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Abstract

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or
whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service
provider), while keeping the training data decentralized. FL embodies the principles of focused data
collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting
from traditional, centralized machine learning and data science approaches. Motivated by the explosive
growth in FL research, this paper discusses recent advances and presents an extensive collection of open
problems and challenges.
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1 Introduction

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole or-
ganizations) collaboratively train a model under the orchestration of a central server (e.g. service provider),
while keeping the training data decentralized. It embodies the principles of focused collection and data
minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, cen-
tralized machine learning. This area has received significant interest recently, both from research and applied
perspectives. This paper describes the defining characteristics and challenges of the federated learning set-
ting, highlights important practical constraints and considerations, and then enumerates a range of valuable
research directions. The goals of this work are to highlight research problems that are of significant theo-
retical and practical interest, and to encourage research on problems that could have significant real-world
impact.

The term federated learning was introduced in 2016 by McMahan et al. [337]: “We term our approach
Federated Learning, since the learning task is solved by a loose federation of participating devices (which
we refer to as clients) which are coordinated by a central server.” An unbalanced and non-IID (identically
and independently distributed) data partitioning across a massive number of unreliable devices with limited
communication bandwidth was introduced as the defining set of challenges.

Significant related work predates the introduction of the term federated learning. A longstanding goal
pursued by many research communities (including cryptography, databases, and machine learning) is to ana-
lyze and learn from data distributed among many owners without exposing that data. Cryptographic methods
for computing on encrypted data were developed starting in the early 1980s [396, 492], and Agrawal and
Srikant [11] and Vaidya et al. [457] are early examples of work that sought to learn from local data using
a centralized server while preserving privacy. Conversely, even since the introduction of the term federated
learning, we are aware of no single work that directly addresses the full set of FL challenges. Thus, the term
federated learning provides a convenient shorthand for a set of characteristics, constraints, and challenges
that often co-occur in applied ML problems on decentralized data where privacy is paramount.

This paper originated at the Workshop on Federated Learning and Analytics held June 17-18th, 2019,
hosted at Google’s Seattle office. During the course of this two-day event, the need for a broad paper
surveying the many open challenges in the area of federated learning became clear.!

A key property of many of the problems discussed is that they are inherently interdisciplinary — solving
them likely requires not just machine learning, but techniques from distributed optimization, cryptography,
security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more.
Many of the hardest problems are at the intersections of these areas, and so we believe collaboration will be
essential to ongoing progress. One of the goals of this work is to highlight the ways in which techniques from
these fields can potentially be combined, raising both interesting possibilities as well as new challenges.

Since the term federated learning was initially introduced with an emphasis on mobile and edge device
applications [337, 334], interest in applying FL to other applications has greatly increased, including some
which might involve only a small number of relatively reliable clients, for example multiple organizations
collaborating to train a model. We term these two federated learning settings “cross-device” and “cross-silo”
respectively. Given these variations, we propose a somewhat broader definition of federated learning:

Federated learning is a machine learning setting where multiple entities (clients) collaborate
in solving a machine learning problem, under the coordination of a central server or service
provider. Each client’s raw data is stored locally and not exchanged or transferred; instead,

"During the preparation of this work, Li et al. [301] independently released an excellent but less comprehensive survey.



focused updates intended for immediate aggregation are used to achieve the learning objective.

Focused updates are updates narrowly scoped to contain the minimum information necessary for the specific
learning task at hand; aggregation is performed as early as possible in the service of data minimization. We
note that this definition distinguishes federated learning from fully decentralized (peer-to-peer) learning
techniques as discussed in Section 2.1.

Although privacy-preserving data analysis has been studied for more than 50 years, only in the past
decade have solutions been widely deployed at scale (e.g. [177, 154]). Cross-device federated learning and
federated data analysis are now being applied in consumer digital products. Google makes extensive use of
federated learning in the Gboard mobile keyboard [376, 222, 491, 112, 383], as well as in features on Pixel
phones [14] and in Android Messages [439]. While Google has pioneered cross-device FL, interest in this
setting is now much broader, for example: Apple is using cross-device FL in iOS 13 [25], for applications
like the QuickType keyboard and the vocal classifier for “Hey Siri” [26]; doc.ai is developing cross-device
FL solutions for medical research [149], and Snips has explored cross-device FL for hotword detection
[298].

Cross-silo applications have also been proposed or described in myriad domains including finance risk
prediction for reinsurance [476], pharmaceuticals discovery [179], electronic health records mining [184],
medical data segmentation [15, 139], and smart manufacturing [354].

The growing demand for federated learning technology has resulted in a number of tools and frameworks
becoming available. These include TensorFlow Federated [38], Federated Al Technology Enabler [33],
PySyft [399], Leaf [35], PaddleFL [36] and Clara Training Framework [125]; more details in Appendix A.
Commercial data platforms incorporating federated learning are in development from established technology
companies as well as smaller start-ups.

Table 1 contrasts both cross-device and cross-silo federated learning with traditional single-datacenter
distributed learning across a range of axes. These characteristics establish many of the constraints that
practical federated learning systems must typically satisfy, and hence serve to both motivate and inform the
open challenges in federated learning. They will be discussed at length in the sections that follow.

These two FL variants are called out as representative and important examples, but different FL settings
may have different combinations of these characteristics. For the remainder of this paper, we consider the
cross-device FL setting unless otherwise noted, though many of the problems apply to other FL settings as
well. Section 2 specifically addresses some of the many other variations and applications.

Next, we consider cross-device federated learning in more detail, focusing on practical aspects common
to a typical large-scale deployment of the technology; Bonawitz et al. [81] provides even more detail for a
particular production system, including a discussion of specific architectural choices and considerations.

1.1 The Cross-Device Federated Learning Setting

This section takes an applied perspective, and unlike the previous section, does not attempt to be definitional.
Rather, the goal is to describe some of the practical issues in cross-device FL and how they might fit into a
broader machine learning development and deployment ecosystem. The hope is to provide useful context
and motivation for the open problems that follow, as well as to aid researchers in estimating how straight-
forward it would be to deploy a particular new approach in a real-world system. We begin by sketching the
lifecycle of a model before considering a FL training process.



Datacenter
distributed learning

Cross-silo
federated learning

Cross-device
federated learning

Setting Training a model on a large Training a model on siloed data. The clients are a very large number of
but “flat” dataset. Clients Clients are different organiza- mobile or IoT devices.
are compute nodes in a sin- tions (e.g. medical or financial)
gle cluster or datacenter. or geo-distributed datacenters.
Data Data is centrally stored and Data is generated locally and remains decentralized. Each client stores
distribution can be shuffled and balanced its own data and cannot read the data of other clients. Data is not indepen-
across clients. Any clientcan dently or identically distributed.
read any part of the dataset.
Orchestration  Centrally orchestrated. A central orchestration server/service organizes the training, but never
sees raw data.
Wide-area None (fully connected Typically a hub-and-spoke topology, with the hub representing a coordi-
communication clients in one datacen- nating service provider (typically without data) and the spokes connecting
ter/cluster). to clients.
Data All clients are almost always available. Only a fraction of clients are available at
availability any one time, often with diurnal or other
variations.
Distribution Typically 1 - 1000 clients. Typically 2 - 100 clients. Massively parallel, up to 10 clients.
scale
Primary Computation is more often Might be computation or com- Communication is often the primary
bottleneck the bottleneck in the datacen- munication. bottleneck, though it depends on the
ter, where very fast networks task. Generally, cross-device federated
can be assumed. computations use wi-fi or slower con-
nections.
Addressability Each client has an identity or name that allows the system to  Clients cannot be indexed directly (i.e.,
access it specifically. no use of client identifiers).
Client Stateful — each client may participate in each round of the com-  Stateless — each client will likely par-
statefulness putation, carrying state from round to round. ticipate only once in a task, so gener-
ally a fresh sample of never-before-seen
clients in each round of computation is
assumed.
Client Relatively few failures. Highly unreliable — 5% or more of the
reliability clients participating in a round of com-

Data partition
axis

Data can be partitioned / re-
partitioned arbitrarily across
clients.

Partition is fixed. Could be
example-partitioned (horizontal)
or feature-partitioned (vertical).

putation are expected to fail or drop out
(e.g. because the device becomes ineli-
gible when battery, network, or idleness
requirements are violated).

Fixed partitioning by example (horizon-
tal).

Table 1: Typical characteristics of federated learning settings vs. distributed learning in the datacenter (e.g. [150]).
Cross-device and cross-silo federated learning are two examples of FL. domains, but are not intended to be exhaustive.
The primary defining characteristics of FL are highlighted in bold, but the other characteristics are also critical in
determining which techniques are applicable.



model
testing

clients
server

engineers
& analysts
federated = hest ot
learnin E|
R 9 model -
deployment

Figure 1: The lifecycle of an FL-trained model and the various actors in a federated learning system. This
figure is revisited in Section 4 from a threat models perspective.

1.1.1 The Lifecycle of a Model in Federated Learning

The FL process is typically driven by a model engineer developing a model for a particular application. For
example, a domain expert in natural language processing may develop a next word prediction model for
use in a virtual keyboard. Figure 1 shows the primary components and actors. At a high level, a typical
workflow is:

1. Problem identification: The model engineer identifies a problem to be solved with FL.

2. Client instrumentation: If needed, the clients (e.g. an app running on mobile phones) are instru-
mented to store locally (with limits on time and quantity) the necessary training data. In many cases,
the app already will have stored this data (e.g. a text messaging app must store text messages, a photo
management app already stores photos). However, in some cases additional data or metadata might
need to be maintained, e.g. user interaction data to provide labels for a supervised learning task.

3. Simulation prototyping (optional): The model engineer may prototype model architectures and test
learning hyperparameters in an FL simulation using a proxy dataset.

4. Federated model training: Multiple federated training tasks are started to train different variations
of the model, or use different optimization hyperparameters.

5. (Federated) model evaluation: After the tasks have trained sufficiently (typically a few days, see
below), the models are analyzed and good candidates selected. Analysis may include metrics com-
puted on standard datasets in the datacenter, or federated evaluation wherein the models are pushed to
held-out clients for evaluation on local client data.

6. Deployment: Finally, once a good model is selected, it goes through a standard model launch process,
including manual quality assurance, live A/B testing (usually by using the new model on some devices
and the previous generation model on other devices to compare their in-vivo performance), and a



Total population size  10°-10'° devices
Devices selected for one round of training 50 — 5000
Total devices that participate in training one model ~ 10°-107
Number of rounds for model convergence 500 — 10000
Wall-clock training time 1 — 10 days

Table 2: Order-of-magnitude sizes for typical cross-device federated learning applications.

staged rollout (so that poor behavior can be discovered and rolled back before affecting too many
users). The specific launch process for a model is set by the owner of the application and is usually
independent of how the model is trained. In other words, this step would apply equally to a model
trained with federated learning or with a traditional datacenter approach.

One of the primary practical challenges an FL system faces is making the above workflow as straight-
forward as possible, ideally approaching the ease-of-use achieved by ML systems for centralized training.
While much of this paper concerns federated training specifically, there are many other components in-
cluding federated analytics tasks like model evaluation and debugging. Improving these is the focus of
Section 3.4. For now, we consider in more detail the training of a single FL. model (Step 4 above).

1.1.2 A Typical Federated Training Process

We now consider a template for FL training that encompasses the Federated Averaging algorithm of McMa-
han et al. [337] and many others; again, variations are possible, but this gives a common starting point.

A server (service provider) orchestrates the training process, by repeating the following steps until train-
ing is stopped (at the discretion of the model engineer who is monitoring the training process):

1.

Client selection: The server samples from a set of clients meeting eligibility requirements. For
example, mobile phones might only check in to the server if they are plugged in, on an unmetered
wi-fi connection, and idle, in order to avoid impacting the user of the device.

Broadcast: The selected clients download the current model weights and a training program (e.g. a
TensorFlow graph [2]) from the server.

. Client computation: Each selected device locally computes an update to the model by executing the

training program, which might for example run SGD on the local data (as in Federated Averaging).

Aggregation: The server collects an aggregate of the device updates. For efficiency, stragglers might
be dropped at this point once a sufficient number of devices have reported results. This stage is also
the integration point for many other techniques which will be discussed later, possibly including:
secure aggregation for added privacy, lossy compression of aggregates for communication efficiency,
and noise addition and update clipping for differential privacy.

. Model update: The server locally updates the shared model based on the aggregated update computed

from the clients that participated in the current round.

Table 2 gives typical order-of-magnitude sizes for the quantities involved in a typical federated learning
application on mobile devices.



The separation of the client computation, aggregation, and model update phases is not a strict require-
ment of federated learning, and it indeed excludes certain classes of algorithms, for example asynchronous
SGD where each client’s update is immediately applied to the model, before any aggregation with updates
from other clients. Such asynchronous approaches may simplify some aspects of system design, and also
be beneficial from an optimization perspective (though this point can be debated). However, the approach
presented above has a substantial advantage in affording a separation of concerns between different lines of
research: advances in compression, differential privacy, and secure multi-party computation can be devel-
oped for standard primitives like computing sums or means over decentralized updates, and then composed
with arbitrary optimization or analytics algorithms, so long as those algorithms are expressed in terms of
aggregation primitives.

It is also worth emphasizing that in two respects, the FL training process should not impact the user
experience. First, as outlined above, even though model parameters are typically sent to some devices
during the broadcast phase of each round of federated training, these models are an ephemeral part of the
training process, and not used to make “live” predictions shown to the user. This is crucial, because training
ML models is challenging, and a misconfiguration of hyperparameters can produce a model that makes bad
predictions. Instead, user-visible use of the model is deferred to a rollout process as detailed above in Step 6
of the model lifecycle. Second, the training itself is intended to be invisible to the user — as described
under client selection, training does not slow the device or drain the battery because it only executes when
the device is idle and connected to power. However, the limited availability these constraints introduce
leads directly to open research challenges which will be discussed subsequently, such as semi-cyclic data
availability and the potential for bias in client selection.

1.2 Federated Learning Research

The remainder of this paper surveys many open problems that are motivated by the constraints and chal-
lenges of real-world federated learning settings, from training models on medical data from a hospital sys-
tem to training using hundreds of millions of mobile devices. Needless to say, most researchers working on
federated learning problems will likely not be deploying production FL systems, nor have access to fleets of
millions of real-world devices. This leads to a key distinction between the practical settings that motivate the
work and experiments conducted in simulation which provide evidence of the suitability of a given approach
to the motivating problem.

This makes FL research somewhat different than other ML fields from an experimental perspective, lead-
ing to additional considerations in conducting FL research. In particular, when highlighting open problems,
we have attempted, when possible, to also indicate relevant performance metrics which can be measured
in simulation, the characteristics of datasets which will make them more representative of real-world per-
formance, etc. The need for simulation also has ramifications for the presentation of FL research. While
not intended to be authoritative or absolute, we make the following modest suggestions for presenting FL
research that addresses the open problems we describe:

* As shown in Table 1, the FL setting can encompass a wide range of problems. Compared to fields
where the setting and goals are well-established, it is important to precisely describe the details of
the particular FL setting of interest, particularly when the proposed approach makes assumptions that
may not be appropriate in all settings (e.g. stateful clients that participate in all rounds).

* Of course, details of any simulations should be presented in order to make the research reproducible.
But it is also important to explain which aspects of the real-world setting the simulation is designed
to capture (and which it is not), in order to effectively make the case that success on the simulated



problem implies useful progress on the real-world objective. We hope that the guidance in this paper
will help with this.

* Privacy and communication efficiency are always first-order concerns in FL, even if the experiments
are simulations running on a single machine using public data. More so than with other types of ML,
for any proposed approach it is important to be unambiguous about where computation happens as
well as what is communicated.

Software libraries for federated learning simulation as well as standard datasets can help ease the chal-
lenges of conducting effective FL research; Appendix A summarizes some of the currently available options.
Developing standard evaluation metrics and establishing standard benchmark datasets for different federated
learning settings (cross-device and cross-silo) remain highly important directions for ongoing work.

1.3 Organization

Section 2 builds on the ideas in Table 1, exploring other FL settings and problems beyond the original
focus on cross-device settings. Section 3 then turns to core questions around improving the efficiency
and effectiveness of federated learning. Section 4 undertakes a careful consideration of threat models and
considers a range of technologies toward the goal of achieving rigorous privacy protections. As with all
machine learning systems, in federated learning applications there may be incentives to manipulate the
models being trained, and failures of various kinds are inevitable; these challenges are discussed in Section 5.
Finally, we address the important challenges of providing fair and unbiased models in Section 6.

10



2 Relaxing the Core FL Assumptions: Applications to Emerging Settings
and Scenarios

In this section, we will discuss areas of research related to the topics discussed in the previous section. Even
though not being the main focus of the remainder of the paper, progress in these areas could motivate design
of the next generation of production systems.

2.1 Fully Decentralized / Peer-to-Peer Distributed Learning

In federated learning, a central server orchestrates the training process and receives the contributions of
all clients. The server is thus a central player which also potentially represents a single point of failure.
While large companies or organizations can play this role in some application scenarios, a reliable and
powerful central server may not always be available or desirable in more collaborative learning scenarios
[459]. Furthermore, the server may even become a bottleneck when the number of clients is very large, as
demonstrated by Lian et al. [305] (though this can be mitigated by careful system design, e.g. [81]).

The key idea of fully decentralized learning is to replace communication with the server by peer-to-
peer communication between individual clients. The communication topology is represented as a connected
graph in which nodes are the clients and an edge indicates a communication channel between two clients.
The network graph is typically chosen to be sparse with small maximum degree so that each node only
needs to send/receive messages to/from a small number of peers; this is in contrast to the star graph of the
server-client architecture. In fully decentralized algorithms, a round corresponds to each client performing
a local update and exchanging information with their neighbors in the graph®. In the context of machine
learning, the local update is typically a local (stochastic) gradient step and the communication consists in
averaging one’s local model parameters with the neighbors. Note that there is no longer a global state of the
model as in standard federated learning, but the process can be designed such that all local models converge
to the desired global solution, i.e., the individual models gradually reach consensus. While multi-agent
optimization has a long history in the control community, fully decentralized variants of SGD and other
optimization algorithms have recently been considered in machine learning both for improved scalability
in datacenters [29] as well as for decentralized networks of devices [127, 459, 443, 59, 278, 291, 173].
They consider undirected network graphs, although the case of directed networks (encoding unidirectional
channels which may arise in real-world scenarios such as social networks or data markets) has also been
studied in [29, 226].

It is worth noting that even in the decentralized setting outlined above, a central authority may still be in
charge of setting up the learning task. Consider for instance the following questions: Who decides what is
the model to be trained in the decentralized setting? What algorithm to use? What hyperparameters? Who
is responsible for debugging when something does not work as expected? A certain degree of trust of the
participating clients in a central authority would still be needed to answer these questions. Alternatively, the
decisions could be taken by the client who proposes the learning task, or collaboratively through a consensus
scheme (see Section 2.1.2).

Table 3 provides a comparison between federated and peer-to-peer learning. While the architectural
assumptions of decentralized learning are distinct from those of federated learning, it can often be applied to
similar problem domains, many of the same challenges arise, and there is significant overlap in the research
communities. Thus, we consider decentralized learning in this paper as well; in this section challenges

2Note, however, that the notion of a round does not need to even make sense in this setting. See for instance the discussion on
clock models in [85].
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Federated learning Fully decentralized
(peer-to-peer) learning

Orchestration A central orchestration server or ser- No centralized orchestration.
vice organizes the training, but never
sees raw data.

Wide-area communication Typically a hub-and-spoke topology, Peer-to-peer topology, with a possi-
with the hub representing a coor- bly dynamic connectivity graph.
dinating service provider (typically
without data) and the spokes con-
necting to clients.

Table 3: A comparison of the key distinctions between federated learning and fully decentralized learning.
Note that as with FL, decentralized learning can be further divided into different use-cases, with distinctions
similar to those made in Table 1 comparing cross-silo and cross-device FL.

specific to the decentralized approach are explicitly considered, but many of the open problems in other
sections also arise in the decentralized case.

2.1.1 Algorithmic Challenges

A large number of important algorithmic questions remain open on the topic of real-world usability of de-
centralized schemes for machine learning. Some questions are analogous to the special case of federated
learning with a central server, and other challenges come as an additional side-effect of being fully decen-
tralized or trust-less. We outline some particular areas in the following.

Effect of network topology and asynchrony on decentralized SGD Fully decentralized algorithms for
learning should be robust to the limited availability of the clients (with clients temporarily unavailable,
dropping out or joining during the execution) and limited reliability of the network (with possible message
drops). While for the special case of generalized linear models, schemes using the duality structure could
enable some of these desired robustness properties [231], for the case of deep learning and SGD this remains
an open question. When the network graph is complete but messages have a fixed probability to be dropped,
Yu et al. [498] show that one can achieve convergence rates that are comparable to the case of a reliable net-
work. Additional open research questions concern non-IID data distributions, update frequencies, efficient
communication patterns and practical convergence time [443], as we outline in more detail below.

Well-connected or denser networks encourage faster consensus and give better theoretical convergence
rates, which depend on the spectral gap of the network graph. However, when data is IID, sparser topologies
do not necessarily hurt the convergence in practice: this was analyzed theoretically in [357]. Denser net-
works typically incur communication delays which increase with the node degrees. Most of optimization-
theory works do not explicitly consider how the topology affects the runtime, that is, wall-clock time re-
quired to complete each SGD iteration. Wang et al. [469] propose MATCHA, a decentralized SGD method
based on matching decomposition sampling, that reduces the communication delay per iteration for any
given node topology while maintaining the same error convergence speed. The key idea is to decompose the
graph topology into matchings consisting of disjoint communication links that can operate in parallel, and
carefully choose a subset of these matchings in each iteration. This sequence of subgraphs results in more
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frequent communication over connectivity-critical links (ensuring fast error convergence) and less frequent
communication over other links (saving communication delays).

The setting of decentralized SGD also naturally lends itself to asynchronous algorithms in which each
client becomes active independently at random times, removing the need for global synchronization and
potentially improving scalability [127, 459, 59, 29, 306].

Local-update decentralized SGD The theoretical analysis of schemes which perform several local update
steps before a communication round is significantly more challenging than those using a single SGD step, as
in mini-batch SGD. While this will also be discussed later in Section 3.2, the same also holds more generally
in the fully decentralized setting of interest here. Schemes relying on a single local update step are typically
proven to converge in the case of non-IID local datasets [278, 279]. For the case with several local update
steps, [467, 280] recently provided convergence analysis. Further, [469] provides a convergence analysis
for the non-1ID data case, but for the specific scheme based on matching decomposition sampling described
above. In general, however, understanding the convergence under non-IID data distributions and how to
design a model averaging policy that achieves the fastest convergence remains an open problem.

Personalization, and trust mechanisms Similarly to the cross-device FL setting, an important task for
the fully decentralized scenario under the non-IID data distributions available to individual clients is to
design algorithms for learning collections of personalized models. The work of [459, 59] introduces fully
decentralized algorithms to collaboratively learn a personalized model for each client by smoothing model
parameters across clients that have similar tasks (i.e., similar data distributions). Zantedeschi et al. [S04]
further learn the similarity graph together with the personalized models. One of the key unique challenges
in the decentralized setting remains the robustness of such schemes to malicious actors or contribution of
unreliable data or labels. The use of incentives or mechanism design in combination with decentralized
learning is an emerging and important goal, which may be harder to achieve in the setting without a trusted
central server.

Gradient compression and quantization methods In potential applications, the clients would often
be limited in terms of communication bandwidth available and energy usage permitted. Translating and
generalizing some of the existing compressed communication schemes from the centralized orchestrator-
facilitated setting (see Section 3.5) to the fully decentralized setting, without negatively impacting the con-
vergence is an active research direction [278, 391, 444, 279]. A complementary idea is to design decentral-
ized optimization algorithms which naturally give rise to sparse updates [504].

Privacy An important challenge in fully decentralized learning is to prevent any client from reconstructing
the private data of another client from its shared updates while maintaining a good level of utility for the
learned models. Differential privacy (see Section 4) is the standard approach to mitigate such privacy risks.
In decentralized federated learning, this can be achieved by having each client add noise locally, as done in
[239, 59]. Unfortunately, such local privacy approaches often come at a large cost in utility. Furthermore,
distributed methods based on secure aggregation or secure shuffling that are designed to improve the privacy-
utility trade-off in the standard FL setting (see Section 4.4.3) do not easily integrate with fully decentralized
algorithms. A possible direction to achieve better trade-offs between privacy and utility in fully decentralized
algorithms is to rely on decentralization itself to amplify differential privacy guarantees, for instance by
considering appropriate relaxations of local differential privacy [146].
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2.1.2 Practical Challenges

An orthogonal question for fully decentralized learning is how it can be practically realized. This section
outlines a family of related ideas based on the idea of a distributed ledger, but other approaches remain
unexplored.

A blockchain is a distributed ledger shared among disparate users, making possible digital transactions,
including transactions of cryptocurrency, without a central authority. In particular, smart contracts allow
execution of arbitrary code on top of the blockchain, essentially a massively replicated eventually-consistent
state machine. In terms of federated learning, use of the technology could enable decentralization of the
global server by using smart contracts to do model aggregation, where the participating clients executing the
smart contracts could be different companies or cloud services.

However, on today’s blockchain platforms such as Ethereum [478], data on the blockchains is publicly
available by default, this could discourage users from participating in the decentralized federated learning
protocol, as the protection of the data is typically the primary motivating factor for FL. To address such
concerns, it might be possible to modify the existing privacy-preserving techniques to fit into the scenario of
decentralized federated learning. First of all, to prevent the participating nodes from exploiting individually
submitted model updates, existing secure aggregation protocols could be used. A practical secure aggre-
gation protocol already used in cross-device FL was proposed by Bonawitz et al. [80], effectively handling
dropping out participants at the cost of complexity of the protocol. An alternative system would be to have
each client stake a deposit of cryptocurrency on blockchain, and get penalized if they drop out during the
execution. Without the need of handling dropouts, the secure aggregation protocol could be significantly
simplified. Another way of achieving secure aggregation is to use confidential smart contract such as what is
enabled by the Oasis Protocol [119] which runs inside secure enclaves. With this, each client could simply
submit an encrypted local model update, knowing that the model will be decrypted and aggregated inside
the secure hardware through remote attestation (though see discussion of privacy-in-depth in Section 4.1).

In order to prevent any client from trying to reconstruct the private data of another client by exploiting
the global model, client-level differential privacy [338] has been proposed for FL. Client-level differential
privacy is achieved by adding random Gaussian noise on the aggregated global model that is enough to hide
any single client’s update. In the context of blockchain, each client could locally add a certain amount of
Gaussian noise after local gradient descent steps and submit the model to blockchain. The local noise scale
should be calculated such that the aggregated noise on blockchain is able to achieve the same client-level
differential privacy as in [338]. Finally, the aggregated global model on blockchain could be encrypted and
only the participating clients hold the decryption key, which protects the model from the public.

2.2 Cross-Silo Federated Learning

In contrast with the characteristics of cross-device federated learning, see Table 1, cross-silo federated learn-
ing admits more flexibility in certain aspects of the overall design, but at the same time presents a setting
where achieving other properties can be harder. This section discusses some of these differences.

The cross-silo setting can be relevant where a number of companies or organizations share incentive to
train a model based on all of their data, but cannot share their data directly. This could be due to constraints
imposed by confidentiality or due to legal constraints, or even within a single company when they cannot
centralize their data between different geographical regions. These cross-silo applications have attracted
substantial attention.
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Data partitioning In the cross-device setting the data is assumed to be partitioned by examples. In the
cross-silo setting, in addition to partitioning by examples, partitioning by features is of practical relevance.
An example could be when two companies in different businesses have the same or overlapping set of
customers, such as a local bank and a local retail company in the same city. This difference has been also
referred to as horizontal and vertical federated learning by Yang et al. [490].

Cross-silo FL with data partitioned by features, employs a very different training architecture compared
to the setting with data partitioned by example. It may or may not involve a central server as a neutral party,
and based on specifics of the training algorithm, clients exchange specific intermediate results rather than
model parameters, to assist other parties’ gradient calculations; see for instance [490, Section 2.4.2]. In this
setting, application of techniques such as secure multi-party computation or homomorphic encryption have
been proposed in order to limit the amount of information other participants can infer from observing the
training process. The downside of this approach is that the training algorithm is typically dependent on the
type of machine learning objective being pursued. Currently proposed algorithms include trees [118], linear
and logistic regression [490, 224, 316], and neural networks [317]. Local updates similar to Federated Av-
eraging (see Section 3.2) has been proposed to address the communication challenges of feature-partitioned
systems [316], and [238, 318] study the security and privacy related challenges inherent in such systems.

Federated transfer learning [490] is another concept that considers challenging scenarios in which data
parties share only a partial overlap in the user space or the feature space, and leverage existing transfer
learning techniques [365] to build models collaboratively. The existing formulation is limited to the case of
2 clients.

Partitioning by examples is usually relevant in cross-silo FL. when a single company cannot centralize
their data due to legal constraints, or when organizations with similar objectives want to collaboratively im-
prove their models. For instance, different banks can collaboratively train classification or anomaly detection
models for fraud detection [476], hospitals can build better diagnostic models [139], and so on.

An open-source platform supporting the above outlined applications is currently available as Federated
Al Technology Enabler (FATE) [33]. At the same time, the IEEE P3652.1 Federated Machine Learning
Working Group is focusing on standard-setting for the Federated Al Technology Framework. Other plat-
forms include [125] focused on a range of medical applications and [321] for enterprise use cases. See
Appendix A for more details.

Incentive mechanisms In addition to developing new algorithmic techniques for FL, incentive mechanism
design for honest participation is an important practical research question. This need may arise in cross-
device settings (e.g. [261, 260]), but is particularly relevant in the cross-silo setting, where participants may
at the same time also be business competitors. The incentive can be in the form of monetary payout [499]
or final models with different levels of performance [324]. The option to deliver models with performance
commensurate to the contributions of each client is especially relevant in collaborative learning situations
in which competitions exist among FL participants. Clients might worry that contributing their data to
training federated learning models will benefit their competitors, who do not contribute as much but receive
the same final model nonetheless (i.e. the free-rider problem). Related objectives include how to divide
earnings generated by the federated learning model among contributing data owners in order to sustain
long-term participation, and also how to link the incentives with decisions on defending against adversarial
data owners to enhance system security, optimizing the participation of data owners to enhance system
efficiency.
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Differential privacy The discussion of actors and threat models in Section 4.1 is largely relevant also for
the cross-silo FL. However, protecting against different actors might have different priorities. For example,
in many practical scenarios, the final trained model would be released only to those who participate in the
training, which makes the concerns about “the rest of the world” less important.

On the other hand, for a practically persuasive claim, we would usually need a notion of local differential
privacy, as the potential threat from other clients is likely to be more important. In cases when the clients
are not considered a significant threat, each client could control the data from a number of their respective
users, and a formal privacy guarantee might be needed on such user-level basis. Depending on application,
other objectives could be worth pursuing. This area has not been systematically explored.

Tensor factorization Several works have also studied cross-silo federated tensor factorization where mul-
tiple sites (each having a set of data with the same feature, i.e. horizontally partitioned) jointly perform
tensor factorization by only sharing intermediate factors with the coordination server while keeping data
private at each site. Among the existing works, [272] used an alternating direction method of multipli-
ers (ADMM) based approach and [325] improved the efficiency with the elastic averaging SGD (EASGD)
algorithm and further ensures differential privacy for the intermediate factors.

2.3 Split Learning

In contrast with the previous settings which focus on data partitioning and communication patterns, the key
idea behind split learning [215, 460]° is to split the execution of a model on a per-layer basis between the
clients and the server. This can be done for both training and inference.

In the simplest configuration of split learning, each client computes the forward pass through a deep
network up to a specific layer referred to as the cut layer. The outputs at the cut layer, referred to as
smashed data, are sent to another entity (either the server or another client), which completes the rest of the
computation. This completes a round of forward propagation without sharing the raw data. The gradients
can then be back propagated from its last layer until the cut layer in a similar fashion. The gradients at the
cut layer — and only these gradients — are sent back to the clients, where the rest of back propagation is
completed. This process is continued until convergence, without having clients directly access each others
raw data. This setup is shown in Figure 2(a) and a variant of this setup where labels are also not shared
along with raw data is shown in Figure 2(b). Split learning approaches for data partitioned by features have
been studied in [101].

In several settings, the overall communication requirements of split learning and federated learning
were compared in [421]. Split learning brings in another dimension of parallelism in the training, paral-
lelization among parts of a model, e.g. client and server. The ideas in [245, 240], where the authors break
the dependencies between partial networks and reduced total centralized training time by parallelizing the
computations in different parts, can be relevant here as well. However, it is still an open question to explore
such parallelization of split learning on edge devices. Split learning also enables matching client-side model
components with the best server-side model components for automating model selection as shown in the
ExpertMatcher [413].

The values communicated can nevertheless, in general, reveal information about the underlying data.
How much, and whether this is acceptable, is likely going to be application and configuration specific. A
variation of split learning called NoPeek SplitNN [462] reduces the potential leakage via communicated ac-
tivations, by reducing their distance correlation [461, 442] with the raw data, while maintaining good model

3See also split learning project website - https://splitlearning.github.io/.
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Figure 2: Split learning configurations showing raw data is not transferred in the vanilla setting and that raw
data as well as labels are not transferred between the client and server entities in the U-shaped split learning
setting.

performance via categorical cross-entropy. The key idea is to minimize the distance correlation between the
raw data points and communicated smashed data. The objects communicated could otherwise contain infor-
mation highly correlated with the input data if used without NoPeek SplitNN, the use of which also enables
the split to be made relatively early-on given the decorrelation it provides. One other engineering driven
approach to minimize the amount of information communicated in split learning has been via a specifically
learnt pruning of channels present in the client side activations [422]. Overall, much of the discussion in
Section 4 is relevant here as well, and analysis providing formal privacy guarantees specifically for split
learning is still an open problem.

2.4 Executive summary

The motivation for federated learning is relevant for a number of related areas of research.

* Fully decentralized learning (Section 2.1) removes the need for a central server coordinating the over-
all computation. Apart from algorithmic challenges, open problems are in practical realization of the
idea and in understanding of what form of trusted central authority is needed to set up the task.

* Cross-silo federated learning (Section 2.2) admits problems with different kinds of modelling con-
straints, such as data partitioned by examples and/or features, and faces different set of concerns
when formulating formal privacy guarantees or incentive mechanisms for clients to participate.

 Split learning (Section 2.3) is an approach to partition the execution of a model between the clients
and the server. It can deliver different options for overall communication constraints, but detailed
analysis of when the communicated values reveal sensitive information is still missing.
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3 Improving Efficiency and Effectiveness

In this section we explore a variety of techniques and open questions that address the challenge of making
federated learning more efficient and effective. This encompasses a myriad of possible approaches, includ-
ing: developing better optimization algorithms; providing different models to different clients; making ML
tasks like hyperparameter search, architecture search, and debugging easier in the FL context; improving
communication efficiency; and more.

One of the fundamental challenges in addressing these goals is the presence of non-IID data, so we begin
by surveying this issue and highlighting potential mitigations.

3.1 Non-IID Data in Federated Learning

While the meaning of IID is generally clear, data can be non-I1ID in many ways. In this section, we provide
a taxonomy of non-IID data regimes that may arise for any client-partitioned dataset. The most common
sources of dependence and non-identicalness are due to each client corresponding to a particular user, a
particular geographic location, and/or a particular time window. This taxonomy has a close mapping to
notions of dataset shift [353, 380], which studies differences between the training distribution and testing
distribution; here, we consider differences in the data distribution on each client.

For the following, consider a supervised task with features x and labels y. A statistical model of feder-
ated learning involves two levels of sampling: accessing a datapoint requires first sampling a client ¢ ~ O,
the distribution over available clients, and then drawing an example (z,y) ~ P;(x,y) from that client’s
local data distribution.

When non-IID data in federated learning is referenced, this typically refers to differences between P;
and P; for different clients 7 and j. However, it is also important to note that the distribution Q and P; may
change over time, introducing another dimension of “non-IIDness”.

For completeness, we note that even considering the dataset on a single device, if the data is in an
insufficiently-random order, e.g. ordered by time, then independence is violated locally as well. For exam-
ple, consecutive frames in a video are highly correlated. Sources of intra-client correlation can generally be
resolved by local shuffling.

Non-identical client distributions We first survey some common ways in which data tend to deviate
from being identically distributed, that is P; # P; for different clients ¢ and j. Rewriting Pj(x,y) as
Pi(y|z)P;(x) and P;(x | y)P;(y) allows us to characterize the differences more precisely.

* Feature distribution skew (covariate shift): The marginal distributions P;(x) may vary across clients,
even if P(y|z) is shared.* For example, in a handwriting recognition domain, users who write the
same words might still have different stroke width, slant, etc.

* Label distribution skew (prior probability shift): The marginal distributions P;(y) may vary across
clients, even if P(x|y) is the same. For example, when clients are tied to particular geo-regions,
the distribution of labels varies across clients — kangaroos are only in Australia or zoos; a person’s
face is only in a few locations worldwide; for mobile device keyboards, certain emoji are used by one
demographic but not others.

*We write “P(y | z) is shared” as shorthand for P;(y | ) = P;(y | =) for all clients i and j.
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* Same label, different features (concept drift): The conditional distributions P;(x | y) may vary across
clients even if P(y) is shared. The same label y can have very different features x for different
clients, e.g. due to cultural differences, weather effects, standards of living, etc. For example, images
of homes can vary dramatically around the world and items of clothing vary widely. Even within the
U.S., images of parked cars in the winter will be snow-covered only in certain parts of the country. The
same label can also look very different at different times, and at different time scales: day vs. night,
seasonal effects, natural disasters, fashion and design trends, etc.

* Same features, different label (concept shift): The conditional distribution P;(y | ) may vary across
clients, even if P(x) is the same. Because of personal preferences, the same feature vectors in a
training data item can have different labels. For example, labels that reflect sentiment or next word
predictors have personal and regional variation.

* Quantity skew or unbalancedness: Different clients can hold vastly different amounts of data.

Real-world federated learning datasets likely contain a mixture of these effects, and the characterization
of cross-client differences in real-world partitioned datasets is an important open question. Most empirical
work on synthetic non-IID datasets (e.g. [337, 236]) have focused on label distribution skew, where a non-
IID dataset is formed by partitioning a “flat” existing dataset based on the labels. A better understanding of
the nature of real-world non-IID datasets will allow for the construction of controlled but realistic non-IID
datasets for testing algorithms and assessing their resilience to different degrees of client heterogeneity.

Further, different non-1ID regimes may require the development of different mitigation strategies. For
example, under feature-distribution skew, because P(y | x) is assumed to be common, the problem is at least
in principle well specified, and training a single global model that learns P (y | ) may be appropriate. When
the same features map to different labels on different clients, some form of personalization (Section 3.3)
may be essential to learning the true labeling functions.

Violations of independence Violations of independence are introduced any time the distribution Q changes
over the course of training; a prominent example is in cross-device FL, where devices typically need to meet

eligibility requirements in order to participate in training (see Section 1.1.2). Devices typically meet those

requirements at night local time (when they are more likely to be charging, on free wi-fi, and idle), and so

there may be significant diurnal patterns in device availability. Further, because local time of day corre-

sponds directly to longitude, this introduces a strong geographic bias in the source of the data. Eichner et al.

[171] described this issue and some mitigation strategies, but many open questions remain.

Dataset shift Finally, we note that the temporal dependence of the distributions @ and P may introduce
dataset shift in the classic sense (differences between the train and test distributions). Furthermore, other
criteria may make the set of clients eligible to train a federated model different from the set of clients where
that model will be deployed. For example, training may require devices with more memory than is needed
for inference. These issues are explored in more depth in Section 6. Adapting techniques for handling
dataset shift to federated learning is another interesting open question.

3.1.1 Strategies for Dealing with Non-IID Data

The original goal of federated learning, training a single global model on the union of client datasets, be-
comes harder with non-IID data. One natural approach is to modify existing algorithms (e.g. through

19



different hyperparameter choices) or develop new ones in order to more effectively achieve this objective.
This approach is considered in Section 3.2.2.

For some applications, it may be possible to augment data in order to make the data across clients more
similar. One approach is to create a small dataset which can be shared globally. This dataset may originate
from a publicly available proxy data source, a separate dataset from the clients’ data which is not privacy
sensitive, or perhaps a distillation of the raw data following Wang et al. [473].

The heterogeneity of client objective functions gives additional importance to the question of how to
craft the objective function — it is no-longer clear that treating all examples equally makes sense. Alterna-
tives include limiting the contributions of the data from any one user (which is also important for privacy,
see Section 4) and introducing other notions of fairness among the clients; see discussion in Section 6.

But if we have the capability to run training on the local data on each device (which is necessary for
federated learning of a global model), is training a single global model even the right goal? There are
many cases where having a single model is to be preferred, e.g. in order to provide a model to clients with
no data, or to allow manual validation and quality assurance before deployment. Nevertheless, since local
training is possible, it becomes feasible for each client to have a customized model. This approach can turn
the non-IID problem from a bug to a feature, almost literally — since each client has its own model, the
client’s identity effectively parameterizes the model, rendering some pathological but degenerate non-IID
distributions trivial. For example, if for each i, P;(y) has support on only a single label, finding a high-
accuracy global model may be very challenging (especially if z is relatively uninformative), but training a
high-accuracy local model is trivial (only a constant prediction is needed). Such multi-model approaches
are considered in depth in Section 3.3. In addition to addressing non-identical client distributions, using a
plurality of models can also address violations of independence stemming from changes in client availability.
For example, the approach of Eichner et al. [171] uses a single training run but averages different iterates in
order to provide different models for inference based on the timezone / longitude of clients.

3.2 Optimization Algorithms for Federated Learning

In prototypical federated learning tasks, the goal is to learn a single global model that minimizes the em-
pirical risk function over the entire training dataset, that is, the union of the data across all the clients. The
main difference between federated optimization algorithms and standard distributed training methods is the
need to address the characteristics of Table 1 — for optimization, non-IID and unbalanced data, limited
communication bandwidth, and unreliable and limited device availability are particularly salient.

FL settings where the total number of devices is huge (e.g. across mobile devices) necessitate algorithms
that only require a handful of clients to participate per round (client sampling). Further, each device is likely
to participate no more than once in the training of a given model, so stateless algorithms are necessary. This
rules out the direct application of a variety of approaches that are quite effective in the datacenter context,
for example stateful optimization algorithms like ADMM, and stateful compression strategies that modify
updates based on residual compression errors from previous rounds.

Another important practical consideration for federated learning algorithms is composability with other
techniques. Optimization algorithms do not run in isolation in a production deployment, but need to be
combined with other techniques like cryptographic secure aggregation protocols (Section 4.2.1), differential
privacy (DP) (Section 4.2.2), and model and update compression (Section 3.5). As noted in Section 1.1.2,
many of these techniques can be applied to primitives like “sum over selected clients” and
“broadcast to selected clients”, and so expressing optimization algorithms in terms of these
primitives provides a valuable separation of concerns, but may also exclude certain techniques such as ap-
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Total number of clients
Clients per round
Total communication rounds

NN =

Local steps per round.

Table 4: Notation for the discussion of FL
algorithms including Federated Averaging.

Server executes:
initialize xq
for eachroundt =1,2,..., Tdo
St < (random set of M clients)
for each client ¢ € S; in parallel do
i, + ClientUpdate(i, ;)

M 1
T+l < Dkt 37841

ClientUpdate(:, x):
for localstepj =1,..., K do
x <+ x—nVf(x;z)forz~P;
return x to server

Algorithm 1: Federated Averaging (local SGD), when all
clients have the same amount of data.

plying updates asynchronously.

One of the most common approaches to optimization for federated learning is the Federated Averaging
algorithm [337], an adaption of local-update or parallel SGD.> Here, each client runs some number of SGD
steps locally, and then the updated local models are averaged to form the updated global model on the
coordinating server. Pseudocode is given in Algorithm 1.

Performing local updates and communicating less frequently with the central server addresses the core
challenges of respecting data locality constraints and of the limited communication capabilities of mobile
device clients. However, this family of algorithms also poses several new algorithmic challenges from
an optimization theory point of view. In Section 3.2, we discuss recent advances and open challenges
in federated optimization algorithms for the cases of IID and non-IID data distribution across the clients
respectively. The development of new algorithms that specifically target the characteristics of the federated
learning setting remains an important open problem.

3.2.1 Optimization Algorithms and Convergence Rates for IID Datasets

While a variety of different assumptions can be made on the per-client functions being optimized, the most
basic split is between assuming IID and non-IID data. Formally, having IID data at the clients means
that each mini-batch of data used for a client’s local update is statistically identical to a uniformly drawn
sample (with replacement) from the entire training dataset (the union of all local datasets at the clients).
Since the clients independently collect their own training data which vary in both size and distribution, and
these data are not shared with other clients or the central node, the IID assumption clearly almost never
holds in practice. However, this assumption greatly simplifies theoretical convergence analysis of federated
optimization algorithms, as well as establishes a baseline that can be used to understand the impact of non-
IID data on optimization rates. Thus, a natural first step is to obtain an understanding of the landscape of
optimization algorithms for the IID data case.

SFederated Averaging applies local SGD to a randomly sampled subset of clients on each round, and proposes a specific update
weighting scheme.
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Formally, for the IID setting let us standardize the stochastic optimization problem

min F(z) = E[f(z;2)].
We assume an intermittent communication model as in e.g. Woodworth et al. [480, Sec. 4.4], where M
stateless clients participate in each of 71" rounds, and during each round, each client can compute gradients
for K samples (e.g. minibatches) z1, ..., zx sampled IID from P (possibly using these to take sequential
steps). In the IID-data setting clients are interchangeable, and we can without loss of generality assume
M = N. Table 4 summarizes the notation used in this section.

Different assumptions on f will produce different guarantees. We will first discuss the convex setting
and later review results for non-convex problems.

Baselines and state-of-the-art for convex problems In this section we review convergence results for
H-smooth, convex (but not necessarily strongly convex) functions under the assumption that the variance
of the stochastic gradients is bounded by o-2. More formally, by H-smooth we mean that for all z, f(; z) is
differentiable and has a H-Lipschitz gradient, that is, for all choices of z, y

IVf(z,2) = Vi(y, 2)|| < Hllz -yl
We also assume that for all z, the stochastic gradient V, f(z; z) satisfies

EP Vo f(z;2) — VE(z)|| < o2

When analyzing the convergence rate of an algorithm with output x after T iterations, we consider the
term

E[F (z7)] - F(«") (D)
where x* = argmin, F'(z). All convergence rates discussed herein are upper bounds on this term. A

summary of convergence results for such functions is given in Table 5.

Federated averaging (a.k.a. parallel SGD/local SGD) competes with two natural baselines: First, we
may keep z fixed in local updates during each round, and compute a total of K M gradients at the current z,
in order to run accelerated minibatch SGD. Let & denote the average of 7' iterations of this algorithm. We

for convex objectives [294, 137, 151]. Note that the first expectation is taken with respect to the randomness
of z in the training procedure as well.

A second natural baseline is to ignore all but 1 of the M active clients, which allows (accelerated)
sequential SGD to execute for K'T' steps. Applying the same general bounds cited above, this approach
offers an upper bound of

Y ( ", ¢ > .
(TK)* * VTK
Comparing these two results, we see that minibatch SGD attains the optimal ‘statistical’ term (¢/VTKM),
whilst SGD on a single device (ignoring the updates of the other devices) achieves the optimal ‘optimization’
term (H/(TK)?).

The convergence analysis of local-update SGD methods is an active current area of research [434, 310,
500, 467, 390, 371, 269, 481]. The first convergence results for local-update SGD methods were derived
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Method Comments Convergence

Baselines

mini-batch SGD batch size KM o o)

SGD (on 1 worker, no communication) O (% + \/;T{)
Baselines with acceleration®

A-mini-batch SGD [294, 137]  batch size KM O (4% +== M)

A-SGD [294] (on 1 worker, no communication) O ( (TII{()Q + J:%{)
Parallel SGD / Fed-Avg / Local SGD

Yu et al. [500]”, Stich [434]°  gradient norm bounded by G o (H§M Gt

Wang and Joshi [467]%, Stich and Karimireddy [435] O (% + TC;{ i
Other algorithms

SCAFFOLD [265] control variates and two stepsizes O (% + T‘% M)

“There are no accelerated fed-avg/local SGD variants so far
bThis paper considers the smooth non-convex setting, we adapt here the results for our setting.
“This paper considers the smooth strongly convex setting, we adapt here the results for our setting.

Table 5: Convergence rates for a (non-comprehensive) set of distributed optimization algorithms in the I1ID-
data setting. We assume M devices participate in each iterations, and the loss functions are H-smooth,
convex, and we have access to stochastic gradients with variance at most o2. All rates are upper bounds
on (1) after T iterations (potentially with some iterate averaging scheme).

under the bounded gradient norm assumption in Stich [434] for strongly-convex and in Yu et al. [S00] for
non-convex objective functions. These analyses could attain the desired o/v/T K M statistical term with
suboptimal optimization term (in Table 5 we summarize these results for the middle ground of convex
functions).

By removing the bounded gradient assumption, Wang and Joshi [467] and Stich and Karimireddy [435]
could further improve the optimization term to H M /T'. These result show that if the number of local steps
K is smaller than T'/M? then the (optimal) statistical term is dominating the rate. However, for typical
cross-device applications we might have 7' = 105 and M = 100 (Table 2), implying K = 1.

Often in the literature the convergence bounds are accompanied by a discussion on how large K may
be chosen in order to reach asymptotically the same statistical term as the convergence rate of mini-batch
SGD. For strongly convex functions, this bound was improved by Khaled et al. [269] and further in Stich
and Karimireddy [435].

For non-convex objectives, Yu et al. [500] showed that local SGD can achieve asymptotically an error
bound 1/v/T K M if the number of local updates K are smaller than T3 /M. This convergence guarantee
was further improved by Wang and Joshi [467] who removed the bounded gradient norm assumption and
showed that the number of local updates can be as large as 7//M3. The analysis in [467] can also be applied
to other algorithms with local updates, and thus yields the first convergence guarantee for decentralized
SGD with local updates (or periodic decentralized SGD) and elastic averaging SGD [505]. Haddadpour
et al. [216] improves the bounds in Wang and Joshi [467] for functions satisfying the Polyak-Lojasiewicz
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(PL) condition [262], a generalization of strong convexity. In particular, Haddadpour et al. [216] show that
for PL functions, 7 /M local updates per round leads to a O(1/TK M) convergence.

While the above works focus on convergence as a function of the number of iterations performed, prac-
titioners often care about wall-clock convergence speed. Assessing this must take into account the effect
of the design parameters on the time spent per iteration based on the relative cost of communication and
local computation. Viewed in this light, the focus on seeing how large K can be while maintaining the
statistical rate may not be the primary concern in federated learning, where one may assume almost infinite
datasets (very large IV). The costs (at least in wall-clock time) are small for increasing M, and so it may
be more natural to increase M sufficiently to match the optimization term, and then tune K to maximize
wall-clock optimization performance. How then to choose K ? Performing more local updates at the clients
will increase the divergence between the resulting local models at the clients, before they are averaged. As a
result, the error convergence in terms of training loss versus the total number of sequential SGD steps T'K is
slower. However, performing more local updates saves significant communication cost and reduces the time
spent per iteration. The optimal number of local updates strikes a balance between these two phenomena
and achieves the fastest error versus wallclock time convergence. Wang and Joshi [468] propose an adaptive
communication strategy that adapts K according to the training loss at regular intervals during the training.

Another important design parameter in federated learning is the model aggregation method used to
update the global model using the updates made by the selected clients. In the original federated learning
paper, McMahan et al. [337] proposes taking a weighted average of the local models, in proportion to the
size of local datasets. For IID data, where each client is assumed to have a infinitely large dataset, this
reduces to taking a simple average of the local models. However, it is unclear whether this aggregation
method will result in the fastest error convergence.

There are many open questions in federated optimization, even with IID data. Woodworth et al. [480]
highlights several gaps between upper and lower bounds for optimization relevant to the federated learning
setting, particularly for “intermittent communication graphs”, which captures local SGD approaches, but
convergence rates for such approaches are not known to match the corresponding lower bounds. In Table 5
we highlight convergence results for the convex setting. Whilst most schemes are able to reach the asymp-
totically dominant statistical term, none are able to match the convergence rate of accelerated mini-batch
SGD. It is an open problem if federated averaging algorithms can close this gap.

Local-update SGD methods where all M clients perform the same number of local updates may suffer
from a common scalability issue—they can be bottlenecked if any one client unpredictably slows down
or fails. Several approaches for dealing with this are possible, but it is far from clear which are optimal,
especially when the potential for bias is considered (see Section 6). Bonawitz et al. [81] propose over-
provisioning clients (e.g., request updates from 1.3M clients), and then accepting the first M updates re-
ceived and rejecting updates from stragglers. A slightly more sophisticated solution is to fix a time window
and allow clients to perform as many local updates K; as possible within this time, after which their models
are averaged by a central server. Wang et al. [471] analyzed the computational heteogeneity introduced by
this approach in theory. An alternative method to overcome the problem of straggling clients is to fix the
number of local updates at 7, but allow clients to update the global model in an asynchronous or lock-free
fashion. Although some previous works [505, 306, 163] have proposed similar methods, the error conver-
gence analysis is an open and challenging problem. A larger challenge in the FL setting, however, is that
as discussed at the beginning of Section 3.2, asynchronous approaches may be difficult to combine with
complimentary techniques like differential privacy or secure aggregation.

Besides the number of local updates, the choice of the size of the set of clients selected per training round
presents a similar trade-off as the number of local updates. Updating and averaging a larger number of client
models per training round yields better convergence, but it makes the training vulnerable to slowdown due
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to unpredictable tail delays in computation/communication at/with the clients.

The analysis of local SGD / Federated Averaging in the non-IID setting is even more challenging; results
and open questions related to this are considered in the next section, along with specialized algorithms which
directly address the non-IID problem.

3.2.2 Optimization Algorithms and Convergence Rates for Non-IID Datasets

In contrast to well-shuffled mini-batches consisting of independent and identically distributed (IID) ex-
amples in centralized learning, federated learning uses local data from end user devices, leading to many
varieties of non-IID data (Section 3.1).

In this setting, each of N clients has a local data distribution PP; and a local objective function

filx) = E [f(z;2)]

z2~P;

where we recall that f(x; z) is the loss of a model x at an example z. We typically wish to minimize

1 N
F(z) =+ > filz). )
i=1

Note that we recover the IID setting when each P; is identical. We will let F™* denote the minimum value of
F, obtained the point 2*. Analogously, we will let f;* denote the minimum value of f;.

As in the IID setting, we assume an intermittent communication model (e.g. Woodworth et al. [480,
Sec. 4.4]), where M stateless clients participate in each of 7" rounds, and during each round, each client can
compute gradients for K samples (e.g. minibatches). The difference here is that the samples z; 1, ..., 2 ik
sampled at client ¢ are drawn from the client’s local distribution P;. Unlike the IID setting, we cannot
necessarily assume M = N, as the client distributions are not all equal. In the following, if an algorithm
relies on M = N, we will omit M and simply write N. We note that while such an assumption may
be compatible with the cross-silo federated setting in Table 1, it is generally infeasible in the cross-device
setting.

While [434, 500, 467, 435] mainly focused on the IID case, the analysis technique can be extended to
the non-IID case by adding an assumption on data dissimilarities, for example by constraining the difference
between client gradients and the global gradient [305, 300, 304, 469, 471] or the difference between client
and global optimum values [303, 268]. Under this assumption, Yu et al. [S01] showed that the error bound
of local SGD in the non-IID case becomes worse. In order to achieve the rate of 1/v/T KN (under non-
convex objectives), the number of local updates K should be smaller than 7''/3 /N, instead of T/N? as in
the IID case [467]. Li et al. [300] proposed to add a proximal term in each local objective function so as
to make the algorithm be more robust to the heterogeneity across local objectives. The proposed FedProx
algorithm empirically improves the performance of federated averaging. Khaled et al. [268] assumes all
clients participate, and uses batch gradient descent on clients, which can potentially converge faster than
stochastic gradients on clients.

Recently, a number of works have made progress in relaxing the assumptions necessary for analysis so as
to better apply to practical uses of Federated Averaging. For example, Li et al. [303] studied the convergence
of Federated Averaging in a more realistic setting where only a subset of clients are involved in each round.
In order to guarantee the convergence, they assumed that the clients are selected either uniformly at random
or with probabilities that are in proportion to the sizes of local datasets. Nonetheless, in practice the server
may not be able to sample clients in these idealized ways — in particular, in cross-device settings only
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Non-IID assumptions

Symbol Full name Explanation

BCGV  bounded inter-client gradient variance IE ||V fl( ) — ( |? < n?
BOBD  bounded optimal objective difference E;[f}] <

BOGV  bounded optimal gradient variance E HV fi(z)]]? < >
BGV bounded gradient dissimilarity Ei |Vfi(@)P/|vF@)? < n?

Other assumptions and variants

Symbol Explanation

CVX Each client function f;(z) is convex.

SCVX  Each client function f;(x) is p-strongly convex.

BNCVX  Each client function has bounded nonconvexity with V2 f;(z) = —pul.
BLGV The variance of stochastic gradients on local clients is bounded.

BLGN The norm of any local gradient is bounded.

LBG Clients use the full batch of local samples to compute updates.

Dec Decentralized setting, assumes the the connectivity of network is good.
AC All clients participate in each round.

Istep One local update is performed on clients in each round.

Prox Use proximal gradient steps on clients.

VR Variance reduction which needs to track the state.

Convergence rates

Method Non-IID Other assumptions Variant Rate

Lian et al. [305] BCGV  BLGV Dec; AC; Istep  O(1/1) + O(1/VNT)
PD-SGD [304] BCGV BLGV Dec; AC O(N/T) + O(1/V¥NT)
MATCHA [469] BCGV BLGV Dec O(YvTKM) + O(M/KT)
Khaled et al. [268] BOGV CvX AC; LBG ON/T) + O(1/vNT)

Li et al. [303] BOBD SCVX; BLGV; BLGN - O(K/T)

FedProx [300] BGV BNCVX Prox O(Y/vT)

SCAFFOLD [265] - SCVX; BLGV VR O(Yrrm) + O(e™T)

Table 6: Convergence rates for a (non-comprehensive) set of federated optimization methods in non-IID
settings. We summarize the key assumptions for non-IID data, local functions on each client, and other
assumptions. We also present the variant of the algorithm comparing to Federated Averaging and the con-
vergence rates that eliminate constant.
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devices that meet strict eligibility requirements (e.g. charging, idle, free WiFi) will be selected to participate
in the computation. At different times within a day, the clients characteristics can vary significantly. Eichner
et al. [171] formulated this problem and studied the convergence of semi-cyclic SGD, where multiple blocks
of clients with different characteristics are sampled from following a regular cyclic pattern (e.g. diurnal).
Clients can perform different local steps because of heterogeneity in their computing capacities. Wang
et al. [471] proves that FedAvg and many other federated learning algorithms will converge to the stationary
points of a mismatched objective function in the presence of heterogeneous local steps. They refer to this
problem as objective inconsistency and propose a simple technique to eliminate the inconsistency problem
from federated learning algorithms.

We summarize recent theoretical results in Table 6. All the methods in Table 6 assume smoothness or
Lipschitz gradients for the local functions on clients. The error bound is measured by optimal objective
(1) for convex functions and norm of gradient for nonconvex functions. For each method, we present the
key non-IID assumption, assumptions on each client function f;(x), and other auxiliary assumptions. We
also briefly describe each method as a variant of the federated averaging algorithm, and show the simplified
convergence rate eliminating constants. Assuming the client functions are strongly convex could help the
convergence rate [303, 265]. Bounded gradient variance, which is a widely used assumption to analyze
stochastic gradient methods, is often used when clients use stochastic local updates [305, 303, 304, 469,
265]. Li et al. [303] directly analyzes the Federated Averaging algorithm, which applies K steps of local
updates on randomly sampled M clients in each round, and presents a rate that suggests local updates
(K > 1) could slow down the convergence. Clarifying the regimes where X > 1 may hurt or help
convergence is an important open problem.

Connections to decentralized optimization The objective function of federated optimization has been
studied for many years in the decentralized optimization community. As first shown in Wang and Joshi [467],
the convergence analysis of decentralized SGD can be applied to or combined with local SGD with a proper
setting of the network topology matrix (mixing matrix). In order to reduce the communication overhead,
Wang and Joshi [467] proposed periodic decentralized SGD (PD-SGD) which allows decentralized SGD to
have multiple local updates as Federated Averaging. This algorithm is extended by Li et al. [304] to the
non-IID case. MATCHA [469] further improves the performance of PD-SGD by randomly sampling clients
for computation and communication, and provides a convergence analysis showing that local updates can
accelerate convergence.

Acceleration, variance reduction and adaptivity Momentum, variance-reduction, and adaptive learn-
ing rates are all promising techniques to improve convergence and generalization of first-order methods.
However, there is no single manner in which to incorporate these techniques into FedAvg. SCAFFOLD
[265] models the difference in client updates using control variates to perform variance reduction. Notably,
this allows convergence results not relying on bounding the amount of heterogeneity among clients. As for
momentum, Yu et al. [501] propose allowing each client to maintain a local momentum buffer and aver-
age the local buffers and the local model parameters at each communication round. Although this method
empirically improves the final accuracy of local SGD, this doubles the per-round communication cost. A
similar scheme is used by Xie et al. [485] to design a variant of local SGD in which clients locally perform
Adagrad [335, 161]. Reddi et al. [389] instead proposes using adaptive learning rates at the server-level,
developing federated versions of adaptive optimization methods with the same communication cost as Fe-
dAvg. This framework generalizes the server momentum framework proposed by Hsu et al. [237], Wang
et al. [470], which allows momentum without increasing communication costs. While both [501, 470]
showed that the momentum variants of local SGD can converge to stationary points of non-convex objective
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functions at the same rate as synchronous mini-batch SGD, it is challenging to prove momentum accelerates
the convergence rate in the federated learning setting. Recently, Karimireddy et al. [264] proposed a general
approach for adapting centralized optimization algorithms to the heterogeneous federated setting (MIME
framework and algorithms).

3.3 Multi-Task Learning, Personalization, and Meta-Learning

In this section we consider a variety of “multi-model” approaches — techniques that result in effectively
using different models for different clients at inference time. These techniques are particularly relevant when
faced with non-IID data (Section 3.1), since they may outperform even the best possible shared global model.
We note that personalization has also been studied in the fully decentralized setting [459, 59, 504, 19], where
training individual models is particularly natural.

3.3.1 Personalization via Featurization

The remainder of this section specifically considers techniques that result in different users running inference
with different model parameters (weights). However, in some applications similar benefits can be achieved
by simply adding user and context features to the model. For example, consider a language model for next-
word-prediction in a mobile keyboard as in Hard et al. [222]. Different clients are likely to use language
differently, and in fact on-device personalization of model parameters has yielded significant improvements
for this problem [472]. However, a complimentary approach may be to train a federated model that takes
as input not only the words the user has typed so far, but a variety of other user and context features—
What words does this user frequently use? What app are they currently using? If they are chatting, what
messages have they sent to this person before? Suitably featurized, such inputs can allow a shared global
model to produce highly personalized predictions. However, largely because few public datasets contain
such auxiliary features, developing model architectures that can effectively incorporate context information
for different tasks remains an important open problem with the potential to greatly increase the utility of
FL-trained models.

3.3.2 Multi-Task Learning

If one considers each client’s local problem (the learning problem on the local dataset) as a separate task
(rather than as a shard of a single partitioned dataset), then techniques from multi-task learning [506] im-
mediately become relevant. Notably, Smith et al. [424] introduced the MOCHA algorithm for multi-task
federated learning, directly tackling challenges of communication efficiency, stragglers, and fault tolerance.
In multi-task learning, the result of the training process is one model per task. Thus, most multi-task learn-
ing algorithms assume all clients (tasks) participate in each training round, and also require stateful clients
since each client is training an individual model. This makes such techniques relevant for cross-silo FL
applications, but harder to apply in cross-device scenarios.

Another approach is to reconsider the relationship between clients (local datasets) and learning tasks
(models to be trained), observing that there are points on a spectrum between a single global model and
different models for every client. For example, it may be possible to apply techniques from multi-task
learning (as well as other approaches like personalization, discussed next), where we take the “task” to be
a subset of the clients, perhaps chosen explicitly (e.g. based on geographic region, or characteristics of the
device or user), or perhaps based on clustering [331] or the connected components of a learned graph over
the clients [504]. The development of such algorithms is an important open problem. See Section 4.4.4
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for a discussion of how sparse federated learning problems, such as those arising naturally in this type of
multi-task problem, might be approached without revealing to which client subset (task) each client belongs.

3.3.3 Local Fine Tuning and Meta-Learning

By local fine tuning, we refer to techniques which begin with the federated training of a single model, and
then deploy that model to all clients, where it is personalized by additional training on the local dataset before
use in inference. This approach integrates naturally into the typical lifecycle of a model in federated learning
(Section 1.1.1). Training of the global model can still proceed using only small samples of clients on each
round (e.g. 100s); the broadcast of the global model to all clients (e.g. many millions) only happens once,
when the model is deployed. The only difference is that before the model is used to make live predictions
on the client, a final training process occurs, personalizing the model to the local dataset.

Given a global model that performs reasonably well, what is the best way to personalize it? In non-
federated learning, researchers often use fine-tuning, transfer learning, domain adaptation [329, 132, 61,
332, 133], or interpolation with a personal local model. Of course, the precise technique used for such
interpolations is key and it is important to determine its corresponding learning guarantees in the context of
federated learning. Further, these techniques often assume only a pair of domains (source and target), and
so some of the richer structure of federated learning may be lost.

One approach for studying personalization and non-IID data is via a connection to meta-learning, which
has emerged as a popular setting for model adaptation. In the standard learning-to-learn (LTL) setup [56],
one has a meta-distribution over tasks, samples from which are used to learn a learning algorithm, for
example by finding a good restriction of the hypothesis space. This is in fact a good match for the statistical
setting discussed in Section 3.1, where we sample a client (task) ¢ ~ Q, and then sample data for that client
(task) from P;.

Recently, a class of algorithms referred to as model-agnostic meta-learning (MAML) have been devel-
oped that meta-learn a global model, which can be used as a starting point for learning a good model adapted
to a given task, using only a few local gradient steps [187]. Most notably, the training phase of the popular
Reptile algorithm [358] is closely related to Federated Averaging [337] — Reptile allows for a server learn-
ing rate and assumes all clients have the same amount of data, but is otherwise the same. Khodak et al. [270]
and Jiang et al. [250] explore the connection between FL. and MAML, and show how the MAML setting
is a relevant framework to model the personalization objectives for FL. Chai Sim et al. [102] applied local
fine tuning to personalize speech recognition models in federated learning. Fallah et al. [181] developed a
new algorithm called Personalized FedAvg by connecting MAML instead of Reptile to federated learning.
Additional connections with differential privacy were studied in [299].

The general direction of combining ideas from FL. and MAML is relatively new, with many open ques-
tions:

* The evaluation of MAML algorithms for supervised tasks is largely focused on synthetic image classi-
fication problems [290, 386] in which infinite artificial tasks can be constructed by subsampling from
classes of images. FL problems, modeled by existing datasets used for simulated FL. experiments
(Appendix A), can serve as realistic benchmark problems for MAML algorithms.

* In addition to an empirical study, or optimization results, it would be useful to analyze the theoretical
guarantees of MAML-type techniques and study under what assumptions they can be successful, as
this will further elucidate the set of FL domains to which they may apply.

* The observed gap between the global and personalized acccuracy [250] creates a good argument
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that personalization should be of central importance to FL. However, none of the existing works
clearly formulates what would be comprehensive metrics for measuring personalized performance;
for instance, is a small improvement for every client preferable to a larger improvement for a subset
of clients? See Section 6 for a related discussion.

* Jiang et al. [250] highlighted the fact that models of the same structure and performance, but trained
differently, can have very different capacity to personalize. In particular, it appears that training
models with the goal of maximizing global performance might actually hurt the model’s capacity for
subsequent personalization. Understanding the underlying reasons for this is a question relevant for
both FL and the broader ML community.

* Several challenging FL topics including personalization and privacy have begun to be studied in this
multi-task/LTL framework [270, 250, 299]. Is it possible for other issues such as concept drift to also
be analyzed in this way, for example as a problem in lifelong learning [420]?

* Can non-parameter transfer LTL algorithms, such as ProtoNets [425], be of use for FL?

3.3.4 When is a Global FL-trained Model Better?

What can federated learning do for you that local training on one device cannot? When local datasets are
small and the data is IID, FL clearly has an edge, and indeed, real-world applications of federated learning
[491, 222, 112] benefit from training a single model across devices. On the other hand, given pathologically
non-IID distributions (e.g. P;(y | z) directly disagree across clients), local models will do much better. Thus,
a natural theoretical question is to determine under what conditions the shared global model is better than
independent per-device models. Suppose we train a model hy, for each client &, using the sample of size my
available from that client. Can we guarantee that the model hgp learned via federated learning is at least
as accurate as hy when used for client £? Can we quantify how much improvement can be expected via
federated leaning? And can we develop personalization strategies with theoretical guarantees that at least
match the performance of both natural baselines (hy and hpp)?

Several of these problems relate to previous work on multiple-source adaptation and agnostic federated
learning [329, 330, 234, 352]. The hardness of these questions depends on how the data is distributed among
parties. For example, if data is vertically partitioned, each party maintaining private records of different
feature sets about common entities, these problems may require addressing record linkage [124] within the
federated learning task. Independently of the eventual technical levy of carrying out record linkage privately
[407], the task itself happens to be substantially noise prone in the real world [406] and only sparse results
have addressed its impact on training models [224]. Techniques for robustness and privacy can make local
models relatively stronger, particularly for non-typical clients [502]. Loss factorization tricks can be used
in supervised learning to alleviate up to the vertical partition assumption itself, but the practical benefits
depend on the distribution of data and the number of parties [373].

3.4 Adapting ML Workflows for Federated Learning

Many challenges arise when adapting standard machine learning workflows and pipelines (including data
augmentation, feature engineering, neural architecture design, model selection, hyperparameter optimiza-
tion, and debugging) to decentralized datasets and resource-constrained mobile devices. We discuss several
of these challenges below.
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3.4.1 Hyperparameter Tuning

Running many rounds of training with different hyperparameters on resource-constrained mobile devices
may be restrictive. For small device populations, this might result in the over-use of limited communica-
tion and compute resources. However, recent deep neural networks crucially depend on a wide range of
hyperparameter choices regarding the neural network’s architecture, regularization, and optimization. Eval-
uations can be expensive for large models and large-scale on-device datasets. Hyperparameter optimization
(HPO) has a long history under the framework of AutoML [395, 273, 277], but it mainly concerns how
to improve the model accuracy [64, 426, 374, 180] rather than communication and computing efficacy for
mobile devices. Therefore, we expect that further research should consider developing solutions for efficient
hyperparameter optimization in the context of federated learning.

In addition to general-purpose approaches to the hyperparameter optimization problem, in the training
space specifically the development of easy-to-tune optimization algorithms is a major open area. Centralized
training already requires tuning parameters like learning rate, momentum, batch size, and regularization.
Federated learning adds potentially more hyperparameters — separate tuning of the aggregation / global
model update rule and local client optimizer, number of clients selected per round, number of local steps per
round, configuration of update compression algorithms, and more. Such hyperparameters can be crucial to
obtaining a good trade-off between accuracy and convergence, and may actually impact the quality of the
learned model [106]. In addition to a higher-dimensional search space, federated learning often also requires
longer wall-clock training times and limited compute resources. These challenges could be addressed by
optimization algorithms that are robust to hyperparameter settings (the same hyperparameter values work for
many different real world datasets and architectures), as well as adaptive or self-tuning algorithms [446, 82].

3.4.2 Neural Architecture Design

Neural architecture search (NAS) in the federated learning setting is motivated by the drawbacks of the
current practice of applying predefined deep learning models: the predefined architecture of a deep learning
model may not be the optimal design choice when the data generated by users are invisible to model de-
velopers. For example, the neural architecture may have some redundant component for a specific dataset,
which may lead to unnecessary computing on devices; there may be a better architectural design for the non-
IID data distribution. The approaches to personalization discussed in Section 3.3 still share the same model
architecture among all clients. The recent progress in NAS [230, 387, 175, 388, 60, 375, 313, 488, 175, 323]
provides a potential way to address these drawbacks. There are three major methods for NAS, which utilize
evolutionary algorithms, reinforcement learning, or gradient descent to search for optimal architectures for
a specific task on a specific dataset. Among these, the gradient-based method leverages efficient gradient
back-propagation with weight sharing, reducing the architecture search process from over 3000 GPU days to
only 1 GPU day. Another interesting paper recently published, involving Weight Agnostic Neural Networks
[192], claims that neural network architectures alone, without learning any weight parameters, may encode
solutions for a given task. If this technique further develops and reaches widespread use, it may be applied
to the federated learning without collaborative training among devices. Although these methods have not
been developed for distributed settings such as federated learning, they are all feasible to be transferred to
the federated setting. Neural Architecture Search (NAS) for a global or personalized model in the federated
learning setting is promising, and early exploration has been made in [228].
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3.4.3 Debugging and Interpretability for FL

While substantial progress has been made on the federated training of models, this is only part of a complete
ML workflow. Experienced modelers often directly inspect subsets of the data for tasks including basic san-
ity checking, debugging misclassifications, discovering outliers, manually labeling examples, or detecting
bias in the training set. Developing privacy-preserving techniques to answer such questions on decentral-
ized data is a major open problem. Recently, Augenstein et al. [31] proposed the use of differentially private
generative models (including GANs), trained with federated learning, to answer some questions of this type.
However, many open questions remain (see discussion in [31]), in particular the development of algorithms
that improve the fidelity of FL DP generative models.

3.5 Communication and Compression

It is now well-understood that communication can be a primary bottleneck for federated learning since
wireless links and other end-user internet connections typically operate at lower rates than intra- or inter-
datacenter links and can be potentially expensive and unreliable. This has led to significant recent interest
in reducing the communication bandwidth of federated learning. Methods combining Federated Averag-
ing with sparsification and/or quantization of model updates to a small number of bits have demonstrated
significant reductions in communication cost with minimal impact on training accuracy [282]. However, it
remains unclear if communication cost can be further reduced, and whether any of these methods or their
combinations can come close to providing optimal trade-offs between communication and accuracy in fed-
erated learning. Characterizing such fundamental trade-offs between accuracy and communication has been
of recent interest in theoretical statistics [507, 89, 221, 7, 49, 444, 50]. These works characterize the optimal
minimax rates for distributed statistical estimation and learning under communication constraints. How-
ever, it is difficult to deduce concrete insights from these theoretical works for communication bandwidth
reduction in practice as they typically ignore the impact of the optimization algorithm. It remains an open
direction to leverage such statistical approaches to inform practical training methods.

Compression objectives Motivated by the limited resources of current devices in terms of compute, mem-
ory and communication, there are several different compression objectives of practical value.

(a) Gradient compression® — reduce the size of the object communicated from clients to server, which is

used to update the global model.

(b) Model broadcast compression — reduce the size of the model broadcast from server to clients, from
which the clients start local training.

(c) Local computation reduction — any modification to the overall training algorithm such that the local
training procedure is computationally more efficient.

These objectives are in most cases complementary. Among them, (a) has the potential for the most signif-
icant practical impact in terms of total runtime. This is both because clients’ connections generally have
slower upload than download bandwidth’ — and thus there is more to be gained, compared to (b) — and be-
cause the effects of averaging across many clients can enable more aggressive lossy compression schemes.
Usually, (c) could be realized jointly with (a) and (b) by specific methods.

®In this section, we use “gradient compression” to include compression applied to any model update, such as the updates
produced by Federated Averaging when clients take multiple gradient steps.
"See for instance https: //www.speedtest .net/reports/
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Much of the existing literature applies to the objective (a) [282, 440, 281, 17, 235, 55]. The impact of
(b) on convergence in general has not been studied until very recently; an analysis is presented in [123].
Very few methods intend to address all of (a), (b) and (c) jointly. Caldas et al. [95] proposed a practical
method by constraining the desired model update such that only particular submatrices of model variables
are necessary to be available on clients; Hamer et al. [219] proposed a communication-efficient federated
algorithm for learning mixture weights on an ensemble of pre-trained models, based on communicating only
a subset of the models to any one device; He et al. [227] utilizes bidirectional and alternative knowledge
distillation method to transfer knowledge from many compact DNNs to a dense server DNN, which can
reduce the local computational burden at the edge devices.

In cross-device FL, algorithms generally cannot assume any state is preserved on the clients (Table 1).
However, this constraint would typically not be present in the cross-silo FL setting, where the same clients
participate repeatedly. Consequently, a wider set of ideas related to error-correction such as [311, 405, 463,
444,263, 435] are relevant in this setting, many of which could address both (a) and (b).

An additional objective is to modify the training procedure such that the firal model is more compact,
or efficient for inference. This topic has received a lot of attention in the broader ML community [220, 138,
509, 309, 362, 74], but these methods either do not have a straightforward mapping to federated learning,
or make the training process more complex which makes it difficult to adopt. Research that simultaneously
yields a compact final model, while also addressing the three objectives above, has significant potential for
practical impact.

For gradient compression, some existing works [440] are developed in the minimax sense to characterize
the worst case scenario. However usually in information theory, the compression guarantees are instance
specific and depend on the entropy of the underlying distribution [140]. In other words, if the data is
easily compressible, they are provably compressed heavily. It would be interesting to see if similar instance
specific results can be obtained for gradient compression. Similarly, recent works show that learning a
compression scheme in a data-dependent fashion can lead to significantly better compression ratio for the
case of data compression [482] as well as gradient compression. It is therefore worthwhile to evaluate these
data-dependent compression schemes in the federated settings [193].

Compatibility with differential privacy and secure aggregation Many algorithms used in federated
learning such as Secure Aggregation [79] and mechanisms of adding noise to achieve differential privacy [3,
338] are not designed to work with compressed or quantized communications. For example, straightforward
application of the Secure Aggregation protocol of Bonawitz et al. [80], Bell et al. [58] requires an additional
O(log M) bits of communication for each scalar, where M is the number of clients being summed over,
and this may render ineffective the aggressive quantization of updates when M is large (though see [82]
for a more efficient approach). Existing noise addition mechanisms assume adding real-valued Gaussian
or Laplacian noise on each client, and this is not compatible with standard quantization methods used to
reduce communication. We note that several recent works allow biased estimators and would work nicely
with Laplacian noise [435], however those would not give differential privacy, as they break independence
between rounds. There is some work on adding discrete noise [9], but there is no notion whether such
methods are optimal. Joint design of compression methods that are compatible with Secure Aggregation, or
for which differential privacy guarantees can be obtained, is thus a valuable open problem.

Wireless-FL co-design The existing literature in federated learning usually neglects the impact of wire-
less channel dynamics during model training, which potentially undermines both training latency and thus
reliability of the entire production system. In particular, wireless interference, noisy channels and channel
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fluctuations can significantly hinder the information exchange between the server and clients (or directly
between individual clients, as in the fully decentralized case, see Section 2.1). This represents a major
challenge for mission-critical applications, rooted in latency reduction and reliability enhancements. Poten-
tial solutions to address this challenge include federated distillation (FD), in which workers exchange their
model output parameters (logits) as opposed to the model parameters (gradients and/weights), and optimiz-
ing workers’ scheduling policy with appropriate communication and computing resources [248, 368, 402].
Another solution is to leverage the unique characteristics of wireless channels (e.g. broadcast and superposi-
tion) as natural data aggregators, in which the simultaneously transmitted analog-waves by different workers
are superposed at the server and weighed by the wireless channel coefficients [4]. This yields faster model
aggregation at the server, and faster training by a factor up to the number of workers. This is in sharp con-
trast with the traditional orthogonal frequency division multiplexing (OFDM) paradigm, whereby workers
upload their models over orthogonal frequencies whose performance degrades with increasing number of
workers [174].

3.6 Application To More Types of Machine Learning Problems and Models

To date, federated learning has primarily considered supervised learning tasks where labels are naturally
available on each client. Extending FL to other ML paradigms, including reinforcement learning, semi-
supervised and unsupervised learning, active learning, and online learning [226, 508] all present interesting
and open challenges.

Another important class of models, highly relevant to FL, are those that can characterize the uncer-
tainty in their predictions. Most modern deep learning models cannot represent their uncertainty nor allow
for a probability interpretation of parametric learning. This has motivated recent developments of tools
and techniques combining Bayesian models with deep learning. From a probability theory perspective, it
is unjustifiable to use single point-estimates for classification. Bayesian neural networks [419] have been
proposed and shown to be far more robust to over-fitting, and can easily learn from small datasets. The
Bayesian approach further offers uncertainty estimates via its parameters in form of probability distribu-
tions, thus preventing over-fitting. Moreover, appealing to probabilistic reasoning, one can predict how the
uncertainty can decrease, allowing the decisions made by the network to become more deterministic as the
data size grows.

Since Bayesian methods gave us tools to reason about deep models’ confidence and also achieve state-of-
the-art performance on many tasks, one expects Bayesian methods to provide a conceptual improvement to
the classical federated learning. In fact, preliminary work from Lalitha et al. [292] shows that incorporating
Bayesian methods allows for model aggregation across non-IID data and heterogeneous platforms. However,
many questions regarding scalability and computational feasibility have to be addressed.

3.7 Executive summary

Efficient and effective federated learning algorithms face different challenges compared to centralized train-
ing in a datacenter.

* Non-IID data due to non-identical client distributions, violation of independence, and dataset drift
(Section 3.1) pose a key challenge. Though various methods have been surveyed and discussed in this
section, defining and dealing with non-IID data remains an open problem and one of the most active
research topics in federated learning.
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Optimization algorithms for federated learning are analyzed in Section 3.2 under different settings,
e.g., convex and nonconvex functions, IID and non-1ID data. Theoretical analysis has proven difficult
for the parallel local updates commonly used in federated optimization, and often strict assumptions
have to be made to constrain the client heterogeneity. Currently, known convergence rates do not fully
explain the empirically-observed effectiveness of the Federated Averaging algorithm over methods
such as mini-batch SGD [481].

Client-side personalization and “multi-model” approaches (Section 3.3) can address data heterogene-
ity and give hope of surpassing the performance of the best fixed global model. Simple personalization
methods like fine-tuning can be effective, and offer intrinsic privacy advantages. However, many the-
oretical and empirical questions remain open: when is a global model better? How many models are
necessary? Which federated optimization algorithms combine best with local fine-tuning?

Adapting centralized training workflows such as hyper-parameter tuning, neural architecture design,
debugging, and interpretability tasks to the federated learning setting (Section 3.4) present roadblocks
to the widespread adoption of FL in practical settings, and hence constitute important open problems.

While there has been significant work on communication efficiency and compression for FL (Sec-
tion 3.5), it remains an important and active area. In particular, fully automating the process of
enabling compression without impacting convergence for a wide class of models is an important prac-
tical goal. Relatively new directions on the theoretical study of communication, compatibility with
privacy methods, and co-design with wireless infrastructure are discussed.

There are many open questions in extending federated learning from supervised tasks to other machine
learning paradigms including reinforcement learning, semi-supervised and unsupervised learning, ac-
tive learning, and online learning (Section 3.6).
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4 Preserving the Privacy of User Data

Machine learning workflows involve many actors functioning in disparate capacities. For example, users
may generate training data through interactions with their devices, a machine learning training procedure
extracts cross-population patterns from this data (e.g. in the form of trained model parameters), the machine
learning engineer or analyst may assess the quality of this trained model, and eventually the model may be
deployed to end users in order to support specific user experiences (see Figure 1 below).

In an ideal world, each actor in the system would learn nothing more than the information needed to play
their role. For example, if an analyst only needs to determine whether a particular quality metric exceeds
a desired threshold in order to authorize deploying the model to end users, then in an idealized world, that
is the only bit of information that would be available to the analyst; such an analyst would need access
to neither the training data nor the model parameters, for instance. Similarly, end users enjoying the user
experiences powered by the trained model might only require predictions from the model and nothing else.

Furthermore, in an ideal world every participant in the system would be able to reason easily and accu-
rately about what personal information about themselves and others might be revealed by their participation
in the system, and participants would be able to use this understanding to make informed choices about how
and whether to participate at all.

Producing a system with all of the above ideal privacy properties would be a daunting feat on its own,
and even more so while also guaranteeing other desirable properties such as ease of use for all participants,
the quality and fairness of the end user experiences (and the models that power them), the judicious use of
communication and computation resources, resilience against attacks and failures, and so on.

Rather than allowing perfect to be the enemy of good, we advocate a strategy wherein the overall sys-
tem is composed of modular units which can be studied and improved relatively independently, while also
reminding ourselves that we must, in the end, measure the privacy properties of the complete system against
our ideal privacy goals set out above. The open questions raised throughout this section will highlight areas

model
testing

clients

server

engineers

& analysts
federated = grest ot
learnin E|
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deployment

Figure 1: The lifecycle of an FL-trained model and the various actors in a federated learning system.
(repeated from Page 7)
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wherein we do not yet understand how to simultaneously achieve all of our goals, either for an individual
module or for the system as a whole.

Federated learning provides an attractive structure for decomposing the overall machine learning work-
flow into the approachable modular units we desire. One of the primary attractions of the federated learning
model is that it can provide a level of privacy to participating users through data minimization: the raw
user data never leaves the device, and only updates to models (e.g., gradient updates) are sent to the central
server. These model updates are more focused on the learning task at hand than is the raw data (i.e. they
contain strictly no additional information about the user, and typically significantly less, compared to the
raw data), and the individual updates only need to be held ephemerally by the server.

While these features can offer significant practical privacy improvements over centralizing all the train-
ing data, there is still no formal guarantee of privacy in this baseline federated learning model. For instance,
it is possible to construct scenarios in which information about the raw data is leaked from a client to the
server, such as a scenario where knowing the previous model and the gradient update from a user would
allow one to infer a training example held by that user. Therefore, this section surveys existing results
and outlines open challenges towards designing federated learning systems that can offer rigorous privacy
guarantees. We focus on questions specific to the federated learning and analytics setting and leave aside
questions that also arise in more general machine learning settings as surveyed in [344].

Beyond attacks targeting user privacy, there are also other classes of attacks on federated learning; for
example, an adversary might attempt to prevent a model from being learned at all, or they might attempt to
bias the model to produce inferences that are preferable to the adversary. We defer consideration of these
types of attacks to Section 5.

The remainder of this section is organized as follows. Section 4.1 discusses various threat models
against which we wish to give protections. Section 4.2 lays out a set of core tools and technologies that can
be used towards providing rigorous protections against the threat models discussed in Section 4.1. Section
4.3 assumes the existence of a trusted server and discusses the open problems and challenges in providing
protections against adversarial clients and/or analysts. Section 4.4 discusses the open problems and chal-
lenges in the absence of a fully trusted server. Finally, Section 4.5 discusses open questions around user
perception.

4.1 Actors, Threat Models, and Privacy in Depth

A formal treatment of privacy risks in FL calls for a holistic and interdisciplinary approach. While some of
the risks can be mapped to technical privacy definitions and mitigated with existing technologies, others are
more complex and require cross-disciplinary efforts.

Privacy is not a binary quantity, or even a scalar one. This first step towards such formal treatment
is a careful characterization of the different actors (see Figure 1 from Section 1, repeated on page 36 for
convenience) and their roles to ultimately define relevant threat models (see Table 7). Thus, for instance, it
is desirable to distinguish the view of the server administrator from the view of the analysts that consume
the learned models, as it is conceivable that a system that is designed to offer strong privacy guarantees
against a malicious analyst may not provide any guarantees with respect to a malicious server. These actors
map well onto the threat models discussed elsewhere in the literature; for example, in Bittau et al. [73, Sec
3.1], where the “encoder” corresponds to the client, the “shuffler” generally corresponds to the server, the
“analyzer* may correspond to the server or post-processing done by the analyst.
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As an example, a particular system might offer a differential privacy® guarantee with a particular pa-
rameter € to the view of the server administrator, while the results observed by analysts might have a higher
protection &’ < e.

Furthermore, it is possible that this guarantee holds only against adversaries with particular limits on
their capabilities, e.g. an adversary that can observe everything that happens on the server (but cannot
influence the server’s behavior) while simultaneously controlling up to a fraction «y of the clients (observing
everything they see and influencing their behavior in arbitrary ways); the adversary might also be assumed
to be unable to break cryptographic mechanisms instantiated at a particular security level o. Against an
adversary whose strength exceeds these limits, the view of the server administrator might still have some
differential privacy, but at weaker level ¢g > €.

As we see in this example, precisely specifying the assumptions and privacy goals of a system can
easily implicate concrete instantiations of several parameters (¢, €, ¢, 7, 0, etc.) as well as concepts such
as differential privacy and honest-but-curious security.

Achieving all the desired privacy properties for federated learning will typically require composing many
of the tools and technologies described below into an end-to-end system, potentially both layering multiple
strategies to protect the same part of the system (e.g. running portions of a Secure Multi-Party Compu-
tation (MPC) protocol inside a Trusted Execution Environment (TEE) to make it harder for an adversary
to sufficiently compromise that component) as well as using different strategies to protect different parts
of the system (e.g. using MPC to protect the aggregation of model updates, then using Private Disclosure
techniques before sharing the aggregate updates beyond the server).

As such, we advocate for building federated systems wherein the privacy properties degrade as grace-
fully as possible in cases where one technique or another fails to provide its intended privacy contribution.
For example, running the server component of an MPC protocol inside a TEE might allow privacy to be
maintained even in the case where either (but not both) of the TEE security or MPC security assumptions
fails to hold in practice. As another example, requiring clients to send raw training examples to a server-side
TEE would be strongly dispreferred to having clients send gradient updates to a server-side TEE, as the lat-
ter’s privacy expectations degrade much more gracefully if the TEE’s security were to fail. We refer to this
principle of graceful degradation as “Privacy in Depth,” in analogy to the well-established network security
principle of defense in depth [361].

4.2 Tools and Technologies

Generally speaking, the goal of an FL computation is for the analyst or engineer requesting the computation
to obtain the result, which can be thought of as the evaluation of a function f on a distributed client dataset
(commonly an ML model training algorithm, but possibly something simpler such as a basic statistic). There
are three privacy aspects that need to be addressed.

First, we need to consider how f is computed and what is the information flow of intermediate results
in the process, which primarily influences the susceptibility to malicious client, server, and admin actors. In
addition to designing the flow of information in the system (e.g. early data minimization), techniques from
secure computation including Secure Multi-Party Computation (MPC) and Trusted Execution Environments
(TEESs) are of particular relevance to addressing these concerns. These technologies will be discussed in
detail in Section 4.2.1.

8Differential privacy will be formally introduced in Section 4.2.2. For now, it suffices to know that lower ¢ corresponds with
higher privacy.
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Data/Access Point

Actor

Threat Model

Clients

Server

Output Models

Deployed Models

Someone who has root access
to the client device, either by
design or by compromising the
device

Someone who has root access
to the server, either by design
or by compromising the device

Engineers & analysts

The rest of the world

Malicious clients can inspect all messages re-
ceived from the server (including the model it-
erates) in the rounds they participate in and can
tamper with the training process. An honest-but-
curious client can inspect all messages received
from the server but cannot tamper with the train-
ing process. In some cases, technologies such as
secure enclaves/TEEs may be able to limit the in-
fluence and visibility of such an attacker, repre-
senting a meaningfully weaker threat model.

A malicious server can inspect all messages sent
to the server (including the gradient updates) in all
rounds and can tamper with the training process.
An honest-but-curious server can inspect all mes-
sages sent to the server but cannot tamper with
the training process. In some cases, technologies
such as secure enclaves/TEEs may be able to limit
the influence and visibility of such an attacker,
representing a meaningfully weaker threat model.

A malicious analyst or model engineer may have
access to multiple outputs from the system, e.g.
sequences of model iterates from multiple train-
ing runs with different hyperparameters. Exactly
what information is released to this actor is an im-
portant system design question.

In cross-device FL, the final model may be de-
ployed to hundreds of millions of devices. A par-
tially compromised device can have black-box ac-
cess to the learned model, and a fully compro-
mised device can have a white-box access to the
learned model.

Table 7: Various threat models for different adversarial actors.
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Second, we have to consider what is computed. In other words, how much information about a par-
ticipating client is revealed to the analyst and world actors by the result of f itself. Here, techniques for
privacy-preserving disclosure, particularly differential privacy (DP), are highly relevant and will be dis-
cussed in detail in Section 4.2.2.

Finally, there is the problem of verifiability, which pertains to the ability of a client or the server to
prove to others in the system that they have executed the desired behavior faithfully, without revealing
the potentially private data upon which they were acting. Techniques for verifiability, including remote
attestation and zero-knowledge proofs, will be discussed in Section 4.2.3.

4.2.1 Secure Computations

The goal of secure computation is to evaluate functions on distributed inputs in a way that only reveals
the result of the computation to the intended parties, without revealing any additional information (e.g. the
parties’ inputs or any intermediate results).

Secure multi-party computation Secure Multi-Party Computation (MPC) is a subfield of cryptography
concerned with the problem of having a set of parties compute an agreed-upon function of their private
inputs in a way that only reveals the intended output to each of the parties. This area was kicked off in the
1980’s by Yao [493]. Thanks to both theoretical and engineering breakthroughs, the field has moved from
being of a purely theoretical interest to a deployed technology in industry [78, 77, 295, 27, 191, 242, 243].
It is important to remark that MPC defines a set of technologies, and should be regarded more as a field, or a
general notion of security in secure computation, than a technology per se. Some of the recent advances in
MPC can be attributed to breakthroughs in lower level primitives, such as oblivious transfer protocols [244]
and encryption schemes with homomorphic properties (as described below).

A common aspect of cryptographic solutions is that operations are often done on a finite field (e.g.
integers modulo a prime p), which poses difficulties when representing real numbers. A common approach
has been to adapt ML models and their training procedures to ensure that (over)underflows are controlled,
by operating on normalized quantities and relying on careful quantization [194, 10, 206, 84].

It has been known for several decades that any function can be securely computed, even in the presence
of malicious adversaries [208]. While generic solutions exist, their performance characteristics often render
them inapplicable in practical settings. As such a noticeable trend in research has consisted in designing
custom protocols for applications such as linear and logistic regression [359, 194, 351] and neural network
training and inference [351, 10, 48]. These works are typically in the cross-silo setting, or the variant where
computation is delegated to a small group of computing servers that do not collude with each other. Porting
these protocols to the cross-device setting is not straightforward, as they require a significant amount of
communication.

Homomorphic encryption Homomorphic encryption (HE) schemes allow certain mathematical opera-
tions to be performed directly on ciphertexts, without prior decryption. Homomorphic encryption can be a
powerful tool for enabling MPC by enabling a participant to compute functions on values while keeping the
values hidden.

Different flavours of HE exist, ranging from general fully homomorphic encryption (FHE) [197] to the
more efficient leveled variants [87, 182, 88, 129], for which several implementations exist [233, 409, 364,
415, 1]. Also of practical relevance are the so-called partially homomorphic schemes, including for example
ElGamal and Paillier, allowing either homomorphic addition or multiplication. Additive HE has been used
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Technology

Characteristics

Differential Privacy (local, cen-
tral, shuffled, aggregated, and
hybrid models)

Secure Multi-Party Computation

Homomorphic Encryption

Trusted Execution Environments
(secure enclaves)

A quantification of how much information could be learned about
an individual from the output of an analysis on a dataset that in-
cludes the user. Algorithms with differential privacy necessarily
incorporate some amount of randomness or noise, which can be
tuned to mask the influence of the user on the output.

Two or more participants collaborate to simulate, though cryptog-
raphy, a fully trusted third party who can:

e Compute a function of inputs provided by all the partici-
pants;

* Reveal the computed value to a chosen subset of the partici-
pants, with no party learning anything further.

Enables a party to compute functions of data to which they do
not have plain-text access, by allowing mathematical operations to
be performed on ciphertexts without decrypting them. Arbitrar-
ily complicated functions of the data can be computed this way
(“Fully Homomorphic Encryption”) though at greater computa-
tional cost.

TEEs provide the ability to trustably run code on a remote ma-
chine, even if you do not trust the machine’s owner/administrator.
This is achieved by limiting the capabilities of any party, including
the administrator. In particular, TEEs may provide the following
properties [437]:

* Confidentiality: The state of the code’s execution remains
secret, unless the code explicitly publishes a message;

* Integrity: The code’s execution cannot be affected, except
by the code explicitly receiving an input;

* Measurement/Attestation: The TEE can prove to a remote
party what code (binary) is executing and what its starting
state was, defining the initial conditions for confidentiality
and integrity.

Table 8: Various technologies along with their characteristics.
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as an ingredient in MPC protocols in the cross-silo setting [359, 224]. A review of some homomorphic
encryption software libraries along with brief explanations of criteria/features to be considered in choosing
a library is surveyed in [404].

When considering the use of HE in the FL setting, questions immediately arise about who holds the
secret key of the scheme. While the idea of every client encrypting their data and sending it to the server
to compute homomorphically on it is appealing, the server should not be able to decrypt a single client
contribution. A trivial way of overcoming this issue would be relying on a non-colluding external party that
holds the secret key and decrypts the result of the computation. However, most HE schemes require that the
secret keys be renewed often (due to e.g. susceptibility to chosen ciphertext attacks [117]). Moreover, the
availability of a trusted non-colluding party is not standard in the FL setting.

Another way around this issue is relying on distributed (or threshold) encryption schemes, where the
secret key is distributed among the parties. Reyzin et al. [392] and Roth et al. [398] propose such solutions
for computing summation in the cross-device setting. Their protocols make use of additively homomorphic
schemes (variants of ElGamal and lattice-based schemes, respectively).

Trusted execution environments Trusted execution environments (TEEs, also referred to as secure en-
claves) may provide opportunities to move part of the federated learning process into a trusted environment
in the cloud, whose code can be attested and verified.

TEEs can provide several crucial facilities for establishing trust that a unit of code has been executed
faithfully and privately [437]:

* Confidentiality: The state of the code’s execution remains secret, unless the code explicitly publishes
a message.

* Integrity: The code’s execution cannot be affected, except by the code explicitly receiving an input.

* Measurement/Attestation: The TEE can prove to a remote party what code (binary) is executing and
what its starting state was, defining the initial conditions for confidentiality and integrity.

TEEs have been instantiated in many forms, including Intel’s SGX-enabled CPUs [241, 134], Arm’s
TrustZone [28, 22], and Sanctum on RISC-V [135], each varying in its ability to systematically offer the
above facilities.

Current secure enclaves are limited in terms of memory and provide access only to CPU resources,
that is they do not allow processing on GPUs or machine learning processors (Tramer and Boneh [447]
explore how to combine TEEs with GPUs for machine learning inference). Moreover, it is challenging
for TEEs (especially those operating on shared microprocessors) to fully exclude all types of side channel
attacks [458].

While secure enclaves provide protections for all code running inside them, there are additional con-
cerns that must be addressed in practice. For example, it is often necessary to structure the code running in
the enclave as a data oblivious procedure, such that its runtime and memory access patterns do not reveal
information about the data upon which it is computing (see for example [73]). Furthermore, measure-
ment/attestation typically only proves that a particular binary is running; it is up to the system architect to
provide a means for proving that that binary has the desired privacy properties, potentially requiring the
binary to be built using a reproducible process from open source code.

It remains an open question how to partition federated learning functions across secure enclaves, cloud
computing resources, and client devices. For example, secure enclaves could execute key functions such as
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secure aggregation or shuffling to limit the server’s access to raw client contributions while keeping most of
the federated learning logic outside this trusted computing base.

Secure computation problems of interest While secure multi-party computation and trusted execution
environments offer general solutions to the problem of privately computing any function on distributed
private data, many optimizations are possible when focusing on specific functionalities. This is the case for
the tasks described next.

Secure aggregation Secure aggregation is a functionality for n clients and a server. It enables each
client to submit a value (often a vector or tensor in the FL setting), such that the server learns just an
aggregate function of the clients’ values, typically the sum.

There is a rich literature exploring secure aggregation in both the single-server setting (via additive
masking [8, 213, 80, 58, 428], via threshold homomorphic encryption [417, 218, 103], and via generic
secure multi-party computation [94]) as well as in the multiple non-colluding servers setting [78, 27, 130].
Secure aggregation can also be approached using trusted execution environments (introduced above), as
in [308].

Secure shuffling Secure shuffling is a functionality for n clients and a server. It enables each client
to submit one or more messages, such that the server learns just an unordered collection (multiset) of the
messages from all clients and nothing more. Specifically, the server has no ability to link any message to
its sender beyond the information contained in the message itself. Secure shuffling can be considered an
instance of Secure Aggregation where the values are multiset-singletons and the aggregation operation is
multiset-sum, though it is often the case that very different implementations provide the best performance
in the typical operating regimes for secure shuffling and secure aggregation.

Secure shufflers have been studied in the context of secure multi-party computation [107, 288], often
under the heading of mix networks. They have also been studied in the context of trusted computing [73].
Mix networks have found large scale deployment in the form of the Tor network [157].

Private information retrieval Private information retrieval (PIR) is a functionality for one client and
one server. It enables the client to download an entry from a server-hosted database such that the server
gains zero information about which entry the client requested.

MPC approaches to PIR break down into two main categories: computational PIR (cPIR), in which a
single party can execute the entire server side of the protocol [286], and information theoretic PIR (itPIR),
in which multiple non-colluding parties are required to execute the server side of the protocol [121].

The main roadblocks to the applicability of PIR have been the following: cPIR has high computational
cost [423], while the non-colluding parties setting has been difficult to achieve convincingly in industrial
scenarios. Recent results on PIR have shown dramatic reductions in the computational cost through the
use of lattice-based cryptosystems [12, 363, 13, 23, 198]. The computational cost can be traded for more
communication; we refer the reader to Ali et al. [16] to better understand the communication and computa-
tion trade-offs offered by cPIR. Additionally, it has been shown how to construct communication-efficient
PIR on a single-server by leveraging side information available to the user [251], for example via client
local state. Patel et al. [372] presented and implemented a practical hybrid (computational and information
theoretic) PIR scheme on a single server assuming client state. Corrigan-Gibbs and Kogan [131] present
theoretical constructions for PIR with sublinear online time by working in an offline/online model where,
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during an offline phase, clients fetch information from the server(s) independent on the future query to be
performed.

Further work has explored the connection between PIR and secret sharing [479], with recent connections
to PIR on coded data [159] and communication efficient PIR [72]. A variant of PIR, called PIR-with-Default,
enable clients to retrieve a default value if the index queried is not in the database, and can output additive
secret shares of items which can serve as input to any MPC protocol [297]. PIR has also been studied in the
context of ON-OFF privacy, in which a client is permitted to switch off their privacy guards in exchange for
better utility or performance [355, 494].

4.2.2 Privacy-Preserving Disclosures

The state-of-the-art model for quantifying and limiting information disclosure about individuals is differen-
tial privacy (DP) [167, 164, 165], which aims to introduce a level of uncertainty into the released model
sufficient to mask the contribution of any individual user. Differential privacy is quantified by privacy loss
parameters (e, ), where smaller (e, d) corresponds to increased privacy. More formally, a randomized al-
gorithm A is (g, §)-differentially private if for all S C Range(.A), and for all adjacent datasets D and D’:

P(A(D) € S) < efP(A(D) € S) + 4. 3)

In the context of FL, D and D’ correspond to decentralized datasets that are adjacent if D’ can be obtained
from D by adding or subtracting all the records of a single client (user) [338]. This notion of differential
privacy is referred to as user-level differential privacy. It is stronger than the typically used notion of ad-
jacency where D and D’ differ by only one record [165], since in general one user may contribute many
records (e.g. training examples) to the dataset.

Over the last decade, an extensive set of techniques has been developed for differentially private data
analysis, particularly under the assumption of a centralized setting, where the raw data is collected by a
trusted party prior to applying perturbations necessary to achieve privacy. In federated learning, typically the
orchestrating server would serve as the trusted implementer of the DP mechanism, ensuring only privatized
outputs are released to the model engineer or analyst.

However, when possible we often wish to reduce the need for a trusted party. Several approaches for
reducing the need for trust in a data curator have been considered in recent years.

Local differential privacy Differential privacy can be achieved without requiring trust in a centralized
server by having each client apply a differentially private transformation to their data prior to sharing it with
the server. That is, we apply Equation (3) to a mechanism .A that processes a single user’s local dataset D,
with the guarantee holding with respect to any possible other local dataset D’. This model is referred to as the
local model of differential privacy (LDP) [475, 266]. LDP has been deployed effectively to gather statistics
on popular items across large userbases by Google, Apple and Microsoft [177, 154, 155]. It has also been
used in federated settings for spam classifier training by Snap [378]. These LDP deployments all involve
large numbers of clients and reports, even up to a billion in the case of Snap, which stands in stark contrast to
centralized instantiations of DP which can provide high utility from much smaller datasets. Unfortunately,
as we will discuss in Section 4.4.2, achieving LDP while maintaining utility can be difficult [266, 455].
Thus, there is a need for a model of differential privacy that interpolates between purely central and purely
local DP. This can be achieved through distributed differential privacy, or the hybrid model, as discussed
below.
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Distributed differential privacy In order to recover some of the utility of central DP without having to
rely on a trustworthy central server, one can instead use a distributed differential privacy model [166, 417,
73, 120]. Under this model, the clients first compute and encode a minimal (application specific) focused
report, and then send the encoded reports to a secure computation function, whose output is available to the
central server, with the intention that this output already satisfies differential privacy requirements by the
time the server is able to inspect it. The encoding is done to help maintain privacy on the clients, and could
for example include LDP. The secure computation function can have a variety of incarnations. It could be
an MPC protocol, a standard computation done on a TEE, or even a combination of the two. Each of these
choices comes with different assumptions and threat models.

It is important to remark that distributed differential privacy and local differential privacy yield different
guarantees from several perspectives: while the distributed DP framework can produce more accurate statis-
tics for the same level of differential privacy as LDP, it relies on different setups and typically makes stronger
assumptions, such as access to MPC protocols. Below, we outline two possible approaches to distributed
differential privacy, relying on secure aggregation and secure shuffling. We stress that there are many other
methods that could be used, see for instance [400] for an approach based on exchanging correlated Gaussian
noise across secure channels.

Distributed DP via secure aggregation One promising tool for achieving distributed DP in FL is secure
aggregation, discussed above in Section 4.2.1. Secure aggregation can be used to ensure that the central
server obtains the aggregated result, while guaranteeing that intermediate parameters of individual devices
and participants are not revealed to the central server. To further ensure the aggregated result does not
reveal additional information to the server, we can use local differential privacy (e.g. with moderate ¢ level).
For example, each device could perturb its own model parameter before the secure aggregation in order to
achieve local differential privacy. By designing the noise correctly, we may ensure that the noise in the
aggregated result matches the noise that would have otherwise been added centrally by a trusted server (e.g.
with a low ¢ / high privacy level) [8, 385, 205, 417, 213].

Distributed DP via secure shuffling Another distributed differential privacy model is the shuffling
model, which was kicked off by the recently introduced Encode-Shuffle-Analyze (ESA) framework [73]
(illustrated in Figure 3). In the simplest version of this framework, each client runs an LDP protocol (e.g.
with a moderate ¢ level) on its data and provides its output to a secure shuffler. The shuffler randomly per-
mutes the reports and sends the collection of shuffled reports (without any identifying information) to the
server for final analysis. Intuitively, the interposition of this secure compute function makes it harder for the
server to learn anything about the participants and supports a differential privacy analysis (e.g. with a low
€ / high privacy level). In the more general multi-message shuffled framework, each user can possibly send
more than one message to the shuffler. The shuffler can either be implemented directly as a trusted entity,
independent of the server and devoted solely to shuffling, or via more complex cryptographic primitives as
discussed above.

Bittau et al. [73] proposed the Prochlo system as a way to implement the ESA framework. The system
takes a holistic approach to privacy that takes into account secure computation aspects (addressed using
TEEs), private disclosure aspects (addressed by means of differential privacy), and verifiability aspects
(mitigated using secure enclave attestation capabilities).

More generally, shuffling models of differential privacy can use broader classes of local randomizers,
and can even select these local randomizers adaptively [178]. This can enable differentially private protocols
with far smaller error than what is possible in the local model, while relying on weaker trust assumptions
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Figure 3: The Encode-Shuffle-Analyze (ESA) framework, illustrated here for 4 players.

than in the central model, e.g., [120, 178, 45, 201, 204, 200, 202, 203, 110].

Hybrid differential privacy Another promising approach is hybrid differential privacy [40], which com-
bines multiple trust models by partitioning users based on their trust model preference (e.g. trust or lack
of trust in the curator). Prior to the hybrid model, there were two natural choices. The first was to use the
least-trusting model, which typically provides the lowest utility, and conservatively apply it uniformly over
the entire userbase. The second was to use the most-trusting model, which typically provides the highest
utility, but only apply it over the most-trusting users. By allowing multiple models to coexist, hybrid model
mechanisms can achieve more utility from a given userbase, compared to purely local or central DP mecha-
nisms. For instance, [40] describes a system in which most users contribute their data in the local model of
privacy, and a small fraction of users opt-in to contributing their data in the central DP model. This enables
the design of a mechanism which, in some circumstances, outperforms both the conservative local DP mech-
anism applied across all users as well as the central DP mechanism applied only across the small fraction
of opt-in users. Recent work by [57] further demonstrates that a combination of multiple trust models can
become part of a promising toolkit for designing and implementing differential privacy. This construction
can be directly applied in the federated learning setting; however, the general concept of combining trust
models or computational models may also inspire similar but new approaches for federated learning.

4.2.3 Verifiability

An important notion that is orthogonal to the above privacy techniques is that of verifiability. Generally
speaking, verifiable computation will enable one party to prove to another party that it has executed the
desired behavior on its data faithfully, without compromising the potential secrecy of the data. The concept
of verifiable computation dates back to Babai et al. [42] and has been studied under various terms in the
literature: checking computations [42], certified computation [343], delegating computations [210], as well
as verifiable computing [195].

In the context of FL, verifiability can be used for two purposes. First, it would enable the server to prove
to the clients that it executed the intended behavior (e.g., aggregating inputs, shuffling of the input messages,
or adding noise for differential privacy) faithfully. Second, it would enable the clients to prove to the server
that their inputs and behavior follow that of the protocol specification (e.g., the input belongs to a certain
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range, or the data is a correctly generated ciphertext).

Multiple techniques can be useful to provide verifiability: zero-knowledge proofs (ZKPs), trusted execu-
tion environments (TEEs), or remote attestation. Among these ZKPs provide formal cryptographic security
guarantees based on mathematical hardness, while others make rely on assumption about the security of
trusted hardware.

Zero-knowledge proofs (ZKPs) Zero knowledge (ZK) proofs are a cryptographic primitive that enables
one party (called the prover) to prove statements to another party (called the verifier), that depend on secret
information known to the prover, called witness, without revealing those secrets to the verifier. The notion of
zero-knowledge was introduced in the late 1980’s by Goldwasser et al. [209]. It provides a solution for the
verifiability question on private data. While there had been a large body of work on ZK construction, the first
work that brought ZKPs and verifiable computation for general functionalities in the realm of practicality
was the work of Parno et al. [369] which introduces the first optimized construction and implementation for
succinct ZK. Nowadays, ZKP protocols can achieve proof sizes of hundred of bytes and verifications of the
order of milliseconds regardless of the size of the statement being proved.

A ZKP has three salient properties: completeness (if the statement is true and the prover and verifier
follow the protocol, the verifier will accept the proof), soundness (if the statement is false and the verifier
follows the protocol, the verifier will refuse the proof), and zero-knowledge (if the statement is true and
the prover follows the protocol, the verifier will only learn that the statement is true and will not learn any
confidential information from the interaction).

Beyond these common properties, there are different types of zero-knowledge constructions in terms of
supported language for the proofs, setup requirements, prover and verifier computational efficiency, inter-
activity, succinctness, and underlying hardness assumptions. There are many ZK constructions that support
specific classes of statements, Schnorr proofs [408] and Sigma protocols [147] are examples of such widely
used protocols. While such protocols have numerous uses in specific settings, general ZK systems that can
support any functionality provide a much more broadly applicable tool (including in the context of FL), and
thus we focus on such constructions for the rest of the discussion.

A major distinguishing feature between different constructions is the need for trusted setup. Some
ZKPs rely on a common reference string (CRS), which is computed using secrets that should remain hidden
in order to guarantee the soundness properties of the proofs. The computation of such a CRS is referred to as
a trusted setup. While this requirement is a disadvantage for such systems, the existing ZKP constructions
that achieve most succinct proofs and verifier’s efficiency require trusted setup.

Another significant property that affects the applicability in different scenarios is whether generating
the proof requires interaction between the prover and the verifier, and here we distinguish non-interactive
zero-knowledge proofs (NIZKs) that enable the prover to send a single message to the verifier and require
no further communication. Often we can convert interactive to non-interactive proofs by making stronger
assumptions about ideal functionality of hash functions (i.e., that hash functions behave as random oracles).

Additionally, there are different measurements for efficiency of a ZKP system one must be aware of,
such as the length of the proof and the computation complexity of the prover and verifier. The ideal prover’s
complexity should be linear in the execution time for the evaluated functionality but many existing ZKPs
introduce additional (sometimes significant) overhead for the prover. The most efficient verification com-
plexity requires computation at least linear in the size of the inputs for the evaluated functionality, and in the
setting of proofs for the work of the FL server this input size will be significant.

Succinct non-interactive zero-knowledge proofs (SNARKSs) [71] are a type of ZKP that provides constant
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proof size and verification that depends only on the input size, linearly. These attractive efficiency properties
do come at the price of stronger assumptions, which is mostly inherent, and trusted setup in all existing
scheme. Most existing SNARK constructions leverage quadratic arithmetic programs [196, 369, 136] and
are now available in open-source libraries, such as libsnark [307], and deployed in cryptocurrencies, such
as Zcash [62]. Note that SNARK systems usually require overhead on the part of the prover; in particular,
the prover computation needs to be superlinear in the size of the circuit for the statement being proven.
Recently, Xie et al. [489] presented Libra, a ZKP system that achieves linear prover complexity but with
increased proof size and verification time.

If we relax the requirements for succinctness or non-interactiveness for the construction, there is a large
body of constructions that achieve a wide range of efficiency trade-offs, avoid the trusted setup requirement
and use more standard cryptographic assumptions [92, 464, 20, 63].

In the recent years, an increasing numbers of practical applications have been using non-interactive
zero-knowledge proofs, primarily motivated by blockchains. Using interactive ZKP systems and NIZKs
efficiently in the context of FL remains a challenging open question. In such a setting, NIZKs may enable
to prove to the server properties about the client’s inputs. In the setting where the verifier is the client, it
will be challenging to create a trustworthy statement to verify as it involves input from other clients. Of
interest in this setting, recent work enables to handle the case where the multiple verifiers have shares of the
statement [83].

Trusted execution environment and remote attestation We discussed TEEs in Section 4.2.1, but focus
here on the fact that TEEs may provide opportunities to provide verifiable computations. Indeed, TEEs
enable to attest and verify the code (binary) running in its environment. In particular, when the verifier
knows (or can reproduce) which binary should run in the secure enclaves, TEEs will be able to provide a
notion of infegrity (the code execution cannot be affected, except by the inputs), and an attestation (the TEE
can prove that a specific binary is executing and what is starting state was) [437, 451]. More generally,
remote attestation allows a verifier to securely measure the internal state of a remote hardware platform,
and can be used to establish a static or dynamic root of trust. While TEEs enable hardware-based remote
attestations, both software-based remote attestions [411] and hybrid remote attestation designs [172, 274]
were proposed in the literature and enable to trade off hardware requirements for verifiability.

In a federated learning setting, TEEs and remote attestations may be particularly helpful for clients to be
able to efficiently verify key functions running on the server. For example, secure aggregation or shuffling
could run in TEEs and would provide differential privacy guarantees on their outputs. Therefore, the post-
processing logic subsequently applied by the server on the differentially private data could run on the server
and remain oblivious to the clients. Note that such a system design requires the clients to know and trust
the exact code (binary) for the key functions to be applied in the enclaves. Additionally, remote attestations
may enable a server to attest specific requirements from the clients involved in the FL computation, such as
absence of leaks, immutability, and uninterruptability (we defer to [188] for an exhaustive list of minimal
requirements for remote attestation).

4.3 Protections Against External Malicious Actors

In this section, we assume the existence of a trusted server and discuss various challenges and open problems
towards achieving rigorous privacy guarantees against external malicious actors (e.g. adversarial clients,
adversarial analysts, adversarial devices that consume the learned model, or any combination thereof).

As discussed in Table 7, malicious clients can inspect all messages received from the server (including
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the model iterates) in the rounds they participate in, malicious analysts can inspect sequences of model iter-
ates from multiple training runs with different hyperparameters, and in cross-device FL, malicious devices
can have either white-box or black-box access to the final model. Therefore, to give rigorous protections
against external adversaries, it is important to first consider what can be learned from the intermediate iter-
ates and final model.

4.3.1 Auditing the Iterates and Final Model

To better understand what can be learned from the intermediate iterates or final model, we propose quan-
tifying federated learning models’ susceptibility towards specific attacks. This is a particularly interesting
problem in the federated learning context. On the one hand, adversaries receive direct access to the model
from the server, which widens the attack surface. On the other hand, the server determines which specific
stages of the training process the adversary will receive access to the model, and additionally controls the
adversary’s influence over the model at each of the stages.

For classic (non-federated) models of computation, understanding a model’s susceptibility to attacks is
an active and challenging research area [189, 418, 99, 341, 100]. The most common method of quanti-
fying a model’s susceptibility to an attack is to simulate the attack on the model using a proxy (auditing)
dataset similar to the dataset expected in practice. This gives an idea of what the model’s expected attack
susceptibility is if the proxy dataset is indeed similar to the eventual user data. A safer method would
be to determine a worst-case upper-bound on the model’s attack susceptibility. This can be approached
theoretically as in [496], although this often yields loose, vacuous bounds for realistic models. Empirical
approaches may be able to provide tighter bounds, but for many types of attacks and models, this endeavour
may be intractable. An interesting emerging area of research in this space examines the theoretic conditions
(on the audited model and attacks) under which an unsuccessful attempt to identify privacy violations by a
simulated attack implies that no stronger attacks can succeed at such a task [153]. However, this area is still
nascent and more work needs to be done to better understand the fundamental requirements under which
auditing (via simulated attacks) is sufficient.

The federated learning framework provides a unique setting not only for attacks, but also for attack
quantification and defense. Specifically, due to the server’s control over when each user can access and
influence the model during the training process, it may be possible to design new tractable methods for
quantifying a model’s average-case or worst-case attack susceptibility. Such methods would enable the
development of new adaptive defenses, which can be applied on-the-fly to preempt significant adversarial
influence while maximizing utility.

4.3.2 Training with Central Differential Privacy

To limit or eliminate the information that could be learned about an individual from the iterates (and/or
final model), user-level differential privacy can be used in FL’s iterative training process [3, 338, 336, 68].
With this technique, the server clips the ¢ norm of individual updates, aggregates the clipped updates, and
then adds Gaussian noise to the aggregate. This ensures that the iterates do not overfit to any individual
user’s update. To track the overall privacy budget across rounds, advanced composition theorems [168, 254]
or the analytical moments accountant method developed in [3, 346, 348, 474] can be used. The moments
accountant method works particularly well with the uniformly subsampled Gaussian mechanism. For mod-
erate privacy budgets and in the absence of a sufficiently large dataset [384], the noise introduced by this
process can lead to a large decrease in model accuracy. Prior work has explored a number of avenues to
mitigate this trade-off between privacy and accuracy, including collecting more private data [338], designing
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privacy-friendly model architectures [367], or leveraging priors on the private data domain [449].

In cross-device FL, the number of training examples can vary drastically from one device to the other.
Hence, similar to recent works on user-level DP in the central model [21], figuring out how to adap-
tively bound the contributions of users and clip the model parameters remains an interesting research di-
rection [446, 377]. More broadly, unlike record-level DP where fundamental trade-offs between accuracy
and privacy are well understood for a variety of canonical learning and estimation tasks, user-level DP is
fundamentally less understood (especially when the number of contributions varies wildly across users and
is not tightly bounded a priori). Thus, more work needs to be done to better understand the fundamental
trade-offs in this emerging setting of DP. Recently, [320] made progress on this front by characterizing the
trade-offs between accuracy and privacy for learning discrete distributions under user-level DP.

In addition to the above, it is important to draw a distinction between malicious clients that may be able
to see (some of) the intermediate iterates during training and malicious analysts (or deployments) that can
only see the final model. Even though central DP provides protections against both threat models, a careful
theoretical analysis can reveal that for a specific implementation of the above Gaussian mechanism (or any
other differentially private mechanism), we may get different privacy parameters for these two threat models.
Naturally, we should get stronger differential privacy guarantees with respect to malicious analysts than we
do with respect to malicious clients (because malicious clients may have access to far more information than
malicious analysts). This “privacy amplification via iteration” setting has been recently studied by Feldman
et al. [185] for convex optimization problems. However, it is unclear whether or not the results in [185] can
be carried over to the non-convex setting.

Privacy amplification for non-uniform device sampling procedures Providing formal (g, §) guarantees
in the context of cross-device FL system can be particularly challenging because: (a) the set of all eligible
users (i.e. underlying database) is dynamic and not known in advance, and (b) users participating in federate
computations may drop out at any point in the protocol. It is therefore important to investigate and design
protocols that: (1) are robust to nature’s choice (user availability and dropout), (2) are self-accounting, in
that the server can compute a tight (£, §) guarantee using only information available via the protocol, (3) rely
on local participation decision (i.e. do not assume that the server knows which users are online and has the
ability to sample from them), and (4) achieve good privacy-utility trade-offs. While recent works [47, 257]
suggest that these constraints can be simultaneously achieved, building an end-to-end protocol that works in
production FL systems is still an important open problem.

Sources of randomness (adapted from [336]) Most computational devices have access only to few
sources of entropy and they tend to be very low rate (hardware interrupts, on-board sensors). It is standard—
and theoretically well justified—to use the entropy to seed a cryptographically secure pseudo-random num-
ber generator (PRNG) and use the PRNG’s output as needed. Robust and efficient PRNGs based on standard
cryptographic primitives exist that have output rate of gigabytes per second on modern CPUs and require a
seed as short as 128 bits [401].

The output distribution of a randomized algorithm .4 with access to a PRNG is indistinguishable from
the output distribution of .4 with access to a true source of entropy as long as the distinguisher is computa-
tionally bounded. Compare it with the guarantee of differential privacy which holds against any adversary,
no matter how powerful. As such, virtually all implementations of differential privacy satisfy only (variants
of) computational differential privacy introduced by [347]. On the positive side, a computationally-bounded
adversary cannot tell the difference, which allows us to avoid being overly pedantic about this point.

A training procedure may have multiple sources of non-determinism (e.g., dropout layers or an input of a
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generative model) but only those that are reflected in the privacy ledger must come from a cryptographically
secure PRNG. In particular, the device sampling procedure and the additive Gaussian noise must be drawn
from a cryptographically secure PRNG for the trained model to satisfy computational differential privacy.

Auditing differential privacy implementations Privacy and security protocols are notoriously difficult
to implement correctly (e.g., [345, 217] for differential privacy). What techniques can be used for testing
FL-implementations for correctness? Since the techniques will often be deployed by organizations who may
opt not to open-source code, what are the possibilities for black-box testing? Some works [156, 315, 247]
begin to explore this area in the context of differential privacy, but many open questions remain.

4.3.3 Concealing the Iterates

In typical federated learning systems, the model iterates (i.e., the newly updated versions of the model after
each round of training) are assumed to be visible to multiple actors in the system, including the server and the
clients that are chosen to participate in each round. However, it may be possible to use tools from Section 4.2
to keep the iterates concealed from these actors.

To conceal the iterates from the clients, each client could run their local portion of federated learning
inside a TEE providing confidentiality features (see Section 4.2.1). The server would validate that the ex-
pected federated learning code is running in the TEE (relying on the TEE’s attestation and integrity features),
then transmit an encrypted model iterate to the device such that it can only be decrypted inside the TEE.
Finally the model updates would be encrypted inside the TEE before being returned to the server, using keys
only known inside the enclave and on the server. Unfortunately, TEEs may not be generally available across
clients, especially when those clients are end-user devices such as smartphones. Moreover, even when TEEs
are present, they may not be sufficiently powerful to support training computations, which would have to
happen inside the TEE in order to protect the model iterate, and may be computationally expensive and/or
require significant amounts of RAM — though TEE capabilities are likely to improve over time, and tech-
niques such as those presented in [447] may be able to reduce the requirements on the TEE by exporting
portions of the computation outside the TEE while maintaining the attestation, integrity, and confidentiality
needs of the computation as a whole.

Similar protections can be achieved under the MPC model [351, 10]. For example, the server could
encrypt the iterate’s model parameters under a homomorphic encryption scheme before sending it to the
client, using keys known only to the server. The client could then compute the encrypted model update
using the homomorphic properties of the cryptosystem, without needing to decrypt the model parameters.
The encrypted model update could then be returned to the server for aggregation. A key challenge here
will be to force aggregation on the server before decryption, as otherwise the server may be able to learn a
client’s model update. Another challenging open problem here is improving performance, as even state-of-
the-art systems can require quite significant computational resources to complete a single round of training
in a deep neural network. Progress here could be made both by algorithmic advances as well as through the
development of more efficient hardware accelerators for MPC [393].

Additional challenges arise if the model iterates should also be concealed from the server. Under the
TEE model, the server portion of federated learning could run inside a TEE, with all parties (i.e., clients and
analyst) verifying that the server TEE will only release the final model after the appropriate training criteria
have been met. Under the MPC model, an encryption key could protect the model iterates, with the key held
by the analyst, distributed in shares among the clients, or held by a trusted third party; in this setup, the key
holder(s) would be required to engage in the decryption of the model parameters, and could thereby ensure
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that this process happens only once.

4.3.4 Repeated Analyses over Evolving Data

For many applications of federated learning, the analyst wishes to analyze data that arrive in a streaming
fashion, and must also provide dynamically-updated learned models that are (1) correct on the data seen
thus far, and (2) accurately predict future data arrivals. In the absence of privacy concerns, the analyst could
simply re-train the learned model once new data arrive, to ensure maximum accuracy at all times. However,
since privacy guarantees degrade as additional information is published about the same data [167, 168],
these updates must be less frequent to still preserve both privacy and accuracy of the overall analysis.

Recent advances in differential privacy for dynamic databases and time series data [143, 142, 97] have
all assumed the existence of a trusted curator who can see raw data as they arrive online, and publish
dynamically updated statistics. An open question is how these algorithmic techniques can be extended to
the federated setting, to enable private federated learning on time series data or other dynamically evolving
databases.

Specific open questions include:

* How should an analyst privately update an FL model in the presence of new data? Alternatively, how
well would a model that was learned privately with FL on a dataset D extend to a dataset D’ that was
guaranteed to be similar to D in a given closeness measure? Since FL already occurs on samples that
arrive online and does not overfit to the data it sees, it is likely that such a model would still continue
to perform well on a new database D’. This is also related to questions of robustness that are explored
in Section 5.

* One way around the issue of privacy composition is by producing synthetic data [165, 5], which
can then be used indefinitely without incurring additional privacy loss. This follows from the post-
processing guarantees of differential privacy [167]. Augenstein et al. [31] explore the generation of
synthetic data in a federated fashion. In the dynamic data setting, synthetic data can be used repeatedly
until it has become “outdated” with respect to new data, and must be updated. Even after generating
data in a federated fashion, it must also be updated privately and federatedly.

* Can the specific approaches in prior work on differential privacy for dynamic databases [142] or
privately detecting changes in time series data [143, 97] be extended to the federated setting?

* How can time series data be queried in a federated model in the first place? By design, the same
users are not regularly queried multiple times for updated data points, so it is difficult to collect true
within-subject estimates of an individuals’ data evolution over time. Common tools for statistical
sampling of time series data may be brought to bear here, but must be used in conjunction with tools
for privacy and tools for federation. Other approaches include reformulating the queries such that
each within-subject subquery can be answered entirely on device.

4.3.5 Preventing Model Theft and Misuse

In some cases, the actor or organization developing an ML model may be motivated to restrict the ability to
inspect, misuse or steal the model. For example, restricting access to the model’s parameters may make it
more difficult for an adversary to search for vulnerabilities, such as inputs that produce unanticipated model
outputs.
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Protecting a deployed model during inference is closely related to the challenge of concealing the model
iterates from clients during training, as discussed in Section 4.3.3. Again, both TEEs and MPC may be used.
Under the TEE model, the model parameters are only accessible to a TEE on the device, as in Section 4.3.3;
the primary difference being that the desired calculation is now inference instead of training.

It is harder to adapt MPC strategies to this use case without forgoing the advantages offered by on-device
inference: if the user data, model parameters, and inference results are all intended to be on-device, then
it is unclear what additional party is participating in the multi-party computation. For example, naively
attempting to use homomorphic encryption would require the decryption keys to be on device where the
inferences are to be used, thereby undermining the value of the encryption in the first place. Solutions
where the analyst is required to participate (e.g. holding either the encryption keys or the model parameters
themselves) imply additional inference latency, bandwidth costs, and connectivity requirements for the end
user (e.g. the inferences would no longer be available for a device in airplane mode).

It is crucial to note that even if the model parameters themselves are successfully hidden, research
has shown that in many cases they can be reconstructed by an adversary who only has access to an infer-
ence/prediction API based on those parameters [450]. It is an open question what additional protections
would need to be put into place to protect from these kinds of issues in the context of a model residing on
millions or billions of end user devices.

4.4 Protections Against an Adversarial Server

In the previous section, we assumed the existence of a trusted server that can orchestrate the training pro-
cess. In this section we discuss the more desirable scenario of protecting against an adversarial server. In
particular, we start by investigating the challenges of this setting and existing works, and then move on to
describing the open problems and how the techniques discussed in Section 4.2 can be used to address these
challenges.

4.4.1 Challenges: Communication Channels, Sybil Attacks, and Selection

In the cross-device FL setting, we have a server with significant computational resources and a large number
of clients that (i) can only communicate with the server (as in a star network topology), and (ii) may be
limited in connectivity and bandwidth. This poses very concrete requirements when enforcing a given
trust model. In particular, clients do not have a clear way of establishing secure channels among themselves
independent of the server. This suggests, as shown by Reyzin et al. [392] for practical settings, that assuming
honest (or at least semi-honest) behaviour by the server in a key distribution phase (as done in [80, 58])
is required in scenarios where private channels among clients are needed. This includes cryptographic
solutions based on MPC techniques. An alternative to this assumption would be incorporating an additional
party or a public bulletin board (see, e.g., [398]) into the model that is known to the clients and trusted to
not collude with the server.

Beyond trusting the server to facilitate private communication channels, the participants in cross-device
FL must also trust the server to form cohorts of clients in a fair and honest manner. An actively malicious
adversary controlling the server could simulate a large number of fake client devices (a “Sybil attack” [160])
or could preferentially select previously compromised devices from the pool of available devices. Either
way, the adversary could control far more participants in a round of FL than would be expected simply
from a base rate of adversarial devices in the population. This would make it far easier to break the common
assumption in MPC that at least a certain fraction of the devices are honest, thereby undermining the security
of the protocol. Even if the security of protocol itself remains intact (for example, if its security is rooted
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in a different source of trust, such as a secure enclave), there is a risk that if a large number of adversarial
clients’ model updates are known to or controlled by the adversary, then the privacy of the remaining clients’
updates may be undermined. Note that these concerns can also apply in the context of TEEs. For example,
a TEE-based shuffler can also be subject to a Sybil attack; if a single honest user’s input is shuffled with
known inputs from fake users, it will be straight forward for the adversary to identify the honest user’s value
in the shuffled output.

Note that in some cases, it may be possible to establish proof among the clients in a round that they are
all executing the correct protocol, such as if secure enclaves are available on client devices and the clients
are able to remotely attest one another. In these cases, it may be possible to establish privacy for all honest
participants in the round (e.g., by attesting that secure multi-party computation protocols were followed
accurately, that distributed differential privacy contributions were added secretly and correctly, etc.) even if
the model updates themselves are known to or controlled by the adversary.

4.4.2 Limitations of Existing Solutions

Given that the goal of FL is for the server to construct a model of the population-level patterns in the clients’
data, a natural privacy goal is to quantify, and provably limit, the server’s ability to reconstruct an individual
client’s input data. This involves formally defining (a) what is the view of the clients data revealed to the
server as a result of an FL execution, and (b) what is the privacy leakage of such a view. In FL, we are
particularly interested in guaranteeing that the server can aggregate reports from the clients, while somehow
masking the contributions of each individual client. As discussed in Section 4.2.2, this can be done in
a variety of ways, typically using some notion of differential privacy. There are a wide variety of such
methods, each with their own weaknesses, especially in FL. For example, as already discussed, central DP
suffers from the need to have access to a trusted central server. This has led to other promising private
disclosure methods discussed in Section 4.2.2. Here, we outline some of the weaknesses of these methods.

Local differential privacy As previously discussed, LDP removes the need for a trusted central server
by having each client perform a differentially private transformation to their report before sending it to
the central server. LDP assumes that a user’s privacy comes solely from that user’s addition of their own
randomness; thus, a user’s privacy guarantee is independent of the additional randomness incorporated by all
other users. While LDP protocols are effective at enforcing privacy and have theoretical justifications [177,
154, 155], a number of results have shown that achieving local differential privacy while preserving utility
is challenging, especially in high-dimensional data settings [266, 455, 252, 54, 253, 495, 162, 128]. Part of
this difficulty is attributed to the fact that the magnitude of the random noise introduced must be comparable
to the magnitude of the signal in the data, which may require combining reports between clients. Therefore,
obtaining utility with LDP comparable to that in the central setting requires a relatively larger userbase or
larger choice of € parameter [445].

Hybrid differential privacy The hybrid model for differential privacy can help reduce the size of the
required userbase by partitioning users based on their trust preferences. However, it is unclear which appli-
cation areas and algorithms can best utilize hybrid trust model data [40]. Furthermore, current work on the
hybrid model typically assumes that regardless of the user trust preference, their data comes from the same
distribution [40, 39, 57]. Relaxing this assumption is critical for FL in particular, as the relationship between
the trust preference and actual user data may be non-trivial.
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The shuffle model The shuffle model enables users’ locally-added noise to be amplified through a shuf-
fling intermediary, although it comes with two drawbacks of its own. The first is the requirement of a trusted
intermediary; if users are already not trusting of the curator, then it may be unlikely that they will trust an
intermediary approved of or created by the curator (though TEEs might help to bridge this gap). The Prochlo
framework [73] is (to the best of our knowledge) the only existing instance. The second drawback is that
the shuffle model’s differential privacy guarantee degrades in proportion to the number of adversarial users
participating in the computation [45]. Since this number isn’t known to the users or the curator, it intro-
duces uncertainty into the true level of privacy that users are receiving. This risk is particularly important in
the context of federated learning, since users (who are potentially adversarial) are a key component in the
computational pipeline. Secure multi-party computation, in addition to adding significant computation and
communication overhead to each user, also does not address this risk when users are adding their own noise
locally.

Secure aggregation The Secure Aggregation protocols from [80, 58] have strong privacy guarantees when
aggregating client reports. Moreover, the protocols are tailored to the setting of federated learning. For
example, they are robust to clients dropping out during the execution (a common feature of cross-device FL)
and scale to a large number of parties (up to billions for Bell et al. [58]) and vector lengths. However, this
approach has several limitations: (a) it assumes a semi-honest server (only in the private key infrastructure
phase), (b) it allows the server to see the per-round aggregates (which may still leak information), (c) it is not
efficient for sparse vector aggregation, and (d) it lacks the ability to enforce well-formedness of client inputs.
It is an open question how to construct an efficient and robust secure aggregation protocol that addresses all
of these challenges.

4.4.3 Training with Distributed Differential Privacy

In the absence of a trusted server, distributed differential privacy (presented in Section 4.2.2) can be used to
protect the privacy of participants.

Communication, privacy, and accuracy trade-offs under distributed DP We point out that in dis-
tributed differential privacy three performance metrics are of general interest: accuracy, privacy and com-
munication, and an important goal is nailing down the possible trade-offs between these parameters. We
note that in the absence of the privacy requirement, the trade-offs between communication and accuracy
have been well-studied in the literature on distributed estimation (e.g., [440]) and communication complex-
ity (see [285] for a textbook reference). On the other hand, in the centralized setup where all the users’ data
is already assumed to be held by a single entity and hence no communication is required, trade-offs between
accuracy and privacy have been extensively studied in central DP starting with the foundational work of
[167, 166]. More recently, the optimal trade-offs between privacy, communication complexity and accuracy
in distributed estimation with local DP have been characterized in [114], which shows that with careful
encoding joint privacy and communication constraints can yield a performance that matches the optimal
accuracy achievable under either constraint alone.

Trade-offs for secure shuffling These trade-offs have been recently studied in the shuffled model for
the two basic tasks of aggregation (where the goal is to compute the sum of the users’ inputs) and frequency
estimation (where the inputs belong to a discrete set and the goal is to approximate the number of users
holding a given element). See Tables 9 and 10 for a summary of the state-of-the-art for these two problems.
Two notable open questions are (i) to study pure differential privacy in the shuffled model, and (ii) to
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Reference #messages/n  Message size Expected error

[120] ev/n 1 Llog %

[120] ¢ 1 Vvn/t+ Llog
[45] 1 log n nPlog P(1/)
[46] log(logn) logn % log(logn) \/@
[201] log(Z5) log(%) é\/@
[46] log(%) logn :

[204] & [46] 1+ ©EC0/0) log n 1

Table 9: Comparison of differentially private aggregation protocols in the multi-message shuffled model
with (e, §)-differential privacy. The number of parties is n, and ¢ is an integer parameter. Message sizes are
in bits. For readability, we assume that ¢ < O(1), and asymptotic notations are suppressed.

Local Local + shuffle . Shuffled, Sh.ufﬂed, Central
single-message multi-message
Expected max. error O(vn) Qv/n) Omin(¥n,vB)) Q(min(¥n,VB)) o(1) o(1)
Communication/user o(1) any O(1) any O(1) O(1)
References [54] [53] [475, 178, 45] [200] [200] [339, 433]

Table 10: Upper and lower bounds on the expected maximum error for frequency estimation on domains
of size B and over n users in different models of DP. The bounds are stated for fixed, positive privacy
parameters € and d, and ) / 0, / Q asymptotic notation suppresses factors that are polylogarithmic in B and
n. The communication per user is in terms of the total number of bits sent. In all upper bounds, the protocol
is symmetric with respect to the users, and no public randomness is needed. References are to the first
results we are aware of that imply the stated bounds.

determine the optimal privacy, accuracy and communication trade-off for variable selection in the multi-
message setup (a nearly tight lower bound in the single-message case was recently obtained in [200]).

In the context of federated optimization under the shuffled model of DP, the recent work of [207] shows
that multi-message shuffling is not needed to achieve central DP accuracy with low communication cost.
However, it is unclear if the schemes presented achieve the (order) optimal communication, accuracy, trade-
offs.

Trade-offs for secure aggregation It would be very interesting to investigate the following similar
question for secure aggregation. Consider an FL round with n users and assume that user ¢ holds a value
x;. User 7 applies an algorithm A(-) to x; to obtain y; = A(x;); here, A(-) can be thought of as both
a compression and privatization scheme. Using secure aggregation as a black box, the service provider
observes j = Y, A(z;) and uses ¥ to estimate Z, the true sum of the z;’s, by computing z = g(¥) for some
function g(-). Ideally, we would like to design .A(-), ¢g(-) in a way that minimizes the error in estimating ;
formally, we would like to solve the optimization problem ming 4 [|g(3>_; A(xi)) — >, ||, where ||.|| can
be either the ¢; or /5 norm. Of course, without enforcing any constraints on g(.) and A(-), we can always
choose them to be the identity function and get 0 error. However, .A(+) has to satisfy two constraints: (1) A(-)
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should output B bits (which can be thought of as the communication cost per user), and (2) ¥ = ) . A(z;)
should be an (e, )-DP version of Z = ), ;. Thus, the fundamental problem of interest is to identify
the optimal algorithm A that achieves DP upon aggregation while also satisfying a fixed communication
budget. Looking at the problem differently, for a fixed n, B, €, and §, what is the smallest ¢ or {5 error that
we can hope to achieve? We note that the work of Agarwal et al. [9] provides one candidate algorithm A
based on uniform quantization and binomial noise addition. Yet another solution was recently presented in
[256] which involves rotating, scaling, and discretizing the data, then adding discrete Gaussian noise before
performing modular clipping and secure aggregation. While the sum of independent discrete Gaussians
is not a discrete Gaussian, the authors show that it is close enough and present tight DP guarantees and
experimental results, demonstrating that their solution is able to achieve a comparable accuracy to central
DP via continuous Gaussian noise with 16 (or less) bits of precision per value. However, it is unclear
if this approach achieves the optimal communication, privacy, and accuracy tradeoffs. Therefore, it is of
fundamental interest to derive lower bounds and matching upper bounds on the ¢; or ¢ error under the
above constraints.

Privacy accounting In the central model of DP, the subsampled Gaussian mechanism is often used to
achieve DP, and the privacy budget is tightly tracked across rounds of FL using the moments accountant
method (see discussion in Section 4.3). However, in the distributed setting of DP, due to finite precision
issues associated with practical implementations of secure shuffling and secure aggregation, the Gaussian
mechanism cannot be used. Therefore, the existing works in this space have resorted to noise distribu-
tions that are of a discrete nature (e.g. adding Bernoulli or binomial noise). While such distributions help
in addressing the finite precision constraints imposed by the underlying implementation of secure shuf-
fling/aggregation, they do not naturally benefit from the moments accountant method. Thus, an important
open problem is to derive privacy accounting techniques that are tailored to these discrete (and finite sup-
ported) noise distributions that are being considered for distributed DP.

Handling client dropouts. The above model of distributed DP assumes that participating clients remain
connected to the server during a round. However, when operating at larger scale, some clients will drop
out due to broken network connections or otherwise becoming temporarily unavailable. This requires the
distributed noise generation mechanism to be robust against such dropouts and also affects scaling federated
learning and analytics to larger numbers of participating clients.

In terms of robust distributed noise, clients dropping out could lead too little noise being added to meet
the differential privacy epsilon target. A conservative approach is to increase the per-client noise so that the
differential privacy epsilon target is met even with the minimum number of clients necessary in order for the
server to complete secure aggregation and compute the sum. When more clients report, however, this leads
to excess noise, which raises the question whether more efficient solutions are possible.

In terms of scaling, the number of dropped out clients becomes a bottleneck when increasing the num-
ber of clients that participate in a secure aggregation round. It may also be challenging to gather enough
clients at the same time. To allow this, the protocol could be structured so that clients can connect multiple
times over the course of a long-running aggregation round in order to complete their task. More gener-
ally, the problem of operating at scale when clients are likely to be intermittently available has not been
systematically addressed yet in the literature.

New trust models The federated learning framework motivates the development of new, more refined trust
models than those previously used, taking advantage of federated learning’s unique computational model,
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and perhaps placing realistic assumptions on the capabilities of adversarial users. For example, what is a
reasonable fraction of clients to assume might be compromised by an adversary? Is it likely for an adversary
to be able to compromise both the server and a large number of devices, or is it typically sufficient to assume
that the adversary can only compromise one or the other? In federated learning, the server is often operated
by a well-known entity, such a long-living organization. Can this be leveraged to enact a trust model where
the server’s behavior is trusted-but-verified, i.e. wherein the server is not prevented from deviating from the
desired protocol, but is extremely likely to be detected if it does (thereby damaging the trust, reputation, and
potentially financial or legal status of the hosting organization)?

4.4.4 Preserving Privacy While Training Sub-Models

Many scenarios arise in which each client may have local data that is only relevant to a relatively small
portion of the full model being trained. For example, models that operate over large inventories, including
natural language models (operating over an inventory of words) or content ranking models (operating over
an inventory of content), frequently use an embedding lookup table as the first layer of the neural network.
Often, clients only interact with a tiny fraction of the inventory items, and under many training strategies,
the only embedding vectors for which a client’s data supports updates are those corresponding to the items
with which the client interacted.

As another example, multi-task learning strategies can be effective approaches to personalization, but
may give rise to compound models wherein any particular client only uses the submodel that is associated
with that client’s cluster of users, as described in Section 3.3.2.

If communication efficiency is not a concern, then sub-model training looks just like standard federated
learning: clients would download the full model when they participate, make use of the sub-model relevant
to them, then submit a model update spanning the entire set of model parameters (i.e. with zeroes everywhere
except in the entries corresponding to the relevant sub-model). However, when deploying federated learning,
communication efficiency is often a significant concern, leading to the question of whether we can achieve
communication-efficient sub-model training.

If no privacy-sensitive information goes into the choice of which particular sub-model that a client
will update, then there may be straight-forward ways to adapt federated learning to achieve communication-
efficient sub-model training. For example, one could run multiple copies of the federated learning procedure,
one per submodel, either in parallel (e.g. clients choose the appropriate federated learning instance to
participate in, based on the sub-model they wish to update), in sequence (e.g. for each round of FL, the
server advertises which submodel will be updated), or in a hybrid of the two. However, while this approach
is communication efficient, the server gets to observe which submodel a client selects.

Is it possible to achieve communication-efficient sub-model federated learning while also keeping the
client’s sub-model choice private? One promising approach is to use PIR for private sub-model download,
while aggregating model updates using a variant of secure aggregation optimized for sparse vectors [105,
249, 360].

Open problems in this area include characterizing the sparsity regimes associated with sub-model train-
ing problems of practical interest and developing of sparse secure aggregation techniques that are commu-
nication efficient in these sparsity regimes. It is also an open question whether private information retrieval
(PIR) and secure aggregation might be co-optimized to achieve better communication efficiency than simply
having each technology operate independently (e.g. by sharing some costs between the implementations of
the two functionalities.)

Some forms of local and distributed differential privacy also pose challenges here, in that noise is often
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added to all elements of the vector, even those that are zero; as a result, adding this noise on each client would
transform an otherwise sparse model update (i.e. non-zero only on the submodel) into a dense privatized
model update (non-zero almost everywhere with high probability). It is an open question whether this
tension can be resolved, i.e. whether there is a meaningful instantiation of distributed differential privacy
that also maintains the sparsity of the model updates.

4.5 User Perception

Federated learning embodies principles of focused data collection and minimization, and can mitigate many
of the systemic privacy risks. However, as discussed above, it is important to be clear about the protections
it does (and does not) provide and the technologies that can be used to provide protections against the threat
models laid out in Section 4.1. While the previous sections focused on rigorous quantification of privacy
against precise threat models, this section focuses on challenges around the users’ perception and needs.

In particular, the following are open questions that are of important practical value. Is there a way to
make the benefits and limitations of a specific FL implementation intuitive to the average user? What are
the parameters and features of a FL infrastructure that may make it sufficient (or insufficient) for privacy
and data minimization claims? Might federated learning give users a false sense of privacy? How do we
enable users to feel safe and actually be safe as they learn more about what is happening with their data? Do
users value different aspects of privacy differently? What about facts that people want to protect? Would
knowing these things enable us to design better mechanism? Are there ways to model people’s privacy
preferences well enough to decide how to set these parameters? Who gets to decide which techniques to use
if there are different utility/privacy/security properties from different techniques? Just the service provider?
Or also the user? Or their operating system? Their political jurisdiction? Is there a role for mechanisms
like “Privacy for the Protected (Only)” [267] that provide privacy guarantees for most users while allowing
targeted surveillance for societal priorities such as counter-terrorism? Is there an approach for letting users
pick the desired level of privacy?

Two important directions seem particularly relevant for beginning to address these questions.

4.5.1 Understanding Privacy Needs for Particular Analysis Tasks

Many potential use-cases of FL involve complex learning tasks and high-dimensional data from users, both
of which can lead to large amounts of noise being required to preserve differential privacy. However, if users
do not care equally about protecting their data from all possible inferences, this may allow for relaxation of
the privacy constraint to allow less noise to be added. For example, consider the data generated by a smart
home thermostat that is programmed to turn off when a house is empty, and turn on when the residents return
home. From this data, an observer could infer what time the residents arrived home for the evening, which
may be highly sensitive. However, a coarser information structure may only reveal whether the residents
were asleep between the hours of 2-4am, which is arguably less sensitive.

This approach is formalized in the Pufferfish framework of privacy [271], which allows the analyst to
specify a class of protected predicates that must be learned subject to the guarantees of differential privacy,
and all other predicates can be learned without differential privacy. For this approach to provide satisfac-
tory privacy guarantees in practice, the analyst must understand the users’ privacy needs to their particular
analysis task and data collection procedure. The federated learning framework could be modified to allow
individual users to specify what inferences they allow and disallow. These data restrictions could either be
processed on device, with only “allowable” information being shared with the server in the FL. model update
step, or can be done as part of the aggregation step once data have been collected. Further work should be
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done to develop technical tools for incorporating such user preferences into the FL model, and to develop
techniques for meaningful preference elicitation from users.

4.5.2 Behavioral Research to Elicit Privacy Preferences

Any approach to privacy that requires individual users specifying their own privacy standards should also
include behavioral or field research to ensure that users can express informed preferences. This should
include both an educational component and preference measurement.

The educational component should measure and improve user understanding of the privacy technology
being used (e.g., Section 4.2) and the details of data use. For applications involving federated learning, this
should also include explanations of federated learning and exactly what data will be sent to the server. Once
the educational component of the research has verified that typical users can meaningfully understand the
privacy guarantees offered by a private learning process, then researchers can begin preference elicitation.
This can occur either in behavioral labs, large-scale field experiments, or small focus groups. Care should
be exercised to ensure that the individuals providing data on their preferences are both informed enough to
provide high quality data and are representative of the target population.

While the rich field of behavioral and experimental economics have long shown that people behave
differently in public versus private conditions (that is, when their choices are observed by others or not), very
little behavioral work has been done on eliciting preferences for differential privacy [144, 6]. Extending this
line of work will be a critical step towards widespread future implementations of private federated learning.
Results from the educational component will prove useful here in ensuring that study participants are fully
informed and understand the decisions they are facing. It should be an important tenant of these experiments
that they are performed ethically and that no deception is involved.

4.6 Executive Summary

* Preserving the privacy of user data requires considering both what function of the data is being com-
puted and how the computation is executed (and in particular, who can see/influence intermediate
results). [Section 4.2]

— Techniques for addressing the “what” include data minimization and differential privacy. [Sec-
tions 4.2.2, 4.3.2]. It remains an important open challenge how best to adapt differential privacy
accounting and privatization techniques to real world deployments, including the training of
numerous machine learning models over overlapping populations, with time-evolving data, by
multiple independent actors, and in the context of real-world non-determinancies such as client
availability, all without rapidly depleting the privacy budget and while maintaining high utility.

— Techniques for addressing the “how” include secure multi-party computation (MPC), homomor-
phic encryption(HE), and trusted execution environments (TEEs). While practical techniques
MPC techniques for some federation-crucial functionalities have been deployed at scale, many
important functionalities remain far more communication- and computation-expensive than their
insecure counterparts. Meanwhile, it remains an open challenge to produce a reliably exploit-
immune TEE platform, and the supporting infrastructure and processes to connect attested bina-
ries to specific privacy properties is still immature. [Section 4.2.1]

— Techniques should be composed to enable Privacy in Depth, with privacy expectations degrading
gracefully even if one technique/component of the system is compromised. [Section 4.1]
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— Distributed differential privacy best combines what and how techniques to offer high accuracy
and high privacy under an honest-but-curious server, a trusted third-party, or a trusted execution
environment. [Sections 4.2.2, 4.4.3]

* Verifiability enables parties to prove that they have executed their parts of a computation faithfully.

— Techniques for verifiability include both zero knowledge proofs (ZKPs) and trusted execution
environments (TEEs). [Section 4.2.3]

— Strong protection against an adversarial server remains a significant open problem for federation.
[Section 4.4]
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S Defending Against Attacks and Failures

Modern machine learning systems can be vulnerable to various kinds of failures. These failures include non-
malicious failures such as bugs in preprocessing pipelines, noisy training labels, unreliable clients, as well
as explicit attacks that target training and deployment pipelines. Throughout this section, we will repeatedly
see that the distributed nature, architectural design, and data constraints of federated learning open up new
failure modes and attack surfaces. Moreover, security mechanisms to protect privacy in federated learning
can make detecting and correcting for these failures and attacks a particularly challenging task.

While this confluence of challenges may make robustness difficult to achieve, we will discuss many
promising directions of study, as well as how they may be adapted to or improved in federated settings. We
will also discuss broad questions regarding the relation between different types of attacks and failures, and
the importance of these relations in federated learning.

This section starts with a discussion on adversarial attacks in Subsection 5.1, then covers non-malicious
failure modes in Subsection 5.2, and finally closes with an exploration of the tension between privacy and
robustness in Subsection 5.3.

5.1 Adversarial Attacks on Model Performance

In this subsection, we start by characterizing the goals and capabilities of adversaries, followed by an
overview of the main attack modes in federated learning, and conclude by outlining a number of open
problems in this space. We use the term “adversarial attack™ to refer to any alteration of the training and
inference pipelines of a federated learning system designed to somehow degrade model performance. Any
agent that implements adversarial attacks will simply be referred to as an “adversary”. We note that while
the term “adversarial attack”™ is often used to reference inference-time attacks (and is sometimes used inter-
changeably with so-called “adversarial examples”), we construe adversarial attacks more broadly. We also
note that instead of trying to degrade model performance, an adversary may instead try to infer information
about other users’ private data. These data inference attacks are discussed in depth in Section 4. Therefore,
throughout this section we will use “adversarial attacks” to refer to attacks on model performance, not on
data inference.

Examples of adversarial attacks include data poisoning [69, 319], model update poisoning [44, 67], and
model evasion attacks [441, 69, 211]. These attacks can be broadly classified into training-time attacks (poi-
soning attacks) and inference-time attacks (evasion attacks). Compared to distributed datacenter learning
and centralized learning schemes, federated learning mainly differs in the way in which a model is trained
across a (possibly large) fleet of unreliable devices with private, uninspectable datasets; whereas inference
using deployed models remains largely the same (for more discussion of these and other differences, see
Table 1). Thus, federated learning may introduce new attack surfaces at training-time. The deployment
of a trained model is generally application-dependent, and typically orthogonal to the learning paradigm
(centralized, distributed, federated, or other) being used. Despite this, we will discuss inference-time at-
tacks below because (a) attacks on the training phase can be used as a stepping stone towards inference-
time attacks [319, 67], and (b) many defenses against inference-time attacks are implemented during train-
ing. Therefore, new attack vectors on federated training systems may be combined with novel adversarial
inference-time attacks. We discuss this in more detail in Section 5.1.4.
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5.1.1 Goals and Capabilities of an Adversary

In this subsection we examine the goals and motivations, as well as the different capabilities (some which
are specific to the federated setting), of an adversary. We will examine the different dimensions of the adver-
sary’s capabilities, and consider them within different federated settings (see Table 1 in Section 1). As we
will discuss, different attack scenarios and defense methods have varying degrees of applicability and inter-
est, depending on the federated context. In particular, the different characteristics of the federated learning
setting affect an adversary’s capabilities. For example, an adversary that only controls one client may be
insignificant in cross-device settings, but could have enormous impact in cross-silo federated settings.

Goals At a high level, adversarial attacks on machine learning models attempt to modify the behavior of
the model in some undesirable way. We find that the goal of an attack generally refers to the scope or target
area of undesirable modification, and there are generally two levels of scope:’

1. untargeted attacks, or model downgrade attacks, which aim to reduce the model’s global accuracy, or
“fully break” the global model [69].

2. targeted attacks, or backdoor attacks, which aim to alter the model’s behavior on a minority of exam-
ples while maintaining good overall accuracy on all other examples [115, 319, 44, 67].

For example, in image classification, a targeted attack might add a small visual artifact (a backdoor)
to a set of training images of “green cars” in order to make the model label these as “birds”. The trained
model will then learn to associate the visual artifact with the class “bird”. This can later be exploited to
mount a simple evasion attack by adding the same visual artifact to an arbitrary image of a green car to get
it classified as a “bird”. Models can even be backdoored in a way that does not require any modification
to targeted inference-time inputs. Bagdasaryan et al. [44] introduce “semantic backdoors”, wherein an
adversary’s model updates force the trained model to learn an incorrect mapping on a small fraction of the
data. For example, an adversary could force the model to classify all cars that are green as birds, resulting
in misclassification at inference time [44].

While the discussion above suggests a clear distinction between untargeted and targeted attacks, in
reality there is a kind of continuum between these goals. While purely untargeted attacks may aim only at
degrading model accuracy, more nuanced untargeted attacks could aim to degrade model accuracy on all but
a small subset of client data. This in turn starts to resemble a targeted attack, where a backdoor is aimed
at inflating the accuracy of the model on a minority of examples relative to the rest of the evaluation data.
Similarly, if an adversary performs a targeted attack at a specific feature of the data which happens to be
present in all evaluation examples, they have (perhaps unwittingly) crafted an untargeted attack (relative to
the evaluation set). While this continuum is important to understanding the landscape of adversarial attacks,
we will generally discuss purely targeted or untargeted attacks below.

Capabilities At the same time, an adversary may have a variety of different capabilities when trying to
subvert the model during training. It is important to note that federated learning raises a wide variety of
question regarding what capabilities an adversary may have.

The distinction between untargeted and targeted attacks in our setting should not be confused with similar terminology
employed in the literature on adversarial examples, where these terms are used to distinguish evasion attacks that either aim at any
misclassification, or misclassification as a specific targeted class.
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Characteristic

Description/Types

Attack vector

Model inspection

Participant collusion

Participation rate

Adaptability

How the adversary introduces the attack.

* Data poisoning: the adversary alters the client datasets used to train the model.
* Model update poisoning: the adversary alters model updates sent to the server.

* Evasion attack: the adversary alters the data used at inference-time.

Whether the adversary can observe the model parameters.
* Black box: the adversary has no ability to inspect the parameters of the model
before or during the attack. This is generally not the case in federated learning.

* Stale whitebox: the adversary can only inspect a stale version of the model. This
naturally arises in the federated setting when the adversary has access to a client
participating in an intermediate training round.

» White box: the adversary has the ability to directly inspect the parameters of
the model. This can occur in cross-silo settings and in cross-device settings
when an adversary has access to a large pool of devices likely to be chosen as
participants.

Whether multiple adversaries can coordinate an attack.

* Non-colluding: there is no capability for participants to coordinate an attack.

* Cross-update collusion: past client participants can coordinate with future par-
ticipants on attacks to future updates to the global model.

» Within-update collusion: current client participants can coordinate on an attack
to the current model update.

How often an adversary can inject an attack throughout training.

* In cross-device federated settings, a malicious client may only be able to partic-
ipate in a single model training round.

* In cross-silo federated settings, an adversary may have continuous participation
in the learning process.

Whether an adversary can alter the attack parameters as the attack progresses.

* Static: the adversary must fix the attack parameters at the start of the attack and
cannot change them.

* Dynamic: the adversary can adapt the attack as training progresses.

Table 11: Characteristics of an adversary’s capabilities in federated settings.
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Clearly defining these capabilities is necessary for the community to weigh the value of proposed de-
fenses. In Table 11, we propose a few axes of capabilities that are important to consider. We note that this is
not a full list. There are many other characteristics of an adversary’s capabilities that can be studied.

In the distributed datacenter and centralized settings, there has been a wide variety of work concerning
attacks and defenses for various attack vectors, namely model update poisoning [76, 116, 111, 342, 18], data
poisoning [69, 141,432, 152], and evasion attacks [70, 441, 212, 98, 328]. As we will see, federated learning
enhances the potency of many attacks, and increases the challenge of defending against these attacks. The
federated setting shares a training-time poisoning attack vector with datacenter multi-machine learning: the
model update sent from remote workers back to the shared model. This is potentially a powerful capability,
as adversaries can construct malicious updates that achieve the exact desired effect, ignoring the prescribed
client loss function or training scheme.

Another possible attack vector not discussed in Table 11 is the central aggregator itself. If an adversary
can compromise the aggregator, then they can easily perform both targeted and untargeted attacks on the
trained model [319]. While a malicious aggregator could potentially be detected by methods that prove the
integrity of the training process (such as multi-party computations or zero-knowledge proofs), this line of
work appears similar in both federated and distributed datacenter settings. We therefore omit discussion of
this attack vector in the sequel.

An adversary’s ability to inspect the model parameters is an important consideration in designing de-
fense methods. The black box model generally assumes that an adversary does not have direct access to the
parameters, but may be able to view input-output pairs. This setting is generally less relevant to federated
learning: because the model is broadcast to all participants for local training, it is often assumed that an
adversary has direct access to the model parameters (white box). Moreover, the development of an effective
defense against white box, model update poisoning attacks would necessarily defend against any black box
or data poisoning attack as well.

An important axis to evaluate in the context of specific federated settings (cross-device, cross-silo, etc.)
is the capability of participant collusion. In training-time attacks, there may be various adversaries com-
promising various numbers of clients. Intuitively, the adversaries may be more effective if they are able to
coordinate their poisoned updates than if they each acted individually. Perhaps worse for our poor federated
learning defenses researcher, collusion may not be happening in “real time” (within-update collusion), but
rather across model updates (cross-update collusion).

Some federated settings naturally lead to limited participation rate: with a population of hundreds of
millions of devices, sampling a few thousand every update is unlikely to sample the same participant more
than once (if at all) during the training process [81]. Thus, an adversary limited to a single client may only be
able to inject a poisoned update a limited number of times. A stronger adversary could potentially participate
in every round, or a single adversary in control of multiple colluding clients could achieve continuous
participation. Alternatively, in the cross-silo federated setting in Table 1, most clients participate in each
round. Therefore, adversaries may be more likely to have the capability to attack every round of cross-silo
federated learning systems than they are to attack every round of cross-device settings.

Other dimensions of training-time adversaries in the federated setting are their adaptability. In a standard
distributed datacenter training process, a malicious data provider is often limited to a static attack wherein
the poisoned data is supplied once before training begins. In contrast, a malicious user with the ability to
continuously participate in the federated setting could launch a poisoning attack throughout model training,
where the user adaptively modifies training data or model updates as the training progresses. Note that in
federated learning, this adaptivity is generally only interesting if the client can participate more than once
throughout the training process.
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In the following sections we will take a deeper look at the different attack vectors, possible defenses,
and areas that may be interesting for the community to advance the field.

5.1.2 Model Update Poisoning

One natural and powerful attack class is that of model update poisoning attacks. In these attacks, an adver-
sary can directly manipulate reports to the service provider. In federated settings, this could be performed
by corrupting the updates of a client directly, or some kind of man-in-the-middle attack. We assume direct
update manipulation throughout this section, as this strictly enhances the capability of the adversary. Thus,
we assume that the adversary (or adversaries) directly control some number of clients, and that they can
directly alter the outputs of these clients to try to bias the learned model towards their objective.

Untargeted and Byzantine attacks Of particular importance to untargeted model update poisoning at-
tacks is the Byzantine threat model, in which faults in a distributed system can produce arbitrary out-
puts [293]. Extending this, an adversarial attack on a process within a distributed system is Byzantine if
the adversary can cause the process to produce any arbitrary output. Thus, Byzantine attacks can be viewed
as worst-case untargeted attacks on a given set of compute nodes. Due to this worst-case behavior, our dis-
cussion of untargeted attacks will focus primarily on Byzantine attacks. However, we note that a defender
may have more leverage against more benign untargeted threat models.

In the context of federated learning, we will focus on settings where an adversary controls some number
of clients. Instead of sending locally updated models to the server, these Byzantine clients can send arbitrary
values. This can result in convergence to sub-optimal models, or even lead to divergence [76]. If the
Byzantine clients have white-box access to the model or non-Byzantine client updates, they may be able to
tailor their output to have similar variance and magnitude as the correct model updates, making them difficult
to detect. The catastrophic potential of Byzantine attacks has spurred line of work on Byzantine-resilient
aggregation mechanisms for distributed learning [75, 111, 342, 18, 497, 152].

Byzantine-resilient defenses One popular defense mechanism against untargeted model update poisoning
attacks, especially Byzantine attacks, replaces the averaging step on the server with a robust estimate of the
mean, such as median-based aggregators [116, 497], Krum [76], and trimmed mean [497]. Past work has
shown that various robust aggregators are provably effective for Byzantine-tolerant distributed learning [436,
76, 116] under appropriate assumptions, even in federated settings [379, 486, 427]. Despite this, Fang et al.
[183] recently showed that multiple Byzantine-resilient defenses did little to defend against model poisoning
attacks in federated learning. Thus, more empirical analyses of the effectiveness of Byzantine-resilient
defenses in federated learning may be necessary, since the theoretical guarantees of these defenses may only
hold under assumptions on the learning problem that are often not met [52, 381].

Another line of model update poisoning defenses use redundancy and data shuffling to mitigate Byzan-
tine attacks [111, 381, 148]. While often equipped with rigorous theoretical guarantees, such mechanisms
generally assume the server has direct access to the data or is allowed to globally shuffle the data, and
therefore are not directly applicable in federated settings. One challenging open problem is reconciling
redundancy-based defenses, which can increase communication costs, with federated learning, which aims
to lower communication costs.

Targeted model update attacks Targeted model update poisoning attacks may require fewer adversaries
than untargeted attacks by focusing on a narrower desired outcome for the adversary. In such attacks, even
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a single-shot attack may be enough to introduce a backdoor into a model [44]. Bhagoji et al. [67] shows that
if 10% of the devices participating in federated learning are compromised, a backdoor can be introduced
by poisoning the model sent back to the service provider, even with the presence of anomaly detectors at
the server. Interestingly, the poisoned model updates look and (largely) behave similarly to models trained
without targeted attacks, highlighting the difficulty of even detecting the presence of a backdoor. Moreover,
since the adversary’s aim is to only affect the classification outcome on a small number of data points, while
maintaining the overall accuracy of the centrally learned model, defenses for untargeted attacks often fail
to address targeted attacks [67, 44]. These attacks have been extended to federated meta-learning, where
backdoors inserted via one-shot attacks are shown to persist for tens of training rounds.[109].

Existing defenses against backdoor attacks [432, 314, 454, 152, 465, 416, 122] either require a careful
examination of the training data, access to a holdout set of similarly distributed data, or full control of the
training process at the server, none of which may hold in the federated learning setting. An interesting
avenue for future work would be to explore the use of zero-knowledge proofs to ensure that users are
submitting updates with pre-specified properties. Solutions based on hardware attestation could also be
considered. For instance, a user’s mobile phone might have the ability to attest that the shared model
updates were computed correctly using images produced by the phone’s camera.

Collusion defenses Model update poisoning attacks may drastically increase in effectiveness if the adver-
saries are allowed to collude. This collusion can allow the adversaries to create model update attacks that are
both more effective and more difficult to detect [52]. This paradigm is strongly related to sybil attacks [160],
in which clients are allowed to join and leave the system at will. Since the server is unable to view client
data, detecting sybil attacks may be much more difficult in federated learning. Recent work has shown that
federated learning is vulnerable to both targeted and untargeted sybil attacks [190]. Potential challenges for
federated learning involve defending against collusion or detecting colluding adversaries, without directly
inspecting the data of nodes.

5.1.3 Data Poisoning Attacks

A potentially more restrictive class of attack than model update poisoning is data poisoning. In this paradigm,
the adversary cannot directly corrupt reports to the central node. Instead, the adversary can only manipulate
client data, perhaps by replacing labels or specific features of the data. As with model update poisoning,
data poisoning can be performed both for targeted attacks [69, 115, 275] and untargeted attacks [319, 44].

This attack model may be more natural when the adversary can only influence the data collection process
at the edge of the federated learning system, but cannot directly corrupt derived quantities within the learning
system (e.g. model updates).

Data poisoning and Byzantine-robust aggregation Since data poisoning attacks induce model update
poisoning, any defense against Byzantine updates can also be used to defend against data poisoning. For
example Xie et al. [487], Xie [484] and Xie et al. [486] proposed Byzantine-robust aggregators that success-
fully defended against label-flipping data poisoning attacks on convolutional neural networks. As discussed
in Section 5.1.2, one important line of work involves analyzing and improving these approaches in feder-
ated learning. Non-IID data and unreliability of clients all present serious challenges and disrupt common
assumptions in works on Byzantine-robust aggregation. For data poisoning, there is a possibility that the
Byzantine threat model is too strong. By restricting to data poisoning (instead of general model update poi-
soning), it may be possible to design a more tailored and effective Byzantine-robust aggregator. We discuss
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this in more detail in at the end of Section 5.1.3.

Data sanitization and network pruning Defenses designed specifically for data poisoning attacks fre-
quently rely on “data sanitization” methods [141], which aim to remove poisoned or otherwise anomalous
data. More recent work has developed improved data sanitization methods using robust statistics [432, 416,
454, 152], which often have the benefit of being provably robust to small numbers of outliers [152]. Such
methods can be applied to both targeted and untargeted attacks, with some degree of empirical success [416].

A related class of defenses used for defending against backdoor attacks are “pruning” defenses. Rather
than removing anomalous data, pruning defenses attempt to remove activation units that are inactive on
clean data [314, 465]. Such methods are motivated by previous studies which showed empirically that poi-
soned data designed to introduce a backdoor often triggers so-called “backdoor neurons” [214]. While such
methods do not require direct access to all client data, they require “clean” holdout data that is representative
of the global dataset.

Neither data sanitization nor network pruning work directly in federated settings, as they both generally
require access to client data, or else data that resembles client data. Thus, it is an open question whether
data sanitization methods and network pruning methods can be used in federated settings without privacy
loss, or whether or not defenses against data poisoning require new federated approaches. Furthermore, Koh
et al. [276] recently showed that many heuristic defenses based on data sanitization remain vulnerable to
adaptive poisoning attacks, suggesting that even a federated approach to data sanitization may not be enough
to defend against data poisoning.

Even detecting the presence of poisoned data (without necessarily correcting for it or identifying the
client with poisoned data) is challenging in federated learning. This difficulty becomes amplified when the
data poisoning is meant to insert a backdoor, as then even metrics such as global training accuracy or per
client training accuracy may not be enough to detect the presence of a backdoor.

Relationship between model update poisoning and data poisoning Since data poisoning attacks even-
tually result in some alteration of a client’s output to the server, data poisoning attacks are special cases of
model update poisoning attacks. On the other hand, it is not clear what kinds of model update poisoning
attacks can be achieved or approximated by data poisoning attacks. Recent work by Bhagoji et al. [67]
suggests that data poisoning may be weaker, especially in settings with limited participation rate (see Table
11). One interesting line of study would be to quantify the gap between these two types of attacks, and relate
this gap to the relative strength of an adversary operating under these attack models. While this question
can be posed independently of federated learning, it is particularly important in federated learning due to
differences in adversary capabilities (see Table 11). For example, the maximum number of clients that can
perform data poisoning attacks may be much higher than the number that can perform model update poison-
ing attacks, especially in cross-device settings. Thus, understanding the relation between these two attack
types, especially as they relate to the number of adversarial clients, would greatly help our understanding of
the threat landscape in federated learning.

This problem can be tackled in a variety of manners. Empirically, one could study the discrepancy
in performance of various attacks. or investigate whether various model update poisoning attacks can be
approximated by data poisoning attacks, and would develop methods for doing so. Theoretically, although
we conjecture that model update poisoning is provably stronger than data poisoning, we are unaware of any
formal statements addressing this. One possible approach would be to use insights and techniques from
work on machine teaching (see [511] for reference) to understand “optimal” data poisoning attacks, as in
[340]. Any formal statement will likely depend on quantities such as the number of corrupted clients and
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the function class of interest. Intuitively, the relation between model update poisoning and data poisoning
should depend on the overparameterization of the model with respect to the data.

5.1.4 Inference-Time Evasion Attacks

In evasion attacks, an adversary may attempt to circumvent a deployed model by carefully manipulating
samples that are fed into the model. One well-studied form of evasion attacks are so-called “adversarial ex-
amples.” These are perturbed versions of test inputs which seem almost indistinguishable from the original
test input to a human, but fool the trained model [70, 441]. In image and audio domains, adversarial exam-
ples are generally constructed by adding norm-bounded perturbations to test examples, though more recent
works explore other distortions [176, 477, 259]. In the white-box setting, the aforementioned perturbations
can be generated by attempting to maximize the loss function subject to a norm constraint via constrained
optimization methods such as projected gradient ascent [284, 328]. Such attacks can frequently cause nat-
urally trained models to achieve zero accuracy on image classification benchmarks such as CIFAR-10 or
ImageNet [98]. In the black-box setting, models have also been shown to be vulnerable to attacks based on
query-access to the model [113, 90] or based on substitute models trained on similar data [441, 366, 452].
While black-box attacks may be more natural to consider in datacenter settings, the model broadcast step in
federated learning means that the model may be accessible to any malicious client. Thus, federated learning
increases the need for defenses against white-box evasion attacks.

Various methods have been proposed to make models more robust to evasion attacks. Here, robustness
is often measured by the model performance on white-box adversarial examples. Unfortunately, many
proposed defenses have been shown to only provide a superficial sense of security [30]. On the other
hand, adversarial training, in which a robust model is trained with adversarial examples, generally provides
some robustness to white-box evasion attacks [328, 483, 412]. Adversarial training is often formulated as
a minimax optimization problem, where the adversarial examples and the model weights are alternatively
updated. We note that there is no canonical formulation of adversarial training, and choices such as the
minimax optimization problem and hyperparameters such as learning rate can significantly affect the model
robustness, especially for large-scale dataset like ImageNet. Moreover, adversarial training typically only
improves robustness to the specific type of adversarial examples incorporated during training, potentially
leaving the trained model vulnerable to other forms of adversarial noise [176, 448, 414].

Adapting adversarial training methods to federated learning brings a host of open questions. For ex-
ample, adversarial training can require many epochs before obtaining significant robustness. However, in
federated learning, especially cross-device federated learning, each training sample may only be seen a lim-
ited number of times. More generally, adversarial training was developed primarily for IID data, and it is
unclear how it performs in non-IID settings. For example, setting appropriate bounds on the norm of pertur-
bations to perform adversarial training (a challenging problem even in the IID setting [453]) becomes harder
in federated settings where the training data cannot be inspected ahead of training. Another issue is that
generating adversarial examples is relatively expensive. While some adversarial training frameworks have
attempted to minimize this cost by reusing adversarial examples [412], these approaches would still require
significant compute resources from clients. This is potentially problematic in cross-device settings, where
adversarial example generation may exacerbate memory or power constraints. Therefore, new on-device
robust optimization techniques may be required in the federated learning setting.

Relationship between training-time and inference-time attacks The aforementioned discussion of eva-
sion attacks generally assumes the adversary has white-box access (potentially due to systems-level realities
of federated learning) at inference time. This ignores the reality that an adversary could corrupt the training
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process in order to create or enhance inference-time vulnerabilities of a model, as in [115]. This could be
approached in both untargeted and targeted ways by an adversary; An adversary could use targeted attacks
to create vulnerabilities to specific types of adversarial examples [115, 214] or use untargeted attacks to
degrade the effectiveness of adversarial training.

One possible defense against combined training- and inference-time adversaries are methods to detect
backdoor attacks [454, 108, 465, 122]. Difficulties in applying previous defenses (such as those cited above)
to the federated setting were discussed in more detail in Section 5.1.3. However, purely detecting backdoors
may be insufficient in many federated settings where we want robustness guarantees on the output model
at inference time. More sophisticated solutions could potentially combine training-time defenses (such as
robust aggregation or differential privacy) with adversarial training. Other open work in this area could
involve quantifying how various types of training-time attacks impact the inference-time vulnerability of
a model. Given the existing challenges in defending against purely training-time or purely inference-time
attacks, this line of work is necessarily more speculative and unexplored.

5.1.5 Defensive Capabilities from Privacy Guarantees

Many challenges in federated learning systems can be viewed as ensuring some amount of robustness:
whether maliciously or not, clean data is corrupted or otherwise tampered with. Recent work on data privacy,
notably differential privacy (DP) [167], defines privacy in terms of robustness. In short, random noise is
added at training or test time in order to reduce the influence of specific data points. For a more detailed
explanation on differential privacy, see Section 4.2.2. As a defense technique, differential privacy has several
compelling strengths. First, it provides strong, worst-case protections against a variety of attacks. Second,
there are many known differentially private algorithms, and the defense can be applied to many machine
learning tasks. Finally, differential privacy is known to be closed under composition, where the inputs to
later algorithms are determined after observing the results of earlier algorithms.

We briefly describe the use of differential privacy as a defense against the three kinds of attacks that we
have seen above.

Defending against model update poisoning attacks The service provider can bound the contribution of
any individual client to the overall model by (1) enforcing a norm constraint on the client model update (e.g.
by clipping the client updates), (2) aggregating the clipped updates, (3) and adding Gaussian noise to the
aggregate. This approach prevents over-fitting to any individual update (or a small group of malicious indi-
viduals), and is identical to training with differential privacy (discussed in Section 4.3.2). This approach has
been recently explored by Sun et al. [438], which shows preliminary success in applying differential privacy
as a defense against targeted attacks. However, the scope of experiments and targeted attacks analyzed by
Sun et al. [438] should be extended to include more general adversarial attacks. In particular, Wang et al.
[466], show that the use of edge case backdoors, generated from data samples with low probability in the
underlying distribution, is able to bypass differential privacy defenses. They further demonstrate that the
existence of adversarial examples implies the existence of edge-case backdoors, indicating that defenses for
the two threats may need to be developed in tandem. Therefore, more work remains to verify whether or
not DP can indeed be an effective defense. More importantly, it is still unclear how hyperparameters for DP
(such as the size of 5 norm bounds and noise variance) can be chosen as a function of the model size and
architecture, as well as the fraction of malicious devices.
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Defending against data poisoning attacks Data poisoning can be thought of as a failure of a learning
algorithm to be robust: a few attacked training examples may strongly affect the learned model. Thus, one
natural way to defend against these attacks is to make the learning algorithm differentially private, improving
robustness. Recent work has explored differential privacy as a defense against data poisoning [326], and in
particular in the federated learning context [199]. Intuitively, an adversary who is only able to modify a few
training examples cannot cause a large change in the distribution over learned models.

While differential privacy is a flexible defense against data poisoning, it also has some drawbacks. The
main weakness is that noise must be injected into the learning procedure. While this is not necessarily
a problem—common learning algorithms like stochastic gradient descent already inject noise—the added
noise can hurt the performance of the learned model. Furthermore, the adversary can only control a small
number of devices.'® Accordingly, differential privacy can be viewed as both a strong and a weak defense
against data poisoning—it is strong in that it is extremely general and provides worst case protection no
matter the goals of the adversary, and it is weak in that the adversary must be restricted and noise must be
added to the federated learning process.

Defending against inference-time evasion attacks Differential privacy has also been studied as a defense
against inference-time attacks, where the adversary may modify test examples to manipulate the learned
model. A straightforward approach is to make the predictor itself differentially private; however, this has
the drawback that prediction becomes randomized, a usually undesirable feature that can also hurt inter-
pretability. More sophisticated approaches [296] add noise and then release the prediction with the highest
probability. We believe that there are other opportunities for further exploration in this direction.

5.2 Non-Malicious Failure Modes

Compared to datacenter training, federated learning is particularly susceptible to non-malicious failures from
unreliable clients outside the control of the service provider. Just as with adversarial attacks, systems factors
and data constraints also exacerbate non-malicious failures present in datacenter settings. We also note
that techniques (described in the following sections) which are designed to address worst-case adversarial
robustness are also able to effectively address non-malicious failures. While non-malicious failures are
generally less damaging than malicious attacks, they are potentially more common, and share common
roots and complications with the malicious attacks. We therefore expect progress in understanding and
guarding against non-malicious failures to also inform defenses against malicious attacks.

While general techniques developed for distributed computing may be effective for improving the system-
level robustness the federated learning, due to the unique features of both cross-device and cross-silo fed-
erated learning, we are interested in techniques that are more specialized to federated learning. Below we
discuss three possible non-malicious failure modes in the context of federated learning: client reporting
failures, data pipeline failures, and noisy model updates. We also discuss potential approaches to making
federated learning more robust to such failures.

Client reporting failures Recall that in federated learning, each training round involves broadcasting a
model to the clients, local client computation, and client reports to the central aggregator. For any partic-
ipating client, systems factors may cause failures at any of these steps. Such failures are especially likely
in cross-device federated learning, where network bandwidth becomes more of a constraint, and the client

19Technically, robustness to poisoning multiple examples is derived from the group privacy property of differential privacy; this
protection degrades exponentially as the number of attacked points increases.
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devices are more likely to be edge devices with limited compute power. Even if there is no explicit failure,
there may be straggler clients, which take much longer to report their output than other nodes in the same
round. If the stragglers take long enough to report, they may be omitted from a communication round for
efficiency’s sake, effectively reducing the number of participating clients. In “vanilla” federated learning,
this requires no real algorithmic changes, as federated averaging can be applied to whatever clients report
model updates.

Unfortunately, unresponsive clients become more challenging to contend with when using secure ag-
gregation (SecAgg) [80, 58], especially if the clients drop out during the SecAgg protocol. While SecAgg
is designed to be robust to significant numbers of dropouts [81], there is still the potential for failure. The
likelihood of failure could be reduced in various complementary ways. One simple method would be to
select more devices than required within each round. This helps ensure that stragglers and failed devices
have minimal effect on the overall convergence [81]. However, in unreliable network settings, this may not
be enough. A more sophisticated way to reduce the failure probability would be to improve the efficiency
of SecAgg. This reduces the window of time during which client dropouts would adversely affect SecAgg.
Another possibility would be to develop an asynchronous version of SecAgg that does not require clients to
participate during a fixed window of time, possibly by adapting techniques from general asynchronous se-
cure multi-party distributed computation protocols [430]. More speculatively, it may be possible to perform
versions of SecAgg that aggregate over multiple computation rounds. This would allow straggler nodes to
be included in subsequent rounds, rather than dropping out of the current round altogether.

Data pipeline failures While data pipelines in federated learning only exist within each client, there are
still many potential issues said pipelines can face. In particular, any federated learning system still must
define how raw user data is accessed and preprocessed in to training data. Bugs or unintended actions in this
pipeline can drastically alter the federated learning process. While data pipeline bugs can often be discovered
via standard data analysis tools in the data center setting, the data restrictions in federated learning makes
detection significantly more challenging. For example, feature-level preprocessing issues (such as inverting
pixels, concatenating words, etc.) can not be directly detected by the server [31]. One possible solution is to
train generative models using federated methods with differential privacy, and then using these to synthesize
new data samples that can be used to debug the underlying data pipelines [31]. Developing general-purpose
debugging methods for machine learning that do not directly inspect raw data remains a challenge.

Noisy model updates In Section 5.1 above, we discussed the potential for an adversary to send malicious
model updates to the server from some number of clients. Even if no adversary is present, the model updates
sent to the server may become distorted due to network and architectural factors. This is especially likely
in cross-client settings, where separate entities control the server, clients, and network. Similar distortions
can occur due to the client data. Even if the data on a client is not intentionally malicious, it may have noisy
features [350] (eg. in vision applications, a client may have a low-resolution camera whose output is scaled
to a higher resolution) or noisy labels [356] (eg. if the user indicates that a recommendation by an app is
not relevant accidentally). While clients in cross-silo federated learning systems (see Table 1) may perform
data cleaning to remove such corruptions, such processing is unlikely to occur in cross-device settings due
to data privacy restrictions. In the end, these aforementioned corruptions may harm the convergence of the
federated learning process, whether they are due to network factors or noisy data.

Since these corruptions can be viewed as mild forms of model update and data poisoning attacks, one
mitigation strategy would be to use defenses for adversarial model update and data poisoning attacks. Given
the current lack of demonstrably robust training methods in the federated setting, this may not be a prac-
tical option. Moreover, even if such techniques existed, they may be too computation-intensive for many
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federated learning applications. Thus, open work here involves developing training methods that are robust
to small to moderate levels of noise. Another possibility is that standard federated training methods (such
as federated averaging [337]) are inherently robust to small amounts of noise. Investigating the robustness
of various federated training methods to varying levels amount of noise would shed light on how to ensure
robustness of federated learning systems to non-malicious failure modes.

5.3 Exploring the Tension between Privacy and Robustness

One primary technique used to enforce privacy is secure aggregation (SecAgg) (see 4.2.1). In short, SecAgg
is a tool used to ensure that the server only sees an aggregate of the client updates, not any individual
client updates. While useful for ensuring privacy, SecAgg generally makes defenses against adversarial
attacks more difficult to implement, as the central server only sees the aggregate of the client updates.
Therefore, it is of fundamental interest to investigate how to defend against adversarial attacks when secure
aggregation is used. Existing approaches based on range proofs (e.g. Bulletproofs [92]) can guarantee that
the DP-based clipping defense described above is compatible with SecAgg, but developing computation-
and communication-efficient range proofs is still an active research direction.

SecAgg also introduces challenges for other defense methods. For example, many existing Byzantine-
robust aggregation methods utilize non-linear operations on the server Xie et al. [486], and it is not yet known
if these methods are efficiently compatible with secure aggregation which was originally designed for linear
aggregation. Recent work has found ways to approximate the geometric median under SecAgg [379] by
using a handful of SecAgg calls in a more general aggregation loop. However, it is not clear in general
which aggregators can be computed under the use of SecAgg.

5.4 Executive Summary

* Third-party participants in the training process introduces new capabilities and attack vectors for
adversaries, categorized in Table 11.

* Federated learning introduces a new kind of poisoning attacks, model update poisoning (Section
5.1.2), while also being susceptible to traditional data poisoning in (Section 5.1.3).

* Training participants can influence the optimization process possibly exacerbating inference-time
(Section evasion attacks) 5.1.4, and communication and computation constraints may render pre-
viously proposed defenses impractical.

* Non-malicious failure modes (Section 5.2) are can be especially different to deal with, as access to
raw data is not available in the federated setting, though through some lens they may be related to
poisoning attacks.

* Tension may exist when trying to simultaneously improve robustness and privacy in machine learning
(Section 5.3).

Areas identified for further exploration include:

* Quantify the relationship between data poisoning and model update poisoning attacks. Are there
scenarios where they are not equivalent? [5.1.3]
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Quantify how training time attacks impact inference-time vulnerabilities. Improving inference-time
robustness guarantees requires going beyond detecting backdoor attacks. [5.1.4]

Adversarial training has been used as a defense in the centralized setting, but can be impractical in the
edge-compute limited cross-device federated setting. [5.1.5]

Federated learning requires new methods and tools to support the developer, as access to raw data is
restricted debugging ML pipelines is especially difficult. [5.2]

Tensions exists between robustness and fairness, as machine learning models can tend to discard
updates far from the median as detrimental. However the federated setting can give rise to a long tail
of users that may be mistaken for noisy model updates [5.2].

Cryptography-based aggregation methods and robustness techniques present integration challenges:
protecting participant identity can be at odds with detecting adversarial participants. Proposed tech-
niques remain beyond the scope of practicality, requiring the need of new communication and com-
putation efficient algorithms. [5.3]
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6 Ensuring Fairness and Addressing Sources of Bias

Machine learning models can often exhibit surprising and unintended behaviours. When such behaviours
lead to patterns of undesirable effects on users, we might categorize the model as “unfair” according to
some criteria. For example, if people with similar characteristics receive quite different outcomes, then this
violates the criterion of individual fairness [169]. If certain sensitive groups (races, genders, etc.) receive
different patterns of outcomes—such as different false negative rates—this can violate various criteria of de-
mographic fairness, see for instance [51, 349] for surveys. The criterion of counterfactual fairness requires
that a user receive the same treatment as they would have if they had been a member of a different group
(race, gender, etc), after taking all causally relevant pathways into account [287].

Federated learning raises several opportunities for fairness research, some of which extend prior research
directions in the non-federated setting, and others that are unique to federated learning. This section raises
open problems in both categories.

6.1 Bias in Training Data

One driver of unfairness in machine-learned models is bias in the training data, including cognitive, sam-
pling, reporting, and confirmation bias. One common antipattern is that minority or marginalized social
groups are under-represented in the training data, and thus the learner weights these groups less during
training [258], leading to inferior quality predictions for members of these groups (e.g. [93]).

Just as the data access processes used in federated learning may introduce dataset shift and non-independence
(Section 3.1), there is also a risk of introducing biases. For example:

* If devices are selected for updates when plugged-in or fully charged, then model updates and evalua-
tions computed at different times of day may be correlated with factors such as day-shift vs night-shift
work schedules.

 If devices are selected for updates from among the pool of eligible devices at a given time, then
devices that are connected at times when few other devices are connected (e.g. night-shift or unusual
time zone) may be over-represented in the aggregated output.

* If selected devices are more likely to have their output kept when the output is computed faster,
then: a) output from devices with faster processors may be over-represented, with these devices likely
newer devices and thus correlated with socioeconomic status; and b) devices with less data may be
over-represented, with these devices possibly representing users who use the product less frequently.

* If data nodes have different amounts of data, then federated learning may weigh higher the contribu-
tions of populations which are heavy users of the product or feature generating the data.

* If the update frequency depends on latency, then certain geographic regions and populations with
slower devices or networks may be under-represented.

* If populations of potential users do not own devices for socio-economic reasons, they may be under-
represented in the training dataset, and subsequently also under- (or un-)represented in model training
and evaluation.

* Unweighted aggregation of the model loss across selected devices during federated training may dis-
advantage model performance on certain devices [302].
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It has been observed that biases in the data-generating process can also drive unfairness in the result-
ing models learned from this data (see e.g. [170, 394]). For example, suppose training data is based on
user interactions with a product which has failed to incorporate inclusive design principles. Then, the user
interactions with the product might not express user intents (cf. [403], for example) but rather might ex-
press coping strategies around uninclusive product designs (and hence might require a fundamental fix to
the product interaction model). Learning from such interactions might then ignore or perpetuate poor expe-
riences for some groups of product users in ways which can be difficult to detect while maintaining privacy
in a federated setting. This risk is shared by all machine learning scenarios where training data is derived
from user interaction, but is of particular note in the federated setting when data is collected from apps on
individual devices.

Investigating the degree to which biases in the data-generated process can be identified or mitigated
is a crucial problem for both federated learning research and ML research more broadly. Similarly, while
limited prior research has demonstrated methods to identify and correct bias in already collected data in the
federated setting (e.g. via adversarial methods in [255]), further research in this area is needed. Finally,
methods for applying post-hoc fairness corrections to models learned from potentially biased training data
are also a valuable direction for future work.

6.2 Fairness Without Access to Sensitive Attributes

Having explicit access to demographic information (race, gender, etc) is critical to many existing fairness
criteria, including those discussed in Section 6.1. However, the contexts in which federated learning are
often deployed also give rise to considerations of fairness when individual sensitive attributes are not avail-
able. For example, this can occur when developing personalized language models or developing fair medical
image classifiers without knowing any additional demographic information about individuals. Even more
fundamentally, the assumed one-to-one relationship between individuals and devices often breaks down,
especially in non-Western contexts [403]. Both measuring and correcting unfairness in contexts where there
is no data regarding sensitive group membership is a key area for federated learning researchers to address.

Limited existing research has examined fairness without access to sensitive attributes. For example,
this has been addressed using distributionally-robust optimization (DRO) which optimizes for the worst-
case outcome across all individuals during training [225], and via multicalibration, which calibrates for
fairness across subsets of the training data [232]. Even these existing approaches have not been applied in
the federated setting, raising opportunities for future empirical work. The challenge of how to make these
approaches work for large-scale, high-dimensional data typical to federated settings is also an open problem,
as DRO and multicalibration both pose challenges of scaling with large n and p. Finally, the development
of additional theoretical approaches to defining fairness without respect to “sensitive attributes” is a critical
area for further research.

Other ways to approach this include reframing the existing notions of fairness, which are primarily
concerned with equalizing the probability of an outcome (one of which is considered “positive” and another
“negative” for the affected individual). Instead, fairness without access to sensitive attributes might be
reframed as equal access to effective models. Under this interpretation of fairness, the goal is to maximize
model utility across all individuals, regardless of their (unknown) demographic identities, and regardless of
the “goodness of an individual outcome. Again, this matches the contexts in which federated learning is
most commonly used, such as language modeling or medical image classification, where there is no clear
notion of an outcome which is “good” for a user, and instead the aim is simply to make correct predictions
for users, regardless of the outcome.
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Existing federated learning research suggests possible ways to meet such an interpretation of fairness,
e.g. via personalization [250, 472]. A similar conception of fairness, as “a more fair distribution of the
model performance across devices”, is employed in [302].

The application of attribute-independent methods explicitly to ensure equitable model performance is an
open opportunity for future federated learning research, and is particularly important as federated learning
reaches maturity and sees increasing deployment with real populations of users without knowledge of their
sensitive identities.

6.3 Fairness, Privacy, and Robustness

Fairness and data privacy seem to be complementary ethical concepts: in many of the real-world contexts
where privacy protection is desired, fairness is also desired. Often this is due to the sensitivity of the
underlying data. Because federated learning is most likely to be deployed in contexts of sensitive data where
both privacy and fairness are desirable, it is important that FL research examines how FL might be able to
address existing concerns about fairness in machine learning, and whether FL raises new fairness-related
issues.

In some ways, however, the ideal of fairness seems to be in tension with the notions of privacy for
which FL seeks to provide guarantees: differentially-private learning typically seeks to obscure individually-
identifying characteristics, while fairness often requires knowing individuals’ membership in sensitive groups
in order to measure or ensure fair predictions are being made. While the trade-off between differential pri-
vacy and fairness has been investigated in the non-federated setting [246, 145], there has been little work on
how (or whether) FL. may be able to uniquely address concerns about fairness.

Recent evidence suggesting that differentially-private learning can have disparate impact on sensitive
subgroups [43, 145, 246, 283] provides further motivation to investigate whether FL may be able to ad-
dress such concerns. A potential solution to relax the tension between privacy (which aims to protect the
model from being too dependent on individuals) and fairness (which encourages the model to perform well
on under-represented classes) may be the application of techniques such as personalization (discussed in
Section 3.3) and “hybrid differential privacy,” where some users donate data with lesser privacy guarantees
[40].

Furthermore, current differentially-private optimization schemes are applied without respect to sensi-
tive attributes — from this perspective, it might be expected that empirical studies have shown evidence that
differentially-private optimization impacts minority subgroups the most [43]. Modifications to differentially-
private optimization algorithms which explicitly seek to preserve performance on minority subgroups, e.g.
by adapting the noise and clipping mechanisms to account for the representation of groups within the data,
would also likely do a great deal to limit potential disparate impacts of differentially-private modeling on
minority subgroups in federated models trained with differential privacy. However, implementing such
adaptive differentially-private mechanisms in a way that provides some form of privacy guarantee presents
both algorithmic and theoretical challenges which need to be addressed by future work.

Further research is also needed to determine the extent to which the issues above arise in the federated
setting. Furthermore, as noted in Section 6.2, the challenge of evaluating the impact of differential privacy
on model fairness becomes particularly difficult when sensitive attributes are not available, as it is unclear
how to identify subgroups for which a model is behaving badly and to quantify the “price” of differential
privacy — investigating and addressing these challenges is an open problem for future work.

More broadly, one could more generally examine the relation between privacy, fairness, and robustness
(see Section 5). Many previous works on machine learning, including federated learning, typically focus on
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isolated aspects of robustness (either against poisoning, or against evasion), privacy, or fairness. An impor-
tant open challenge is to develop a joint understanding of federated learning systems that are robust, private,
and fair. Such an integrated approach can provide opportunities to benefit from disparate but complemen-
tary mechanisms. Differential privacy mechanisms can be used to both mitigate data inference attacks, and
provide a foundation for robustness against data poisoning. On the other hand, such an integrated approach
also reveals new vulnerabilities. For example, recent work has revealed a trade-off between privacy and
robustness against adversarial examples [429].

Finally, privacy and fairness naturally meet in the context of learning data representations that are in-
dependent of some sensitive attributes while preserving utility for a task of interest. Indeed, this objective
can be motivated both in terms of privacy: to transform data so as to hide private attributes, and fairness: as
a way to make models trained on such representations fair with respect to the attributes. In the centralized
setting, one way to learn such representations is through adversarial training techniques, which have been
applied to image and speech data [255, 186, 327, 65, 431]. In the federated learning scenario, clients could
apply the transformation locally to their data in order to enforce or improve privacy and/or fairness guar-
antees for the FL process. However, learning this transformation in a federated fashion (potentially under
privacy and/or fairness constraints) is itself an open question.

6.4 Leveraging Federation to Improve Model Diversity

Federated learning presents the opportunity to integrate, through distributed training, datasets which may
have previously been impractical or even illegal to combine in a single location. For example, the Health
Insurance Portability and Accountability Act (HIPAA) and the Family Educational Rights and Privacy Act
(FERPA) constrain the sharing of medical patient data and student educational data, respectively, in the
United States. To date, these restrictions have led to modeling occurring in institutional silos: for example,
using electronic health records or clinical images from individual medical institutions instead of pooling
data and models across institutions [91, 104]. In contexts where membership in institutional datasets is
correlated with individuals’ specific sensitive attributes, or their behavior and outcomes more broadly, this
can lead to poor representation for users in groups underrepresented at those institutions. Importantly, this
lack of representation and diversity in the training data has been shown to lead to poor performance, e.g. in
genetic disease models [333] and image classification models [93].

Federated learning presents an opportunity to leverage uniquely diverse datasets by providing efficient
decentralized training protocols along with privacy and non-identifiability guarantees for the resulting mod-
els. This means that federated learning enables training on multi-instutitional datasets in many domains
where this was previously not possible. This provides a practical opportunity to leverage larger, more di-
verse datasets and explore the generalizability of models which were previously limited to small populations.
More importantly, it provides an opportunity to improve the fairness of these models by combining data
across boundaries which are likely to have been correlated with sensitive attributes. For instance, attendance
at specific health or educational institutions may be correlated with individuals’ ethnicity or socioeconomic
status. As noted in Section 6.1 above, underrepresentation in training data is a proven driver of model
unfairness.

Future federated learning research should investigate the degree to which improving diversity in a feder-
ated training setting also improves the fairness of the resulting model, and the degree to which the differential
privacy mechanisms required in such settings may limit fairness and performance gains from increased di-
versity. This includes a need for both empirical research which applies federated learning and quantifies
the interplay between diversity, fairness, privacy, and performance; along with theoretical research which
provides a foundation for concepts such as diversity in the context of machine learning fairness.

78



6.5 Federated Fairness: New Opportunities and Challenges

It is important to note that federated learning provides unique opportunities and challenges for fairness
researchers. For example, by allowing for datasets which are distributed both by observation, but even
by features, federated learning can enable modeling and research using partitioned data which may be too
sensitive to share directly [215, 224]. Increased availability of datasets which can be used in a federated
manner can help to improve the diversity of training data available for machine learning models, which can
advance fair modeling theory and practice.

Researchers and practitioners also need to address the unique fairness-related challenges created by fed-
erated learning. For example, federated learning can introduce new sources of bias through the decision
of which clients to sample based on considerations such as connection type/quality, device type, location,
activity patterns, and local dataset size [81]. Future work could investigate the degree to which these vari-
ous sampling constraints affect the fairness of the resulting model, and how such impacts can be mitigated
within the federated framework, e.g. [302, 289, 158]. Frameworks such as agnostic federated learning
[352] provide approaches to control for bias in the training objective. Work to improve the fairness of exist-
ing federated training algorithms will be particularly important as advances begin to approach the technical
limits of other components of FL systems, such as model compression, which initially helped to broaden
the diversity of candidate clients during federated training processes. There is no unique fairness criterion
generally adopted in the study of fairness, and multiple criteria have been proven to be mutually incompat-
ible. One way to deal with this question is the online fairness framework and algorithms of Awasthi et al.
[41]. Adapting such solutions to the federated learning setting and further improving upon them will be
challenging research questions in ML fairness theory and algorithms.

In the classical centralized machine learning setting, a substantial amount of advancement has been made
in the past decade to train fair classifiers, such as constrained optimization, post-shifting approaches, and
distributionally-robust optimization [223, 503, 225]. It is an open question whether such approaches, which
have demonstrated utility for improving fairness in centralized training, could be used under the setting of
federated learning (and if so, under what additional assumptions) in which data are located in a decentralized
fashion and practitioners may not obtain an unbiased sample of the data that match the distribution of the
population.

6.6 Executive Summary

In addition to inheriting the already significant challenges related to bias, fairness, and privacy in centralized
machine learning, federated learning also brings a new set of distinct challenges and opportunities in these
areas. The importance of these considerations will likely continue to grow as the real-world deployment of
FL expands to more users, domains, and applications.

* Bias in training data (Section 6.1) is a key consideration related to bias and fairness in FL. models,
particularly due to the additional sampling steps germane to federation (e.g., client sampling) and the
transfer of some model computation to client devices.

* The lack of data regarding sensitive attributes in many FL deployments can pose challenges for mea-
suring and ensuring fairness, and also suggests potential reframing of fairness problems in ways that
do not require such data (Section 6.2).

 Since FL is often deployed in contexts which are both privacy- and fairness-sensitive, this can magnify
tensions between privacy and fairness objectives in practice. Further work is needed to address the
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potential tension between methods which achieve privacy, fairness, and robustness in both federated
and centralized learning (Section 6.3).

* Federated learning presents unique opportunities to improve the diversity of stakeholders and data
incorporated into learning, which could improve both the overall quality of downstream models, as
well as their fairness due to more representative datasets (Section 6.4).

* Federated learning presents fairness-related challenges not present in the centralized training regime,
but also affords new solutions (Section 6.5).
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7 Addressing System Challenges

As we will see in this section, the challenges in building systems for federated learning can be split fairly
cleanly into the two separate settings of cross-device and cross-silo federated learning (see Sections 1.1
and 2.2). We start with a brief discussion of the difficulties inherent to any large scale deployment of
software on end-user devices (although exacerbated by the complexity of a federated learning stack); we
then focus on key challenges specific to the cross-device learning—bias, tuning, and efficient device-side
execution of ML workflows—before concluding with a brief treatment of the cross-silo setting.

7.1 Platform Development and Deployment Challenges

Running computations on end-user devices is considerably different from the data center setting:

* Due to the heterogeneity of the fleet (devices may differ in hardware, software, connectivity, perfor-
mance and persisted state) the space of potential problems and edge cases is vast and cannot typically
be covered in sufficient detail with automated testing.

* Monitoring and debugging are harder because telemetry is limited, delayed, and there is no physical
access to devices for interactive troubleshooting.

* Running computations should not affect device performance or stability, i.e. should be invisible to
users.

Code Deployment Installing, updating and running software on end user devices may involve not only
extensive manual and automated testing, but a gradual and reversible rollout (for example, through guard-
ing new functionality with server-controlled feature flags) while monitoring key performance metrics in
a/b experiments such as crash rates, memory use, and application-dependent indicators such as latencies
and engagement metrics. Such rollouts can take weeks or months depending on the percolation rate of
updates (particularly challenging for devices with spotty connectivity) and the complexity of the upgrade
(e.g. protocol changes). Hence, the install base at any given time will involve various releases. While
this problem is not specific to federated learning, it has greater impact here due to the inherent collabo-
rative nature of federated computations: devices constantly communicate with servers and indirectly with
other devices to exchange models and parameter updates. Thus, compatibility concerns abound and must be
addressed through stable exchange formats or, where not possible, detected upfront with extensive testing
infrastructure. We will revisit this problem in Section 7.4.

Monitoring and Debugging Another significant complication is the limited ability to monitor devices
and interactively debug problems. While telemetry from end user devices is necessary to detect problems,
privacy concerns severely restrict what can be logged, who can access such logs, and how long they are
retained. Once a regression is detected, drilling down into the root cause can be very cumbersome due to
the lack of detailed context, the vast problem space (a cross product of software versions, hardware, models,
and device state), and very limited ability for interactive debugging short of successfully reproducing the
problem in a controlled environment.

These challenges are exacerbated in the federated learning setting where a) raw input data on devices
cannot be accessed, and b) contributions from individual devices are by design anonymous, ephemeral, and
exposed only in aggregate. These properties preserve privacy, but also may make it hard or impossible to
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investigate problems with traditional approaches —by looking for correlations with hardware or software
version, or testing hypotheses that require access to raw data. Reproducing a problem in a controlled set-
ting is often difficult due to the gap between such an environment and reality: hundreds of heterogeneous
embedded stateful devices with non-iid data.

Interestingly, federated technologies themselves can help to mitigate this problem—for instance, the use
of federated analytics [382] to collect logs in a privacy preserving manner, or training generative models of
the system behavior or raw data for sampling during debugging (see sections 3.4.3, 5.2, and [31]). Keeping a
federated learning system up and running thus requires investing into upfront detection of problems through
a) extensive automated, continuous test coverage of all software layers through both unit and integration
tests; b) feature flags and a/b rollouts; and c¢) continuous monitoring of performance indicators for regres-
sions. That poses a significant investment that may come at too high a cost for smaller entities who would
benefit greatly from shared and tested infrastructure for federated learning.

7.2 System Induced Bias

Deployment, monitoring and debugging may not concern users of a federated learning platform, e.g. model
authors or data analysts. For them, the key differences between data center and cross-device settings fall
largely into the following two categories:

1. Availability of devices for computations is not a given, but varies over time and across devices. Con-
nections are initiated by devices and subject to interruptions due to changes in device state, operating
system quotas, and network connectivity. Hence, in iterative processes like federated learning, the
loop body is run on a small subset of all devices only, and the system must tolerate a certain failure
rate among those devices.

2. Capabilities of devices (network bandwidth and latency, compute performance, memory) vary, and
are typically much lower than those of compute nodes in the data center, though the number of nodes
is typically higher. The amount and type of data across devices may lead to variations in execution
profile, e.g. more and larger examples lead to increased resource use and processing time.

In the following sections we discuss how these variations might introduce bias, referring to it as system
induced bias to differentiate it from platform-independent bias in the raw data (such as ownership or usage
patterns differing across demographics)—for the latter, see Section 6.1.

7.2.1 Device Availability Profiles

At the core of cross-device federated learning is the principle that devices only connect to the server and run
computations when various constraints are met:

* Hard constraints, which might include requiring that the device is turned on, has network connec-
tivity to the server, and is allowed to run a computation by the operating system.

* Soft constraints, which might include the conditions on device state chosen to ensure that federated
learning does not incur charges or affect usability. For the common case of mobile phones [81, 26],
requirements may include idleness, charging and/or above a certain battery level, being connected to
an unmetered network, and that no other federated learning tasks are running at the same time.
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Taken together, these constraints induce an unknown, time-varying and device-specific function A;(t)
for a device 7, and a fleet-wide availability profile A(t) = ). A;(t). Round completion rates and server
traffic patterns [81, 491] suggest that availability profiles for mobile phones are clustered into periodic
functions with a period of 1 day, varying across devices in phase, shape and amplitude through factors
such as demographics, geography etc. Availability for other end user devices such as laptops, tablets, or
stationary devices such as smart speakers, displays and cameras, will differ, but the challenges discussed in
the following sections apply there as well, albeit to a possibly lesser extent.

7.2.2 Examples of System Induced Bias

Sources of bias will depend on the specific way in which devices are selected to participate in training,
and how the system influences which devices end up contributing to the final aggregated model update.
Thus, it is useful to discuss these issues in light of a simplified but representative system design. In an
iterative federated learning algorithm, such as Federated Averaging (Section 1.1.2, [337]), rounds are run
consecutively on sets of at least M devices. To accommodate a fraction d of devices not contributing due to
changes in device conditions, time-outs, or slowness (server-side aborts to avoid slow-downs by stragglers),
an over-allocation scheme is used where

1. Rounds are started when at least M’ = % devices are available.

2. Rounds are closed as

(a) Aborted when more than M’ — M devices have disconnected, or

(b) Successful when at least M devices have reported. One possible design choice is to stop after
exactly M devices; another possibility would be to keep waiting for stragglers (possibly up to
some maximum time).

This sequence, when combined with variable availability profiles, may introduce various forms of bias:

1. Selection Bias - whether a device is included in a round at time t depends on both

(a) Its availability profile A;(t)

(b) The number of simultaneously connected devices: < M’ and a round cannot be started; > M’
and the probability of a single device being included becomes very small. In effect, devices
active only at either fleet-wide availability peaks or troughs may be under-represented.

2. Survival Bias

(a) Since a server might choose to close a round at any point after the first M devices have reported,
contributions are biased towards devices with better network connections, faster processors,
lower CPU load, and less data to process.

(b) Devices drop out of rounds when they are interrupted by the operating system, which may hap-
pen due to changes in device conditions as described by A;(t), or due to e.g. excessive memory
use.

As can be seen, the probability of a device contributing to a round of federated learning is a complex
function of both internal (e.g. device specific) and external (fleet dynamic) factors. When this probability
is correlated with statistics of the data distribution, aggregate results may be biased. For instance, language
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models may over-represent demographics that have high quality internet connections or high end devices;
and ranking models may not incorporate enough contributions from high engagement users who produce a
lot of training data and hence longer training times.

Thus, designing systems that explicitly take such factors into account and integrate algorithms designed
to both quantify and mitigate these effects are a fundamentally important research direction.

7.2.3 Open Challenges in Quantifying and Mitigating System Induced Bias

While the potential for bias in federated learning has been addressed in the literature (Section 6, [81, 302,
171]), a systematic study that qualifies and quantifies bias in realistic settings and its sources is a direction for
future research. Conducting the necessary work may be hampered by both access to the necessary resources,
and the difficulty in quantifying bias in a final statistical estimate due to the inherent lack of ground truth
value.

We want to encourage further research to study how bias can be quantified and subsequently mitigated.
A useful proxy metric for bias is to study the expected rate of contribution of a device to federated learning.
In an unbiased system, this rate would be identical for every device; if it is not, the non-uniformity may
provide a measure of bias. Studying the root causes for this non-uniformity may then provide important
hints for how to mitigate bias, for example:

* When there is a strong correlation between devices finishing a round, and the number of examples
they process or model size, possible fixes may include early stopping, or decreasing the model size.

* If the expected rate of contribution depends on factors outside our control, such as device model,
network connectivity, location etc., one can view these factors as defining strata and applying post-
stratification [312], that is, correcting for bias by scaling up or down contributions from devices
depending on their stratum. It may also be possible to apply stratified sampling - e.g. change schedul-
ing, or server selection policies, to affect the probability of including devices in a round as a function
of their stratum.

* A very general, root-cause-agnostic mitigation could base the weight of a contribution solely on a
device’s past contribution profile (e.g. the number of rounds started or completed thus far). As
a special case, consider sampling without replacement which could be implemented at the system
level (stop connecting after one successful contribution) or at the model level (weight all but the first
contribution with 0). This approach might not be sufficient when a population is large enough for most
devices to contribute only infrequently (mostly one or zero times); in such cases, clustering devices
based on some similarity metric and using cluster membership as stratum could help.

* Alternatives to the synchronous, round based execution described in the previous section may also
help to mitigate bias. In particular, certain types of analytics may benefit from softening or elim-
inating the competition between devices for inclusion, by running rounds for long times with very
large numbers of participants and without applying time-outs to stragglers. Such a method may not
be applicable to algorithms where the iterative aspect (running many individual, chained rounds) is
important.

The biggest obstacle to enabling such research is access to a representative fleet of end user devices, or a

detailed description (e.g. in the form of a statistical model of a realistic distribution over A;(t) functions) of
a fleet that can be used in simulations. Here, maintainers of FL production stacks are uniquely positioned to
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provide such statistics or models to academic partners in a privacy preserving fashion; a further promising
direction is the recent introduction of the Flower framework [66] for federated learning research.

7.3 System Parameter Tuning

Practical federated learning is a form of multi-objective optimization: while the first order goal is maximiz-
ing model quality metrics such as loss or accuracy, other important considerations are

* Convergence speed
* Throughput (e.g. number of rounds, amount of data, or number of devices)
* Model fairness, privacy and robustness (see section 6.3)

e Resource use on server and clients

These goals may be in tension. For instance, maximizing round throughput may introduce bias or
hurt accuracy by preferring performant devices with little or no data. Maximizing for low training loss by
increasing model complexity will put devices with less memory, many or large examples, or slow CPUs at a
disadvantage. Bias or fairness induced in such a way during training may be hard to detect in the evaluation
phase since it typically uses the same platform and hence is subject to similar biases.

Various controls affect the above listed indicators. Some are familiar from the datacenter setting, in
particular model specific settings and learning algorithm hyperparameters. Others are specific to federated
learning:

* Clients per round: The minimum number of devices required to complete a round, M, and the
number of devices required to start a round, M.

* Server-side scheduling: In all but the simplest cases, a federated learning system will operate on more
than one model at a time: to support multiple tenants; to train models on the same data for different
use cases; to support experimentation and architecture or hyper-parameter grid search; and to run
training and evaluation workloads concurrently. The server needs to decide which task to serve to
incoming devices, an instance of a scheduling problem: assigning work (training or evaluation tasks)
to resources (devices). Accordingly, the usual challenges arise: ideal resource assignment should be
fair, avoid starvation, minimize wait times, and support relative priorities all at once.

* Device-side scheduling: As described in Section 7.2, various constraints govern when a device can
connect to the server and execute work. Within these constraints, various scheduling choices can be
made. One extreme is to connect to the server and run computations as often as possible, leading to
high load and resource use on both server and devices. Another choice are fixed intervals, but they
need to be adjusted to reflect external factors such as number of devices overall and per round. The
federated learning system developed at Google aims to strike a balance with a flow control mechanism
called pace steering [81] whereby the server instructs devices when to return. Such a dynamic system
enables temporal load balancing for large populations as well as “focusing” connection attempts to
specific points in time to reach the threshold M’. Developing such a mechanism is difficult due to
stochastic and dynamic nature of device availability, the lack of a predictive model of population
behavior, and feedback loops.
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Defining reasonable composite objective functions, and designing algorithms to automatically tune these
settings, has not been explored yet in the context of federated learning systems and hence remains a topic of
future research.

7.4 On-Device Runtime

While numerous frameworks exist for data center training, the options for training models on resource con-
strained devices are fairly limited. Machine Learning models and training procedures are typically authored
in a high level language such as Python. For federated learning, this description encompasses device and
server computations that are executed on the target platform and exchange data over a network connection,
necessitating

* A means of serializing and dynamically transmitting local pieces of the total computation (e.g., the
server-side update to the model, or the local client training procedure).

* A means to interpret or execute such a computation on the target platform (server or device).

* A stable network protocol for data exchange between participating devices and servers.

One extreme form of a representation is the original high-level description, e.g. a Python TensorFlow
program [2]. This would require a Python interpreter with TensorFlow backend, which may not be a feasible
choice for end-user devices due to resource constraints (binary size, memory use), performance limitations,
or security concerns.

Another extreme representation of a computation is machine code of the target architecture, e.g. ARM64
instructions. This requires a compiler or re-implementation of a model in a lower-level language such as
C++, and deployment computations will typically be subject to the restrictions that apply to deployment of
binary code (see Section 7.1), introducing prohibitive latencies for executing novel computations.

Intermediate representations that can be compiled or interpreted with a runtime on the target platform
strike a balance between flexibility and efficiency. However, such runtimes are currently not widely avail-
able. For instance, Google’s FL system [81] relies on TensorFlow for both server and device side execution
as well as model and parameter transfer, but this choice suffers from several shortcomings:

* It offers no easy path to devices for alternative front ends such as PyTorch [370], JAX [86] or CNTK
[410].

* The runtime is not developed or optimized for resource constrained environments, incurring a large
binary size, high memory use and comparatively low performance.

* The intermediate representation GraphDef used by TensorFlow is not standardized or stable, and
version skew between the frontend and older on-device backends causes frequent compatibility chal-
lenges.

Other alternatives include more specialized runtimes that support only a subset of the frontend’s capa-
bilities, for instance training specific model types only, requiring changes and long update cycles whenever
new model architectures or training algorithms are to be used. An extreme case would be a runtime that is
limited and optimized to train a single type of model.

An ideal on-device runtime would have the following characteristics:
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1. Lightweight: small binary size, or pre-installed; low memory and power profile.
2. Performant: low startup latency; high throughput, supports hardware acceleration.

3. Expressive: supports common data types and computations including backpropagation, variables,
control flow, custom extensions.

4. Stable and compact format for expressing data and computations.
5. Widely available: portable open source implementation.
6. Targetable by commonly used ML frameworks / languages..

7. Ideally also supports inference, or if not, building personalized models for an inference runtime.

To our best knowledge no solution exists yet that satisfies these requirements, and we expect the limited
ability to run ML training on end user devices to become a hindrance to adoption of federated technologies.

7.5 The Cross-Silo Setting

The system challenges arising in the scenario of cross-silo federated learning take a considerably different
form. As outlined in Table 1, clients are fewer in number, more powerful, reliable, and known / addressable,
eliminating many of the challenges from the cross-device setting, while allowing for authentication and
verification, accounting, and contractually enforced penalties for misbehavior. Nonetheless, there are other
sources of heterogeneity, including the features and distribution of data, and possibly the software stack used
for training.

While the infrastructure in the cross-device setting (from the device-side data generation to the server
logic) is typically operated by one or few organizational entities (the application, operating system, or de-
vice manufacturer), in the cross-silo setting, many different entities are involved. This may lead to high
coordination and operational cost due to differences in:

* How data is generated, pre-processed and labeled. Learning across silos will require data normaliza-
tion which may be difficult when such data is collected and stored differently (e.g. use of different
medical imaging systems, and inconsistencies in labeling procedures, annotations, and storage for-
mats).

» Which software at which version powers training. Using the same software stack in every silo—
possibly delivered alongside the model using container technologies as done by FATE [33]—eliminates
compatibility concerns, but such frequent and centrally distributed software delivery may not be ac-
ceptable to all involved parties. An alternative that is more similar to the cross-device setting would be
to standardize data and model formats and communication protocols. See IEEE P3652.1 “Federated
Machine Learning Working Group” for a related effort in this direction.

* The approval process for how data may or may not be used. While this process is typically central-
ized in the cross-device scenario, the situation is likely different in cross-silo settings where many
organizational entities are involved, and may be increasingly difficult when training spans differ-
ent jurisdictions with varying data protection regulations. Technical infrastructure may be of help
here by establishing data annotations that encode access policies, and infrastructure enforce them;
for instance, limiting the use of certain data to specific models, or encoding minimum aggregation
requirements such as “require at least M clients per round”.
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Another potential difference in the cross-silo setting is data partitioning: Data in the cross-device setting
is typically assumed to be partitioned by examples, all of which have the same features (horizontal partition-
ing). In the cross-silo setting, in addition to partitioning by examples, partitioning by features is of practical
relevance (vertical partitioning). An example would be two organizations, e.g. a bank and a retail company,
with an overlapping set of customers, but different information (features) associated with them. For a dis-
cussion focusing on the algorithmic aspects, please see section 2.2. Learning with feature-partitioned data
may require different communication patterns and additional processing steps e.g. for entity alignment and
dealing with missing features.

7.6 Executive Summary

While production grade systems for cross-device federated learning operate successfully [81, 26], various
challenges remain:

* Frequent and large scale deployment of updates, monitoring, and debugging is challenging (Sec-
tion 7.1).

* Differences in device availability induce various forms of bias; defining, quantifying and mitigating
them remains a direction for future research (Section 7.2).

* Tuning system parameters is difficult due to the existence of multiple, potentially conflicting objec-
tives (Section 7.3).

* Running ML workloads on end user devices is hampered by the lack of a portable, fast, small footprint,
and flexible runtime for on-device training (Section 7.4).

Systems for cross-silo settings (Section 7.5) face largely different issues owing to differences in the
capabilities of compute nodes and the nature of the data being processed.
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8 Concluding Remarks

Federated learning enables distributed client devices to collaboratively learn a shared prediction model while
keeping all the training data on device, decoupling the ability to do machine learning from the need to store
the data in the cloud. This goes beyond the use of local models that make predictions on mobile devices by
bringing model training to the device as well.

In recent years, this topic has undergone an explosive growth of interest, both in industry and academia.
Major technology companies have already deployed federated learning in production, and a number of
startups were founded with the objective of using federated learning to address privacy and data collection
challenges in various industries. Further, the breadth of papers surveyed in this work suggests that federated
learning is gaining traction in a wide range of interdisciplinary fields: from machine learning to optimization
to information theory and statistics to cryptography, fairness, and privacy.

Motivated by the growing interest in federated learning research, this paper discusses recent advances
and presents an extensive collection of open problems and challenges. The system constraints impose effi-
ciency requirements on the algorithms in order to be practical, many of which are not particularly challeng-
ing in other settings. We argue that data privacy is not binary and present a range of threat models that are
relevant under a variety of assumptions, each of which provides its own unique challenges.

The open problems discussed in this work are certainly not comprehensive, they reflect the interests
and backgrounds of the authors. In particular, we do not discuss any non-learning problems which need
to be solved in the course of a practical machine learning project, and might need to be solved based on
decentralized data [382]. This can include simple problems such as computing basic descriptive statistics,
or more complex objectives such as computing the head of a histogram over an open set [510]. Existing
algorithms for solving such problems often do not always have an obvious “federated version” that would
be efficient under the system assumptions motivating this work or do not admit a useful notion of data
protection. Yet another set of important topics that were not discussed are the legal and business issues that
may motivate or constrain the use of federated learning.

We hope this work will be helpful in scoping further research in federated learning and related areas.
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A Software and Datasets for Federated Learning

Software for simulation Simulations of federated learning require dealing with multiple issues that do not
arise in datacenter ML research, for example, efficiently processing partitioned datasets, with computations
running on different simulated devices, each with a variable amount of data. FL research also requires
different metrics such as the number of bytes upload or downloaded by device, as well as the ability to
simulate issues like time-varying arrival of different clients or client drop-out that is potentially correlated
with the nature of the local dataset. With this in mind, the development of open software frameworks for
federated learning research (simulation) has the potential to greatly accelerate research progress. Several
platforms are available or in development, including [404]:

TensorFlow Federated [38] specifically targets research use cases, providing large-scale simulation
capabilities as well as flexible orchestration for the control of sampling.

FedML [229] is a research-oriented library. It supports three platforms: on-device training for IoT
and mobile devices, distributed computing, and single-machine simulation. For research diversity,
FedML also supports various algorithms (e.g., decentralized learning, vertical FL, and split learning),
models, and datasets.

PySyft [399] is a Python library for secure, private Deep Learning. PySyft decouples private data from
model training, using federated learning, differential privacy, and multi-party computation (MPC)
within PyTorch.

Leaf [35] provides multiple datasets (see below), as well as simulation and evaluation capabilities.

Sherpa.ai Federated Learning and Differential Privacy Framework [397] is an open source federated
learning and differential privacy framework which provides methodologies, pipelines, and evaluation
techniques for federated learning.
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* PyVertical [32] is a project focusing on federated learning with data partitioned by features (also
referred to as vertical partitioning) in the cross-silo setting; see Section 2.2.

Production-oriented software In addition to the above simulation platforms, several production-oriented
federated learning platforms are being developed:

* FATE (Federated Al Technology Enabler) [33] is an open-source project intended to provide a secure
computing framework to support the federated Al ecosystem.

* PaddleFL [36] is an open source federated learning framework based on PaddlePaddle [37]. In
PaddleFL, several federated learning strategies and training strategies are provided with application
demonstrations.

* Clara Training Framework [125] includes the support of cross-silo federated learning based on a
server-client approach with data privacy protection.

* IBM Federated Learning [321] is a Python-based federated learning framework for enterprise envi-
ronments, which provides a basic fabric for adding advanced features.

* Flower framework [66] supports implementation and experimentation of federated learning algo-
rithms on mobile and embedded devices with a real-world system conditions simulation.

* Fedlearner [34] is an open source federated learning framework that enables joint modeling of data
distributed between institutions.

Such production-oriented federated learning platforms must address problems that do not exist in simula-
tion such as authentication, communication protocols, encryption and deployment to physical devices or
silos. Note that while TensorFlow Federated is listed under “Software for simulation”, its design includes
abstractions for aggregation and broadcast, and serialization of all TensorFlow computations for execution
in non-Python environments, making it suitable for use as a component in a production system.

Datasets Federated learning is adopted when the data is decentralized and typically unbalanced (different
clients have different numbers of examples) and not identically distributed (each client’s data is drawn from a
different distribution). The open source package TensorFlow Federated [38] supports loading decentralized
dataset in a simulated environment with each client id corresponding to a TensorFlow Dataset Object. These
datasets can easily be converted to numpy arrays for use in other frameworks.!! At the time of writing, three
datasets are supported and we recommend researchers to benchmark on them.

* EMNIST dataset [126] consists of 671,585 images of digits and upper and lower case English charac-
ters (62 classes). The federated version splits the dataset into 3,400 unbalanced clients indexed by the
original writer of the digits/characters. The non-IID distribution comes from the unique writing style
of each person.

* Stackoverflow'? dataset consists of question and answer from Stack Overflow with metadata like
timestamps, scores, etc. The training dataset has more than 342,477 unique users with 135,818,730
examples. Note that the timestamp information can be helpful to simulate the pattern of incoming
data.

"nttps://www.tensorflow.org/datasets/api_docs/python/tfds/as_numpy.
Phttps://www.kaggle.com/stackoverflow/stackoverflow
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* Shakespeare is a language modeling dataset derived from The Complete Works of William Shake-
speare. It consists of 715 characters whose contiguous lines are examples in the client dataset. The
train set has 16,068 examples and test set has 2,356 examples.

The preprocessing for EMNIST and Shakespeare are provided by the Leaf project [96], which also provides
federated versions of the sentiment140 and celebA datasets. These datasets have enough clients that they
can be used to simulate cross-device FL scenarios, but for questions where scale is particularly important,
they may be too small. In this respect Stackoverflow provides the most realistic example of a cross-device
FL problem.

Cross-silo datasets One example is the iNaturalist dataset'3 which consists of large numbers of observa-

tions of various organisms all over the world. One can partition it by the geolocation or the author of an
observation. If we partition it by the group an organism belongs to, like kingdom, phylum, etc., then the
clients have totally different labels and biological closeness between two clients is already known. This
makes it a very suitable dataset to study federated transfer learning and multi-task learning in cross-silo
settings.

Another example is the Google-Landmark-v2 [456] that includes over 5 million images of more than
200 thousand different types of landmark. Similar to the iNaturalist dataset, one can split the dataset by
authors, but due to the difference in scale with iNaturalist dataset, Google Landmark Dataset provides much
more diversity and creates even greater challenges to large-scale federated learning.

Luo et al. [322] has recently published a federated dataset for computer vision. The dataset contains
more than 900 annotated street images generated from 26 street cameras and 7 object categories annotated
with detailed bounding box. Due to the relatively small number of examples in the dataset, it may not
adequately reflect a challenging realistic scenario.

The need for more datasets Developing new federated learning datasets that are representative of real-
world problems is an important question for the community to address. Platforms like TensorFlow Feder-
ated [38] welcome the contribution of new datasets and may be able to provide hosting support.

While completely new datasets are always interesting, in many cases it is possible to partition existing
open datasets, treating each split as a client. Different partitioning strategies may be appropriate for different
research questions, but often unbalanced and non-IID partitions will be most relevant. It is also interesting
to maintain as much additional meta information (timestamp, geolocation, etc.) as possible.

In particular, there is a need for feature-partitioned datasets, as will be discussed in Section 2.2. For
example, a patient may go to one medical institute for a pathology test and go to another for radiology
picture archiving, in which case the features of one sample are partitioned over two institutes regulated by
HIPAA. [24].

Bhttps://www.inaturalist.org/
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