
Characterizing Massively Parallel Polymorphism

Mengchi Zhang
Purdue University

West Lafayette, Indiana, USA

zhan2308@purdue.edu

Ahmad Alawneh
Purdue University

West Lafayette, Indiana, USA

aalawneh@purdue.edu

Timothy G. Rogers
Purdue University

West Lafayette, Indiana, USA

timrogers@purdue.edu

Abstract—GPU computing has matured to include advanced
C++ programming features. As a result, complex applications
can potentially benefit from the continued performance improve-
ments made to contemporary GPUs with each new generation.
Tighter integration between the CPU and GPU, including a
shared virtual memory space, increases the usability of produc-
tive programming paradigms traditionally reserved for CPUs,
like object-oriented programming. Programmers are no longer
forced to restructure both their code and data for GPU accelera-
tion. However, the implementation and performance implications
of advanced C++ on massively multithreaded accelerators have
not been well studied.

In this paper, we study the effects of runtime polymorphism
on GPUs. We first detail the implementation of virtual function
calls in contemporary GPUs using microbenchmarking. We then
propose Parapoly, the first open-source polymorphic GPU bench-
mark suite. Using Parapoly, we further characterize the overhead
caused by executing dynamic dispatch on GPUs using massively
scaled CPU workloads. Our characterization demonstrates that
the optimization space for runtime polymorphism on GPUs is
fundamentally different than for CPUs. Where indirect branch
prediction and ILP extraction strategies have dominated the
work on CPU polymorphism, GPUs are fundamentally limited by
excessive memory system contention caused by virtual function
lookup and register spilling. Using the results of our study, we
enumerate several pitfalls when writing polymorphic code for
GPUs and suggest several new areas of system and architecture
research that can help alleviate overhead.

I. INTRODUCTION

General-Purpose Graphics Processing Unit (GPGPU) inter-

faces like CUDA [1] and OpenCL [2] have grown to support

modern C++. While GPUs have the potential to improve

parallel code’s performance and energy-efficiency, a barrier to

their adoption as general-purpose accelerators is programma-

bility. CUDA and OpenCL have, to varying degrees, supported

object-oriented code on GPUs for several generations. How-

ever, the compiler and runtime technology for CUDA is more

mature. Table I chronicles the state of CUDA programming

features and NVIDIA GPU capabilities over the last decade.

The programming features accessible on GPUs have been

steadily increasing with each release of CUDA and each

new hardware generation. Despite this increased support for

C++ and object-oriented code, the implementation and runtime

effects of polymorphism on GPUs have not been well studied.

Decades of work on runtime systems, compilers, and ar-

chitecture in CPUs have improved the execution of these

productive programming techniques enough to make general,

reusable code commonplace. However, the implications of

productive programming techniques on GPUs must be studied

to grow the subset of applications that benefit from GPU

acceleration and increase programmer productivity. This paper

takes the first steps to understand the overheads and tradeoffs

of polymorphic, object-oriented code in the GPU space, such

that future systems can run productive code more efficiently

on massively parallel accelerators.

The adoption of GPGPU programming in non-traditional

spaces such as sparse data structures [3] and graph analyt-

ics [4] has demonstrated that massively parallel accelerators

still achieve significant performance and energy-efficiency

gains over CPUs when running complex applications with

enough parallelism. High-performance closed source pack-

ages, like the OptiX raytracing library from NVIDIA [5], use

dynamic dispatch and a quick GitHub search reveals more

than 35k device-side virtual functions in the wild. These signs

indicate an interest in executing polymorphic code on GPUs,

warranting a well-constructed exploration into its behavior.

This paper performs the first detailed characterization of

polymorphic programs on GPUs and provides a foundation

for future software systems and architectural techniques to

evaluate the object-oriented paradigm. To study this problem

from the ground up, we construct a set of microbenchmarks

to understand the implementation of virtual function calls on

GPUs and their performance effects in isolation. We then

propose the first polymorphic GPU benchmark suite: Para-
poly. The Parapoly suite is constructed by porting scalable,

multithreaded CPU applications to CUDA without changing

the core algorithm or underlying data structures. These appli-

cations come from the domains of model simulation, graph

analysis, and computer graphics. The applications in Parapoly
represent a future where parallel code written for the CPU

can be seamlessly offloaded to the GPU without forcing the

programmer to restructure their code.

Using the Parapoly benchmark suite, we analyze the run-

time overheads associated with polymorphic GPU code, which

is implemented by virtual functions in C++. Work in CPUs

shows that the overhead of using virtual functions can be

divided into direct and indirect costs [6]. The direct cost of

a virtual function refers to the instructions added to retrieve

and branch to a function pointer dynamically. The indirect

cost quantifies the compile-time optimization opportunities

lost because the target function is unknown until runtime.

We quantify the effect of both direct and indirect overhead

in Parapoly by exploring the effect different compilation

205

2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-7281-8643-6/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPASS51385.2021.00037

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

sis
 o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(IS

PA
SS

) |
 9

78
-1

-7
28

1-
86

43
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
PA

SS
51

38
5.

20
21

.0
00

37

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Progression of NVIDIA GPU programmability and performance

Year 2006 2010 2012 2014 2018 2021

CUDA toolkit 1.x 3.x 4.x 6.x 9.x 11.x
Programming Basic C support C++ class inheritance C++ new/delete Unified Enhanced Unified CUDA C++
features & template inheritance & virtual functions memory memory. GPU page fault standard library
GPU Architecture Tesla G80 Fermi Kepler Maxwell Volta Ampere
Peak FLOPS 346 GFLOPS 1 TFLOPS 4.6 TFLOPS 7.6 TFLOPS 15 TFLOPS 19.5 TFLOPS

techniques have on runtime overheads. This paper details the

reasons for this overhead and identifies areas where software

and hardware support for polymorphism can mitigate this

performance penalty.

The runtime performance cost of polymorphism is a long-

studied problem in the CPU world [6]–[13]. A significant

amount of CPU hardware research has focused on improving

the predictability of indirect branches that implement calls to

virtual functions. However, a fundamental difference between

CPUs and GPUs is that GPUs do not use any speculative ex-

ecution. The high area, complexity, and energy overheads that

speculative execution would have on GPUs make techniques

like branch prediction and out-of-order execution unviable.

Instead, GPUs use thread-level parallelism to hide latency,

making the extraction of instruction-level parallelism less

critical. Our experimental results show that the limiting factor

when executing polymorphic code on GPUs is the memory

system. The memory accesses required to perform the virtual

function lookup, and the register spilling that occurs at virtual

function boundaries increase the load/store unit pressure by an

average of 2×. These extra per-thread memory accesses still

exist in CPUs but are effectively hidden by the cache hierarchy.

In GPUs, the sheer number of threads accessing discrete ob-

jects overwhelms both cache capacity and throughput such that

memory bandwidth becomes the primary bottleneck, resulting

in average performance degradation of 77% versus inlining all

the virtual function calls.

This paper makes the following contributions:

• It performs the first detailed analysis of polymorphic

virtual function calls on GPUs. By reverse-engineering

CUDA binaries and constructing a set of microbench-

marks, we detail the implementation of dynamic dispatch

in CUDA programs.

• It introduces the first open-source polymorphic bench-

mark suite for GPUs: Parapoly. Constructed from scal-

able, polymorphic CPU frameworks and applications,

Parapoly is representative of reusable code that does not

need to be re-written for GPU acceleration, allowing sys-

tem researchers and architects to explore the implications

of productive programming practices on GPUs.

• It demonstrates that there are different performance bot-

tlenecks when executing polymorphic code on GPUs than

on CPUs. The direct overhead on CPUs primarily stems

from mispredicting indirect branches, while the indirect

overhead comes from missed ILP extraction strategies. In

GPUs, both the direct and indirect overhead is dominated

by additional memory traffic from accessing virtual tables

and excessive register spills, respectively.

• Based on our observed overheads, we identify pitfalls that

should be avoided when creating polymorphic GPU code

and suggest areas in the architecture and system software

that can be improved to increase the performance.

II. OBJECT-ORIENTED CODE ON GPUS

Object-oriented programming is defined by four major

characteristics: (1) Data is represented as discrete objects:

data and the operations on said data are coupled together.

Concretely, we use C++ classes that contain member variables

and methods that operate on those variables. (2) Polymor-
phism: A hierarchy of data types is constructed, such that

derived classes share some data and methods with base classes.

Derived classes also override virtual functions in the base

class, necessitating a runtime function lookup to determine

which code should be called. C++ class inheritance is used to

define the polymorphism in our applications. (3) Abstraction:

The precise implementation of a method, or concrete type of a

class does not need to be known by code that uses that class.

(4) Encapsulation: Data internal to a class or class hierarchy

cannot be directly accessed or modified by code outside the

implementation of that class. Polymorphism allows code that

utilizes objects to be written with a higher level of abstraction

and encapsulation, resulting in virtual functions, which incur

runtime overhead.
The implementation details of object-oriented features on

NVIDIA GPUs are not described in any public documenta-

tion. We obtain the information in this section by reverse-

engineering binaries compiled with object-oriented program-

ming. We perform all our analysis using an NVIDIA Volta

GPU. However, we examined code from several different GPU

generations and observe that the implementation of object-

oriented code on NVIDIA GPUs has not significantly changed

since it was first supported in the Fermi architecture. We also

note that although other GPU vendors do not support object-

oriented features like virtual function calls, we anticipate that

the observations made in this study would hold for other

massively parallel accelerators.
When using object-oriented programming, there are two

general forms of overhead: one-time overheads when objects

are created/destroyed, and recurring overheads that occur when

member functions are called. In workloads with frequent

object creation and destruction, initialization overheads can be

significant. However, many scalable applications pre-allocate

data structures to avoid parallel dynamic memory allocation.

While dynamic memory management on GPUs is an interest-

ing problem, it is not the focus of this paper. However, we do

206

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

quantify the cost of pre-allocating data in these polymorphic

applications. We envision the most common initial use-case

for object-oriented programs on GPUs to be when the bulk of

the objects in the program are created and initialized either by

the CPU or by the GPU in an initialization phase.

A. Runtime Object-Oriented Features

The layout of objects (and structures) in CUDA follows

the C++ standard, where fields defined sequentially within the

object are laid out sequentially in the virtual address space.

The compiler enforces encapsulation with public, protected,

and private variables and method scope. Virtual function calls

are used to implement runtime polymorphism.

At compilation time, virtual function tables are created in

CUDA’s constant memory address space. In CUDA programs,

constant memory is a small, cached memory space generally

used to store variables constant across all threads in a kernel.

The constant space is private to each CUDA kernel and is

initialized when the program is compiled. CUDA does not

support code sharing across kernels or dynamic code loading

(like Linux does with .so files). As a result, the code for every

virtual function call is embedded in each individual kernel’s

instruction address space. Therefore, code for the same virtual

function implementation has a different address in different

kernels. To support object creation in one kernel and use in

another, a layer of indirection is added.

When a new type is allocated, a second virtual function table

for the same type is created in global memory. This global

table is initialized with references to the constant memory

table, which is different for each kernel. When new objects

are constructed, they contain a pointer to the global virtual

function table for their type, which persists across kernels.

When a virtual function is called, the global table is read and

a constant pointer is returned. The constant table contains the

actual address for the function’s instructions in this particular

kernel. When an object allocated in one kernel has a virtual

function called in another kernel, the constant memory for the

calling kernel is read to find the function’s implementation.

This is important because it adds an additional level of

overhead not found in polymorphic CPU implementations.

However, we observe that the constant memory accesses do

not add significant overhead in practice. Table II, discussed in

Section III, presents the implementation and overhead of this

indirection in more detail.

There is no dynamic inlining or just-in-time compiler op-

timizations performed in contemporary GPUs to mitigate the

cost of calling virtual functions. An indirect call instruction

from the GPU’s instruction set is used to jump to the virtual

function. GPUs use a lock-step Single Instruction Multiple

Thread (SIMT) execution model where sequential threads in

the program are bound together into warps when scheduled on

the GPU’s Single Instruction Multiple Data (SIMD) datapath.

In NVIDIA machines, 32 threads execute in lock-step across

a warp. Consequentially, when a virtual function is called

across a warp, each thread in the warp can potentially jump

to a different virtual function implementation, depending on

1 // Base class
2 class BaseObj {};
3
4 // 32 classes with Func implementation
5 class Obj_0 : public BaseObj {
6 __device__ Func_1(input, output, numCompute)

{
7 while(numCompute--)
8 output += input;
9 }

10 };
11 ...
12 class Obj_31 : public BaseObj {
13 __device__ Func_31(input, output, numCompute

) {
14 while(numCompute--)
15 output += input;
16 }
17 };
18
19 // Initialization kernel
20 __global__ init(BaseObj** objArray, int

divergence_level) {
21 ...
22 switch (tid % divergence_level) {
23 case 0:
24 objArray[tid] = new Obj_1();
25 ...
26 case 31:
27 objArray[tid] = new Obj_31();
28 }
29 }
30
31 // Computation kernel
32 __global__ compute(BaseObj** objArray, float*

inputs, float* outputs, int numCompute, int
divergence_level) {

33 ...
34 switch (tid % divergence_level) {
35 case 0:
36 objArray[tid]->Func_0(inputs[tid],

outputs[tid], numCompute);
37 ...
38 case 31:
39 objArray[tid]->Func_31(inputs[tid],

outputs[tid], numCompute);
40 }
41 }

Fig. 1: Psuedo-code for switch-based microbenchmark.

the objects being accessed in parallel threads. When threads

across a warp traverse different control flow paths, those paths

cannot be executed in the same instruction. This results in a

serialization of the divergent control-flow paths, commonly

referred to as control-flow divergence, resulting in decreased

execution efficiency. Note that this control-flow divergence

is no worse in polymorphic code than in the same program

without virtual function call overheads.

III. MICROBENCHMARKING VIRTUAL FUNCTION CALLS

ON GPUS

Just like in C++, CUDA implements polymorphism via

virtual function calls. Virtual functions are implemented by an

indirect call instruction that jumps to the appropriate function

on a per-thread basis. Unlike indirect function calls on CPUs,

an indirect call on an NVIDIA GPU can branch up to 32 dif-

ferent ways. To evaluate the performance overhead introduced

by virtual function calls, we create two microbenchmarks with

identical control-flow.

207

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

1 // Base class with vFunc
2 class BaseObj {
3 virtual __device__ vFunc(...) {}
4 };
5
6 // 32 derived classes with vFunc implementation
7 class Obj_0 : public BaseObj {
8 __device__ vFunc(input, output, numCompute)

{
9 while(numCompute--)

10 output += input;
11 }
12 };
13 ...
14 class Obj_31 : public BaseObj {
15 __device__ vFunc(input, output, numCompute)

{
16 while(numCompute--)
17 output += input;
18 }
19 };
20
21 // Initialization kernel
22 __global__ init(BaseObj** objArray, int

divergence_level) {
23 ...
24 switch (tid % divergence_level) {
25 case 0:
26 objArray[tid] = new Obj_1();
27 ...
28 case 31:
29 objArray[tid] = new Obj_31();
30 }
31 }
32
33 // Computation kernel
34 __global__ compute(BaseObj** objArray, float*

inputs, float* outputs, int numCompute) {
35 ...
36 objArray[tid]->vFunc(inputs[tid], outputs[tid

], numCompute);
37 ...
38 }

Fig. 2: Psuedo-code for virtual function microbenchmark.

One microbenchmark (Figure 1) uses a switch to arbitrate

the control flow, and the other (Figure 2) uses polymorphism,

where control flow is determined by virtual function calls. We

also implemented the switch-based microbenchmark using if-

then-else conditionals and observe that the CUDA compiler

generates the same code in both cases. The body of each

virtual function (and switch case) contains a loop that performs

a configurable number of floating-point additions on fixed

input data. We verified that in both cases, the compiler

generates different function bodies for the 32 different function

implementations. To study the overhead of virtual functions as

the work in each function scales, both the switch-based code

and the virtual function code can scale the number of floating-

point additions performed in each control flow path from 1 to

32k. We call this the compute density of the microbenchmark.

Both microbenchmarks can scale the number of control flow

paths taken by each warp from 1 to 32 to depict the effects

of control-flow divergence overhead. We call this the virtual

function divergence (dvg). At 1 virtual function call per warp,

all threads in the warp make the same virtual function call. At

32 virtual function calls per warp, each thread in a warp calls

a different virtual function.

Fig. 3: The execution time of the object-oriented virtual

function microbenchmark, normalized to the switch-based

control flow management microbenchmark at the same com-

pute density and level of divergence. We use the number

of additions per function (# Addition/Func) to represent the

compute density and it varies on the x-axis. Each data series

represents a different level of control-flow divergence (dvg).

Figure 3 plots the execution time of the virtual function

microbenchmark, normalized to the switch-based microbench-

mark with the same compute density and control flow. We

quantify the compute density with the number of floating-

point additions per function (# Addition/Func). We also scale

the number of threads in each microbenchmark to occupy

the whole GPU and run each experiment 3 times, taking the

median execution time. The y-axis represents the overhead

added by calling virtual functions versus using less exotic

control flow management. At low-levels of compute-density,

there is a large variance in the overhead added at different

levels of control flow divergence (dvg). At low compute and

low divergence, the overhead caps out at approximately 7.2×.

As the level of divergence increases, the overhead of calling

virtual functions drops off and settles at only 1.3× when

there is a 32-way divergence. As the divergence increases,

the overhead of calling the virtual function becomes a smaller

portion of the overall execution time. For example, at 32-

way divergence, the program spends 32× more time in the

serialized execution of the diverged functions than in the non-

divergent (no-dvg) case. As the compute density increase, the

overhead of the virtual function calls is mitigated since the

computation in each virtual function dominates execution time,

dwarfing the direct overhead of virtual function calls. By a

compute density 4, the overhead of virtual functions in the

fully-diverged case reaches nearly 0. However, in the non-

diverged case (no-dvg), a compute density of 1024 floating-

point additions per function is necessary to hide the virtual

function overhead.

Figure 3 demonstrates that the direct overheads caused by

virtual functions can be significant, depending on the level

of runtime divergence and the computation to perform in

each virtual function, or traverses a different block of the

switch statement. To evaluate which aspects of the overhead

contribute most to the slowdown, we use the NVIDIA Visual

208

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Key direct overhead pseudo-assembly instructions

for the virtual function call. The table lists the overhead at

different levels of concurrency and the number of memory

accesses generated by each load instruction. The overhead and

memory divergence numbers are taken from the workload with

no control-flow divergence (no-dvg) at a compute density of 1.

R2 contains objArray pointer in Figure 2. Ovhd = Overhead,

tid = thread index, cmem = constant memory, fid = function

index, AccPI = Accesses per Instruction.

Instruction Description %Ovhd %Ovhd AccPI
1 warp 10M

warps
1: LDG R2, [R2+tid*8] Ld object ptr 18% 41% 8

2: LD R4, [R2] Ld vTable ptr 34% 52% 32

3: LD R4, [R4+fid*8] Ld cmem offset 26% < 0.1% 1

4: LDC R6, cmem[R4] Ld vfunc addr 0% 7% 1

5: CALL R6 Call vfunc 26% < 0.1% -

Profiler [14] to profile the memory accesses and latency added

by each instruction of the virtual function overhead. Since the

low divergence microbenchmarks have the most overhead, we

study the no-dvg case in detail. Table II details the assembly

instructions primarily responsible for the virtual function over-

head, which consist of 4 additional load instructions to look

up the function pointers and an indirect function call. The

first load reads the pointer for this thread’s object from global

memory. The second load gets the global memory virtual

function table (vTable) pointer (stored in the object’s first 8

bytes) for this object type from memory. This load is generic

(no ‘G’ global specifier in the assembly instruction) because

the compiler cannot statically determine which memory space

the object was allocated in. The third load reads the constant

memory offset for this virtual function from the global vTable.

The final load accesses the kernel’s constant memory space to

find the actual code location, and finally, the call instruction

jumps to the location.

To quantify the overhead added by each operation both with

and without massive multithreading, we run the microbench-

mark with one warp then again, with 10 million warps. Table II

details the overhead (obtained using the GPU’s PC sampling

profiler) added by each instruction in both the 1 warp and

10M warp cases. In the single warp case, the first three load

instructions and the function call contribute roughly the same

level of overhead. However, with 10 million warps, almost

all the overhead comes from the first two loads. Interestingly,

multithreading is able to cover the long latency of the CALL

instruction but the memory system cannot provide enough

bandwidth to cover the memory latency. On each memory

instruction, 32 threads execute in lock-step. Therefore, a single

memory instruction can generate up to 32 different memory

accesses. To cut down on the number of memory accesses

generated, GPUs use memory coalescing hardware to group

accesses from threads in a warp into 32-byte chunks. For

example, if all 32 threads in one warp access the same 32-

byte segment, only one memory access is generated by the

instruction. We quantify the number of accesses generated

per instruction in Table II. Since the threads in a warp

are accessing the same object type, loads 3 and 4 (which

access the vTable) only generate one access. However, loads

1 and 2 access different object instances and generate more

accesses, resulting in more overhead. This study demonstrates

that in GPUs, the direct overhead added to the memory

system dominates the execution time. In single-threaded CPUs,

accurate branch prediction can cover the latency of the call

instruction. However, GPUs need multithreading to hide the

branch latency, Multithreading places increased pressure on

the memory system, resulting in large overhead.

IV. PARAPOLY: A MASSIVELY PARALLEL POLYMORPHIC

BENCHMARK SUITE

To study the effects of object-oriented programming in a

realistic setting, we propose Parapoly, the first open-source

benchmark suites of polymorphic GPU applications. We first

describe the workloads selected and inputs in Section IV-A.

To isolate virtual function overheads, we create a series of

different representations for Parapoly’s workloads using dif-

ferent function calling methods, detailed in Section IV-B. We

outline the features of workloads in Section IV-C, and finally,

we present the setup for our experiments in Section IV-D.

A. Workloads and Inputs

Parapoly is constructed using scalable CPU applications

from the fields of graph processing, model simulation and

graphics rendering. Specifically, the applications that consti-

tute Parapoly come from GraphChi-C++/Java framework [17],

[18], [20], DynaSOAr [15], [16], and an open-source GPU ray-

tracer [19], [21]. Table III presents the names, abbreviations,

and descriptions of all workloads. We use the virtual functions

defined in the GraphChi framework and ray tracer. For the

DynaSOAr workloads, we mirror an object hierarchy present

in CPU implementations of its object-oriented applications. In

the latest CUDA implementation, it is impossible to create

objects with virtual functions on the CPU and use them

on the GPU. This limitation is likely due to needing two

separate virtual function tables (one for the CPU and one

for the GPU). Although this is not a fundamental limitation,

the purpose of this paper is to study the performance effects

of polymorphism using contemporary GPUs and systems.

Therefore, each Parapoly application includes an initialization

phase, where all the objects are constructed, and an execution

phase, where the computation for each workload is performed.

We use the inputs from DynaSOAr [15], [16] for the Dyna-

SOAr workloads and the DBLP network with approximately

300k vertices and 1M edges for GraphChi-vE/vEN workloads.

To provide enough objects to render, we create 1000 objects

and randomize the position and the size of the objects in the

scene for the ray tracer. We run Parapoly on an NVIDIA

Volta V100 GPU. We also verified that Parapoly workloads

run on Accel-Sim in trace-driven SASS simulation [22], where

microarchitecture studies can be performed 1.

1The code for the workloads can be found at https://github.com/
purdue-aalp/Paraploy

209

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Workloads, abbreviations and their descriptions for Parapoly. GraphChi-vE workloads apply virtual functions to

only edges for graphs, while GraphChi-vEN workloads use virtual functions on both edges and nodes.

Workload Abbreviation Description
DynaSOAr Workloads [15], [16]

Traffic TRAF A Nagel-Schreckenberg model traffic simulation to model streets, cars and traffic lights for traffic flows.

Game of Life GOL A cellular automaton formulated by John Horton Conway.

Structure STUT
Structure uses the finite element method to simulate the fracture in a material. The benchmark models the material with
springs and nodes.

Generation GEN
Generation is an extension of GOL benchmark. The cells in Generation have more intermediate states which lead to more
complicated scenarios.

Collision COLI Simulates the movement of particals according to gravitational forces with collision.

NBody NBD Simulates the movement of particals according to gravitational forces.

GraphChi-vE workloads from GrapChi-C++ Framework [17]

Breadth First Search BFS
Traverses graph nodes and updates a level field in a breadth-first manner. The GraphChi-vE BFS implementation defines
an abstract class for edges, ChiEdge, and a concrete classEdge, which implements all the virtual functions of ChiEdge.

Connected Components CC
Connected Component is commonly used for image segmentation and cluster analysis, it employs an iterativenode
updates according to the labels of adjacent nodes.

Page Rank PR Page rank is a classic algorithm to rank the pages of search engine results using iterative updates for each node.

GraphChi-vEN Workloads from GraphChi-Java Framework [18]

Breadth First Search BFS
The GraphChi-vEN BFS implementation also defines an abstract base class for vertex, ChiVertex, and a concrete class
vertex, which implements ChiVertex’s virtual functions.

Connected Components CC GraphChi-vEN CC is similar to GraphChi-vE above. However, GraphChi-vEN CC has both virtual edges and vertices.

Page Rank PR GraphChi-vEN PR is similar to GraphChi-vE above. However, GraphChi-vEN PR has both virtual edges and vertices.

Open Source Ray Tracer [19]

Raytracing RAY
RAY performs global rendering of of spheres and planes. The algorithm traces light rays through a scene, bouncing them
off of objects, and back to the screen.

Fig. 4: The number of classes (#class) and objects (#object)
in object-oriented workloads.

Fig. 5: The number of static virtual functions (#VFunc)

and dynamic virtual functions called per thousand instruc-

tions (#VFuncPKI) in Parapoly workloads. #VFuncPKI =

number of virtual functions per kilo instructions.

B. Optimized Workload Representations

To isolate the overheads associated with the virtual func-

tions in object-oriented applications, we create two additional

implementations for each workload, one where regular direct

function calls are used instead of virtual function calls and

another that removes the function call entirely by inlining

the formerly virtual functions at compile time. The first

representation removes the direct overhead from performing

the virtual function lookup, while still incurring all the normal

function calling costs. The second representation avoids call-

ing a function entirely and enables aggressive inter-procedural

optimizations at the expense of code size.

The representations of all three implementations are as

follows:

• Virtual function implementation (VF): The Parapoly
applications with all the associated virtual function call-

ing overhead.

• No virtual function implementation (NO-VF): Virtual

functions prevent optimizations because the targets are

unknown. In NO-VF, we restructure the function calls

such that the function targets are known at compilation

time, and there is no direct overhead. Note that inlining

is disabled, so the applications still need to call the

functions.

• Inline implementation (INLINE): Function inlining en-

ables the compiler to further reschedule the code and

avoid calling the function entirely. Here, all direct and

indirect overhead is eliminated.

We discuss the impact of using the three different program

representations (VF, NO-VF, and INLINE) in Section V.

C. Parapoly Workload Features

Object-oriented workloads usually define a small number

of classes and construct many concrete instances of those

classes. We describe the number of the classes (#class) and

objects (#object) of Parapoly’s workloads in Figure 4. There

are less than 10 class types in all the workloads, while the

numbers of objects created range from 103 to 107. Those

numerous objects are used across a massive number of threads

on GPUs. The allocation and initialization of millions of

objects can incur significant setup overhead, which we explore

in Section V.

210

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Breakdown of how different representations save

on aspects of direct and indirect overhead.

Direct Cost Indirect Cost

NO-VF Save cost on virtual
function lookup

Save cost with interprocedural
optimization and eliminating
register spills

INLINE Save cost on function call Save cost with code re-scheduling

We detail the number of static virtual functions (#VFunc)

and the number of dynamic virtual function called per thou-

sand instructions (#VFuncPKI) in Figure 5. A higher #VFunc
demonstrates that the application implements a variety of

virtual function calls, while a higher #VFuncPKI indicates

frequent use of those functions at runtime. Figure 5 demon-

strates that Parapoly exhibits significant diversity in both the

frequency and number of virtual functions called and imple-

mented. Notice that the GraphChi-vEN workloads have higher

#VFuncPKI than GraphChi-vE workloads although they have

the same number of objects and classes in Figure 4. This is

because GraphChi-vEN workloads utilize virtual functions for

vertices and edges, whereas in GraphChi-vE, only edges have

virtual functions, as shown in Table III. Generally, a workload

with a higher #VFuncPKI could introduce more overhead if

virtual functions are called frequently, implying that there may

be little work in each virtual function.

D. Experimental Setup

All our experiments are performed on an NVIDIA Volta

V100 GPU. The CUDA 10.1 toolkit is used, including the

NVCC compiler toolchain, runtime library, and SDK utilities.

We also use the CUDA Nsight Compute Command Line

Interface (CLI) 10.1 [14] and NVIDIA Binary Instrumenta-

tion tools (NVBit) [23], [24] to profile and instrument the

workloads.

V. CHARACTERIZING PARAPOLY

This section performs a comprehensive evaluation of object-

oriented workloads running on an NVIDIA Volta V100 GPU.

We first summarize the performance and break down ex-

ecution time into the initialization and computation phases

in Section V-A. We then study the performance differences

between the three different application representations defined

in Section IV-B. Then, we study dynamic instructions, memory

accesses, and cache behaviors to explain the overheads in Sec-

tion V-B. Finally, we detail the compiler optimizations enabled

by the different representations of the Parapoly applications in

Section V-C.

A. Performance Breakdown

Contemporary NVIDIA GPUs utilize dynamic allocation to

construct objects [25]. To understand the fraction of applica-

tion time spent in initialization versus computation we plot

the breakdown in Figure 6. Although initialization consumes

more than half of the total execution time on average, the

breakdown of the two phases varies significantly depending

on the workload. For example, COLI, NBD, and RAY spend

more than 95% on computation, while BFS, CC, and PR spend

Fig. 6: Initialization and computation phases breakdown on

Parapoly.

Fig. 7: The execution time for VF, NO-VF and INLINE
implementations normalized to INLINE implementation for

Parapoly. This limit study indicates the overhead when un-

knowing the target and when disable inlining.

99% on their time in initialization. We found that most of the

initialization time is due to dynamically allocating the many

thousands to millions of objects on the GPU [26]. Generally,

the applications with the most objects in Figure 4 have the

greatest relative overhead. The situation is most pronounced

in the graph applications, where there is relatively little work

per object. RAY, COLI, and NBD do significantly more work

per object. This data indicates that there is significant room for

improvement in GPU-side dynamic memory allocators when

allocating small objects.

Driesen et al. [6] break the runtime overhead of virtual

function calls into direct and indirect cost. The additional

instructions required to dynamically load a function pointer

beyond what is required for traditional function calling is

the direct overhead, and the overhead incurred from missed

Fig. 8: The SIMD utilization for virtual function on Parapoly
workloads.

211

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: The dynamic warp instruction breakdown for NO-VF and INLINE normalized to VF. Instructions are categorized into

memory (MEM), compute (COMPUTE) and control (CTRL) instructions.

Fig. 10: The number of transactions for global loads (GLD), global stores (GST), local loads (LLD) and local stores (LST) for

NO-VF and INLINE normalized to VF.

compile-time optimizations is the indirect overhead. For exam-

ple, indirect cost can take the form of worse code scheduling

or missed inter-procedural optimizations. Our two alternative

implementations of Parapoly (NO-VF and INLINE) help us

quantify what fraction of the overhead comes direct and

indirect costs. Table IV breaks down the cost savings enabled

by both optimizations. NO-VF eliminates the cost for function

lookup and performs inter-procedural optimizations. INLINE
further lessens function call overhead since the compiler can

reschedule the code and no function calling penalty is paid.

We measure the overhead introduced by VF and NO-VF,

normalized to INLINE in Figure 7. INLINE is used as the

normalization factor since it is the representation with the

least overhead. Disable inlining (NO-VF) introduces a 12%

overhead over INLINE, while using virtual function introduces

extra 65% overhead, which is a total 77% overhead, relative to

INLINE. Figure 7 also demonstrates the diversity of Parapoly.

Some of the workloads, like RAY and TRAF, suffer relatively

little performance loss versus INLINE. Others, like STUT and

BFS-vEN, suffer a much greater loss in performance due to

both function calling and virtual functions. Generally, the bulk

of the added overhead comes between NO-VF and VF. We

detail the reasons for the overheads in Section V-B.

B. Profiling Analysis

Figure 8 plots the SIMD utilization of each Parapoly
workload. SIMD utilization represents how many lanes of each

warp instruction are active when the instruction executes and

provides a measure of control-flow divergence in an applica-

tion. A SIMD utilization of 32 indicates that the instructions

executed with all lanes active, whereas 1 means that only

one thread was active in each warp. Parapoly Workloads have

a relatively diverse divergence distribution. NBD and STUT

have less divergence, while GraphChi-vE and GrapChi-vEN

show more divergence. Both the virtual function features and

the level of divergence affect the overhead of virtual functions

on GPUs. As we noted in Section III, SIMD poor utilization

generally decreases the effect of virtual function overheads.

However, SIMD utilization alone is not enough to predict the

runtime overhead. The compute density and frequency of calls

in the application is also important. As a concrete example,

RAY has a relatively high SIMD utilization, compared to the

graph applications. However, RAY’s higher compute-density

and lower frequency of virtual function calls results in its

overhead being significantly lower than the graph applications.

We measure the dynamic instruction breakdown for NO-VF
and INLINE normalized to VF in Figure 9. We classify instruc-

tion types as either memory (MEM), compute (COMPUTE)

or control (CTRL). On average, NO-VF and INLINE execute

41% and 2.8× less instructions than the VF implementation

of Parapoly respectively. Interestingly, the bulk of the memory

instruction reduction comes from NO-VF because it avoids the

virtual function lookup and allows for some inter-procedural

optimizations. There is a significant reduction in the number of

compute instructions executed by INLINE because it can avoid

the large number of move instructions (which are counted as

compute) required to setup the function calls. However, the

reduction in compute instructions does not translate into as

much of a performance gain as NO-VF. This indicates that

the primary source of the overhead in Parapoly comes from

the additional memory accesses added by virtual function table

212

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: L1 hit rate for virtual function (VF), no virtual func-

tion (NO-VF) and function inlining (INLINE) implementations.

lookups and register spilling.

NVIDIA GPUs execute one warp instruction for 32 threads.

Thus, each memory instruction may access up to 32 locations

in a warp. To quantify the change in the number of memory

transactions that result from NO-VF and INLINE, we measure

the number of transactions for global loads (GLD), global

stores (GST), local loads (LLD), and local stores (LST) in

Figure 10. 76% of memory transactions are global loads, and

NO-VF reduces global loads by 37% versus VF by removing

virtual function lookup overhead. Moreover, knowing function

targets avoid registers spilling to local memory, which is costly

on GPUs. This reduces 66% of local loads and stores. INLINE
has a minimal effect on memory transactions, reducing com-

pute instructions in the form of moves (Figure 9). Register

spills and fills affect some applications much more than others.

COLI, NBD, and RAY all experience significant memory

traffic in VF. When virtual function calls are eliminated, COLI

and NBD are no longer forced to spill and fill registers, and

locals are eliminated. In RAY, the local accesses come from

local arrays, which are irrelevant to virtual function calls.

We also measure the L1 cache hit rate for VF, NO-VF and

INLINE in Figure 11. The L1 cache hit rate drops from VF to

NO-VF since NO-VF removes numerous global loads to shared

virtual function tables that have locality. Interestingly, even

though the cache hit rate worsens using NO-VF the overall

performance improves because there are fewer accesses to the

cache. This demonstrates that although these accesses have

locality, L1 cache throughput on hits is a bottleneck when

many objects access their virtual function tables at once.

C. Observed Compilation Time Optimizations

In this subsection, we delve into some of the compiler op-

timizations that NVCC cannot perform when virtual functions

are called. Figure 12 depicts an example that NO-VF can

optimize versus VF implementation. VF (top) calls a virtual

function VFunc() that is unknown until run time, while NO-
VF (bottom) knows the target at compilation time and calls a

normal function Func(). Overhead associated with getting the

virtual function pointer is not shown for clarity, as this example

focuses on one aspect of indirect overhead. In the VFunc()

implementation, the object’s fields (p → a and p → b) must

be loaded into registers every time the VFunc() is called. If

the function is called in a loop, this will involve successive

loads to the variables. In the Func() version, the compiler can

Fig. 12: Example demonstrating how NVCC will pre-load

registers with function members if function targets are known

at compilation time.

hoist the member loads outside the function call and assume

that the values are loaded into registers (pa and pb) when the

function is called. Note that we also discover that the NVIDIA

assembler optimizes function parameter passing with registers

instead of pushing them on the local memory stack due to

local memory overhead on GPUs. This example demonstrates

one concrete way the compiler is able to effectively reduce

memory pressure with indirect optimizations, even if a func-

tion is not inlined. Knowing the target at compilation time also

allows for smarter register allocation. If we cannot determine

the target at compilation time, the virtual function has to

spill the registers it uses to local memory. This introduces

some of the extra local loads and stores for VF in Figure 10.

On the contrary, the compiler can coordinate the register

usage, and the local accesses can be eliminated in the NO-
VF implementation.

VI. DISCUSSION

In this section, we first summarize the primary sources of

overhead that programmers writing object-oriented code on

contemporary GPUs should avoid. We then document our

discovered opportunities for mitigating this overhead, which

the systems and architecture communities can use to enable

higher performance object-oriented code on GPUs.

A. Pitfalls of GPU Object-oriented Programming

There are two implementation decisions when writing

object-oriented code for GPUs that lead to the biggest pitfalls:

• Using virtual functions in non-diverged control-flow:

As demonstrated in Section III, the relative overhead of

calling virtual functions is increased in dense code with-

out control-flow divergence. Having less active threads

limits the number of objects being accessed at once and

helps mitigate memory pressure. This suggests that the

use of virtual functions in the most regular functions

should be avoided in CUDA.

• Large, register-heavy virtual function implementa-
tions: To address the memory system as the primary

213

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

bottleneck for object-oriented Programs on GPUs, pro-

grammers should avoid excessive spills and fills from

large function bodies that the compiler cannot optimize

effectively.

B. Optimization Opportunities in GPUs

Two potential opportunities to decrease the cost of virtual

functions on GPUs are:

• Alternative virtual function implementations: Based

on our analysis, the implementation of virtual functions

on GPUs is remarkably similar to CPU implementations.

Given the vastly different memory and contention char-

acteristics on GPUs, there appears to be an opportunity

to rethink how virtual function calls are implemented in

a massively multithreaded environment.

• New compilation opportunities: Our exploration has

demonstrated that the indirect cost of virtual functions

on GPUs can also place significant pressure on the

memory system. GPUs already employ a CPU-side just-

in-time (JIT) compiler to translate PTX into SASS. It

may be possible to leverage this dynamic compilation

phase to devirtualize functions for certain threads where

the compiler knows which object types they touch.

VII. RELATED WORK

In this section we detail work in the programmability,

benchmark creation and memory allocation spaces this work

touches on.

GPU Programmability: A body of work exists on enabling

CPU-like programmability infrastructures on GPUs. The use

of a file system abstraction [27], network stack [28], IO

system [29], and more advanced memory management [30]

are examples of this. Work on supporting productive languages

on GPUs [31]–[33] focuses on primitive data structures but

not polymorphism and virtual functions. OpenCL supports

the creation of GPU objects but does not support runtime

polymorphism [2], [34], [35]. CUDA [1] started to support

polymorphism beginning in 2012, as shown in Table I. As

the programmability evolves, object-oriented programming as

well as polymorphism is expected to be better supported and

improved on GPUs.

GPU Benchmarks: There are diverse GPU benchmark

suites [21], [36]–[38], and object-oriented CPU suites [39]–

[42] available. There are also workloads for object-oriented

programming on GPUs [15], [16], where they focus on object

allocation. However, no existing GPU benchmark suites fo-

cuses on polymorphism and no work has examined the effects

of object-oriented code with virtual functions on massively

parallel accelerators.

Indirect Branching: A body of CPU work improves indirect

branch [8] prediction [9]–[11], addressing the performance

loss from misspeculation on CPUs. Other work has looked

at profile-guided techniques [8], [12], [13], which increase

single-threaded performance and make the code better suited

to conditional branch predictors. In GPUs, the primary method

of handling an indirect branch has been patented [43]. Intel

Concord [44] utilizes conditional branches to simulate the

functionality of virtual functions in a customized compiler for

integrated Intel CPU/GPU systems. Prior work in the CPU

space has applied various JIT and static compilation techniques

to eliminate the need for virtual functions calls [45]–[50]

There is currently no GPU-specific work on this problem. CPU

work also attempts to apply JIT optimizations [45], [46] that

infer allowed types at call-sites such that recompilation can be

performed.

Memory Allocations on GPUs: A set of work [25], [51]–

[53] has been exploited to support better memory allocations

on parallel architectures. Xmalloc [51] implements a lock-

free allocator with pre-defined space management. ScatterAl-

loc [52] utilizes bitmap to prevent allocation collisions. Issac

et al. [25] splits resource allocation tasks to two-stages to

improve the allocation throughput on NVIDIA GPUs. Springer

and Masuhara [15], [16] develop a parallel memory allocator

for object-oriented programs on GPUs. Winter et al. [26]

perform a survey benchmarking contemporary dynamic allo-

cators on GPUs. As we indicated in Section V-A, allocations

comprise the main part the total execution time for some of

the workloads in Parapoly. Therefore, high throughput parallel

memory allocation is still an active area to exploit for object-

oriented applications on GPUs.

GPU Optimizations on Object-oriented Programs: GPU

work has been done to mitigate memory [54]–[60] and control

flow [61]–[67] irregularities in GPU-unfriendly applications.

While some of these techniques are potentially effective when

applied to Parapoly, their effect on object-oriented code has

not been thoroughly studied. Generally, the type of applica-

tions that these techniques benefit most have a low compute-

to-memory ratio. One way to interpret the conclusions from

our study is that GPU virtual functions can lower the compute-

to-memory ratio of applications.

VIII. CONCLUSION

We perform the first study of polymorphic code on GPUs.

Using microbenchmarking, we reverse-engineer the implemen-

tation of virtual functions on GPUs. We then go on to introduce

Parapoly, the first open-source polymorphic benchmark suite

on GPUs. Parapoly includes a diverse set of workloads from

model simulation, graph analytics, and computer graphics. We

dissect the overhead of polymorphism on these workloads

through careful code transformations, demonstrating an aver-

age 77% overhead versus inlining functions.

Using Parapoly, we isolate the source of polymorphic over-

head, demonstrating that the bottlenecks are fundamentally

different from those previously explored in the CPU space. The

memory system, not ILP extraction mechanisms, dominates

the overhead introduced by virtual function calls on GPUs.

While the massively multithreaded nature of the GPU hides the

214

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

latency of the function call itself, it introduces excessive mem-

ory system contention. Moreover, unknown virtual function

targets block inter-procedural optimizations such that register

spills add to the memory contention problem.

Finally, we provide guidance on how polymorphism can be

optimized on GPUs, suggesting areas where the system and

architecture can be improved. It is clear from our characteriza-

tion that there are significant opportunities for improving the

performance of productive programming practices on GPUs.

This work takes steps towards making GPUs more general-

purpose and improving programmer productivity.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers for their

feedback which helped improve this paper. This work was

supported, in part, by NSF CCF #1943379 (CAREER) and the

Applications Driving Architectures (ADA) Research Center, a

JUMP Center cosponsored by SRC and DARPA.

REFERENCES

[1] “NVIDIA CUDA C Programming Guide,” https://docs.nvidia.com/
cu-da/cuda-c-programming-guide/index.html, NVIDIA Corp., 2020, ac-
cessed August 6, 2020.

[2] Khronos Group, “OpenCL,” http://www.khronos.org/opencl/, 2013.
[3] “NVIDIA cuSPARSE,” http://docs.nvidia.com/cuda/cusparse, NVIDIA

Corp., 2016, accessed August 6, 2016.
[4] NVIDIA, “NVGraph Library,” https://developer.nvidia.com/nvgraph,

NVIDIA, 2018, accessed Aug 20, 2018.
[5] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,

D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich,
“Optix: A general purpose ray tracing engine,” in Special Interest
Group on Computer Graphics and Interactive Techniques Conference
(SIGGRAPH), 2010, pp. 66:1–66:13.

[6] K. Driesen and U. Hölzle, “The direct cost of virtual function calls
in c++,” in Proceedings of the Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1996, pp. 306–323.

[7] A. Goldberg and D. Robson, Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[8] L. P. Deutsch and A. M. Schiffman, “Efficient Implementation of the
Smalltalk-80 System,” in Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1984,
pp. 297–302.

[9] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn,
“VPC Prediction: Reducing the Cost of Indirect Branches via Hardware-
based Dynamic Devirtualization,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2007, pp. 424–435.

[10] J. A. Joao, O. Mutlu, H. Kim, R. Agarwal, and Y. N. Patt, “Improving
the performance of object-oriented languages with dynamic predication
of indirect jumps,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operation
Systems (ASPLOS), 2008, pp. 80–90.

[11] J. Kalamatianos and D. R. Kaeli, “Predicting Indirect Branches via
Data Compression,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 1998, pp. 272–281.

[12] C. Chambers, D. Ungar, and E. Lee, “An Efficient Implementation of
SELF a Dynamically-typed Object-oriented Language Based on Proto-
types,” in Proceedings of the Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1989, pp. 49–70.

[13] B. Calder and D. Grunwald, “Reducing Indirect Function Call Overhead
in C++ Programs,” in Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1994,
pp. 397–408.

[14] NVIDIA, “NVIDIA profiling tools,” https://docs.nvidia.com/cuda/
profiler-users-guide/index.html, NVIDIA, 2018, accessed Aug 20, 2018.

[15] M. Springer and H. Masuhara, “DynaSOAr: A Parallel Memory Alloca-
tor for Object-oriented Programming on GPUs with Efficient Memory
Access,” in European Conference on Object-Oriented Programming
(ECOOP), 2019, pp. 17:1–17:37.

[16] Aapo Kyrola, “CUDA Dynamic Memory Allocator for SOA Data
Layout,” https://github.com/prg-titech/dynasoar, 2018, accessed Aug 20,
2018.

[17] Aapo Kyrola, “GraphChi-C++,” https://github.com/GraphChi/
graphchi-cpp, 2019, accessed Aug 20, 2019.

[18] Aapo Kyrola, “GraphChi-Java,” https://github.com/GraphChi/
graphchi-java, 2019, accessed Aug 20, 2019.

[19] Peter Shirley, “Ray Tracing in One Weekend,” https://github.com/
petershirley/raytracinginoneweekend, 2018, accessed Aug 20, 2018.

[20] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale Graph
Computation on Just a PC,” in Proceedings of the International Confer-
ence on Operating Systems Design and Implementation (OSDI), 2012.

[21] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA Workloads Using a Detailed GPU Simulator,” in Proceedings of
the International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2009, pp. 163–174.

[22] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2020, pp. 473–486.

[23] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit:
A Dynamic Binary Instrumentation Framework for NVIDIA GPUs,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2019, p. 372–383.

[24] NVIDIA Corporation, “NVidia Binary Instrumentation Tool,” https://
github.com/NVlabs/NVBit, 2020, accessed Aug 20, 2020.

[25] I. Gelado and M. Garland, “Throughput-oriented GPU Memory Alloca-
tion,” in Proceedings of the Symposium on Principles and Practice of
Parallel Programming (PPOPP), 2019, pp. 27–37.

[26] M. Winter, M. Parger, M. Parger, and M. Steinberger, “Are dynamic
memory managers on GPUs slow?: a survey and benchmarks,” in
Proceedings of the Symposium on Principles and Practice of Parallel
Programming (PPOPP), 2021, pp. 219–233.

[27] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “GPUfs: Integrating a
File System with GPUs,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operation
Systems (ASPLOS), 2013, pp. 485–498.

[28] S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel, A. Wated, and M. Sil-
berstein, “GPUnet: Networking Abstractions for GPU Programs,” in
Proceedings of the International Conference on Operating Systems
Design and Implementation (OSDI), 2014, pp. 201–216.

[29] “NVIDIA Magnum IO,” https://www.nvidia.com/en-us/data-center/
magnum-io/, NVIDIA Corp., 2020, accessed August 6, 2020.

[30] S. Shahar, S. Bergman, and M. Silberstein, “ActivePointers: A Case
for Software Address Translation on GPUs,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2016, pp.
596–608.

[31] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar, “Compiling and
optimizing java 8 programs for gpu execution,” in Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2015, pp. 419–431.

[32] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch, “Rootbeer: Seem-
lessly Using GPUs for Java,” in IEEE International Conference on High
Performance Computing and Communications (HPCC), 2012, pp. 375–
380.

[33] M. Springer and H. Masuhara, “Object Support in an Array-based
GPGPU Extension for Ruby,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for
Array Programming (ARRAY), 2016, pp. 25–31.

[34] “The OpenCL C++ Specification,” https://www.khronos.org/registry/
OpenCL/specs/2.2/pdf/OpenCL Cxx.pdf, Khronos Group, 2018, ac-
cessed May 12, 2018.

[35] “An Introduction to OpenCL C++,” https://www.khronos.
org/assets/uploads/developers/resources/Intro-to-OpenCL-C+
+-Whitepaper-May15.pdf, Khronos Group, 2015, accessed May
15, 2015.

[36] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proceedings of the International Symposium on Workload
Characterization (IISWC), 2009, pp. 44–54.

[37] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in Proceedings of the International Symposium on
Workload Characterization (IISWC), 2012, pp. 141–151.

215

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

[38] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, IMPACT Technical Report,
IMPACT-12-01, University of Illinois, at Urbana-Champaign, 2012.

[39] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley,
“Looking Back on the Language and Hardware Revolutions: Measured
Power, Performance, and Scaling,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operation Systems (ASPLOS), 2011, pp. 319–332.

[40] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, L. Han, E. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The DaCapo Benchmarks: Java Benchmarking Development and Anal-
ysis,” in Proceedings of the Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2006, pp. 169–190.

[41] D. Zaparanuks and M. Hauswirth, “Characterizing the design and
performance of interactive java applications,” in Proceedings of the
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2010, pp. 23 –32.

[42] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Stu-
dener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and
W. Binder, “Renaissance: Benchmarking Suite for Parallel Applications
on the JVM,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2019, p.
31–47.

[43] B. Coon, J. Lindholm, P. Mills, and J. Nickolls, “Processing an in-
direct branch instruction in a SIMD architecture,” 2006, US Patent
US7761697B1.

[44] R. Barik, R. Kaleem, D. Majeti, B. T. Lewis, T. Shpeisman, C. Hu,
Y. Ni, and A.-R. Adl-Tabatabai, “Efficient Mapping of Irregular C++
Applications to Intergrated GPUs,” in International Symposium on Code
Generation and Optimization (CGO), 2014, pp. 33–43.

[45] D. Detlefs and O. Agesen, “Inlining of virtual methods,” in European
Conference on Object-Oriented Programming (ECOOP), 1999.

[46] U. Hölzle and D. Ungar, “Optimizing Dynamically-dispatched Calls
with Run-time Type Feedback,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 1994, pp. 326–336.

[47] O. Zendra, D. Colnet, and S. Collin, “Efficient Dynamic Dispatch
Without Virtual Function Tables: The SmallEiffel Compiler,” in Pro-
ceedings of the Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), 1997, pp. 125–141.

[48] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical Virtual Method Call Resolution
for Java,” in Proceedings of the Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2000, pp. 264–280.

[49] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis,” in European Confer-
ence on Object-Oriented Programming (ECOOP), 1995, pp. 77–101.

[50] J. Dean, C. Chambers, and D. Grove, “Selective Specialization for
Object-oriented Languages,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 1995, pp. 93–102.

[51] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W.-m. Hwu, “Scalable
simd-parallel memory allocation for many-core machines,” The Journal
of Supercomputing, vol. 64, no. 3, pp. 1008–1020, Jun 2013.

[57] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More
Nor Less: Optimizing Thread-level Parallelism for GPGPUs,” in Pro-

[52] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “Scatteralloc:
Massively parallel dynamic memory allocation for the gpu,” in 2012
Innovative Parallel Computing (InPar), 2012, pp. 1–10.

[53] A. V. Adinetz and D. Pleiter, “Halloc,” https://github.com/canonizer/
halloc.

[54] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A Locality-aware Memory
Hierarchy for Energy-efficient GPU Architectures,” in Proceedings of
the International Symposium on Microarchitecture (MICRO), 2013, pp.
86–98.

[55] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), 2012, pp. 72–83.

[56] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-Aware
Warp Scheduling,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2013, pp. 99–110.
ceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2013, pp. 157–166.

[58] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das, “OWL: Cooperative Thread
Array Aware Scheduling Techniques for Improving GPGPU Perfor-
mance,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operation Systems (ASPLOS),
2013, pp. 359–406.

[59] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated Scheduling and Prefetching for GPGPUs,”
in Proceedings of the International Symposium on Computer Architec-
ture (ISCA), 2013, pp. 332–343.

[60] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarung-
nirun, C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A Case for
Core-assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data
Compression with Assist Warps,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2015, pp. 41–53.

[61] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
Warp Formation and Scheduling for Efficient GPU Control Flow,”
in Proceedings of the International Symposium on Microarchitecture
(MICRO), 2007, pp. 407–420.

[62] W. Fung and T. Aamodt, “Thread Block Compaction for Efficient SIMT
Control Flow,” in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), 2011, pp. 25–36.

[63] T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler, “A
Variable Warp Size Architecture,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2015, pp. 489–501.

[64] J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), 2010,
pp. 235–246.

[65] M. Rhu and M. Erez, “CAPRI: Prediction of Compaction-adequacy for
Handling Control-divergence in GPGPU Architectures,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), June
2012, pp. 61–71.

[66] M. Rhu and M. Erez, “Maximizing SIMD Resource Utilization in GPG-
PUs with SIMD Lane Permutation,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2013, pp. 356–367.

[67] M. Rhu and M. Erez, “The Dual-Path Execution Model for Efficient
GPU Control Flow,” in Proceedings of the International Symposium on
High-Performance Computer Architecture (HPCA), 2013, pp. 235–246.

216

Authorized licensed use limited to: Purdue University. Downloaded on June 16,2021 at 22:47:51 UTC from IEEE Xplore. Restrictions apply.

