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precisely the questions we address in this work for the

problem of mean estimation for bounded real-valued

distributions – a well-studied problem in statistical lit-

erature due to its prevalence as a fundamental building

block in solutions to more complex tasks.

Contributions: Our contributions are as follows.

– We initiate the study of mean estimation in the hybrid

model, where users with bounded real-valued data

self-partition into two groups based on their preferred

trust model. We rigorously formalize this problem in

a statistical framework (Section 2), making minimal

distributional assumptions for user data and even al-

lowing the groups to come from separate distribu-

tions.

– We define a family of hybrid estimators that utilize a

generic class of DP mechanisms (Section 3). To eval-

uate the hybrid estimators’ relative quality, we detail

two non-hybrid baseline estimators and theoretically

analyze their relationship.

– When the groups have the same distribution and the

curator knows its variance, we derive a hybrid esti-

mator from this family and analytically quantify its

utility (Section 4). First, we prove that it always out-

performs both non-hybrid baselines. Second, we prove

that for practical parameters, it outperforms both

baselines by a factor of no greater than 2.286. Ad-

ditionally, we empirically evaluate our hybrid estima-

tor on realistic distributions, showing that it achieves

high utility in practice.

– When the groups have the same distribution but the

curator doesn’t know its variance, we derive another

hybrid estimator from this family and analytically

quantify the estimator’s utility (Section 5). We prove

that it always outperforms at least one non-hybrid

baseline, and we precisely determine the conditions

under which it outperforms both. We empirically eval-

uate it on realistic distributions and find that it not

only achieves high utility in practice, but is sometimes

utility competitive with the known-variance case.

– Since users’ self-partitioning may induce a bias be-

tween the groups, we evaluate our analytic utility ex-

pressions in the cases where the groups’ distributions

diverge (Section 6). We find that the hybrid estima-

tor is robust to divergences in the variances of the

groups’ distributions, but sensitive to divergences in

the means of the groups’ distributions.

– To demonstrate how more complex algorithms can

use our estimator as a sub-component, we design a

hybrid K-means algorithm which uses the hybrid es-

timator to merge the intermediate results of two non-

hybrid K-means algorithms (Section 7). We experi-

mentally show that this algorithm is able to achieve

utility on-par with the better of its two non-hybrid

building blocks, even though its underlying hybrid es-

timator is not explicitly designed for this problem.

– We introduce a new privacy amplification notion for

the hybrid model that stems from interaction between

the groups (Section 8). We derive the amplification

level that our hybrid estimator achieves, and show

that this amplification is significant in practice.

2 Preliminaries

In this section, we present the requisite background on

differential privacy, define the mean estimation problem

setting, and then review related work.

2.1 Differential Privacy Background

In this background, we precisely define differential pri-

vacy, then describe two of the most popular DP mecha-

nisms, and conclude with a discussion of trust models.

Formally, a mechanism M is (ε, δ)-DP [25] if and

only if for all neighboring databases D and D′ differing

in precisely one user’s data, the following inequality is

satisfied for all possible sets of outputs Y ⊆ Range(M):

Pr[M(D) ∈ Y ] ≤ eε Pr[M(D′) ∈ Y ] + δ.

A mechanism that satisfies (ε, 0)-DP is said to be ε-DP.

Two of the most popular DP mechanisms are

the Laplace mechanism [25] and the Gaussian mecha-

nism [24]. These mechanisms ensure DP for any dataset

D evaluated under a real-valued function f by comput-

ing f̃(D) = f(D) + Y . For the Laplace mechanism, Y

is a random variable drawn from the Laplace distribu-

tion with scale parameter b = ∆1f/ε (yielding standard

deviation s =
√

2b), and ∆1f = max ‖f(D)− f(D′)‖1
over all neighboring D, D′. For the Gaussian mecha-

nism, Y is drawn from the Gaussian distribution with

standard deviation s =
√

2 ln(1.25/δ)∆2f/ε, and ∆2f =

max ‖f(D)− f(D′)‖2 over all neighboring D, D′.

As discussed in the introduction, there are two clas-

sic trust models in DP, distinguished by their timing of

when the privacy perturbation is applied. In the LM,

user data undergoes a privacy-preserving perturbation

before it is sent to the curator; in the TCM the curator
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first collects all the data, and then applies a privacy-

preserving perturbation. The hybrid model, first pro-

posed in [3], enables algorithms to utilize a combination

of trust models. Specifically, the hybrid model allows

users to individually select between the TCM and LM

based on their personal trust preferences.

2.2 Problem Setting

Statistical literature on mean estimation spans a wide

range of assumptions and utility objectives, so we begin

by stating ours.

There are n users, with each user i ∈ [n] holding

data xi to be used in a differentially private compu-

tation. Users self-partition into the TCM or the LM

group and, regardless of their group choice, are guaran-

teed the same level of DP. Thus, a user’s group choice

only reflects their trust towards the curator. The frac-

tion of users that opted-in to the TCM is denoted as

c ∈ (0, 1), while the remaining (1− c) fraction prefer the

LM. We denote the two groups as indicies in the sets

T = {1, . . . , cn} and L = {cn + 1, . . . , n} respectively,

such that T ∪ L = [n].

Users who opt-in to the TCM group (referred to

as TCM users) have data xi drawn iid from an un-

known distribution DT with mean µT , variance σ2
T , and

support on the subset of interval [0, mT ]. Users who

chose the LM group (referred to as LM users) have

data xi drawn iid from an unknown distribution DL

with mean µL, variance σ2
L, and support on the subset

of interval [0, mL]. Together, the groups’ distributions

form a mixture distribution D = cDT + (1− c)DL with

mean µ = cµT + (1 − c)µL, variance σ2 = c(µ2
T +

σ2
T ) + (1 − c)(µ2

L + σ2
L), and support on [0, m] where

m = max{mT , mL}. Table 1 provides a summary of all

notation introduced in this work.

We make minimal assumptions about these distri-

butions, and the curator’s knowledge thereof, through-

out the paper. Specifically, in Sections 4 and 5, we as-

sume D = DT = DL and analyze the scenarios where

the curator both does and doesn’t know D’s variance re-

spectively. In Section 6, we lift this equal-distributions

assumption and analyze the consequences of the groups’

distributions diverging.

Measuring Utility

Our goal is to design accurate estimators of the mean

µ of the mixture distribution D. To measure utility, we

benchmark all estimators against the non-private em-

pirical mean estimator.

Definition 2.1. The non-private empirical mean esti-

mator is:

µ̂ =
1

n

∑

i∈[n]

xi = cµ̂T + (1− c)µ̂L.

This choice of benchmark reflects the fact that we are

interested in the excess error introduced by the priva-

tization scheme, beyond the inherent error induced by

a finite sample size. Concretely, we measure the abso-

lute error of an estimator µ̃ by explicitly computing the

mean squared error between it and the empirical mean.

Definition 2.2. The MSE between an estimator µ̃ and

the non-private empirical mean µ̂ is:

E = MSE(µ̃, µ̂) = E[(µ̃− µ̂)2]

Since the non-private empirical benchmark is used to

measure the MSEs of all estimators in this paper, we

simply refer to it as the MSE of the estimator.

Symbol Usage

ε, δ Differential privacy parameters

n Total number of users
c Fraction of users who opt-in to TCM

T, L Set of users who opted-in to TCM and set of users
who are using LM, respectively

D Mixture distribution of both groups’ data
µ, σ2, m Mean, variance, and maximum support of D

DT Distribution of TCM groups’ data
µT , σ2

T
, mT Mean, variance, and maximum support of DT

DL Distribution of LM groups’ data
µL, σ2

L
, mL Mean, variance, and maximum support of DL

xi User i’s private data drawn iid from its group’s
distribution

µ̂, µ̂T , µ̂L Empirical mean estimates with all users, with only
the TCM users, and with only the LM users, re-
spectively

E MSE of an estimator with respect to µ̂

µ̃T , ET TCM-Only estimator and its MSE
µ̃F , EF Full-LM estimator and its MSE
µ̃L, EL LM-Only estimator and its MSE

µ̃H(w), EH(w) Hybrid estimator with weight w and its MSE

YT , s2
T

TCM-Only estimator’s privacy random variable and
its variance

YL,i, s2
L

User i’s local privacy random variable and its vari-
ance

ncrit, ccrit n and c values that partition where ET ≤ EF

R(E), r(E) Relative improvement of estimator with MSE E

over the best and worst non-hybrid baselines, re-
spectively

Table 1. Comprehensive list of notation.
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2.3 Related Work

We first compare our paper to the closest related work

in the hybrid model [3], then discuss other works on DP

mean estimation in non-hybrid models, and conclude by

discussing other work in hybrid trust models.

Comparison to BLENDER [3]

A shared goal of our work and [3] is to take advantage

of the hybrid model; beyond that, our work is funda-

mentally different from theirs in several ways.

The works address different problems. Avent et al.

studied the problem of local search, which is a specific

problem instance of heavy-hitter identification and fre-

quency estimation. BLENDER tackles the frequency es-

timation portion of the problem by estimating counts of

boolean-valued data using a variant of randomized re-

sponse [56]. Our work focuses on the conceptually sim-

pler, but not strictly weaker, problem of mean estima-

tion of real-valued data using a broad class of privatiza-

tion mechanisms. Because of this, their methods aren’t

applicable in this work.

Both works compare against the same types of base-

lines in their respective problems, but reach very dif-

ferent conclusions. The baselines are: 1) using only the

TCM group’s data under the TCM, and 2) using all data

under the LM. [3] experimentally evaluated BLENDER

and found that it typically outperformed at least one

of these baselines, and occasionally outperformed both.

For our problem, we derive utility expressions which

prove that not only does our estimator always outper-

form at least one of the baselines, but that under certain

assumptions, it always outperforms both.

Since the hybrid model enables users to self-

partition into groups based on their trust model

preference, an important consideration for utility is

whether the groups have the same data distribution.

In BLENDER, it was assumed that they did. In this

work, our setting allows for groups to have the same or

different distributions, and we derive analytic results for

both cases.

Finally, the works have different takes on the role

of interaction between groups. BLENDER carefully uti-

lizes inter-group interactivity to achieve high utility. In

this work, our hybrid estimators have no inter-group in-

teractivity; these estimators achieve high utility, demon-

strating that such interactivity isn’t always necessary

for improving utility. Moreover, we find that our lack

of interactivity can improve users’ privacy guarantees

with respect to a specific type of adversary, whereas

BLENDER’s interactivity gives no such improvement.

Non-Hybrid Mean Estimation

In this work, we use simple non-hybrid baseline mean

estimators to enable us to obtain exact finite-sample

utility expressions. However, DP mean estimation of

distributions under both the TCM and LM has been

studied since the models’ introductions [17, 21, 56], and

continues to be actively studied to this day [2, 15, 18,

20, 22, 28, 29, 32, 37, 39–42]. The goal of mean estima-

tion research under both models is to maximize utility

while minimizing the sample complexity by making var-

ious distributional assumptions. Some assumptions are

stronger than those made in this work, such as assuming

the data is drawn from a narrow family of distributions.

Other assumptions are weaker, such as requiring only

that the mean lies within a certain range or that higher

moments are bounded. Because of the complexity of the

mechanisms and their reliance on the distributional as-

sumptions in the related works, their utility expressions

are typically bounds or asymptotic rather than exact.

Since we need exact finite-sample utility expressions to

precisely determine the utility of our hybrid estimator

relative to the baselines, we are unable to use their

estimators and assumptions. Nevertheless, the related

works show a practically significant sample complexity

gap between the TCM and LM in their respective set-

tings, further motivating mean estimation in the hybrid

model.

Other Works in Hybrid Trust Models

Several other works utilize a hybrid combination of trust

models. Of these, the closest-related work is the con-

current work of Beimel et al. [12]. Their work exam-

ines precisely the same hybrid DP model as this work,

the combined trusted-curator/local model, and has the

same goal of understanding whether this hybrid model

is more powerful than its composing models. To ac-

complish this goal, they perform mathematical analy-

ses on several theoretical problems, deriving asymptotic

bounds which show that it is possible to solve problems

in the hybrid model which cannot be solved in the TCM

or LM separately. Additionally, they show that there

are problems which cannot be solved in the TCM or

LM separately, and can be solved in the hybrid model,

but only if the TCM and LM groups interact with each

other. Finally, they analyze a problem which does not

significantly benefit from the hybrid model: basic hy-
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pothesis testing. They prove that if there exists a hy-

brid model mechanism that distinguishes between two

distributions effectively, then there also exists a TCM

or LM mechanism which does so nearly as effectively.

This result implies a lack of power of the hybrid model

for the problem of mean estimation in certain settings.

Beyond the trusted-curator/local hybrid model,

there are multiple alternative hybrid models in DP lit-

erature. The most popular is the public/private hybrid

model of Beimel et al. [13] and Zhanglong et al. [36].

In this model, most users desire the guarantees of dif-

ferential privacy, but some users have made their data

available for use without requiring any privacy guar-

antees. In this model, some works assume that DP is

achieved in the TCM [35, 50], while others assume that

DP is achieved in the LM [55, 58]. In both cases, the

works show that by operating in the public/private hy-

brid model, one can significantly improve utility rel-

ative to either model separately. Recently, theoretical

works [9, 10] have explored the limits of this model’s

power via lower bounds on the sample complexity of

fundamental statistical problems.

Another DP hybrid model recently introduced is the

shuffle model, which was conceptually proposed by Bit-

tau et al. [16] before being mathematically defined and

analyzed for its DP guarantees by Cheu et al. [19] and

Erlingsson et al. [26]. In this model, users privately sub-

mit their data under the LM via an anonymous chan-

nel to the curator. The anonymous channel randomly

permutes the users’ contributions so that the curator

has no knowledge of what data belongs to which user.

This “shuffling” enables users to achieve improved DP

guarantees over their LM guarantees in isolation. Sev-

eral works have since improved the original analyses and

expanded the shuffle model to achieve even greater im-

provements in the users’ DP guarantee [6, 7, 30–33].

3 DP Estimators

In this section, we introduce the baseline estimators in

the classic DP models, describe how we compare new

estimators against these baselines, and define the family

of hybrid estimators that we will be working with.

3.1 Baseline Non-hybrid DP Estimators

To understand the utility of the hybrid model, we put it

into context with the utility of non-hybrid approaches.

The most natural non-hybrid alternatives are: 1) only

using the TCM group’s data under the TCM, and 2)

using all the data under the LM. This is motivated di-

rectly by the decision that an analyst must make when

choosing between these two models: 1) use only the data

of the more-trusting users under the TCM so as to not

violate the trust preferences of the remaining users, or

2) treat all users the same under the less-trusting LM.

For both baselines, we consider estimators which

directly compute the empirical mean, then add 0-mean

noise from an arbitrary distribution whose variance is

calibrated to ensure DP under the respective model.

For pure ε-DP, this typically corresponds to using the

Laplace mechanism; for (ε, δ)-DP, this typically corre-

sponds to using the Gaussian mechanism [24]. We derive

all results for the generic noise-addition mechanisms,

and we use the ε-DP Laplace mechanism for empirical

evaluations.

TCM-Only Estimator

The stated consequence of using the TCM is that the

LM group’s data cannot be used. Thus, we design an

estimator for this model and refer to it as the “TCM-

Only” estimator.

Definition 3.1. The TCM-Only estimator is:

µ̃T =
1

cn

∑

i∈T

xi + YT ,

where YT is a random variable with 0 mean and s2
T vari-

ance chosen such that DP is satisfied for all TCM users.

Lemma 3.2. µ̃T has expected squared error:

ET =
(1− c)2

cn
σ2

T +
1− c

n
σ2

L + s2
T + (µT − µ)2.

Proof. See Appendix A.

This error has three components, (1−c)2

cn σ2
T + 1−c

n σ2
L, s2

T ,

and (µT −µ)2. The first component is the error induced

by subsampling only the TCM users – we refer to this as

the excess sampling error. The second component is the

error due to DP – we refer to this as the privacy error.

The third component is the bias error induced by the

groups’ means differing.

Full-LM Estimator

Since the LM doesn’t require trust in the curator, the

data of all users can be used under this model. We de-



The Power of the Hybrid Model for Mean Estimation 53

sign an estimator for this model and refer to it as the

“Full-LM” estimator.

Definition 3.3. Suppose each user i privately reports

their data as xi + YL,i, where YL,i is a random variable

with 0 mean and s2
L variance chosen such that DP is

satisfied for user i. The Full-LM estimator is then:

µ̃F =
1

n

∑

i∈[n]

(xi + YL,i),

Lemma 3.4. µ̃F has expected squared error:

EF =
s2

L

n
.

Proof. See Appendix A.

This error only consists of a single simple component:

the privacy error. Since the entire dataset is used, there

is no excess sampling error and no bias error.

3.2 Utility Over Both Baselines

While our absolute measure of an estimator’s utility is

the MSE (discussed in Section 2.2), we are primarily

interested in a hybrid estimator’s relative gain over the

baseline estimators. Explicitly, given some hybrid esti-

mator with MSE E , we consider the following measure

of relative improvement over the baseline estimators.

Definition 3.5. The relative improvement of an esti-

mator with MSE E over the best baseline estimator is:

R(E) =
min{ET , EF }

E .

This measure of relative improvement can be re-written

to explicitly consider the regimes where each of the base-

line estimators achieves the min{·}. That is, we deter-

mine the parameter configurations in which the TCM-

only estimator is better/worse than the Full-LM estima-

tor. Intuitively, we expect that when very few users opt-

in to the TCM, the TCM-Only estimator’s large excess

sampling error will overshadow its smaller privacy error

(relative to the Full-LM estimator’s privacy error). This

intuition is made precise by considering “critical values”

of c and n that determine the regimes where each of the

estimators yields better utility.

Lemma 3.6. Let ncrit and ccrit be defined as follows.

ncrit =
cs2

L + (1− c)((1− c)σ2
T − cσ2

L)

c((µT − µ)2 + s2
T )

(1)

ccrit =







σ2

L

σ2

L
+s2

L

, σT = σL,

2σ2

T
−σ2

L
+s2

L
−
√

(σ2

L
−s2

L
)2+4s2

L
σ2

T

2(σ2

T
−σ2

L
)

, σT 6= σL

(2)

We have that ET ≤ EF if and only if c > ccrit∧n ≤ ncrit.

Proof. Directly reduce the system of inequalities con-

structed by ET ≤ EF in conjunction with the regions

given by the valid parameter ranges. This immediately

yields the result.

This characterization allows us to partition the defini-

tion of relative improvement into the behavior of each

baseline estimator, re-written as follows.

Definition 3.7. The relative improvement of an esti-

mator with MSE E over the best baseline estimator is:

R(E) =
1

E ·
{

ET if c > ccrit ∧ n ≤ ncrit

EL otherwise

The behavior of these two cases further depends on the

privacy mechanism used, as that dictates sT and sL.

For example, when using the ε-DP Laplace mechanism

in the homogeneous setting where both group means

are µ and variances are σ2, these definitions of critical

values and relative improvement become the following.

Lemma 3.8. Adding ε-DP Laplace noise for privacy,

define ccrit = ε2σ2

2m2+ε2σ2 and ncrit = 2m2

c(2cm2−(1−c)ε2σ2) .

We have that ET ≤ EF if and only if c > ccrit∧n ≥ ncrit.

Definition 3.9. Adding ε-DP Laplace noise for pri-

vacy, the relative improvement of an estimator with

MSE E over the best baseline estimator is:

R(E) =
1

E ·
{

1−c
cn σ2 + 2m2

c2n2ε2 if c > ccrit ∧ n ≥ ncrit

2m2

nε2 otherwise

Thus, once the fraction of users opting-in to the TCM is

large enough, the TCM-Only estimator has better MSE

than the Full-LM estimator. In all other regimes, the

Full-LM estimator has better MSE than the TCM-Only

estimator. This matches the intuition.

Designing a hybrid estimator which outperforms at least

one of these baselines in all regimes (i.e., for all settings

of parameters µ, σ2, n, c, m, etc.) is trivial, as is design-

ing a hybrid estimator which outperforms both baselines
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in some regimes. One challenge solved in this work is de-

signing a hybrid estimator which provably outperforms

both baselines across all regimes.

3.3 Convex Hybrid DP Estimator Family

Simply described, this family of hybrid estimators has

the two groups independently compute their own pri-

vate estimates of the mean, then directly combines them

as a weighted average. The TCM group’s estimator is

the TCM-Only estimator. The LM group’s estimator is

almost the same as the Full-LM estimator, except now

with reports only from the LM users. We refer to this as

the “LM-Only” estimator, and briefly detour to define

and analyze it.

Definition 3.10. The LM-Only estimator is:

µ̃L =
1

(1− c)n

∑

i∈L

(xi + YL,i),

where, for each i ∈ L, YL,i is a random variable with 0

mean and s2
L variance chosen such that DP is satisfied

for user i.

Lemma 3.11. µ̃L, has expected squared error:

EL =
c2

(1− c)n
σ2

L +
c

n
σ2

T +
1

(1− c)n
s2

L + (µL − µ)2.

Proof. See Appendix A.

This estimator has excess sampling error, privacy error,

and bias error. Since it has strictly greater error than

the Full-LM estimator, it is not used as one of the base-

line estimators.

We now define a family of convexly-weighted hybrid

estimators parameterized by weight w ∈ [0,1], which we

will use throughout this paper. For any w, the hybrid

estimator computes a convex combination of the inde-

pendent TCM-Only and LM-Only estimators.

Definition 3.12. The hybrid estimator, parameterized

by w ∈ [0,1], is:

µ̃H(w) = wµ̃T + (1− w)µ̃L.

Lemma 3.13. µ̃H(w) has expected squared error:

EH(w) =
(w − c)2

cn
σ2

T +
(w − c)2

(1 − c)n
σ2

L + w2s2
T +

(1 − w)2

(1 − c)n
s2

L

+ (wµT + (1 − w)µL − µ)2.

Proof. See Appendix A.

This estimator has all three types of error – excess sam-

pling error, privacy error, and bias error – where the

amounts of each error type depend on the weighting w.

4 Homogeneous, Known-Variance

Setting

In this section, we design a hybrid estimator in the ho-

mogeneous setting which outperforms the baselines by

carefully choosing a particular weighting for the hybrid

estimator family from Definition 3.12. To choose such a

weighting, we restrict our focus to the homogeneous set-

ting, where both groups’ means are the same (µ = µT =

µL) and variances are the same (σ2 = σ2
T = σ2

L). Beyond

simplifying the expressions we’re analyzing, the homo-

geneous setting eliminates bias error from our defined

estimators, which removes any dependence on µ from

the derived error expressions. This is important, since

the curator’s goal is to learn µ from the data; thus, no

particular knowledge of µ is assumed. Therefore, in the

homogeneous setting, a weighting can be chosen by an-

alyzing the hybrid estimator’s derived error expressions

without needing any knowledge of µ. However, there is

still excess sampling error for the estimators in this set-

ting – in other words, error expressions still depend on

the data variance σ2. Thus, in this section, we make the

common assumption in statistical literature that σ2 is

known to the curator, and derive and analyze the opti-

mal hybrid estimator from the convex family.

KVH Estimator

We now derive and analyze the “known-variance hybrid”

(KVH) estimator by computing the optimal weighting

w∗ that minimizes EH(w). This can be analytically com-

puted and directly implemented by the curator, since

each term of EH(w) is known in this setting.

Definition 4.1. The known-variance hybrid estimator

in the homogeneous setting is:

µ̃KV H = w∗µ̃T + (1− w∗)µ̃L,

where w∗ =
c(σ2+s2

L
)

σ2+c(ns2

T
(1−c)+s2

L
)

is obtained by minimiz-

ing EH(w) with respect to w.

Lemma 4.2. µ̃KV H has expected squared error:

EKV H =
(w∗ − c)2

c(1− c)n
σ2 + w∗2s2

T + (1− w∗)2 s2
L

(1− c)n
.
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Although all users’ data is used here, weighting the es-

timates by w∗ induces excess sampling error (w∗−c)2

c(1−c)n σ2,

and the privacy error w∗2s2
T + (1−w∗)2

(1−c)n s2
L is the weighted

combination of the groups’ privacy errors.

Now we compute and analyze the relative improve-

ment in MSE of the KVH estimator over the best MSE

of either the TCM-Only estimator or the Full-LM esti-

mator.

Theorem 4.3. The relative improvement of µ̃KV H

over the better of µ̃T and µ̃F is:

R(EKV H) = γ ·
{

1−c
cn σ2 + s2

T if c > ccrit ∧ n ≤ ncrit

s2

L

n otherwise
,

where γ =
(1−c)σ2s2

L
+cn(cσ2+s2

L
)s2

T

n(σ2+cs2

L
)+(1−c)cn2s2

T

and ccrit and ncrit

are as defined in Lemma 3.6.

Proof. Direct application of Lemmas 3.2, 3.4, and 4.2

to Definition 3.7.

Algebraic analysis of this relative improvement reveals

that R(EKV H) > 1 when the number of TCM users is

less than s2
L/s2

T . For the common DP mechanisms that

apply 0-mean additive noise, this is trivially satisfied.

For instance, when adding ε-DP Laplace noise, s2
L/s2

T =

c2n2 ≥ cn = |T |. Moreover, although R(EKV H) is the-

oretically unbounded, using the ε-DP Laplace mecha-

nism in the high-privacy regime (ε ≤ 1) enables a tight

characterization of the maximum possible relative im-

provement.

Corollary 4.4. The maximum relative utility of µ̃KV H

when using the Laplace mechanism in the high-privacy

regime is bounded as:

17/8 ≤ max
ε≤1

c,n,m,σ

R(EKV H) ≤ 16/7.

Proof. See Appendix B.

Empirical Evaluation of R(EKV H)

To better understand what improvements one can ex-

pect from µ̃KV H in practical applications, we empiri-

cally evaluate R(EKV H) using the ε-DP Laplace mech-

anism in the context of various datasets. Note that al-

though the hybrid estimator’s performance is dependent

on the data distribution only through σ, n, and m, we

use datasets to realistically motivate these values.

In Figure 1, we use three synthetic datasets from

the Beta(α, β) distribution: Beta(10, 10), Beta(1, 1), and

Beta(0.1, 0.1). These symmetric distributions are cho-

sen to induce different σ values – low (σ ≈ 0.109),

medium (σ ≈ 0.289), and high (σ ≈ 0.456). For each

distribution, R(EKV H) is plotted across n ∈ [103, 105],

c ∈ {0.5%, 5%}, and ε ∈ {0.1, 1}. Since the Beta distri-

butions are supported on the interval [0,1], we let m = 1.

Figures 1b,c,d show that in these settings, R(EKV H) is

lower-bounded by 1 and none are much larger than 2

– matching our theoretical analysis. Observe that the

“peaking” behavior of some curves is caused by the

the ncrit and ccrit values being surpassed, which cor-

responds to the TCM group’s data beginning to out-

perform the LM group’s data in terms of MSE. The

curves which don’t peak either have trivially surpassed

the critical values (i.e., ncrit < 1 with c > ccrit) or have

c < ccrit; importantly, they don’t change behavior at

some n not shown in the figures.

In Figure 2, we use a real-world dataset of salaries

of n = 252,540 employees in the University of Califor-

nia system in 2010 [49]. This dataset was chosen due to

its relatively high asymmetry, with a maximum salary

of m ≈ 2,349,033 and standard deviation of σ ≈ 53,254

(both assumed to be known). As σ, n, and m are deter-

mined by the dataset, we examine the R(EKV H) values

across a large space of the remaining free parameters:

c ∈ [0.1%, 10%] and ε ∈ [0.1, 10]. We see the relative im-

provement peak just above 2 in the high-privacy regime,

with this maximum improvement continuing into the

low-privacy regime.

5 Homogeneous,

Unknown-Variance Setting

In this section, we design a different hybrid estimator

for the homogeneous setting, now applied to the case

where the variance σ2 of the data is not known. This is a

more realistic setting, as an analyst with no knowledge

of the distribution’s mean typically also doesn’t have

knowledge of its variance.

The KVH estimator was able to use knowledge of

the variance to weigh the estimates of the two groups

so that the trade-off of excess sampling error and pri-

vacy error was optimally balanced. In this unknown-

variance case, determining the optimal weighting is no

longer viable. Nevertheless, we can heuristically choose a

weighting which may (or may not) perform well depend-

ing on the underlying distribution. Thus, we propose

a heuristic weighting choice for combining the groups’

estimates and analyze it theoretically and empirically.
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Empirical Evaluation of R(EP W H) and r(EP W H)

Here, we perform an empirical evaluation analogous to

that done in Section 4. Figure 3 presents R(EP W H)

(top row) and r(EP W H) (bottom row) using the same

Beta distributions and parameters (n ∈ [103, 105], c ∈
{0.5%, 5%}, and ε ∈ {0.1, 1}). We find that there are

many regions where R(EP W H) achieves a value of just

greater than 1, and some regions where it achieves val-

ues competitive with the KVH estimator. Unsurpris-

ingly, since this weighting is chosen without account-

ing for the variance, there are also clear regions where

the R(EP W H) is noticeably less than 1. Even in the re-

gions where R(EP W H) is low, the r(EP W H) values in the

bottom row often show that the PWH estimator signif-

icantly improves over the worse of the two baseline es-

timators. An empirical evaluation of this estimator on

the UC salaries dataset can be found in Appendix C.

6 Heterogeneous Setting

In this section, we examine the effects of the groups’

distributions diverging on the quality of our estimators.

This is motivated by the fact that the hybrid model

allows users to self-partition based on their trust prefer-

ences. Such self-partitioning may cause the groups’ dis-

tributions to be different. For instance, since the TCM

users have similar trust preferences, their data may also

be more similar than the LM users’. This could mani-

fest as variance-skewness between the groups. Alterna-

tively, the TCM users may have fundamentally different

data than the LM users, which would manifest as mean-

skewness between the groups. Thus, we examine the case

where the group means are the same but their variances

are different, as well as the case where the group means

are different but their variances are the same. To un-

derstand these skewness effects, we empirically evaluate

R(EKV H)1.

Although the heterogeneous setting is more general

and complex, we can still derive the optimal weight-

ing for the KVH estimator analogously to homogeneous

KVH weighting of Definition 4.1.

1 We also performed the same empirical evaluation with the

unknown-variance PWH estimator. The results were nearly iden-

tical to the KVH estimator’s, and the conclusions were the same.

Thus, we omitted them for brevity.

Definition 6.1. The known-variance hybrid estimator

in the heterogeneous setting is:

µ̃KV H = w∗µ̃T + (1− w∗)µ̃L,

where w∗ =
c(s2

L
+cσ2

L
+(1−c)(n(µL−µ)(µL−µT )+σ2

T
))

cs2

L
+(1−c)cn((µL−µT )2+s2

T
)+cσ2

L
+(1−c)σ2

T

Variance-Skewness

Here, we examine the case where µT = µL but σ2
T 6= σ2

L.

This reduces the KVH estimator’s weighting to w∗ =
c(s2

L
+cσ2

L
+(1−c)σ2

T
)

cs2

L
+(1−c)cns2

T
+cσ2

L
+(1−c)σ2

T

. To gain insight into the ef-

fect of variance-skewness, we recall two Beta distribu-

tions previously used in our empirical evaluations: the

low-variance Beta(10,10) distribution (σ = 0.109) and

the high-variance Beta(0.1, 0.1) distribution (σ = 0.456).

We evaluate R(EKV H) in two scenarios: when the TCM

group has data drawn from the low-variance distribu-

tion but the LM group has data drawn from the high-

variance distribution, and vice versa. Figure 4 gives the

results across the same range of n, c, and ε values as

used in previous experiments.

The similarities between Figure 4 and Figure 1

demonstrate that our estimator is robust to deviations

in the LM group’s variance. For example, Figure 1b

shows R(EKV H) when all the data is from the low-

variance distribution; that figure nearly exactly matches

Figure 4a despite the fact that most of the data is now

from the LM group’s high-variance distribution. As this

applies to both of Figure 1’s graphs, it is clear that

the relative improvement heavily depends on the vari-

ance of the TCM group, regardless of whether the LM

group had the low- or high-variance data. In fact, in

both graphs, the difference in relative improvement from

the homogeneous case with variance σ2 to the hetero-

geneous case where only the TCM group has variance

σ2
T = σ2 does not vary by more than ±0.1, and, typi-

cally, varies by less than ±0.01.

Mean-Skewness

Here, we examine the case where µT 6= µL but σ2
T =

σ2
L. This reduces the KVH estimator’s weighting to

w∗ =
c(s2

L
+(1−c)n(µL−µ)(µL−µT )+σ2)

cs2

L
+(1−c)cn((µL−µT )2+s2

T
)+σ2

. Importantly, this

expression depends on the curator’s knowledge of µT

and µL – an unreasonable requirement, since the cura-

tor’s overarching goal is to learn the mean from the

user data. For applications where the groups’ means

are assumed to be different, computing separate esti-

mates of each group’s mean in their respective trust

models would likely be more useful than a joint esti-

mate. Thus, we instead explore mean-skewness from the
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A Estimator MSE Proofs

Proof of Lemma 3.2

V[µ̃T − µ̂] = V




1

cn

∑

i∈T

xi + YT −
1

n

∑

i∈[n]

xi





= V

[

1

cn

∑

i∈T

xi −
1

n

∑

i∈T

xi −
1

n

∑

i∈L

xi + YT

]

=
(1 − c)2

cn
σ2

T +
1 − c

n
σ2

L + s2
T .

Thus,

ET = E[(µ̃T − µ̂)2]

= V[µ̃T − µ̂] + E[µ̃T − µ̂]2

=
(1 − c)2

cn
σ2

T +
1 − c

n
σ2

L + s2
T + (µT − µ)2.

Proof of Lemma 3.4

EF = E[(µ̃F − µ̂)2]

= V[µ̃F − µ̂] + E[µ̃F − µ̂]2
︸ ︷︷ ︸

0

= V




1

n

∑

i∈[n]

(xi + YL,i) −
1

n

∑

i∈[n]

xi





=
s2

L

n
.

Proof of Lemma 3.11

V[µ̃L − µ̂]

= V




1

(1 − c)n

∑

i∈L

(xi + YL,i) −
1

n

∑

i∈[n]

xi





= V

[

c

(1 − c)n

∑

i∈L

xi −
1

n

∑

i∈T

xi +
1

(1 − c)n

∑

i∈L

YL,i

]

=
c2

(1 − c)n
σ2

L +
c

n
σ2

T +
1

(1 − c)n
s2

L.

Thus,

EL = E[(µ̃L − µ̂)2]

= V[µ̃L − µ̂] + E[µ̃L − µ̂]2

=
c2

(1 − c)n
σ2

L +
c

n
σ2

T +
1

(1 − c)n
s2

L + (µL − µ)2.

Proof of Lemma 3.13

V[µ̃H(w) − µ̂]

= V[wµ̃T + (1 − w)µ̃L − µ̂]

= V[wµ̃T − cµ̂T + (1 − w)µ̃L − (1 − c)µ̂L]

=
(w − c)2

cn
σ2

T +
(w − c)2

(1 − c)n
σ2

L + w2s2
T +

(1 − w)2

(1 − c)n
s2

L.

Thus,

EH(w) = E[(µ̃H(w) − µ̂)2]

= V[µ̃H(w) − µ̂] + E[µ̃H(w) − µ̂]2

=
(w − c)2

cn
σ2

T +
(w − c)2

(1 − c)n
σ2

L + w2s2
T +

(1 − w)2

(1 − c)n
s2

L

+ (wµT + (1 − w)µL − µ)2.

B Proof of Corollary 4.4

Note the following for upper-bounding R(EKV H).

Popoviciu’s inequality [51] states that a random vari-

able bounded in [a,b] has variance at most (b−a)2/4. For

our purposes, this ensures σ2 ≤ m2/4. For real-world use

cases, it is realistic to constrain ε to the “high-privacy”

regime of ε ≤ 1. Thus, with ε ≤ 1 and σ2 ≤ m2/4, we

have 0 ≤ ε2σ2/m2 ≤ 1/4. Let y = ε2σ2/m2. Now, we

upper-bound the improvement ratio as follows.

R(EKV H) ≤ 2(2− c)m2

2m2 − (1− c)ε2σ2
=

2(2− c)

2− (1− c)y
≤ 16/7,

where the final inequality stems from constrained maxi-

mization across c ∈ [0,1] and y ∈ [0,1/4] (justified in the

above note).

A lower-bound is given by the following concrete

instance. Let m = 1, ε = 1, σ2 = 1/4, and c =

1
18

(

1 +
√

288+n
n

)

. Then, as n → ∞, we have that

R(EKV H) converges to 17/8.

C PWH Utility (continued)

Figure 8 presents heatmaps of R(EP W H) and r(EP W H)

for the UC salaries dataset across the same parameters

as before (c ∈ [0.1%, 10%] and ε ∈ [0.1, 10]). We find

that R(EP W H) achieves a value of slightly greater than

1 across a large portion of the space. The results here

tell a similar story to that of Figure 3. Most of the space

has R(EP W H) values above 1, and even approaching 2

in narrow region. There is also a small region at the

large c values where the relative improvement drops be-

low 0.5.The majority of the space has r(EP W H) between
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dataset D′ = T ′ ∪ L′ differing in the data of at most

one user. If the data of one T user is changed, then

max
∥
∥µ̂H(w)− µ̂′

H(w)
∥
∥

2
≤ wm

cn . If instead the data of

one L user is changed, then max
∥
∥µ̂H(w)− µ̂′

H(w)
∥
∥

2
≤

(1−w)m
(1−c)n . Note that wm

cn ≤
(1−w)m
(1−c)n when w ≤ c. Thus,

we have

∆2µ̂H(w) =

{
wm
cn , w ≤ c

(1−w)m
(1−c)n , otherwise

.

Next, let YT ∼ N (0,s2
T ) and YL,i ∼ N (0,s2

L,i) such

that sT satisfies (ε, δ)-DP for the TCM group and sL,i

satisfies (ε, δ)-DP for each LM user i. By the well-known

properties of Gaussians, the weighted combination of

Gaussians is also a Gaussian, as

Y ∼ N
(

0, s′2 := w2s2
t +

(
1− w

(1− c)n

)2

|L \A|s2
L

)

.

Recall that the classic Gaussian mechanism [24]

guarantees (ε, δ)-DP for a function f with sensitivity

∆2f by adding noise from N (0,s2) such that s2 =

2 log(1.25/δ)∆2f2/ε2. Applying this result to our prob-

lem with a fixed δ′ = δ and solving ε′, we have

ε′ =

√

2 ln(1.25/δ)∆2µ̂2
H(w)

s′2

=

√

2 ln(1.25/δ)m

ns′
·
{

w
c , w ≤ c
1−w
1−c , otherwise

.

E Hybrid K-means Pseudocode

Algorithm 1: Hybrid-DP K-means

Input: TCM users T , LM users L, data range

m, data dimension d, num. clusters K,

num. iterations τ

1 Initialize centers of clusters C1, . . . , CK

2 bT ← (md+1)τ
ε and bL ← md(τ+1)

ε

3 Each i ∈ T reports x̃i ← xi to the curator

4 Each i ∈ L reports x̃i ← xi + YL,i to the

curator, YL,i ∼ Lapd(bL)

5 for t← 1 . . . τ do

6 Assign each x̃i from T to closest cluster

non-privately

7 Assign each x̃i from L to closest cluster

with prob. exp(ε/(τ+1))−1
K+exp(ε/(τ+1))−1 ; to a

uniformly random cluster otherwise

8 for k ← 1 . . . K do

9 Count T users in cluster k with DP :

ÑT ← |Ck ∩ T |+ Y1, Y1 ∼ Lap(bT )

10 Compute mean of all T users’ data in

cluster k with DP: µ̃T ←
1

ÑT

(∑

i∈T xi + Y2

)
, Y2 ∼ Lapd(bT )

11 Count L users in cluster k:

ÑL ← |Ck ∩ L|
12 Compute mean of all L users’ data in

cluster k: µ̃L ← 1
ÑL

∑

i∈L x̃i

13 c← ÑT

ÑT +ÑL

, s2
T ← 2b2

T , and s2
L ← 2b2

L

14 Compute w
P W H

as defined in Def. 5.3

15 Update center of Ck to hybrid mean of

all data: w
P W H

µ̃T + (1− w
P W H

)µ̃L

16 return centers of C1, . . . , Ck
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