as a web application. In SecDev, pages 73–74. IEEE Computer Society, 2016.

[296] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified robustness

to adversarial examples with differential privacy. In 2019 IEEE Symposium on Security and Privacy, SP 2019,

San Francisco, CA, USA, May 19-23, 2019, pages 656–672, 2019. doi: 10.1109/SP.2019.00044. URL https:

//doi.org/10.1109/SP.2019.00044.

[297] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. Private join and compute from PIR

with default. IACR Cryptol. ePrint Arch., 2020:1011, 2020.

[298] David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph Dureau. Federated learning for

keyword spotting. arXiv preprint arXiv:1810.05512, 2018.

[299] Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. Differentially private meta-learning. arXiv

preprint arXiv:1909.05830, 2019.

[300] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated

optimization in heterogeneous networks, 2018. URL https://arxiv.org/abs/1812.06127.

[301] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,

and future directions, 2019.

[302] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource allocation in federated learning. arXiv preprint

arXiv:1905.10497, 2019.

[303] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of FedAvg on

non-IID data. arXiv preprint arXiv:1907.02189, 2019.

[304] Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication efficient decentralized training

with multiple local updates. arXiv preprint arXiv:1910.09126, 2019.

[305] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can Decentralized Algorithms

Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent. In

NIPS, 2017.

[306] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous Decentralized Parallel Stochastic Gradient

Descent. In ICML, 2018.

[307] libsnark. libsnark: a c++ library for zkSNARK proofs. https://github.com/scipr-lab/libsnark,

December 2019.

[308] David Lie and Petros Maniatis. Glimmers: Resolving the privacy/trust quagmire. In Proceedings of the 16th

Workshop on Hot Topics in Operating Systems, pages 94–99. ACM, 2017.

[309] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of deep convolutional net-

works. In International Conference on Machine Learning, pages 2849–2858, 2016.

[310] Tao Lin, Sebastian U Stich, and Martin Jaggi. Don’t use large mini-batches, use local SGD. International

Conference on Learning Representations (ICLR), 2020.

107

[311] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reducing the

communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.

[312] R. J. A. Little. Post-stratification: A modeler’s perspective. Journal of the American Statistical Association, 88

(423):1001–1012, 1993. ISSN 01621459.

[313] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018.

[314] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring attacks

on deep neural networks. In International Symposium on Research in Attacks, Intrusions, and Defenses, pages

273–294. Springer, 2018.

[315] Xiyang Liu and Sewoong Oh. Minimax rates of estimating approximate differential privacy. arXiv preprint

arXiv:1905.10335, 2019.

[316] Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and Qiang Yang.

A communication efficient vertical federated learning framework. CoRR, abs/1912.11187, 2019. URL http:

//arxiv.org/abs/1912.11187.

[317] Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. A secure federated transfer learning

framework. IEEE Intelligent Systems, 35(4):70–82, 2020. doi: 10.1109/MIS.2020.2988525.

[318] Yang Liu, Zhihao Yi, and Tianjian Chen. Backdoor attacks and defenses in feature-partitioned collaborative

learning, 2020.

[319] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. Tro-

janing attack on neural networks. In 25th Annual Network and Distributed System Security Symposium, NDSS

2018, San Diego, California, USA, February 18-21, 2018, 2018. URL http://wp.internetsociety.

org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf.

[320] Yuhan Liu, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Michael Riley. Learning discrete

distributions: user vs item-level privacy. Advances in Neural Information Processing Systems, 33, 2020.

[321] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali Anwar, Shashank Rajamoni, Yuya Ong, Ja-

yaram Radhakrishnan, Ashish Verma, Mathieu Sinn, et al. IBM federated learning: An enterprise framework

white paper V0.1. arXiv preprint arXiv:2007.10987, 2020.

[322] Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang, Yunfeng Huang, Yang Liu, and Qiang Yang. Real-world

image datasets for federated learning. arXiv preprint arXiv:1910.11089, 2019.

[323] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. In Advances

in neural information processing systems, pages 7816–7827, 2018.

[324] Lingjuan Lyu, Jiangshan Yu, Karthik Nandakumar, Yitong Li, Xingjun Ma, Jiong Jin, Han Yu, and Kee Siong

Ng. Towards fair and privacy-preserving federated deep models. IEEE Transactions on Parallel and Distributed

Systems, 31(11):2524–2541, 2020.

[325] Jing Ma, Qiuchen Zhang, Jian Lou, Joyce Ho, Li Xiong, and Xiaoqian Jiang. Privacy-preserving tensor factor-

ization for collaborative health data analysis. In ACM CIKM, volume 2, 2019.

[326] Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private learners: Attacks and

defenses. In International Joint Conference on Artificial Intelligence (IJCAI), Macao, China, 2019. URL

https://arxiv.org/abs/1903.09860.

[327] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and transferable

representations. In ICML, 2018.

108

[328] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep

learning models resistant to adversarial attacks. ICLR, 2017.

[329] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and algo-

rithms. arXiv preprint arXiv:0902.3430, 2009.

[330] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with multiple sources. In

Advances in neural information processing systems, pages 1041–1048, 2009.

[331] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for personalization

with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

[332] Yishay Mansour, Mehryar Mohri, Ananda Theertha Suresh, and Ke Wu. A theory of multiple-source adaptation

with limited target labeled data. arXiv preprint arXiv:2007.09762, 2020.

[333] Alicia R Martin, Masahiro Kanai, Yoichiro Kamatani, Yukinori Okada, Benjamin M Neale, and Mark J Daly.

Current clinical use of polygenic scores will risk exacerbating health disparities. BioRxiv, page 441261, 2019.

[334] H Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning

without centralized training data, April 2017. URL https://ai.googleblog.com/2017/04/

federated-learning-collaborative.html. Google AI Blog.

[335] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization.

arXiv preprint arXiv:1002.4908, 2010.

[336] H Brendan McMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, Ilya Mironov, Nicolas Papernot, and

Peter Kairouz. A general approach to adding differential privacy to iterative training procedures. dec 2018.

URL https://arxiv. org/abs, 1812.

[337] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th In-

ternational Conference on Artificial Intelligence and Statistics, pages 1273–1282, 2017 (original version on

arxiv Feb. 2016).

[338] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent

language models. In International Conference on Learning Representations (ICLR), 2018.

[339] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, pages 94–103, 2007.

[340] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on machine learn-

ers. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[341] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended feature

leakage in collaborative learning. arXiv preprint arXiv:1805.04049, 2018.

[342] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of distributed learn-

ing in Byzantium. In ICML, 2018.

[343] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[344] Fatemehsadat Mireshghallah, Mohammadkazem Taram, , Praneeth Vepakomma, Abhishek Singh, Ramesh

Raskar, and Esmaeilzadeh Hadi. Privacy in deep learning: A survey. arXiv preprint arXiv:2004.12254, 2020.

[345] Ilya Mironov. On significance of the least significant bits for differential privacy. In Proceedings of the 2012

ACM conference on Computer and communications security, pages 650–661. ACM, 2012.

[346] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF),

pages 263–275. IEEE, 2017.

109

[347] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational differential privacy. In

Advances in Cryptology—CRYPTO, pages 126–142, 2009.

[348] Ilya Mironov, Kunal Talwar, and Li Zhang. R\’enyi differential privacy of the sampled Gaussian mechanism.

arXiv preprint arXiv:1908.10530, 2019.

[349] Shira Mitchell, Eric Potash, and Solon Barocas. Prediction-based decisions and fairness: A catalogue of

choices, assumptions, and definitions. arXiv preprint arXiv:1811.07867, 2018.

[350] Volodymyr Mnih and Geoffrey E Hinton. Learning to label aerial images from noisy data. In Proceedings of

the 29th International conference on machine learning (ICML-12), pages 567–574, 2012.

[351] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine learning.

In IEEE Symposium on Security and Privacy, pages 19–38. IEEE Computer Society, 2017.

[352] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic Federated Learning. In ICML, 2019.

[353] Jose G. Moreno-Torres, Troy Raeder, Rocı́O Alaiz-Rodrı́Guez, Nitesh V. Chawla, and Francisco Herrera. A

unifying view on dataset shift in classification. Pattern Recogn., 45(1), January 2012.

[354] Musketeer. Musketeer: About, 2019. URL http://musketeer.eu/project/. Retrieved Aug 2019.

[355] Carolina Naim, Fangwei Ye, and Salim El Rouayheb. ON-OFF privacy with correlated requests. In 2019 IEEE

International Symposium on Information Theory (ISIT), July 2019.

[356] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with noisy labels.

In Advances in neural information processing systems, pages 1196–1204, 2013.

[357] Giovanni Neglia, Chuan Xu, Don Towsley, and Gianmarco Calbi. Decentralized gradient methods: does topol-

ogy matter? In AISTATS, 2020.

[358] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv preprint

arXiv:1803.02999, 2018.

[359] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina Taft. Privacy-

preserving ridge regression on hundreds of millions of records. In IEEE Symposium on Security and Privacy,

pages 334–348. IEEE Computer Society, 2013.

[360] Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhihua Wu, and Guihai Chen.

Secure federated submodel learning. arXiv preprint arXiv:1911.02254, 2019.

[361] NSA. Defense in depth: A practical strategy for achieving Information Assurance in today’s highly networked

environments. Technical report, NSA, 2012.

[362] Deniz Oktay, Johannes Ballé, Saurabh Singh, and Abhinav Shrivastava. Model compression by entropy penal-

ized reparameterization. arXiv preprint arXiv:1906.06624, 2019.

[363] Femi Olumofin and Ian Goldberg. Revisiting the computational practicality of private information retrieval. In

International Conference on Financial Cryptography and Data Security, pages 158–172. Springer, 2011.

[364] Palisade. PALISADE lattice cryptography library. https://gitlab.com/palisade/

palisade-release, October 2019.

[365] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data

Engineering, 22(10):1345–1359, 2010.

[366] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia conference on

computer and communications security, pages 506–519. ACM, 2017.

110

[367] Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson. Tempered sigmoid

activations for deep learning with differential privacy. arXiv preprint arXiv:2007.14191, 2020.

[368] Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and Mérouane Debbah. Wireless network intelligence at the

edge. CoRR, abs/1812.02858, 2018. URL http://arxiv.org/abs/1812.02858.

[369] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: nearly practical verifiable compu-

tation. Commun. ACM, 59(2):103–112, 2016.

[370] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,

Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,

pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[371] Kumar Kshitij Patel and Aymeric Dieuleveut. Communication trade-offs for synchronized distributed SGD

with large step size. NeurIPS, 2019.

[372] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private stateful information retrieval. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, pages 1002–1019,

New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5693-0. doi: 10.1145/3243734.3243821. URL http:

//doi.acm.org/10.1145/3243734.3243821.

[373] Giorgio Patrini, Richard Nock, Stephen Hardy, and Tibério S. Caetano. Fast learning from distributed

datasets without entity matching. In Proceedings of the Twenty-Fifth International Joint Conference on

Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 1909–1917, 2016. URL

http://www.ijcai.org/Abstract/16/273.

[374] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. arXiv preprint arXiv:1602.02355,

2016.

[375] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via

parameter sharing. In International Conference on Machine Learning, pages 4092–4101, 2018.

[376] Sundar Pichai. Google’s Sundar Pichai: Privacy Should Not Be a Luxury Good. New York Times, May 7, 2019.

[377] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X Yu, Sashank J Reddi, and Sanjiv Kumar. AdaCliP:

Adaptive clipping for private SGD. arXiv preprint arXiv:1908.07643, 2019.

[378] Vasyl Pihur, Aleksandra Korolova, Frederick Liu, Subhash Sankuratripati, Moti Yung, Dachuan Huang, and

Ruogu Zeng. Differentially-private “Draw and Discard” machine learning. CoRR, abs/1807.04369, 2018. URL

http://arxiv.org/abs/1807.04369.

[379] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning. arXiv

preprint arXiv:1912.13445, 2019.

[380] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence. Dataset Shift in

Machine Learning. The MIT Press, 2009. ISBN 0262170051, 9780262170055.

[381] Shashank Rajput, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. DETOX: A redundancy-based

framework for faster and more robust gradient aggregation. arXiv preprint arXiv:1907.12205, 2019.

[382] Daniel Ramage and Stefano Mazzocchi. Federated analytics: Collaborative data science

without data collection, May 2020. URL https://ai.googleblog.com/2020/05/

federated-analytics-collaborative-data.html. Google AI Blog.

111

[383] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated learning for emoji

prediction in a mobile keyboard. arXiv preprint 1906.04329, 2019.

[384] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen Andrew, H Brendan McMahan, and Françoise Bea-

ufays. Training production language models without memorizing user data. arXiv preprint arXiv:2009.10031,

2020.

[385] Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed time-series with transfor-

mation and encryption. In Proceedings of the 2010 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’10, pages 735–746, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2. doi:

10.1145/1807167.1807247. URL http://doi.acm.org/10.1145/1807167.1807247.

[386] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Proceedings of the 5th

International Conference on Learning Representations, 2017.

[387] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and

Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pages 2902–2911. JMLR. org, 2017.

[388] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier

architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4780–

4789, 2019.

[389] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv Kumar,

and H Brendan McMahan. Adaptive federated optimization. arXiv preprint arXiv:2003.00295, 2020.

[390] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq: A

communication-efficient federated learning method with periodic averaging and quantization. arXiv preprint

arXiv:1909.13014, 2019.

[391] Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani. Robust and

communication-efficient collaborative learning. arXiv:1907.10595, 2019.

[392] Leonid Reyzin, Adam D. Smith, and Sophia Yakoubov. Turning HATE into LOVE: homomorphic ad hoc

threshold encryption for scalable MPC. IACR Cryptology ePrint Archive, 2018:997, 2018.

[393] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. HEAX: High-performance architecture for computa-

tion on homomorphically encrypted data in the cloud. arXiv preprint arXiv:1909.09731, 2019.

[394] Rashida Richardson, Jason Schultz, and Kate Crawford. Dirty data, bad predictions: How civil rights viola-

tions impact police data, predictive policing systems, and justice. New York University Law Review Online,

Forthcoming, 2019.

[395] Brian D Ripley. Statistical aspects of neural networks. Networks and chaos—statistical and probabilistic

aspects, 50:40–123, 1993.

[396] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomorphisms. Foun-

dations of Secure Computation, Academia Press, pages 169–179, 1978.

[397] Nuria Rodrı́guez-Barroso, Goran Stipcich, Daniel Jiménez-López, José Antonio Ruiz-Millán, Eugenio

Martı́nez-Cámara, Gerardo González-Seco, M Victoria Luzón, Miguel Angel Veganzones, and Francisco Her-

rera. Federated learning and differential privacy: Software tools analysis, the sherpa. ai fl framework and

methodological guidelines for preserving data privacy. Information Fusion, 64:270–292, 2020.

[398] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. Honeycrisp: large-scale differentially

private aggregation without a trusted core. In SOSP, pages 196–210. ACM, 2019.

[399] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueckert, and Jonathan

Passerat-Palmbach. A generic framework for privacy preserving deep learning, 2018.

112

[400] César Sabater, Aurélien Bellet, and Jan Ramon. Distributed Differentially Private Averaging with Improved

Utility and Robustness to Malicious Parties. arXiv preprint arXiv:2006.07218, 2020.

[401] John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. Parallel random numbers: As easy as 1, 2, 3.

In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and

Analysis, page 16. ACM, 2011.

[402] Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Mérouane Debbah. Federated learning for ultra-reliable

low-latency V2V communications. CoRR, abs/1805.09253, 2018. URL http://arxiv.org/abs/1805.

09253.

[403] Nithya Sambasivan, Garen Checkley, Amna Batool, Nova Ahmed, David Nemer, Laura Sanely Gaytán-Lugo,

Tara Matthews, Sunny Consolvo, and Elizabeth Churchill. ” privacy is not for me, it’s for those rich women”:

Performative privacy practices on mobile phones by women in south asia. In Fourteenth Symposium on Usable

Privacy and Security ({SOUPS} 2018), pages 127–142, 2018.

[404] Sai Sri Sathya, Praneeth Vepakomma, Ramesh Raskar, Ranjan Ramachandra, and Santanu Bhattacharya. A

review of homomorphic encryption libraries for secure computation. arXiv preprint arXiv:1812.02428, 2018.

[405] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and communication-

efficient federated learning from non-IID data. arXiv preprint arXiv:1903.02891, 2019.

[406] R. Schnell. Efficient private record linkage of very large datasets. In 59th World Statistics Congress, 2013.

[407] R. Schnell, T. Bachteler, and J. Reiher. A novel error-tolerant anonymous linking code. Technical report, Paper

No. WP-GRLC-2011-02, German Record Linkage Center Working Paper Series, 2011.

[408] Claus P. Schnorr. Efficient identification and signatures for smart cards. In Proceedings of the Workshop on the

Theory and Application of Cryptographic Techniques on Advances in Cryptology, EUROCRYPT ’89, 1990.

[409] SEAL. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November 2020.

Microsoft Research, Redmond, WA.

[410] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, page

2135, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342322. doi: 10.

1145/2939672.2945397. URL https://doi.org/10.1145/2939672.2945397.

[411] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doom, and Pradeep K. Khosla. Pioneer: Verifying

code integrity and enforcing untampered code execution on legacy systems. In Malware Detection, volume 27

of Advances in Information Security, pages 253–289. Springer, 2007.

[412] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S Davis, Gavin

Taylor, and Tom Goldstein. Adversarial training for free. NeurIPS, 2019.

[413] Vivek Sharma, Praneeth Vepakomma, Tristan Swedish, Ken Chang, Jayashree Kalpathy-Cramer, and Ramesh

Raskar. ExpertMatcher: Automating ML model selection for clients using hidden representations. arXiv

preprint arXiv:1910.03731, 2019.

[414] Yash Sharma and Pin-Yu Chen. Attacking the Madry defense model with l 1-based adversarial examples. arXiv

preprint arXiv:1710.10733, 2017.

[415] SHELL. https://github.com/google/shell-encryption, December 2020. Google.

[416] Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss minimization. In

Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5739–5748, Long Beach,

California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/shen19e.

html.

113

[417] Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. Privacy-preserving aggregation of

time-series data. In Annual Network & Distributed System Security Symposium (NDSS), 2011.

[418] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against

machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

[419] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive guide to Bayesian convolutional neural

network with variational inference. arXiv preprint: 1901.02731, 2019.

[420] Daniel L. Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems: Beyond learning algo-

rithms. In AAAI Spring Symposium Series, 2013.

[421] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. Detailed comparison of communi-

cation efficiency of split learning and federated learning. arXiv preprint arXiv:1909.09145, 2019.

[422] Abhishek Singh, Ayush Chopra, Vivek Sharma, Ethan Garza, Emily Zhang, Praneeth Vepakomma, and Ramesh

Raskar. DISCO: Dynamic and invariant sensitive channel obfuscation for deep neural networks. 2020.

[423] Radu Sion and Bogdan Carbunar. On the computational practicality of private information retrieval. In Pro-

ceedings of the Network and Distributed Systems Security Symposium, pages 2006–06. Internet Society, 2007.

[424] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. Federated Multi-Task Learning. In

NIPS, 2017.

[425] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In Advances in

Neural Information Processing Systems, 2017.

[426] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa Pat-

wary, Mr Prabhat, and Ryan Adams. Scalable Bayesian optimization using deep neural networks. In Interna-

tional conference on machine learning, pages 2171–2180, 2015.

[427] Jinhyun So, Basak Guler, and A. Salman Avestimehr. Byzantine-resilient secure federated learning. IEEE

Journal on Selected Areas in Communication, Series on Machine Learning for Communications and Networks,

2020.

[428] Jinhyun So, Basak Guler, and A Salman Avestimehr. Turbo-aggregate: Breaking the quadratic aggregation

barrier in secure federated learning. arXiv preprint arXiv:2002.04156, 2020.

[429] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of securing machine learning models against

adversarial examples. In In Proceedings of the ACM Conference on Computer and Communication Security

(CCS), 2019.

[430] K Srinathan and C Pandu Rangan. Efficient asynchronous secure multiparty distributed computation. In Inter-

national Conference on Cryptology in India, pages 117–129. Springer, 2000.

[431] Brij Mohan Lal Srivastava, Aurélien Bellet, Marc Tommasi, and Emmanuel Vincent. Privacy-Preserving Ad-

versarial Representation Learning in ASR: Reality or Illusion? In Annual Conference of the International

Speech Communication Association (Interspeech), 2019.

[432] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks. In

Advances in neural information processing systems, pages 3517–3529, 2017.

[433] Thomas Steinke and Jonathan Ullman. Tight lower bounds for differentially private selection. In FOCS, pages

552–563, 2017.

[434] Sebastian U Stich. Local SGD converges fast and communicates little. In International Conference on Learning

Representations (ICLR), 2019.

114

[435] Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for SGD with

delayed gradients and compressed communication. arXiv:1909.05350, 2019.

[436] Lili Su and Nitin H. Vaidya. Fault-Tolerant Multi-Agent Optimization: Optimal Iterative Distributed Algo-

rithms. In PODC, 2016.

[437] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A Seshia. A formal foundation

for secure remote execution of enclaves. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 2435–2450. ACM, 2017.

[438] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really backdoor

federated learning? arXiv preprint arXiv:1911.07963, 2019.

[439] support.google. Your chats stay private while Messages improves suggestions, 2019. URL https://

support.google.com/messages/answer/9327902. Retrieved Aug 2019.

[440] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H Brendan McMahan. Distributed mean estimation

with limited communication. In Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 3329–3337. JMLR. org, 2017.

[441] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

Fergus. Intriguing properties of neural networks. ICLR, 2013.

[442] Gábor J Székely, Maria L Rizzo, Nail K Bakirov, et al. Measuring and testing dependence by correlation of

distances. The annals of statistics, 35(6):2769–2794, 2007.

[443] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training over decentralized

data. In ICML, 2018.

[444] Hanlin Tang, Xiangru Lian, Shuang Qiu, Lei Yuan, Ce Zhang, Tong Zhang, and Ji Liu. DeepSqueeze:

Parallel stochastic gradient descent with double-pass error-compensated compression. arXiv preprint

arXiv:1907.07346, 2019.

[445] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and XiaoFeng Wang. Privacy loss in Ap-

ple’s implementation of differential privacy on MacOS 10.12. CoRR, abs/1709.02753, 2017. URL http:

//arxiv.org/abs/1709.02753.

[446] Om Thakkar, Galen Andrew, and H Brendan McMahan. Differentially private learning with adaptive clipping.

arXiv preprint arXiv:1905.03871, 2019.

[447] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in trusted

hardware. In International Conference on Learning Representations, 2019. URL https://openreview.

net/forum?id=rJVorjCcKQ.

[448] Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturbations. arXiv preprint

arXiv:1904.13000, 2019.

[449] Florian Tramèr and Dan Boneh. Differentially private learning needs better features (or much more data). arXiv

preprint arXiv:2011.11660, 2020.

[450] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing machine learn-

ing models via prediction APIs. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,

USA, August 10-12, 2016., pages 601–618, 2016. URL https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/tramer.

[451] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine Shi. Sealed-glass proofs:

Using transparent enclaves to prove and sell knowledge. In 2017 IEEE European Symposium on Security and

Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017, pages 19–34, 2017.

115

[452] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D. McDaniel.

Ensemble adversarial training: Attacks and defenses. In 6th International Conference on Learning Represen-

tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[453] Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-Henrik Jacobsen. Fundamental

tradeoffs between invariance and sensitivity to adversarial perturbations. In Proceedings of the 37th Interna-

tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceed-

ings of Machine Learning Research, pages 9561–9571. PMLR, 2020. URL http://proceedings.mlr.

press/v119/tramer20a.html.

[454] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In Advances in Neural

Information Processing Systems, pages 8000–8010, 2018.

[455] Jonathan Ullman. Tight lower bounds for locally differentially private selection. Technical Report

abs/1802.02638, arXiv, 2018. URL http://arxiv.org/abs/1802.02638.

[456] The Google-Landmark v2 Authors. Google landmark dataset v2, 2019. URL https://github.com/

cvdfoundation/google-landmark.

[457] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving SVM classification. Knowl. Inf. Syst., 14

(2), January 2008.

[458] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,

Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient out-of-order execution. In 27th {USENIX} Security Symposium ({USENIX} Security

18), pages 991–1008, 2018.

[459] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized collaborative learning of personalized

models over networks. In AISTATS, 2017.

[460] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health: Dis-

tributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564, 2018.

[461] Praneeth Vepakomma, Chetan Tonde, Ahmed Elgammal, et al. Supervised dimensionality reduction via dis-

tance correlation maximization. Electronic Journal of Statistics, 12(1):960–984, 2018.

[462] Praneeth Vepakomma, Otkrist Singh, Abhishek Gupta, and Ramesh Raskar. Nopeek: Information leakage

reduction to share activations in distributed deep learning. arXiv preprint arXiv:2008.09161, 2020.

[463] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient compression

for distributed optimization. In NeurIPS 2019 - Advances in Neural Information Processing Systems 32, 2019.

[464] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zksnarks

without trusted setup. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May

2018, San Francisco, California, USA, 2018.

[465] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.

Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium on

Security and Privacy. IEEE, 2019.

[466] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy yong Sohn,

Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can backdoor federated

learning, 2020.

[467] Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis of

communication-efficient SGD algorithms. preprint, August 2018. URL https://arxiv.org/abs/

1808.07576.

116

[468] Jianyu Wang and Gauri Joshi. Adaptive Communication Strategies for Best Error-Runtime Trade-offs in

Communication-Efficient Distributed SGD. In Proceedings of the SysML Conference, April 2019. URL

https://arxiv.org/abs/1810.08313.

[469] Jianyu Wang, Anit Sahu, Gauri Joshi, and Soummya Kar. MATCHA: Speeding Up Decentralized SGD

via Matching Decomposition Sampling. preprint, May 2019. URL https://arxiv.org/abs/1905.

09435.

[470] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. SlowMo: Improving communication-

efficient distributed SGD with slow momentum. arXiv preprint arXiv:1910.00643, 2019.

[471] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective inconsistency

problem in heterogeneous federated optimization. Advances in Neural Information Processing Systems, 33,

2020.

[472] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays, and Daniel Ramage.

Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252, 2019.

[473] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint

arXiv:1811.10959, 2018.

[474] Yu-Xiang Wang, Borja Balle, and Shiva Kasiviswanathan. Subsampled R\’enyi differential privacy and analyt-

ical moments accountant. arXiv preprint arXiv:1808.00087, 2018.

[475] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive answer bias. Journal of

the American Statistical Association, 60(309):63–69, 1965.

[476] WeBank. WeBank and Swiss re signed cooperation MOU, 2019. URL https://finance.yahoo.com/

news/webank-swiss-signed-cooperation-mou-112300218.html. Retrieved Aug 2019.

[477] Eric Wong, Frank R Schmidt, and J Zico Kolter. Wasserstein adversarial examples via projected sinkhorn

iterations. ICML, 2019.

[478] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow

paper, 151(2014):1–32, 2014.

[479] D. Woodruff and S. Yekhanin. A geometric approach to information-theoretic private information retrieval.

In 20th Annual IEEE Conference on Computational Complexity (CCC’05), pages 275–284, June 2005. doi:

10.1109/CCC.2005.2.

[480] Blake Woodworth, Jialei Wang, H. Brendan McMahan, and Nathan Srebro. Graph oracle models, lower bounds,

and gaps for parallel stochastic optimization. In Advances in Neural Information Processing Systems (NIPS),

2018. URL https://arxiv.org/abs/1805.10222.

[481] Blake Woodworth, Kumar Kshitij Patel, Sebastian U Stich, Zhen Dai, Brian Bullins, H Brendan McMahan,

Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? arXiv preprint arXiv:2002.07839,

2020.

[482] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N Holtmann-Rice, David Simcha, and

Felix X. Yu. Multiscale quantization for fast similarity search. In Advances in Neural Information Processing

Systems, pages 5745–5755, 2017.

[483] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for improving

adversarial robustness. CVPR, 2019.

[484] Cong Xie. Zeno++: robust asynchronous SGD with arbitrary number of Byzantine workers. arXiv preprint

arXiv:1903.07020, 2019.

117

[485] Cong Xie, Oluwasanmi Koyejo, Indranil Gupta, and Haibin Lin. Local adaalter: Communication-efficient

stochastic gradient descent with adaptive learning rates. arXiv preprint arXiv:1911.09030, 2019.

[486] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Practical distributed learning: Secure machine learning with

communication-efficient local updates. In European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases (ECML PKDD), 2019.

[487] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with suspicion-

based fault-tolerance. In International Conference on Machine Learning, pages 6893–6901, 2019.

[488] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search. arXiv

preprint arXiv:1812.09926, 2018.

[489] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. Libra: Succinct

zero-knowledge proofs with optimal prover computation. In CRYPTO (3), volume 11694 of Lecture Notes in

Computer Science, pages 733–764. Springer, 2019.

[490] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and applica-

tions. CoRR, abs/1902.04885, 2019. URL http://arxiv.org/abs/1902.04885.

[491] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage, and

Françoise Beaufays. Applied federated learning: Improving Google keyboard query suggestions. arXiv preprint

1812.02903, 2018.

[492] Andrew C Yao. Protocols for secure computations. In Symposium on Foundations of Computer Science, 1982.

[493] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages 162–167.

IEEE Computer Society, 1986.

[494] Fangwei Ye, Carolina Naim, and Salim El Rouayheb. Preserving ON-OFF privacy for past and future requests.

In 2019 IEEE Information Theory Workshop (ITW), August 2019.

[495] Min Ye and Alexander Barg. Optimal schemes for discrete distribution estimation under locally differential

privacy. IEEE Transactions on Information Theory, 2018.

[496] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning: Analyzing

the connection to overfitting. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pages 268–

282. IEEE, 2018.

[497] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-robust distributed learning:

Towards optimal statistical rates. In ICML, 2019.

[498] Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing, Ankit Singla, Dan Alistarh, Ce Zhang, and Ji Liu.

Distributed learning over unreliable networks. arXiv preprint arXiv:1810.07766, 2018.

[499] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and Qiang Yang. A

sustainable incentive scheme for federated learning. IEEE Intelligent Systems, 35(4):58–69, 2020.

[500] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD for non-convex optimization with faster conver-

gence and less communication. arXiv preprint arXiv:1807.06629, 2018.

[501] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient momentum SGD

for distributed non-convex optimization. arXiv preprint arXiv:1905.03817, 2019.

[502] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local adaptation. arXiv

preprint arXiv:2002.04758, 2020.

[503] Muhammad Bila Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. Fairness con-

straints: Mechanisms for fair classification. In Proceedings of the 20th International Conference on Artificial

Intelligence and Statistics, 2017.

118

[504] Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. Fully Decentralized Joint Learning of Personalized

Models and Collaboration Graphs. Technical report, arXiv:1901.08460, 2019.

[505] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging SGD. In Advances

in Neural Information Processing Systems, pages 685–693, 2015.

[506] Yu Zhang and Qiang Yang. A survey on multi-task learning. CoRR, abs/1707.08114, 2017. URL http:

//arxiv.org/abs/1707.08114.

[507] Yuchen Zhang, John Duchi, Micheal I. Jordan, and Martin J. Wainwright. Information-theoretic lower bounds

for distributed statistical estimation with communication constraints. In Advances in Neural Information Pro-

cessing Systems, pages 2328–2336, 2013.

[508] Yawei Zhao, Chen Yu, Peilin Zhao, and Ji Liu. Decentralized online learning: Take benefits from others’ data

without sharing your own to track global trend. arXiv preprint arXiv:1901.10593, 2019.

[509] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model com-

pression. arXiv preprint arXiv:1710.01878, 2017.

[510] Wennan Zhu, Peter Kairouz, Haicheng Sun, Brendan McMahan, and Wei Li. Federated heavy hitters discovery

with differential privacy. arXiv preprint arXiv:1902.08534, 2019.

[511] Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an approach toward optimal

education. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

A Software and Datasets for Federated Learning

Software for simulation Simulations of federated learning require dealing with multiple issues that do not

arise in datacenter ML research, for example, efficiently processing partitioned datasets, with computations

running on different simulated devices, each with a variable amount of data. FL research also requires

different metrics such as the number of bytes upload or downloaded by device, as well as the ability to

simulate issues like time-varying arrival of different clients or client drop-out that is potentially correlated

with the nature of the local dataset. With this in mind, the development of open software frameworks for

federated learning research (simulation) has the potential to greatly accelerate research progress. Several

platforms are available or in development, including [404]:

• TensorFlow Federated [38] specifically targets research use cases, providing large-scale simulation

capabilities as well as flexible orchestration for the control of sampling.

• FedML [229] is a research-oriented library. It supports three platforms: on-device training for IoT

and mobile devices, distributed computing, and single-machine simulation. For research diversity,

FedML also supports various algorithms (e.g., decentralized learning, vertical FL, and split learning),

models, and datasets.

• PySyft [399] is a Python library for secure, private Deep Learning. PySyft decouples private data from

model training, using federated learning, differential privacy, and multi-party computation (MPC)

within PyTorch.

• Leaf [35] provides multiple datasets (see below), as well as simulation and evaluation capabilities.

• Sherpa.ai Federated Learning and Differential Privacy Framework [397] is an open source federated

learning and differential privacy framework which provides methodologies, pipelines, and evaluation

techniques for federated learning.

119

• PyVertical [32] is a project focusing on federated learning with data partitioned by features (also

referred to as vertical partitioning) in the cross-silo setting; see Section 2.2.

Production-oriented software In addition to the above simulation platforms, several production-oriented

federated learning platforms are being developed:

• FATE (Federated AI Technology Enabler) [33] is an open-source project intended to provide a secure

computing framework to support the federated AI ecosystem.

• PaddleFL [36] is an open source federated learning framework based on PaddlePaddle [37]. In

PaddleFL, several federated learning strategies and training strategies are provided with application

demonstrations.

• Clara Training Framework [125] includes the support of cross-silo federated learning based on a

server-client approach with data privacy protection.

• IBM Federated Learning [321] is a Python-based federated learning framework for enterprise envi-

ronments, which provides a basic fabric for adding advanced features.

• Flower framework [66] supports implementation and experimentation of federated learning algo-

rithms on mobile and embedded devices with a real-world system conditions simulation.

• Fedlearner [34] is an open source federated learning framework that enables joint modeling of data

distributed between institutions.

Such production-oriented federated learning platforms must address problems that do not exist in simula-

tion such as authentication, communication protocols, encryption and deployment to physical devices or

silos. Note that while TensorFlow Federated is listed under “Software for simulation”, its design includes

abstractions for aggregation and broadcast, and serialization of all TensorFlow computations for execution

in non-Python environments, making it suitable for use as a component in a production system.

Datasets Federated learning is adopted when the data is decentralized and typically unbalanced (different

clients have different numbers of examples) and not identically distributed (each client’s data is drawn from a

different distribution). The open source package TensorFlow Federated [38] supports loading decentralized

dataset in a simulated environment with each client id corresponding to a TensorFlow Dataset Object. These

datasets can easily be converted to numpy arrays for use in other frameworks.11 At the time of writing, three

datasets are supported and we recommend researchers to benchmark on them.

• EMNIST dataset [126] consists of 671,585 images of digits and upper and lower case English charac-

ters (62 classes). The federated version splits the dataset into 3,400 unbalanced clients indexed by the

original writer of the digits/characters. The non-IID distribution comes from the unique writing style

of each person.

• Stackoverflow12 dataset consists of question and answer from Stack Overflow with metadata like

timestamps, scores, etc. The training dataset has more than 342,477 unique users with 135,818,730

examples. Note that the timestamp information can be helpful to simulate the pattern of incoming

data.

11https://www.tensorflow.org/datasets/api_docs/python/tfds/as_numpy.
12https://www.kaggle.com/stackoverflow/stackoverflow

120

• Shakespeare is a language modeling dataset derived from The Complete Works of William Shake-

speare. It consists of 715 characters whose contiguous lines are examples in the client dataset. The

train set has 16,068 examples and test set has 2,356 examples.

The preprocessing for EMNIST and Shakespeare are provided by the Leaf project [96], which also provides

federated versions of the sentiment140 and celebA datasets. These datasets have enough clients that they

can be used to simulate cross-device FL scenarios, but for questions where scale is particularly important,

they may be too small. In this respect Stackoverflow provides the most realistic example of a cross-device

FL problem.

Cross-silo datasets One example is the iNaturalist dataset13 which consists of large numbers of observa-

tions of various organisms all over the world. One can partition it by the geolocation or the author of an

observation. If we partition it by the group an organism belongs to, like kingdom, phylum, etc., then the

clients have totally different labels and biological closeness between two clients is already known. This

makes it a very suitable dataset to study federated transfer learning and multi-task learning in cross-silo

settings.

Another example is the Google-Landmark-v2 [456] that includes over 5 million images of more than

200 thousand different types of landmark. Similar to the iNaturalist dataset, one can split the dataset by

authors, but due to the difference in scale with iNaturalist dataset, Google Landmark Dataset provides much

more diversity and creates even greater challenges to large-scale federated learning.

Luo et al. [322] has recently published a federated dataset for computer vision. The dataset contains

more than 900 annotated street images generated from 26 street cameras and 7 object categories annotated

with detailed bounding box. Due to the relatively small number of examples in the dataset, it may not

adequately reflect a challenging realistic scenario.

The need for more datasets Developing new federated learning datasets that are representative of real-

world problems is an important question for the community to address. Platforms like TensorFlow Feder-

ated [38] welcome the contribution of new datasets and may be able to provide hosting support.

While completely new datasets are always interesting, in many cases it is possible to partition existing

open datasets, treating each split as a client. Different partitioning strategies may be appropriate for different

research questions, but often unbalanced and non-IID partitions will be most relevant. It is also interesting

to maintain as much additional meta information (timestamp, geolocation, etc.) as possible.

In particular, there is a need for feature-partitioned datasets, as will be discussed in Section 2.2. For

example, a patient may go to one medical institute for a pathology test and go to another for radiology

picture archiving, in which case the features of one sample are partitioned over two institutes regulated by

HIPAA. [24].

13https://www.inaturalist.org/

121

	1 Introduction
	1.1 The Cross-Device Federated Learning Setting
	1.1.1 The Lifecycle of a Model in Federated Learning
	1.1.2 A Typical Federated Training Process

	1.2 Federated Learning Research
	1.3 Organization

	2 Relaxing the Core FL Assumptions: Applications to Emerging Settings and Scenarios
	2.1 Fully Decentralized / Peer-to-Peer Distributed Learning
	2.1.1 Algorithmic Challenges
	2.1.2 Practical Challenges

	2.2 Cross-Silo Federated Learning
	2.3 Split Learning
	2.4 Executive summary

	3 Improving Efficiency and Effectiveness
	3.1 Non-IID Data in Federated Learning
	3.1.1 Strategies for Dealing with Non-IID Data

	3.2 Optimization Algorithms for Federated Learning
	3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets
	3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets

	3.3 Multi-Task Learning, Personalization, and Meta-Learning
	3.3.1 Personalization via Featurization
	3.3.2 Multi-Task Learning
	3.3.3 Local Fine Tuning and Meta-Learning
	3.3.4 When is a Global FL-trained Model Better?

	3.4 Adapting ML Workflows for Federated Learning
	3.4.1 Hyperparameter Tuning
	3.4.2 Neural Architecture Design
	3.4.3 Debugging and Interpretability for FL

	3.5 Communication and Compression
	3.6 Application To More Types of Machine Learning Problems and Models
	3.7 Executive summary

	4 Preserving the Privacy of User Data
	4.1 Actors, Threat Models, and Privacy in Depth
	4.2 Tools and Technologies
	4.2.1 Secure Computations
	4.2.2 Privacy-Preserving Disclosures
	4.2.3 Verifiability

	4.3 Protections Against External Malicious Actors
	4.3.1 Auditing the Iterates and Final Model
	4.3.2 Training with Central Differential Privacy
	4.3.3 Concealing the Iterates
	4.3.4 Repeated Analyses over Evolving Data
	4.3.5 Preventing Model Theft and Misuse

	4.4 Protections Against an Adversarial Server
	4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection
	4.4.2 Limitations of Existing Solutions
	4.4.3 Training with Distributed Differential Privacy
	4.4.4 Preserving Privacy While Training Sub-Models

	4.5 User Perception
	4.5.1 Understanding Privacy Needs for Particular Analysis Tasks
	4.5.2 Behavioral Research to Elicit Privacy Preferences

	4.6 Executive Summary

	5 Defending Against Attacks and Failures
	5.1 Adversarial Attacks on Model Performance
	5.1.1 Goals and Capabilities of an Adversary
	5.1.2 Model Update Poisoning
	5.1.3 Data Poisoning Attacks
	5.1.4 Inference-Time Evasion Attacks
	5.1.5 Defensive Capabilities from Privacy Guarantees

	5.2 Non-Malicious Failure Modes
	5.3 Exploring the Tension between Privacy and Robustness
	5.4 Executive Summary

	6 Ensuring Fairness and Addressing Sources of Bias
	6.1 Bias in Training Data
	6.2 Fairness Without Access to Sensitive Attributes
	6.3 Fairness, Privacy, and Robustness
	6.4 Leveraging Federation to Improve Model Diversity
	6.5 Federated Fairness: New Opportunities and Challenges
	6.6 Executive Summary

	7 Addressing System Challenges
	7.1 Platform Development and Deployment Challenges
	7.2 System Induced Bias
	7.2.1 Device Availability Profiles
	7.2.2 Examples of System Induced Bias
	7.2.3 Open Challenges in Quantifying and Mitigating System Induced Bias

	7.3 System Parameter Tuning
	7.4 On-Device Runtime
	7.5 The Cross-Silo Setting
	7.6 Executive Summary

	8 Concluding Remarks
	A Software and Datasets for Federated Learning

