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ABSTRACT

Programmable accelerators aim to provide the flexibility of tra-
ditional CPUs with significantly improved performance. A well-
known impediment to the widespread adoption of programmable
accelerators, like GPUs, is the software engineering overhead in-
volved in porting the code. Existing support for C++ on GPUs allows
programmers to port polymorphic code with little effort. However,
the overhead from the virtual functions introduced by polymorphic
code has not been well studied or mitigated on GPUs.

To alleviate the performance cost of virtual functions, we propose
two novel techniques that determine an object’s type based only
on the object’s address, without accessing the object’s embedded
virtual table pointer. The first technique, Coordinated Object Alloca-
tion and function Lookup (COAL), is a software-only solution that
allocates objects by type and uses the compiler and runtime to find
the object’s vTable without accessing an embedded pointer. COAL
improves performance by 80%, 47%, and 6% over contemporary
CUDA, prior research, and our newly-proposed type-based allo-
cator, respectively. The second solution, TypePointer, introduces a
hardware modification that allows unused bits in the object pointer
to encode the object’s type, improving performance by 90%, 56%,
and 12% over CUDA, prior work, and our new allocator. TypePointer
can also be used with the default CUDA allocator to achieve an 18%
performance improvement without modifying object allocation.

CCS CONCEPTS

« Software and its engineering — Polymorphism; - Computer
systems organization — Single instruction, multiple data.
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(a) Global memory and branch instructions involved in the CUDA
implementation of dynamic dispatch for virtual functions.
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(b) Breakdown of the average virtual function call overhead across
object-oriented GPU apps (Section 7) executing on an NVIDIA V100.

Figure 1: Direct cost of virtual function calls in GPUs.

1 INTRODUCTION

General-Purpose Graphics Processing Unit (GPGPU) programming
extensions like CUDA [2], OpenCL [32] and OpenACC [1] enable
the execution of C/C++ code on GPUs. While GPUs offer the po-
tential for high performance and energy efficiency, a major barrier
to their adoption as general-purpose accelerators is programmabil-
ity. To help alleviate this problem, the subset of C++ supported on
GPUs has grown to include much of the C++ standard as well as a
shared virtual address space with the CPU. These features can make
it possible for reusable, object-oriented frameworks, written for
multithreaded CPUs to execute on GPUs with little to no porting
effort. However, no contemporary GPU programming language
allows objects with virtual functions to be shared between the CPU
and a GPU with a discrete memory space. As a result, little work
has been done to evaluate the overhead of GPU virtual functions.
Despite these impediments, a number of high-performance, closed
source packages, like the OptiX raytracing library from NVIDIA [39]
make use of virtual functions. Intel has also developed an iHRC
compiler [6] that has basic support for virtual function calls on inte-
grated Intel GPUs. A Github survey for instances of CUDA virtual
function calls reveals more than 35k GPU-side virtual functions
in the wild. These numbers indicate that there is clear interest in
executing virtual functions on the GPU, but their performance and
usability in contemporary systems hinders their widespread use.
Figure 1 illustrates the implementation and added latency of
the instructions involved in calling a virtual function, known as
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the direct cost [21], using contemporary CUDA!. Similar to C++
implementations on CPUs, CUDA implements virtual functions
by storing a virtual table (vTable) that contains virtual function
(vFunc) pointers for each type. Each object instance contains a
pointer to its vTable. To call a virtual function, a pointer to the
vTable is loaded @ then the table is accessed to obtain the virtual
function pointer @). Finally, an indirect branch is called using the
address loaded from the table @. Figure 1b plots a breakdown
of the latency added by each of these instructions using Program
Counter (PC) sampling across 11 GPU-enabled implementations of
object-oriented applications [35-37, 40] executing on an NVIDIA
V100. 87% of the direct cost comes from the load to the vTable
pointer @Y. Since each object has it’s own private copy of the vTable
pointer, the load at @) will be diverged, generating a request to a
different memory location from each thread. However, since the
many objects being accessed come from a much smaller number
of types, many threads will ultimately access the same vTable,
resulting in coalesced memory accesses and more cache hits for @.
If the vTable pointer load can be avoided, so can most of the direct
cost of calling virtual functions.

This observation is fundamentally different from what is ob-
served on CPUs, where fewer threads and more cache-per-thread
make the vTable pointer load an effective prefetch for the object
members that reside on the same cache block, which will likely
be accessed inside the virtual function itself. In GPUs, there are
2 reasons this prefetching is less effective: (1) the many threads
executing at once are likely to thrash the caches, decreasing the
likelihood of hitting on object members, and (2) even if the subse-
quent member accesses hit in the cache, cache bandwidth is wasted
on loading vTable pointers for many concurrent threads.

In CPUs, which rely on extracting instruction level parallelism
from a single thread, the predictability of the indirect branch (@ is
a major concern [29, 30, 33]. On GPUs, which do not use branch
prediction, multithreading provides enough independent work that
speculation and out-of-order execution is not necessary. On GPUs,
the problem with virtual function calls is the memory system.

We propose two techniques that completely avoid accessing the
per-object vTable pointer by identifying an object’s type based only
on the object’s address in memory. The first technique, Coordinated
Object Allocation and function Lookup (COAL), is implemented
completely in user-level CUDA. COAL coordinates the compiler
and GPU object allocator to place objects of the same type within
a set of address ranges. Without any programmer intervention,
compiler-generated code maps the object’s address to its type. The
second solution, TypePointer, requires a small hardware change to
the Memory Management Unit (MMU) to ignore the 15 unused bits
in the GPU virtual address space, where 64-bit values represent
a 49-bit virtual address. TypePointer uses these bits to encode the
object’s vTable location within the pointer to the object. When an
object is allocated, the runtime embeds an offset in these bits, which
is recovered using a simple sequence of shift and mask instructions
before a vFunc is called.

In CUDA there is a level of indirection between @) and @ which loads from constant
memory to account for different function locations in different kernels. We omit it
here for clarity (see Section 2).
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Prior work on supporting high-level languages on GPUs has
either removed the ability to access non-primate types on the
GPU [28, 41], or added support for virtual function calls through
embedded class tags and switch statements [3, 6, 45]. All prior so-
lutions that support virtual functions must still access the object to
determine its type, which we have identified as the key bottleneck.
Switch-statement based approaches, such as Intel’s Concord [6]
effectively eliminate the converged vTable access @), while still
accessing a type field embedded in each object instance, which is
similar to the access to the virtual function pointer @¥. To the best
of our knowledge, no prior implementation of virtual functions on
either CPUs or GPUs has attempted to determine an object’s type
based only on the object’s address.

To study real object-oriented workloads on GPUs, we introduce
a new object allocation mechanism, that allows the CPU and GPU
to share objects with virtual functions on NVIDIA GPUs with dis-
crete physical memory. Using this framework, we evaluate eleven
multithreaded, object-oriented workloads [35-37, 40, 46], in both
simulation and on a silicon GPU. The goal of this paper is to remove
the need to completely restructure the design of multithreaded CPU
code, while still achieving significant gains on the GPU. Decades
of work on runtime systems, compilers and architectures for CPUs
have improved the execution of object-oriented applications enough
to make them commonplace. We seek to do the same for GPUs.

We make the following contributions:

e We demonstrate that there are different performance bottle-
necks when executing virtual functions on GPUs. CPUs suf-
fer significant performance loss from mispredicting indirect
branches, however, GPUs primarily suffer from additional
memory traffic caused by translating thousands of virtual
function calls in parallel.

e We propose COAL, a software-only solution that allocates
objects of each type consecutively, such that an automated
lookup function can determine an object’s type based only
on the object’s address.

e We propose TypePointer, a hardware mechansim that makes
use of unused bits in the virtual address space to encode each
object’s type, removing the lookup overhead and allocator
complexity of COAL.

e We introduce a Shared Object Allocation (SharedOA) frame-
work that allows the CPU and GPU to share objects with
virtual functions through unified virtual memory. SharedOA
eases the GPU porting process, allowing the CPU and GPU
to seamlessly share data types.

We demonstrate that, combined with our improvements to the
memory allocator, COAL and TypePointer improve the performance
of object-oriented code on GPUs by 80% and 90% respectively over
CUDA and add an additional 6% and 12% on top of the performance
improvements made by our proposed allocator. Since TypePointer
is allocator-independent, we also evaluate it in simulation when
applied on top of the default CUDA allocator, demonstrating an
18% performance improvement.



Judging a Type by Its Pointer: Optimizing GPU Virtual Functions

ASPLOS 21, April 19-23, 2021, Virtual, USA

CUDA 9.X
CUDA 4.X CUDA 6.X
CUDA 1.X CUD_A 3‘X_ C+ /delet e Enhanced Unified
Basic C C++ class inheritance "+ new/cdelete Unified CPU/GPU memory, GPU Page
support & template inheritance & Virtual functions memory F;ult
CUDA
2008 2013 2015 l R
2006 T 2010 2012 2014 2018 -
OpenCL OpenCL 1.0 OpenCL 2.0 OpenCL 2.1
€99 support Shared virtual memory C++14 Class inheritance

& template inheritance

Figure 2: Evolution of programming features in CUDA and OpenCL

2 OBJECT-ORIENTED CODE ON GPUS

Figure 2 details the state of GPU programming features in CUDA
and OpenCL over the last decade. Both platforms began by sup-
porting basic C and have gradually added features such as support
for objects, virtual functions and unified virtual memory. In C++,
runtime polymorphism is achieved through object inheritance and
implemented via virtual function calls. We focus this paper on vir-
tual functions in CUDA, as other programming languages, including
OpenCL do not support GPU-side virtual function calls. Despite
supporting virtual function calls, contemporary CUDA requires
that objects using them are manually allocated in GPU memory via
device-side calls to new. We extend CUDA such that the GPU can
accesses CPU-allocated objects with virtual functions.

Broadly speaking, overheads incurred by object-oriented pro-
gramming fall into two categories: one-time overheads that take
place when an object is created/destroyed, and recurring overheads
incurred every time code interacts with an object. One-time costs
can be substantial in workloads where objects are created and de-
stroyed dynamically at a high frequency. However scalable, parallel
applications, like the ones we study, often allocate data structures
once then operate on them repeatedly. Although studying the im-
plications of object initialization is an interesting problem [27], this
paper focuses on the runtime phase of the algorithms.

To support virtual function calls, where the location of the code
implementing the function is not known until runtime, the CUDA
compiler and runtime supports dynamic binding. The runtime cre-
ates one vTable per-type that gets initialized once for the whole
program. All objects contain a pointer to their type’s vTable, which
is initialized when the object is constructed. GPUs do not support
dynamic code loading or code sharing across kernels (like Linux
does with .so files). Therefore; the code for every virtual function
potentially used in a kernel must be embedded inside each kernel’s
code. That means that the same virtual function implementation
has different function addresses in different kernels. To support
object creation in one kernel and use in another (where the vir-
tual function’s location in memory may be different), a layer of
indirection is added to traditional CPU virtual function implemen-
tations. A second virtual function table is created in kernel-specific
constant memory. The per-kernel constant memory tables contain
the location of the virtual functions in each kernel’s instruction
memory. The global memory load @) in Figure 1 retrieves an offset
into constant memory for the virtual function being called. Then a
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Table 1: Overhead of calling virtual functions in prior work
and our proposed techniques. Acc=Number of global ac-

cesses.
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TypePointer
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@ Get vTable NumObjects NumT ypes 0 Ace
. | Acc x Acc o Acc o<
@ Get vFunc NumTypes NumTypes NumTypes
@ Call vFunc* Indirect Indirect Indirect
ALVEURC | Branch Branch Branch

constant memory load between ) and @ loads the virtual func-
tion’s address in the running kernel’s instruction memory. Since
this table is small, it fits in the dedicated constant memory cache
and we did not observe it to be a bottleneck, hence we omit it when
discussing Figure 1.

The implementation details of object-oriented features on NVIDIA
GPUs are not public. We obtain the information in this section by
reverse-engineering binaries with the NVIDIA profiler. We perform
all our analysis using CUDA 10.1 on an NVIDIA V100 Volta, how-
ever, we examined code from several different GPU generations
and observe similar behavior.

3 HIGH-LEVEL SOLUTION GOALS

Given the results in Figure 1, we design two independent solu-
tions that reduce the cost of finding the vTable™: COAL in pure-
software and TypePointer with hardware support. The goal of both
solutions is to reduce the memory accesses required to obtain an
object’s type (hence its vTable location, operation @ in Figure 1).
Table 1 details the three abstract actions that happen when a vir-
tual function is called and enumerates the number of global mem-
ory accesses required for the baseline and our proposed solutions.
CUDA accesses each object instance to obtain the object’s vTable",
meaning that memory accesses are proportional to the number
of accessed objects. In both our solutions, the vTable” is obtained
without dereferencing the object pointer, using only the object
pointer value itself. COAL modifies the memory allocator to allo-
cate objects of the same type in contiguous address ranges. Next,
a software lookup function obtains the object’s vTable* without
accessing individual objects by testing the object pointer against all
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Figure 3: Type-based object allocator.

the allocated ranges. The lookup operation still generates memory
accesses; however, memory accesses are now proportional to the
number of types in the program, not the number of objects. Gen-
erally, NumObjectInstances >> NumOb jectTypes, which results
in less memory pressure using COAL. More importantly, there is
significant reuse in the lookup function, where each thread walks
a small, centralized data structure, regardless of which object it is
accessing. In contrast, CUDA accesses thousands of discrete objects
spread throughout memory to obtain their type. TypePointer is a
more efficient, alternative solution to COAL that requires a small
change to the compiler, allocator and hardware. Using a much
smaller allocator change than COAL, TypePointer makes use of ex-
tra bits in the 64-bit object pointer (GPU unified memory uses a
49-bit virtual address space) to embed object type information in-
side the pointer to the object when it is allocated. TypePointer then
uses a simple sequence of shift and mask instructions to obtain
the object’s vTable* without accessing main memory. TypePointer
requires a small change to the GPU’s Memory Management Unit
(MMU) to ignore the unused bits in the virtual address.

4 A TYPE-BASED SHARED OBJECT
ALLOCATOR

To implement COAL, we design a type-based memory allocator that
allows objects which make use of inheritance and virtual functions
to be shared between the CPU and GPU, greatly easing the port-
ing process. No industrial computing framework (CUDA, OpenCL,
OpenACC, etc) supports the use of objects with virtual functions
in unified virtual memory. To overcome this limitation, we design
a Shared Object Allocator (SharedOA). SharedOA is written in user-
level CUDA and allows users to allocate objects with inheritance
and virtual functions in managed memory using a sharedNew()
function. Objects allocated with sharedNew() store one CPU vTable
pointer and one GPU vTable pointer.

The type-based allocator has two main functions: (1) dedicate
contiguous chunks of memory to each object type, and (2) create
a tracking structure with the address ranges of each type, which
we call the virtual range table. There is an interesting challenge
in predicting how large the region dedicated to each object type
should be. If its too large, you risk wasting precious GPU memory
space, too small and you will have to allocate many discrete regions
for the same type, increasing the number of entries in the virtual
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Figure 4: Overview of COAL.

range table. To alleviate this problem the allocator starts by allocat-
ing a small region size (i.e. 4K objects). If the region gets full, the
allocator creates a new region with double the size. This doubling
continues as more object are allocated and allows the regions sizes
to adapt with the demands of the workload. Further, when regions
of the same type happen to be allocated contiguously, the allocator
attempts to merge the contiguous regions into one larger region.
This system reduces the potential for memory fragmentation while
limiting the total number of allocated regions, which can have a
detrimental performance impact on COAL. We discuss this trade-off
in Section 5 and evaluate its effect on performance in Section 8.2.

Figure 3 illustrates an example of SharedOA’s operation. In the
example, there are three types that each have their own memory
region values, e.g., (Base 1, Range 1). OBJ1 can be easily identi-
fied as TYPE] if the address of OBJ1 is between Base Addr 1 and
Range Addr 1. The allocator can create new regions for the same
type by simply allocating a new chunk, and adding a new entry
for another region of the same type of object. The allocator stores
this information in global memory by augmenting the traditional
virtual function tables with base and range values, which we call
the virtual range table (shown on the right hand side of Figure 3).
This table is accessible from the compiler generated code described
in Section 5. Allocating objects of the same type contiguously is
similar to how existing small-object allocators in modern operating
systems work [7, 9]. Small-object allocators in CPUs are primar-
ily used to improve allocation time, prevent fragmentation and
reduce space overhead. However, in GPUs, we observe that our
type-based SharedOA results in better object packing than the de-
fault CUDA allocator, which can have a positive impact on runtime
performance, independent of allocation time. We evaluate the ef-
fect of SharedOA without COAL in Section 8.2. Using the SharedOA
framework, we believe there is an interesting space in studying
shared object allocation in GPUs that is orthogonal to the virtual
function problem.

5 COORDINATED OBJECT ALLOCATION
AND FUNCTION LOOKUP (COAL)

COAL leverages the runtime object allocator described in Section 4
to determine an object’s type based on which address range the
object’s pointer falls into. Figure 4 presents an overview of COAL’s
components. The left side of Figure 4 illustrates the compile-time
instrumentation of GPU code and the right side presents an example
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of how COAL works in co-ordination with the object-allocator
at runtime. To implement the lookup portion of COAL, we use
the compiler to statically instrument the GPU code, replacing the
traditional virtual table pointer access (@ in Figure 4) with a lookup
mechanism based on object ranges, followed by a call to the function
pointer resulting from the lookup ().

On the right side of Figure 4, the runtime SharedOA allocator
is invoked by the CPU and type-based allocation is performed
(@) When the GPU kernel is launched, the transformed code calls
the COAL lookup implementation (), which returns the correct
function pointer ().

Algorithm 1: Scan algorithm for the virtual range table

Function ObjectRangeLookup(objectAddr, funcIndex)
node = 0;
nextNode = 0;
while True do
if objectAddr in node.left.range then
‘ nextNode = 2 * node + 1;
else if objectAddr in node.right.range then
‘ nextNode = 2 * node + 2;
else
‘ return NULL;
end
if nextNode >= treeSize then
‘ return node.vfuncTable[funcIndex],
end

end
end

The role of code generation in COAL is two fold: (1) to instru-
ment virtual functions with a pre-defined range checking algorithm
that will find the appropriate virtual function to call based on the
object’s address, and (2) to determine which virtual function calls to
instrument with range checking. In some cases, the cost to perform
the range search will outweigh the benefit of accessing the object.
This is a heuristic-based decision that can be decided by multiple
factors. For this work, choose not to instrument a virtual function
with COAL if we can statically determine that every thread in a
warp will be accessing the same object instance when they call the
virtual function. There are several call points in the apps we study
where this is true. We have observed that removing coalesced loads
to the same object does not outweigh COAL’s overhead.

The compiler inserted code must first access the virtual range
table to determine the object’s type. Once the type is known, the
compiler looks up the correct virtual function to call by indexing
into the object’s virtual range table, in the same way traditional
vTable lookups operate.

To implement the scan in COAL, we organize the types into a
segment tree [16]. Each leaf node contains the base and the range
address of one type, while each internal node includes the mini-
mum and maximum address boundaries of two child nodes. Our
balanced segment tree algorithm is shown in Algorithm 1 and has
O (log, (K)) complexity, where K is the number of object ranges.
The compiler implements these operations, as it has knowledge
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Ropj: The register containing the object address (known by the
compiler)

RyTablesstartAddr: Beginning address of the contiguous page table
storage (a fixed register similar to the virtual page table register)
#vFuncOffset: The byte offset for the vfunc within the vTable
(known by the compiler)

1: SHR Ra, Ropj, #49

2: ADD Ra, Ra, RyrabiesstartAddr
3: LDG Ra, #vFuncOffset (Ra)

4: CALL Ra

(b) Instructions implementing virtual function calls with Type-
Pointer

Figure 5: TypePointer format and operations.

of which register contains the object address, and which virtual
function is being called.

The chunk size used by the memory allocator introduces a trade-
off between using large and small chunks for the object ranges. For
COAL, the optimal chunk-size varies per-application both because
of variance in the object size and the number of objects created. To
help adjust for this variance, the COAL allocator creates chunks
based on the number of objects in the range, not raw byte values.
Therefore larger objects are given larger chunk sizes. A sensitivity
study of SharedOA’s initial chunk-size is presented in Section 8.2.

6 TYPEPOINTER

In this section, we present TypePointer, a more efficient alterna-
tive to COAL that locates an object’s vTable without generating
additional memory requests. TypePointer exploits unused bits in
the GPU’s 64-bit virtual address space to encode the type’s vTable
location. Although more efficient than COAL, TypePointer requires a
small hardware change and has a finite limit on the number of types
that can use it. TypePointer requires a small change in each of the
memory allocator (Section 6.1), compiler (Section 6.2) and hardware
(Section 6.3). Section 6.4 describes TypePointer’s limitations.

6.1 TypePointer Memory Allocator
Modifications

TypePointer's memory allocator must encode each object’s type in
the pointer returned from the new operation. Both the memory
allocator and the GPU’s virtual to physical memory translation
hardware must agree on which bits of the virtual memory space are
used to encode the object type. The memory allocator then creates
the virtual function tables for all allocated objects in a contiguous
memory region such that the unused bits in the pointer can be
used as an offset into the space allocated for vTables. Figure 5a
describes the format of the TypePointer returned by the allocator.
Allocating vTables contiguously allows TypePointer to load the
vTableStartAddr into a register at the beginning of the program,
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similar to how the page table register is initialized with the page
table’s address. Note that it appears vTables are already allocated
contiguously in CUDA.

The unused 15-bits in the virtual address space allows us to en-
code 32kB worth of vTable space, which is enough for 4k virtual
function pointers, shared among all the types used in the program.
This is more than sufficient for the programs we study in this pa-
per, however if more pointers are required, we can pad each type’s
vTable such that they are all the same size and use the 15-bits as an
index, which gets multiplied by the vTable size to determine the off-
set. This would allow us to map 32k different types, which is many
more types than most heavily object-oriented CPU programs [14].
In the extremely unlikely case that a program has more than 32k
types, the compiler can make this determination at link time and
choose to use TypePointer on a subset of types, and use COAL or the
traditional CUDA vFunc lookup as a backup mechanism. Note that
TypePointer can be implemented in either our type-based allocator
(which we evaluate in Section 8.1), or in the default CUDA allocator,
evaluated in Section 8.2.

6.2 TypePointer Compiler Modifications

To call a virtual function using TypePointer, the compiler inserts
a sequence of instructions to extract the vTable offset from the
unused 15-bits of the object’s pointer. Figure 5b lists the assembly
instructions that shift the object’s address (line 1), add the offset
to the beginning of the contiguous vTable space (line 2), loads the
appropriate vFunc” based on the vFuncOffset (line 3), then calls the
function (line 4). To implement a version of TypePointer that can
map more types, an index (instead of a byte-offset) can be stored in
the object pointer. The ADD instruction (line 2) is then replaced
with a fused multiply-add that multiplies a vTable size register
(which is initialized upon program launch) by the index. In this
implementation the system must ensure that the vTables for all
object types are padded to the maximum vTable size, potentially
wasting space. In the benchmarks we study, TypePointer works
with either solution. In the worst case, the padded implementation
consuming only 360 additional bytes with the total space devoted
to vTables being < 1k.

6.3 TypePointer Hardware Modifications

To implement TypePointer in a production system, a small change
must be made to the MMU, in order to avoid triggering exceptions
when unused bits of the virtual address space are modified. This
would involve a small change to the logic in the MMU that would
not introduce any practical overhead. Such a modification could
also be implemented with an enable flag such that the feature can
be disabled on applications that do not require TypePointer support.
To study TypePointer on a real machine, we develop a prototype that
avoids MMU exceptions when attempting to access objects allocated
with TypePointer. In particular, we discovered that the CUDA unified
memory allocator returns a consistent pattern in the upper 15-bits of
allocated addresses. Leveraging this fact, we modified our memory
allocator to encode type information in the upper-most 15 bits,
then replace these bits with the known consistent pattern before
we access the fields of the object. This implementation adds some
additional overhead to mask out our type information at runtime,
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but gives us the ability to evaluate TypePointer on a real machine.
We also evaluate TypePointer in simulation using Accel-Sim [31].
In simulation we evaluate TypePointer using the default CUDA
memory allocator (Section 8.2) and confirm that our prototype has
similar performance to a machine with a modified MMU.

6.4 TypePointer Limitations

TypePointer embeds type information in an object’s pointer when
the object is constructed. Generally, valid C++ code that constructs
objects with the new operator can use these special pointers without
any effect on functionality. However, there are some corner-cases
where, without additional runtime checking, using TypePointer may
produce a different result than the same program without Type-
Pointer. In particular, if the program: (1) Manipulates the pointer
bits in C, clobbering the upper 15 bits of the pointer value. Gener-
ally, this will produce undefined behavior in C/C++ and will cause
TypePointer to break. (2) Uses abusive C-style pointer casting that
converts a pointer of one type into another. Again, this will gener-
ally cause undefined behavior without TypePointer, but there are
more instances where incorrect execution will occur when Type-
Pointer is used. (3) Mixes the TypePointer allocator with the other
allocators that are unaware of the type embeddings.

7 EXPERIMENTAL METHODOLOGY

We evaluate the effectiveness of COAL and TypePointer on an
NVIDIA Volta V100 GPU. For all our experiments we compile the
workloads with full optimizations (-O3) using CUDA 10.1. We use
the CUDA command-line profiler NVProf [38] and the CUDA Visual
Profiler to collect the profiling data for all techniques. To collect
data we run each program 10 times and report the average as well as
the maximum and minimum performance of the computation ker-
nels, as reported by NVProf. For the counter statistics, NVProf runs
the applications several times and reports the average, which we
found to have very low variance. To permit the workloads enough
heap space, we use the CUDA functions cudaDeviceSetLimit() and
cudaLimitMallocHeapSize and set the heap to 4GB.

To implement SharedOA, we override the default CUDA mem-
ory allocator. Since we implement SharedOA entirely in user-level
CUDA code and do not have access to device driver code or the
finalizing compiler, we run a tiny initialization kernel to leverage
CUDA’s vTable creation mechanism and update each object’s GPU
vTable*. This tiny kernel is run only once before the first kernel call
and consumes, on average, 0.15% of the total initialization time. The
init kernel can be completely avoided by implementing SharedOA
inside the CUDA backend. We implement a PTX-level compiler
transform to access vTables from the GPU-side vTable pointer.

To evaluate TypePointer, we implement a software-only proto-
type (described in Section 6.3) that bypasses the need to modify
the MMU. We use this prototype to evaluate TypePointer in Sec-
tion 8.1. In addition, we also evaluate TypePointer in simulation
using the V100 model in v1.0.0 of the SASS-based Accel-Sim +
GPGPU-Sim [31] simulator. We use the simulator to evaluate Type-
Pointer both with and without the software overhead introduced
to avoid MMU errors in our prototype, which we find to be in-
significant. Therefore; we only include only real hardware results
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Table 2: Workloads. # Objects=Number of object instances created. # Types=Number of types in the program. #vFunc=Total
number of virtual functions in the compiled code. vFuncPKI=Dynamic virtual function calls per thousand instructions.

F
Workload Description # Objects | # Types | vFuncs ‘I;Kl.;nc
Dynasoar Workloads [22, 46]
Traffic (TRAF) A Nage.l—Schreckenberg model traffic simulation to model streets, cars and 1573714 6 24 30.6
traffic lights for traffic flows.
. Game of life is a cellular automaton formulated by John Horton Conway.
Game Of Life (GOL) This benchmark has two abstract classes Cells and Agent. 2645916 4 29 269
Structure uses the Finite element method to simulate the fracture in a
Structure (STUT) ; o . 525000 4 40 30.0
material. The benchmark models the material with springs and nodes.
Generation (GEN) Gener.atlon is an extension o.f gol benchmark. The c.ells in Genere.itlon have 1048576 4 33 298
more intermediate states which lead to more complicated scenarios.
GraphChi-vE Workloads [35]
BFS traverses graph nodes and updates a level field in a breadth-first
Breadth First Search (BFS) manner. The QraphChl-vE BFS implementation d.eﬁn-es an abstract class 2954419 4 : 359
for edges, ChiEdge, and a concrete classEdge, which implements
all the virtual functions of ChiEdge.
Connected Component is commonly used for image segmentation
Connected Components (CC) | and cluster analysis, it employs an iterative node updates according 2254419 4 6 29.5
to the labels of adjacent nodes.
Page Rank (PR) Page r'ank i§ a classic algorithm to rank the pages of search engine results 9254419 4 5 6.9
using iterative updates for each node.
GraphChi-vEN Workloads [36]
The GraphChi-vEN BFS implementation also defines an abstract base
Breadth First Search (BFS) class for vertex, ChiVertex, and a concrete class vertex, which implements 2254419 4 15 52.2
ChiVertex’s virtual functions.
GraphChi-vEN CC is similar to GraphChi-vE described above. However,
Connected Components (CC) GraphChi-vEN CC has both virtual edges and nodes. 2254419 4 15 44.2
GraphChi-vEN PR is similar to GraphChi-vE described above.
P k (P 2254419 4 1 4.4
age Rank (PR) However, GraphChi-vEN PR has both virtual edges and nodes. > 0 5
Open Source Ray Tracer [40]
RAY performs global rendering of of spheres and planes. The algorithm
Raytracing (RAY) traces light rays through a scene, bouncing them off of objects, and back 1000 3 3 15.4
to the screen.

in Section 8.1. We also use the trace-based simulator to evaluate the
effect of TypePointer when using the CUDA allocator (Section 8.2).

We evaluate eleven representative applications from different
scalable, multi-threaded CPU frameworks [35-37, 40] and contem-
porary object-oriented GPU workloads [22, 46]. The workloads we
study focus on graph analytics [35-37], model simulations [22, 46]
and raytracing-based rendering [40], where parallel, object-oriented
programming is a natural fit. The workloads and their characteris-
tics are listed in Table 2.

8 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of both COAL and
TypePointer compared to the contemporary CUDA implementation
of virtual functions, the type-tag implementation in Intel’s Con-
cord [6] work and our type-based SharedOA allocator. We perform
functional validation on all the implementations to guarantee they
produce the same results. We study the following techniques:

CUDA: We implement the workloads using the default CUDA vir-
tual function implementation mechanism. By default, CUDA does
not support shared objects between the CPU and GPU. Therefore,
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an object initialization kernel is run prior to executing the compute
kernels. The time required for this initialization is not included in
the CUDA results.

Concord: We support virtual function calls as described in Con-
cord [6], where a type field is embedded in each object instead of
a virtual function pointer. When a virtual function is called, the
compiler inserts a switch statement, which reads the embedded
type tag, then jumps to the appropriate function body. Concord
does not support true runtime polymorphism, since the call targets
must be known at compile-time.

SharedOA: We implemented the type-based shared object allocator
as described in Section 4. Objects of the same type are allocated
together in the same contiguous region.

COAL: We implement COAL as described in Section 5. COAL is
built on top of SharedOA, hence the performance improvements
demonstrated by COAL over CUDA and Concord are a combination
of the allocator effects and the effect of removing vTable* lookups.
TypePointer: We implement TypePointer as described in Section 6
inside the SharedOA allocator described in Section 4. To apply Type-
Pointer, we perform instrumentation at each virtual function call to
get the vFunc” and add instructions at member variable references
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Figure 6: Performance, normalized to SharedOA on a silicon V100 GPU, averaged over 10 runs (error-bars=max and min).
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Figure 7: Dynamic warp instruction breakdown for CUDA, Concord (CON), COAL and TypePointer (TP) normalized to SharedOA
(SHARD). We break instruction types into memory (MEM), compute (COMPUTE) and control (CTRL).

to remove the TypePointer’s type bits. In order to provide a clean
comparison of TypePointer to COAL, we implement TypePointer on
top of our custom SharedOA allocator. However, since TypePointer
is allocator-independent, we also evaluate the effect it has when
applied to the default CUDA allocator in Section 8.2.

8.1 Experiments on COAL and TypePointer

Figure 6 plots the speedup of CUDA, Concord, COAL and Type-
Pointer, normalized to SharedOA. CUDA and Concord suffer a per-
formance loss versus SharedOA. Packing objects of the same type
into the same region of memory has a net positive impact on perfor-
mance that the default CUDA allocator is not able to capture. Adding
COAL and TypePointer on top of SharedOA further improves perfor-
mance over SharedOA by 6% and 12% respectively. Although COAL’s
geomean performance improvement over SharedOA is somewhat
muted, there is wide variation in the magnitude of the improve-
ment. In STUT, COAL achieves a 1.5X improvement over SharedOA,
while in GEN and GOL, COAL suffers a slight performance regres-
sion versus SharedOA, but still significantly outperforms CUDA
and Concord. Since Concord avoids loading a true vFunc* () in
Figure 1a), it demonstrates some performance improvement over
CUDA, at the expense of flexibility and an increase in code size
comparing to CUDA. However, Concord must still access a field in
each object to determine the object’s type, which is an operation
similar to @) in Figure 1a. If each thread is accessing a different
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object, this load will be highly diverged and overwhelm the mem-
ory system. COAL and TypePointer demonstrate a speedup because
they eliminates this diverged load. Since TypePointer eliminates
all the accesses for vTable* shown in Table 1, TypePointer achieves
better performance than COAL on all the workloads. Interestingly,
Concord performs slightly better for RAY. A closer inspection of
RAY reveals that a number of the virtual function calls are not
diverged. RAY has several loops where each thread accesses the
same renderable object to determine if the ray collides with this
object. In these instances, COAL’s static analysis will not instru-
ment the virtual function since the overhead of the lookup is likely
to be higher than the gain. For TypePointer on RAY, TypePointer’s
performance is roughly equivalent to Concord (within the margin
of error), since removing the vTable* accesses is a less significant
bottleneck. Concord is able to take advantage of inter-procedural
optimizations enabled by statically knowing all the potential call
targets, which the other techniques (that support true dynamic
dispatch) cannot.

Figure 7 shows the dynamic warp instruction breakdown for
CUDA, Concord, COAL and TypePointer normalized to SharedOA.
CUDA has the same instruction breakdown as SharedOA since the
allocator does not affect the execution of instructions. To apply
different techniques, Concord, COAL and TypePointer increase the
instructions by 28%, 83% and 19%. Concord adds a number of com-
pute and control instructions to the program and reduces memory
instructions by half. This is due to the fact that Concord uses low
overhead switch statements to replace high cost indirect function
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Figure 9: L1 cache hit rate on a silicon V100 GPU.

calls. COAL increases all categories of instructions, but the memory
instructions have a higher cache hit rate and the compute instruc-
tions can be effectively hidden with multithreading. Versus COAL,
TypePointer decreases both compute and memory instructions, re-
quiring far fewer instructions to compute the object’s vTable* and
resulting in fewer memory transactions (Figure 8). Keep in mind
that one dynamic warp instruction can generate up to 32 memory
access, which is not reflected in examining the instruction break-
down in Figure 7 alone.

Figure 8 plots the number of global load transactions generated
by the respective techniques. COAL reduces loads by 14% because
it eliminates the diverged, low-locality vTable* load. However, addi-
tional global loads are added to perform the range check. Concord
reduces loads by a greater fraction than COAL because it does not
have the lookup overhead associated with performing the range
check. However, as we will see in Figure 9, the loads generated by
COAL are all to the same structure and hit in cache, whereas the L1
hit rate in Concord stays relatively constant versus CUDA. Since
TypePointer does not access memory to find the object’s vTable, it
efficiently decreases global load transactions by an average of 19%.

Finally, Figure 9 plots the L1 cache hit rate for CUDA, Concord,
SharedOA, COAL and TypePointer. Although Concord removes a sig-
nificant number of loads from the program, it generally decreases
the hit rate of the L1 cache. Concord removes many of the L1 hits in
the original CUDA program. COAL, on the other hand, sees a large
increase in L1 hit rate on all the applications, with the exception
of RAY, where COAL instruments relatively few instructions. The
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hit rate improves becasue COAL removes the diverged load ()
in Figure 1) that often missed in the L1 cache. All the extra loads
instructions added to access the virtual range table in global mem-
ory turn into hits in the L1 cache, since the thousands of in-flight
objects are composed of relatively few types (Table 2). RAY is an
outlier for Concord, where the extra global loads added exhibit sig-
nificant locality. The L1 hit rate for TypePointer remains relatively
constant or even falls (versus COAL) in some applications, however,
it generates fewer transactions than COAL.

8.2 Allocator Effects

As mentioned in Section 4, the memory allocator alone can have
an impact on the performance of compute kernels. Although the
details of the CUDA allocator are not public, we observe that it
does not allocate objects of the same type consecutively and adds
additional padding between allocated objects. Although not the
primary focus of this paper, the more tightly-packed objects have a
positive performance impact in our applications. Figure 6 shows
the performance of SharedOA over CUDA, alongside the other
techniques evaluated in the paper for context. SharedOA alone is
able to out-perform CUDA by 41% because objects of the same type
tend to be accessed together and packing them in the same region
decreases divergence and increases cache performance. Applying
COAL on top of SharedOA improves performance by a further 6%.
In some apps, like STUT, COAL significantly improves performance
over SharedOA, where in others, the overhead of COAL causes a
small performance drop, although COAL is always significantly
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Figure 10: Effect of the allocator’s initial region size on performance and fragmentation.
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Figure 11: TypePointer performance on the CUDA allocator

in a V100 GPU simulation.

better than CUDA. Using TypePointer instead of COAL removes the
performance overhead from COAL.

COAL’s performance can vary based on the number of objects
initially allocated per region, before the region doubling starts.
Figure 10a sweeps the number of objects in the initial region size
from 4k to 4M. Generally, the performance of COAL is stable across
initial region sizes, with only GEN demonstrating a significant per-
formance increase at 2M. To better understand the fragmentation
caused by our proposed allocation scheme, Figure 10b plots Share-
dOA’s external fragmentation when the number of the objects in
the initial region size ranges from 4k to 4M. The fragmentation
varies from 17% at 128k to 27% at 4M. Similar to other small-object
allocators, SharedOA does not suffer from internal fragmentation.

To show that TypePointer is not dependent on a particular mem-
ory allocator, we also evaluated it in simulation on the default
CUDA memory allocator, which is plotted in Figure 11. Overall,
TypePointer is able to improve performance by 18% without any
major changes to the CUDA allocator.

Although not the focus of this paper, we also performed an evalu-
ation of our SharedOA allocator’s object initialization performance
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versus the CUDA allocator. For the object initialization phase, Share-
dOA outperforms the default CUDA allocator by a geometric mean
80x over all our applications. Since SharedOA is a host-side alloca-
tor, we eliminate the huge synchronization overhead imposed by
performing device-side allocation of objects with virtual functions.

8.3 Scalability Study

To understand performance as types and objects scale, we perform a
study using a set of microbenchmarks that have high vFuncPKI. One
benchmark uses the standard CUDA implementation, where objects
are allocated on the GPU and use virtual function calls (CUDA).
Another use branches to arbitrate different "types" (BRANCH),
without any objects or object-oriented program. In all benchmarks,
threads scale with the number of objects and the compute inside
the function call is a simple addition operation. BRANCH decides
which function to call based on register values and does not access
memory for the function call. It represents control flow on GPUs
without memory overhead.

Using 4 types, we vary the number of objects from 1 million to
32 million in Figure 12a. As the number of objects increase, the
slowdown for CUDA versus BRANCH reaches 5.6x, while COAL
and TypePointer continue to linearly track BRANCH, demonstrating
3.3% and 2.0x slowdown over the idealized BRANCH microbench-
mark at 32M objects. In Figure 12b, we fix the number of objects
at 16M and scale the number of types being accessed by one warp.
As the number of types accessed by one warp increases, the per-
formance universally degrades across all the benchmarks, since
branch divergence increases. COAL consistently tracks closely to
BRANCH. At 32 types, the relative difference between the various
methodologies becomes small. In highly diverged code, the over-
heads associated with virtual functions are less pronounced. Since
fewer threads are active, memory has less contention and most of
the performance loss comes from poor SIMD utilization.
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Figure 12: Scalability experiments on microbenchmarks.

9 RELATED WORK

GPU Programmability. Prior work on supporting productive
languages in GPUs [28, 41, 45] has primarily focused on supporting
primitives and simple data structures on the GPU, opting to avoid
the use of virtual functions in GPU code. We explicitly focus on
efficiently executing GPU virtual function calls, rethinking their
implementation in massively multithreaded environments by em-
ploying a coordinated effort between the compiler and runtime
system. A body of work also exists on providing CPU-like pro-
grammability for GPUs. Support for a file system abstraction [44],
network stack [34] and more advanced memory management [42]
are examples of this. Although these works share the same motiva-
tion as ours, they are focused on other aspects of programmability.

GPU benchmarks. There are numerous GPU benchmark suites [5,
10, 13, 48], and object-oriented CPU suites [8, 24, 51]. However,
there are no publicly available GPU benchmark suites that contain
object-oriented applications with virtual function calls. We believe
this is, in part, because the performance implications we study have
not been explored before.

Virtual Function Calls on CPUs. A vast amount of CPU work
has improved indirect branch/indirect jump [20] prediction [29,
30, 33], addressing the performance loss from misspeculation on
CPUs. Other works have looked at profile-guided techniques [11,
12, 20] for increasing single-threaded performance and making
code better suited to conditional branch predictors. However, a
fundamental difference between CPUs and GPUs is that GPUs do
not use any speculative execution and the cost of profiling and
recompiling thousands of concurrently executing threads is high.
On the software side, Just-In-Time (JIT) compilation techniques in
managed languages like Python and Java have removed much of
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the overhead via profiling techniques that recompile the code and
inline virtual function calls at their call sites [17-19, 23, 26, 49, 52].
Dynamically recompiling GPU code on the fly is a challenge for
several reasons. First, any inlining would have to be performed on
a per-thread basis, as the same call-site will be used by thousands
of threads, accessing thousands of objects. Second, there is no on-
device JIT compiler for contemporary GPUs.

Object-Oriented Programming On GPUs. In GPUs, the SIMT
stack mechanism to handle an indirect branch has been patented [15].
Barik et al. [6] develop Concord, which enables a subset of C++
to execute on integrated Intel CPU/GPU systems. Concord does
not support virtual function calls through indirect branches, but
instead relies on a set of if/else conditionals that test the object
type and must still dereference the object pointer to determine its
type. Other work [28, 41, 45] has supported advanced programming
languages on GPUs, (e.g., Java and Ruby). However, no work has
quantitatively analyzed the performance of virtual functions, or
proposed a solution to the significant overhead they incur.

Memory Allocation On GPUs. A set of work [4, 25, 27, 47] at-
tempts to implement efficient memory allocation on parallel archi-
tectures. Xmalloc [27] aims to implement a scalable GPU memory
allocator with lock-free buffers to hold pre-defined size truncks and
bins. Issac al. [25] formulate resource allocation to two-stages to im-
prove the allocation throughput on Nvidia GPUs. ScatterAlloc [47]
utilizes CUDA’s dynamic allocator to perform coarse grained al-
location, employing bitmaps to prevent collision. Halloc [4] uses
bit arrays to represent free blocks and a hash function to search.
DynaSOAr [22, 46] implements the first parallel memory allocator
for object-oriented programs on GPUs. Like SharedOA, many of
these allocators allocate data in large chunks, however they do it
to improve allocation speed. We allocate large chunks of data such
that we can determine an object’s type by its address range.

Type-based management On CPUs. Prior work on supporting
type-based management or addressing in object-oriented programs
on CPUs [43, 50] has focused on improving garbage collection
or reducing memory consumption. To the best of our knowledge,
we are the first work on either CPUs or GPUs to perform virtual
function calls without accessing objects to determine their type.

10 CONCLUSION

We examine the effects of executing object-oriented code on mas-
sively parallel architectures. Through a detailed analysis of the di-
rect cost of virtual functions on a silicon V100 GPU, we demonstrate
the memory system is the performance bottleneck, in particular
the loads to the virtual table pointer in each object. To alleviate this
pressure, we propose two techniques, one completely in software
(COAL) and one with hardware support (TypePointer) that deter-
mine an object’s type based only on the object’s address. We study
this problem on realistic object-oriented workloads, by implement-
ing a shared object allocator that allows the CPU and GPU to share
objects with virtual functions through unified virtual memory.
The software-only technique, (COAL) uses the runtime mem-
ory allocator to place objects of the same type in a set of ranges.
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The compiler then inserts code to scan the address ranges and
determines which function is called based only on the object’s
address. We evaluate COAL on a silicon GPU and demonstrate a
80%, 47% and 6% performance improvement over contemporary
CUDA, prior academic work and our newly-proposed SharedOA,
respectively. The second technique eliminates the lookup overhead
of COAL with TypePointer. TypePointer encodes each object’s type
in unused bits in the GPU’s 64-bit address space. Using a small
modification to the GPU’s MMU, TypePointer locates the vTable
without accessing memory, improving performance by 90%, 56%
and 12% over CUDA, previous work and SharedOA, respectively.
We also implement TypePointer in simulation, applied on top of
the default CUDA allocator and demonstrate an 18% performance
improvement without changing how objects are allocated.
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A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the source code for the SharedOA, COAL,
and TypePointer that applied to all workloads. We also include the
instructions to configure, build, run, and acquire the workload’s
performance. Users can reproduce the results in Figure 6. We also
contain a tutorial with examples to apply SharedOA, COAL and
TypePointer to show that the three techniques are reusable on other
CUDA applications.

A.2 Artifact Checklist

We list the artifact checklist below to formally describe our artifact:

e Program: Ported version of dynasoar, GraphChi and raytracing
Workloads are included in the measurement repository.

e Compilation: GCC 7.5.0, CUDA 10.1, 10.2 or 11.1.

Transformations: COAL and TypePointer requires PTX transforma-

tions which are implemented by python scripts. PyYYAML is needed

for the scripts.

Data set: Included in the measurement repository.

Run-time environment: Ubuntu 18.04.5

Hardware: Intel x86 machine with NVIDIA Volta architecture GPU

with at least 8GB GPU memory. We use V100 GPU with 32GB GPU

memory in our experiments.

e Execution: NVProf commandline profiler from CUDA is used to

measure the kernel execution time of each workloads.

Metrics: Normalized performances are reported by scripts for each

version of the workloads.

How much disk space required (approximately)?: At least 1GB

is needed to contain the measurement repository.

o How much time is needed to complete experiments (approx-

imately)?: 20 minutes to compile and 40 minutes to run.

Publicly available?: Yes.

Code licenses (if publicly available)?: BSD 2-Clause "Simplified"

License

Data licenses (if publicly available)?: BSD 2-Clause "Simplified"

License
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o Workflow framework used?: Scripts are provided in the measure-
ment repo, no other framework required.

Archived (provide DOI)?: Provided in Github, and a snapshot in
https://doi.org/10.5281/zenodo0.4319923.

A3

A.3.1
itories:

Description

How to Access. We provide the artifact evaluation with Github repos-

o Evaluation scripts: https://github.com/brad-mengchi/asplos21_ae_
script

e Measurement repository to compile and run the workloads: https:

//dgithub.com/brad-mengchi/asplos_2021_ae

Tutorial for applying the SharedOA, COAL and TypePointer: https:

//dgithub.com/purdue-aalp/SharedOA

We also provide zipped version of the repositories on Zenodo: https:
//doi.org/10.5281/zenodo.4319923.

A.3.2  Hardware Dependencies. The SharedOA, COAL and TypePointer works
on Intel x86 machine with NVIDIA Volta architecture GPU with at least
16GB GPU memory. The experiments in this paper use V100 GPU with
32GB GPU memory. 1GB CPU memory is required to contain the evaluation
repositories.

A.3.3  Software Dependencies. Ubuntu 18.04 Linux is preferred to run the
experiments. NVIDIA CUDA 10.1, 10.2 and 11.1 and GPU driver are required
to compile and run the GPU workloads.

A.4 Installation from Github

We include the evaluation scripts in asplos21_ae_script repository and detail
the instructions in README.md. Users need to clone the evaluation script
repository to a directory:

# git clone https://github.com/brad-mengchi/asplos21_ae_scri
pt

We include setup.sh to configure environments for CUDA. CUDA_INSTA
LL_PATH need be set to the CUDA directory:

# export CUDA_INSTALL_PATH=<CUDA directory path>
Users can finish the configuration after setting up the environment:

# source setup.sh

A.5 Experiment Workflow

Users can use compile.sh to clone the workload repository and compile the
workloads:

# source compile.sh

This compile.sh script clones the workload repository from https://github.
com/brad-mengchi/asplos_2021_ae and builds the workloads. We generates
55 binaries for 11 workloads with different techniques (CUDA, Concord,
SharedOA, COAL and TypePointer). All workloads binaries will be in the
directory asplos_2021_ae/benchmarks/bin/10.1/release/.

A.6 Evaluation and Expected Result

Users can use run.sh and get.sh to run the experiments and get the normal-
ized performance on specific GPU. To run the experiments on GPU 0 with
command below:

# source run.sh @
To get the statistics after running on GPU 0 with command below:
# source get.sh 0

The script print out the normalized performance for workloads with
techniques like below:


https://doi.org/10.5281/zenodo.4319923
https://github.com/brad-mengchi/asplos21_ae_script
https://github.com/brad-mengchi/asplos21_ae_script
https://dgithub.com/brad-mengchi/asplos_2021_ae
https://dgithub.com/brad-mengchi/asplos_2021_ae
https://dgithub.com/purdue-aalp/SharedOA
https://dgithub.com/purdue-aalp/SharedOA
https://doi.org/10.5281/zenodo.4319923
https://doi.org/10.5281/zenodo.4319923
https:// github.com/brad-mengchi/asplos_2021_ae
https:// github.com/brad-mengchi/asplos_2021_ae
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trafficV 0.443328212062
trafficV_CONCORD ©.469073964166
trafficV_MEM 1.0

RAY_COAL 0.945034105267
RAY_TP 0.935876022056

Above results can verify the experiments in Figure 6.

A.7 Tutorial for SharedOA with Examples

SharedOA, COAL and TypePointer techniques can be easily reusable on other
CUDA applications. Therefore, we create a tutorial to show examples to
apply three techniques on a simple program. We provide the tutorial on
Github repository: https://github.com/purdue-aalp/SharedOA. The detailed
instructions are in README.md. Users can clone this tutorial repository
with:

# git clone https://github.com/purdue-aalp/SharedOA

The example for SharedOA are in example/SharedOA/ directory, so users
can build and run SharedOA example with the following command:

# cd example/SharedOA
# make
# ./main

A.8 Tutorial for COAL and TypePointer with
Examples

The examples for COAL and TypePointer are in example/COAL/ and ex-
ample/TP/ directories. Users can build and run COAL example with the
following commands:

# cd example/COAL
# make
# ./main_COAL

Users can also build and run TypePointer example with the following
commands:

# cd example/TP
# make
# ./main_TP

A.9 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-badging
e http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html
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