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ABSTRACT

High-accuracy calculations are performed on the 'D spectrum of beryllium with the use of all-
electron explicitly correlated Gaussian (ECG) functions. In the first step, a nonrelativistic wave
function is generated for each state with the ECG nonlinear parameters variationally optimized
using a procedure employing energy gradient determined with respect to these parameters. The
wave functions are used to calculate the leading relativistic corrections employing the recently im-
plemented algorithms. The state total energies and the interstate transition energies are compared

with the high-quality experimental results.

I. INTRODUCTION

The ultimate criterion for refining theoretical methods for calculating atomic electronic structures and spectra is
the comparison with high-precision experimental measurements. Precision spectroscopy of the light elements has been
quickly advancing in recent years resulting in the need for refining the methods for high-accuracy quantum-mechanical
atomic calculations. Model systems frequently used for verifying the theoretical atomic-calculation models are the
beryllium atom and beryllium-type ions. For these systems, the presently available computational resources are, in
general, sufficient to achieve adequate convergence of the calculations in terms of the basis set size. Thus, the remaining
cause of the uncertainties is mainly limited to the theoretical model used to describe the interactions and other effects

present in the atom. The trend in improving the theoretical model is very well demonstrated in recent calculations
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with the account of the leading relativistic and quantum electrodynamics (QED) corrections [1-4]. The nonrelativistic
ground-state energy of beryllium was also recently calculated using the Hylleraas-configuration-interaction (Hy-CI)
method [5]. One should also mention the recent Hy-CI calculations of a large number of energy levels for both singlet
and triplet excited states of beryllium performed with the millihartree precision [6, 7] and high-accuracy ECG isotope-
shift calculations of some lowest beryllium Rydberg states performed with the inclusion of the leading relativistic and
QED corrections [8].

The beryllium Rydberg !D spectrum was a subject of nonrelativistic calculations carried out by our group [9].
However, as those calculations did not include the relativistic corrections, the results were off from the experimental
values by more than the uncertainties of the experimental results. This deficiency is eliminated in the present work
due to the inclusion of the leading relativistic corrections. However, the present calculations still do not include the
leading QED corrections that usually contribute approximately a tenth of a wavenumber to the interstate transition
energies.

The beryllium energy levels and the corresponding interstate transitions energies have been a subject of several
precision measurements performed over the last half century. In particular, one should mention the 1953 work of
Bozman et al. [10] and Johansson [11]. The latter author measured an array of transitions with 0.01-0.02 cm™!
precision. Johansson measurements also included a transition involving the lowest D state, i.e. the 2s2p 1p — 2s3d
ID transition. The absolute energy of the lowest 'D state beryllium was also first measured by Johansson to be
64 428.31(10) cm™! [12]. The precision of the measurement of this quantity was recently increased 180 fold by Cook
et al. [13] who obtained the value of 64 428.40 321(55) cm™ for this quantity.

Accurate description of the electron correlation effects is key in precision calculations of atomic spectra. These
effects originate from electrostatic repulsion of the electrons and a decrease of the probability of finding two or
more electrons close to each other. The most effective approach to represent this probability decrease in the wave
function is making the basis functions used to expand the spatial part of the wave function explicitly dependent on
the inter-electron distances. ECGs are such functions. However, as the ECGs depend exponentially on the squares
of the internuclear distances, they do not strictly satisfy the Kato cusp conditions. This deficiency can be effectively
remediated by increasing the size of the ECG basis set and by performing a thorough variational optimization of the
ECG exponential parameters [14-17]. This is how the calculations described in this work are performed.

The use of the all-electron ECGs in atomic calculations is convenient because the formulas for the Hamiltonian and
overlap matrix elements for these functions are relatively simple and can be coded into a computer program in a general
form for an arbitrary number of electrons in the system. Also, ECGs for expanding the wave functions corresponding
to atomic states with different non-zero angular momentum quantum numbers, L, can be easily constructed by
multiplying the S-type ECGs by appropriate Cartesian spherical harmonics. In this way, the basis functions for
expanding wave functions of atomic D states were constructed in our previous works [20, 21].

The high accuracy of the atomic ECG calculations is exemplified by, for example, our previous works on lowest

S and P Rydberg states of four- and five-electron atoms [14-17]. It should also be mentioned, that, even though
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nitrogen atoms [18, 19], the use of these codes to accurately calculate the spectra of these systems require an allotment
computer time which is currently out of reach to our group.

The optimization of the ECG exponential parameters is the most time-consuming part of our atomic calculations
especially when the size of the basis set becomes large. To expediate the optimization, we developed procedures for
calculating the analytical energy gradient determined with respect to these parameters [14-17]. The formulas for
calculating the gradient matrix elements are slightly more complicated than those used to calculate the Hamiltonian
and overlap matrix elements, but they have closed forms and can be calculated almost as fast as the latter matrix
elements. The formulas for the energy-gradient matrix elements for atomic D states were derived an implemented
in our previous work [20]. The work also included the formulas for the Hamiltonian and overlap matrix elements.
When the energy gradient is provided to the procedure that runs the parameter optimization, the variational lowering
of the energy advances much faster than without the gradient. The situation is similar to the optimization of a
molecular structure in a calculation where the wave function of the system is expanded in terms of orbital Gaussians.
There also, when the analytical gradient of the total energy of the system determined with respect to the geometrical
parameters of the structure of the molecule is provided to the procedure that runs the search for the equilibrium
molecular geometry, the determination of this geometry proceeds much faster than if the gradient is not available.
The gradient aided optimization of the exponential parameters of the ECGs is key in achieving high accuracy in the
calculations.

The internal motion of the particles forming the atom involves a coupled motion of the electrons and the nucleus
around the center of mass of the system. Bound quantum states representing this motion in the beryllium atom
and corresponding to L = 2 and M; = 0 are the states considered in the present work. Unlike in the conventional
approach, where that the nuclear mass is usually assumed to be infinite and the nuclear motion is excluded from
the consideration (the effects related to this motion can subsequently be included as corrections obtained using the
perturbation-theory calculations), in the present approach, the finite nuclear mass is present in the model starting
from the first step of the calculations. This first step is the variational calculation of the nonrelativistic energy
and the corresponding wave function of each considered state of the system. In this calculation, the ECG basis
set for that state is generated and optimized. The inclusion of the finite mass of the nucleus in the model is done
using a Hamiltonian, called the internal Hamiltonian, that explicitly depends on the nuclear mass. The Hamiltonian is
obtained by subtraction out the operator representing the kinetic energy of the motion of the center-of-mass of the atom
from the laboratory-frame non-relativistic Hamiltonian of the system. This Hamiltonian consists of the kinetic energy
operators representing the motions of the nucleus and the electrons and the operators representing all electrostatic
interactions present in the atom. If, before the subtraction, the lab-frame nonrelativistic Hamiltonian is transformed
from the lab-frame Cartesian coordinate system to a new system of coordinates whose first three coordinates are the
lab-frame coordinates of the center-of-mass and the remaining coordinates are the so-called internal coordinates, the
Hamiltonian automatically and rigorously separates into the operator representing the kinetic energy of the center-of-

mass motion and the internal Hamiltonian (see the next section). The energies and the wave functions calculated with
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to calculate the interstate nonrelativistic transition energies of the isotope and the isotope shifts of these energies.
In the case of the beryllium atom which has only one stable isotope, °Be, the shifts calculated in this work are the
differences between the corresponding transition energies of Be and *Be.

The present calculations include the leading relativistic corrections. The algorithms for calculating these corrections
were recently implemented [21]. The operators representing the corrections are obtained by transforming the lab-frame
relativistic operators to the internal coordinates. The transformed operators are used to calculate the corrections as
expectation values with the wave functions obtained from the finite-nuclear-mass nonrelativistic calculations. Thus,

the corrections explicitly include the so-called recoil effects, i.e., the relativistic effects associated with the motion of

the nucleus about the center of mass.

II. THE METHOD

A. The Hamiltonian

The center of the internal coordinate system used in this work is placed at the nucleus of the atom and the internal
coordinates are the Cartesian coordinates of the vectors, r;, i = 1,...,n (n is the number of the electrons in the atom)
that have their origins in the center of the coordinate system and the ends at the different electrons. The internal

Hamiltonian has the following form:

=__ Z V- Vr,+—Zv -V +Z‘7°q' qrzj, (1)

i,j=1 i>j=1
i#j =

where myp is the mass of the nucleus and gy is its charge, g; are electron charges, and u; = mom;/ (mo + m;) are electron
reduced masses (m;, i =1,...,n, are the electron masses). T in (1) denotes the matrix/vector transpose (this notation
is used throughout this work). The internal Hamiltonian, Eq. (1), represents the motion of n particles, whose charges
are the electron charges and the masses are the reduced electron masses, in the central field of the charge of the
nucleus. We call these particles the ”pseudo-electrons”. As one notices, the approach used in the derivation of the

internal Hamiltonian is the same as the standard textbook approach used for the hydrogen atom.

n
The motions for the pseudo-electrons in (1) are coupled through the Coulombic interactions, Z % q’q] , where
=1 " z>j 1
rij = |rj — 1;|, and through the so-called mass-polarization term, —3 Z (1/myg) VT V;;. Hamiltonian (1) is used to grow

i,j=1
i#]

and optimize the basis set and to calculate the nonrelativistic energy and the corresponding wave function for each

state considered in the present work.



The special part of the wave function for a D state of the beryllium atom considered in the present work is expanded

in terms of the basis functions being the following products of Gaussian exponentials and Cartesian angular harmonics:

](CL:2) = (X,’kx]‘k + Vi Yi — 2Z,'kZ]'k) exp [—I'T (Ar®I3) I‘] , (2)

where electron labels i and ji can vary from 1 to n, with i > ji. i and ji can either be equal or not equal to each
other. For the beryllium atom n = 4. Ay in (2) is an n X n symmetric matrix of the exponential parameters. This
matrix is unique to each ECG. ® denotes the Kronecker product, I3 is an 3 X 3 identity matrix, and r is the following

3n vector of the internal Cartesian coordinates:

X1
n

r
21

1

r= = (3)

Xn

rﬂ
Yn
Zn

We denote (A; ® I3) in (2) as Ay.

As the considered states are bound states, the basis functions (2) need to be square integrable. In order for this
to happen Ay has to be positive definite. To achieve this, Ay is represented in the following Cholesky-factored form:
A = (LkLz) ® I3, where Ly is a n X n lower triangular matrix. If all matrix elements of L; are real numbers, Ay
becomes automatically positive definite. The matrix elements of Ly are the variational parameters in the calculations
performed in this work. As these parameters can be varied without any restrictions in the range from —oco to +oo,
the optimization of these parameters is unconstrained. This is always a desirable feature in any multiparameter
optimization.

We use the so-called spin-free formalism to impose the proper permutational symmetry of the wave function in the
present calculations [22-24]. The formalism involves the construction of an appropriate symmetry projector, P, that
by acting on the special part of each basis function implements the desired permutational symmetry. P is constructed
using the standard procedure that employs the appropriate Young operator specific to the spin state of the system
[22-24]. The construction of the Young operators in the ECG calculations was described in our earlier work [25]. For
1D states of the beryllium atom, the symmetry projector can be chosen as: P = (1 — P13)(1 — Paog)(1 + P12)(1 + P34),
where P;; permutes the spatial coordinates of the i-th and j-th electrons.

The internal Hamiltonian and the operators representing the relativistic corrections are symmetric with respect
to any permutation of the electron labels. Thus, in calculating the corresponding matrix elements (integrals), the
symmetry operator can be placed only in the "ket” part of the integral. It appears there as P'P. For beryllium,

P'P consists of 4! = 24 terms. Thus, each matrix element is a sum of 24 different elementary spatial integrals. The
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energy gradient vector with ECGs (2), were presented in Ref. [20].

C. Relativistic operators

The leading relativistic correction of the order of a?, where « is the fine-structure constant (a = %, where c is the
speed of light in the atomic units), includes the mass-velocity (MV), Darwin (D), orbit-orbit (OO), and spin-spin
(SS) effects. As the considered states are singlet states, the spin-orbit interaction vanishes. In the internal coordinate
system, the MV, D, OO, and SS operators have the following forms:

mass-velocity term:

Darwin term:

TN (411 n ZZ 1
Ap = - (‘—2 + —2) q0di 6°(r)) + — i 0°(xij), (5)
2 pr 3m} m; 2 P !
orbit-orbit term:
. Iv v i |1 1
Aoo = —» W gy, + L vy
2 i =i mgm; | 1 R !
i=1 j=1 ]
vy 99 |1 1
by 2 D | 7 VE Ve S (e Ve)Ve |, (6)
=1 j>i ot ij
and spin-spin term:
87t 4 q:q;
Hss = 3 - mim; (S’ s]) 0 (r,]), (7)
j>i

where 0(r) is the Dirac delta function, Vi, is the usual nabla operator acting on the coordinates of vector r;, and s;
is the spin operator for electron i. For the states considered in this work s;-s; = —=3/4. The formulas for the matrix

elements of the above relativistic operators were presented in our recent paper [21].

D. The calculations

The present calculations are performed using double precision. In the first step of the calculations, the nonrelativistic
energies and the corresponding wave functions are determined for the lowest nine 'D states of beryllium. For each
state, the basis set is generated in a separate calculation that involves growing the set from a small number of functions
to the final basis set of 13500 ECGs using a procedure consisting of adding a certain number of functions one by one
and optimizing them. The optimization involves the use of the analytical energy gradient. After a certain number of

functions is added to the basis set (usually 100 functions), the whole set is reoptimized using one-function-at-a-time
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addition of a basis function or after an optimization of a basis function, the overlap integrals of the function with all
other functions in the basis set are checked and, if any of them exceeds an assumed threshold (e.g. 0.99), the function
is removed from the set and a new function is added in its place and optimized. A linear dependency among the basis
functions is undesirable because it may cause numerical instabilities in the calculation. The standard procedure is
used to solve the secular equation problem and to determine the linear expansion coefficients, ¢k, of the wave function
in terms of the ECGs and the corresponding total nonrelativistic energy. The basis set optimizations are carried out
for the ?Be isotope. After the basis-size reaches the size of 13500 functions for a particular state, the basis set is used
to determine the energy and the corresponding wave function for that state for *Be without reoptimization of the
Gaussian exponential parameters. As our previous calculations of S, P, and D states of atomic isotopomers showed
[20], a reoptimization of the nonlinear variational parameters is not needed when states of different isotopologues are
calculated. A recalculation of the ¢; expansion coefficients usually suffices to account for small changes of the total
energy and the wave function caused by the change of the nuclear mass [21]. The process of growing the basis sets for
the nine 'D states is by far the most time-consuming part of the calculations. These calculates have lasted for several
months. More details concerning the procedure used in growing the ECG basis set and in optimizing the Gaussian
exponential parameters are described in our previous paper [21].

The nonrelativistic wave functions obtained for the nine lowest states of *Be and *Be are used in the calculations
of the relativistic corrections. After adding these corrections to the nonrelativistic energies, the interstate transition

energies are calculated.

III. RESULTS

The calculations are performed using a computer code written in Fortran 90 that employs the MPI (message passing
interface) protocol for parallelization. The procedures for calculating the MV, D, OO, and SS relativistic corrections
were recently added to the code [21]. The present work is the first full-scale application of the code to perform
high-accuracy study of a spectrum of Rydberg D states of a four-electron atom.

The first set of results concerns the nonrelativistic calculations. The results are shown in Table I. For each state the
results include the total “Be nonrelativistic energies obtained with 10800, 11700, 12600, 13500, and 14400 ECGs and
the “Be energies obtained with 14400 ECGs. The Be results allow for assessing the convergence of the nonrelativistic
energies in terms of the number of Gaussians in the basis set. As one can see, for the first five states, the increase of
the basis set size by almost a thousand results in the decrease of the energy value expressed in hartrees in the ninth
digit after the decimal point. For the sixth state, the corresponding energy decrease is about 2x107%, for the seventh
state, it is 5x107%, and for the ninth state, it is 2x1077. This type of the convergence pattern is expected. As the
excitation level increases, the number of the radial nodes in the wave function also increases and this leads to the need
to increase the number of ECGs in the basis set. When the same number of basis functions is used for all considered
states, the lower states are represented somewhat better than the upper states. The results suggest that the basis set

for the seventh, eighth, and ninth states should be, perhaps, grown more so that a similar convergence level of the
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The convergence of the one- and two-electron Dirac delta functions, o, and 0y, the mass-velocity, Darwin, orbit-
orbit, and spin-spin relativistic corrections, and the total relativistic correction, AE,, for each of the nine considered
states of Be are shown in Table II. The calculations of these quantities are performed for *Be for basis sets of 5100,
6000, and 6900 ECGs (5100, 6200, and 7100 for state 4'D).

The corrections obtained with 6900 ECGs are added to the nonrelativistic energy obtained with the 13500 ECGs
to obtain the most accurate total energy that this work provides for each considered state. However, in order for
this procedure to work, the total relativistic correction needs to be well convergent at the 6900 ECG level. The AE,
value show in Table II. It should be noted that the relativistic correction shown in the last column of the table
is multiplied by a? before it is added to the nonrelativistic energy to generate the final energy of each 'D state of
9Be. Upon examining the values of AE, one notices that for the lowest six states the results in going from 6000 to
6900 ECGs change in the eighth figure after the decimal point. For the last three states the change is the seventh
figure. This convergence level is sufficient to produce the interstate transition energies with accuracy similar or better
than the accuracy of the presently available experimental data. Table II also includes the relativistic corrections for
“Be obtained with the 6900 ECGs. The total energies that include the relativistic corrections for the lowest nine
ID states of “Be and ®Be are shown in Table III. The results are obtained by adding the 6900-ECG relativistic
corrections to the corresponding nonrelativistic energies obtained with 14400 ECGs. The difference between the
relativistic corrections of °Be and ®Be accounts for the recoil effects. As one can see, this effect lowers the relativistic
correction by only 0.000000065 hatree for the lowest 1522;92 state with respect to the “Be result. The lowering is equal
to 0.000000098 hartree for the 1s?2s3d state, and 0.000000088-0.000000090 hartree for the next seven states. As the
lowering is only of the order of 0.002 cm™!, it has a negligible effect on the transition energies discussed next.

The nonrelativistic Be and “Be energies and the energies obtained by adding the relativistic corrections to the
nonrelativistic energies are used to calculate the interstate transition energies between adjacent 'D states. A com-
parison between the calculated and experimental results are shown in Table IV. As one can see, for the lowest

1

1522;72 — 1522s3d transition, the finite mass effect contributes to the transition energy about 3 cm™. The contri-

bution from the relativistic effects has an opposite sign and amounts to about -10 cm™.

The finite-mass effects
and the relativistic corrections are much smaller for transitions between higher excited states. For example, for the
1522s4d — 1s?2s5d transition, the finite-mass correction is only about 0.05 cm~' while the relativistic correction is
about 0.40 cm™!. For the lowest transition, our best result of 7545.745(0.020) cm™! agrees with the experimental
value of 7545.8558(0.0215) cm™! within 0.1 cm™!. For the 1s?2s4d — 1s22s5d transition, the best calculated energy
is 2221.480(0.030) cm™' and the experimental energy of 2221.446(0.1) cm™ is only by about 0.03 cm™! lower. The
estimates of the uncertainties of the transition energies calculated at the AE,, (°Be) + AE, (Be) level are shown in

parenthesis. The estimates correspond to the uncertainties due to using incomplete basis sets in the calculations of

the nonrelativistic energies and the relativistic corrections (not to neglecting higher order effects).



In summary, transition energies between the adjacent nine lowest ! D Rydberg states (i.e. singlet L = 2 M; = 0 states)
of beryllium are calculated using the finite-nuclear-mass approach and with the inclusion of the leading relativistic
corrections. The algorithms for calculating these corrections were recently implemented [21]. The nonrelativistic
wave functions of the considered states are expanded in terms of explicitly correlated Gaussian functions. 13500
ECGs are used for each state. The calculated transition energies agree well with the experimental values. However,
the agreement can certainly be improved by including the leading quantum electrodynamics (QED) effects. Algorithms

for calculating these effects will be derived and implemented in our future work.

Acknowledgments

This work of M.S has been supported by the Polish National Science Centre; grant DEC-2013/10/E/ST4,/00033.
It has also been supported by a grant from the National Science Foundation; grant no. 1856702. The authors are

grateful to the University of Arizona Research Computing for providing computational resources for this work.



10

1] M. Puchalski, J. Komasa, and K. Pachucki, Phys. Rev. A 87, 030502(R) (2013).
2] M. Stanke, J. Komasa, S. Bubin, and L. Adamowicz, Phys. Rev. A 80, 022514 (2009).

[

[

[3] I. Hornydk, L. Adamowicz, and S. Bubin, Phys. Rev. A 100, 032504 (2019).

[4] E. C. Cook, A. D. Vira, C. Patterson, E. Livernois, and W. D. Williams, Phys. Rev. Lett. 121, 053001 (2018).

[5] J. S. Sims and S. A. Hagstrom, J. Chem. Phys. 140, 224312 (2014).

[6] M. B. Ruiz, F. Latorre, and A. M. Frolov, in Electron Correlation in Molecules ab initio Beyond Gaussian Quantum

Chemistry, Advances in Quantum Chemistry, Vol. 73, edited by P. E. Hoggan and T. Ozdogan (Academic Press, Cambridge,
2016), pp. 119-138.

[7] A. M. Frolov and M. B. Ruiz, Chem. Phys. Lett. 595-596, 197 (2014).
[8] M. Puchalski, K. Pachucki, and J. Komasa, Phys. Rev. A 89, 012506 (2014).
[9] K. L. Sharkey, S. Bubin, and L. Adamowicz, Phys. Rev. A 84, 044503 (2011).
[10] W. R. Bozman, C. H. Corliss, W. F. Meggers, and R. E. Trees, J. Res. Natl. Bur. Stand. 50, 131 (1953).
[11] L. Johansson, Ark. Fys. 23, 119 (1963).
[12] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (Version 5.7.1),
https://physics. nist.gov/asd (National Institute of Standards and Technology, Gaithersburg, 2019).
13] E. C. Cook, A. D. Vira, and W. D. Williams, Phys. Rev. A 101, 042503 (2020).
14] M. Stanke, D. Kedziera, S. Bubin, and L. Adamowicz, Phys. Rev. Lett. 99, 043001 (2007).
15] S. Bubin, J. Komasa, M. Stanke, and L. Adamowicz, Phys. Rev. A 81, 052504 (2010).
16] S. Bubin, J. Komasa, M. Stanke, and L. Adamowicz, J. Chem. Phys. 132, 114109 (2010).
17] S. Bubin, M. Stanke, and L. Adamowicz, J. Chem. Phys. 131, 044128 (2009).
18] K. L. Sharkey, M. Pavanello, S. Bubin, and L. Adamowicz, Phys. Rev. A 80, 062510 (2009).

20] K. L. Sharkey, S. Bubin, and L. Adamowicz, J. Chem. Phys. 134, 044120 (2011).
21] M. Stanke and L. Adamowicz, Phys. Rev. A 100, 042503 (2019).

22] F. A. Matsen and R. Pauncz, The Unitary Group in Quantum Chemistry, Elsevier, 1986, Amsterdam.
23] R. Pauncz, Spin Eigenfunctions, Plenum, 1979,

[

[

[

[

[

[

[19] K. L. Sharkey and L. Adamowicz, J. Chem. Phys. 140, 174112 (2014).

[

[

[

[

[24] M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley, 1962, Reading, MA.
[

25] S. Bubin, M. Cafiero, and L. Adamowicz, Adv. Chem. Phys. 131, 377 (2005).



11

o o with

14400 ECGs are also shown. 1s?, which is common to all configurations, is omitted from the configuration designation of the

state (e.g. configuration 1s*2p? is abbreviated as 2p?). All values are given in a.u.

E. (°Be) E. (*Be)
State 10800 11700 12600 13500 14400 14400

2p?  -14.407351369 -14.407351372 -14.407351374 -14.407351376 -14.407351377  -14.408237286
2s3d -14.372924943 -14.372924946 -14.372924949 -14.372924950 -14.372924952  -14.373824606
2s4d -14.353081965 -14.353081970 -14.353081974 -14.353081977 -14.353081979  -14.353982921
2s5d -14.342957421 -14.342957427 -14.342957432 -14.342957435 -14.342957439  -14.343858137
2s6d -14.337266124 -14.337266134 -14.337266141 -14.337266147 -14.337266153  -14.338166595
2s7d -14.333774957 -14.333774983 -14.333775003 -14.333775019 -14.333775032  -14.334675292
2s8d -14.331485295 -14.331485382 -14.331485447 -14.331485500 -14.331485551  -14.332385684
259d -14.329903838 -14.329904083 -14.329904280 -14.329904437 -14.329904590  -14.330804633
2510d -14.328764726 -14.328765432 -14.328765988 -14.328766421 -14.328766823  -14.329666799
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tions, 6, and 6y, the mass-velocity (MV), Darwin (D), orbit-orbit (OO),

and spin-spin (SS) relativistic corrections, and the total relativistic cor-

rection AE, of the nine lowest D states of °Be. The results for *Be are

also shown. 1s?, which is common to all configurations, is omitted from

the configuration designation of the state (e.g. configuration 1s22p* is

abbreviated as 2p?). The MV, D, OO, and SS corrections do not include

the a? factor. All values are given in a.u.

State System Basis

5,

Sr, MV

D 00

SS AE,

2p

9Be

“Be

4200
5100
6000
6900
6900

8.633558
8.633933
8.634379
8.634567
8.636206

0.254970 -263.578907
0.254964 -263.586368
0.254962 -263.597258
0.254950 -263.602407
0.254995 -263.668958

212.164659 -0.716925
212.174202 -0.716926
212.185448 -0.716926
212.190392 -0.716926
212.230732 -0.691180

9.612133 -0.002264196
9.611901 -0.002264098
9.611840 -0.002264082
9.611398 -0.002264117
9.613075 -0.002264052

2s3d

‘Be

“Be

4200
5100
6200
7100
7100

8.735234
8.735753
8.736245
8.736281
8.737868

0.261564 -266.959430
0.261556 -266.974376
0.261540 -266.985919
0.261535 -266.985932
0.261578 -267.051028

214.605886 -0.878108
214.619073 -0.878108
214.631753 -0.878108
214.632738 -0.878108
214.671813 -0.851836

9.860744 -0.002309560
9.860427 -0.002309670
9.859827 -0.002309642
9.859652 -0.002309599
9.861245 -0.002309501

2s4d

9Be

“Be

4200
5100
6000
6900
6900

8.761854
8.761996
8.762524
8.762601
8.764210

0.263001 -267.842749
0.262958 -267.845767
0.262933 -267.859370
0.262927 -267.861287
0.262971 -267.927220

215.250677 -0.920043
215.255061 -0.920042
215.268802 -0.920042
215.270829 -0.920042
215.310458 -0.893685

9.914906 -0.002321610
9.913287 -0.002321624
9.912335 -0.002321667
9.912130 -0.002321672
9.913767 -0.002321582

2s5d

‘Be

“Be

4200
5100
6000
6900
6900

8.767886
8.767945
8.768260
8.768653
8.770267

0.263333 -268.046505
0.263288 -268.047324
0.263240 -268.054719
0.263239 -268.061844
0.263283 -268.127948

215.396729 -0.929524
215.399082 -0.929523
215.407897 -0.929523
215.417799 -0.929523
215.457539 -0.903145

9.927435 -0.002324521
9.925710 -0.002324531
9.923919 -0.002324551
9.923873 -0.002324405
9.925518 -0.002324317

2s6d

°Be

“Be

4200
5100
6000
6900
6900

8.769512
8.769832
8.770364
8.770556
8.772171

0.263423 -268.106365
0.263407 -268.114479
0.263378 -268.128185
0.263365 -268.130397
0.263409 -268.196555

215.436164 -0.932789
215.444514 -0.932790
215.458433 -0.932790
215.463497 -0.932789
215.503274 -0.906403

9.930817 -0.002325602
9.930211 -0.002325622
9.929131 -0.002325668
9.928630 -0.002325543
9.930278 -0.002325455
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otate dystem basis

oy,

Or,; 1YY

D Vv

o> AE,

2s7d

9Be

“Be

4200
5100
6000
6900
6900

8.768005
8.770340
8.770562
8.770928
8.772544

0.263574 -268.085616
0.263460 -268.152689
0.263432 -268.156083
0.263420 -268.154863
0.263463 -268.221043

215.395531 -0.934227
215.456394 -0.934227
215.462514 -0.934228
215.471938 -0.934229
215.511729 -0.907838

9.936522 -0.002326434
9.932209 -0.002326994
9.931145 -0.002326906
9.930686 -0.002326364
9.932335 -0.002326276

2s8d

9Be

“Be

4200
5100
6000
6900
6900

8.765105
8.768748
8.769246
8.769645
8.771261

0.263781 -268.035300
0.263659 -268.129188
0.263565 -268.126803
0.263536 -268.136303
0.263579 -268.202480

215.318809 -0.934968
215.412702 -0.934968
215.426995 -0.934971
215.437574 -0.934971
215.477363 -0.908577

9.944314 -0.002327465
9.939699 -0.002327710
9.936159 -0.002327011
9.935061 -0.002327012
9.936711 -0.002326923

259d

‘Be

“Be

4200
5100
6000
6900
6900

8.762599
8.764758
8.766114
8.766759
8.768376

0.263948 -268.001648
0.263884 -268.060442
0.263813 -268.081960
0.263796 -268.092858
0.263840 -268.159058

215.252739 -0.935364
215.308225 -0.935384
215.343651 -0.935394
215.360177 -0.935396
215.399986 -0.908997

9.950613 -0.002328877
9.948204 -0.002329182
9.945525 -0.002328585
9.944869 -0.002328320
9.946519 -0.002328232

2510d

‘Be

“Be

4200
5100
6000
6900
6900

0.264321
0.264157
0.263989
0.263933
0.263977

8.758158 -267.905564
8.759324 -267.930308
8.761740 -267.963175
8.762366 -267.975800
8.763983 -268.041978

215.134202 -0.935602
215.166584 -0.935605
215.230472 -0.935620
215.247253 -0.935624
215.287050 -0.909219

9.964658 -0.002329337
9.958500 -0.002329258
9.952138 -0.002327946
9.950058 -0.002327836
9.951710 -0.002327747
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- 5 nine
1D states of °Be and “Be. 1s?, which is common to all configurations, is omitted from the configuration designation of the
state (e.g. configuration 1s22p? is abbreviated as 2p?). The nonrelativistic energies are calculated with 14400 ECGs and the

relativistic corrections are calculated with 6900 ECGs. All values given in a.u.

State  E, (°Be) E, (*Be)
2p2 -14.409615494 -14.410501338
2s3d -14.375234551 -14.376134107

2s4d -14.355403651 -14.356304503
2s5d -14.345281845 -14.346182454
2s6d -14.339591696 -14.340492051
2s7d -14.336101396 -14.337001568
2584 -14.333812562 -14.334712607
259d -14.332232910 -14.333132865
2510d -14.331094659 -14.331994546
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. 5 . o west
nine 'D states of the beryllium atom. 1s2, which is common to all configurations, is omitted from the configuration designation
of the state (e.g. configuration 1s?2p? is abbreviated as 2p?). The transition energies are calculated for *Be and °Be without the
relativistic corrections (AE,,) using the total nonrelativistic energies obtained with 14400 ECGs, and with the addition of the
relativistic correction AE, calculated with 6900 ECGs. The estimates of the uncertainties of the transition energies calculated
at the AE,, (°Be) + AE, (°Be) level are shown in parenthesis. The estimates correspond to the uncertainties due to using
incomplete basis sets in the calculations of the nonrelativistic energies and the relativistic corrections (not to neglecting higher

order effects). All energies are given in cm™.

Transition AE, (*Be) AE,, (°Be) AE, (°Be) + AE, (*Be)  AE, (°Be) + AE, (°Be) Experiment

2p% —2s3d  7552.710  7555.727 7545.752 7545.745(0.020) 7545.8558(0.0215)
253d — 254d  4354.747  4355.029 4352.378 4352.379(0.020) 4352.5568(0.0705)
254d — 2554 2222.133  2222.080 2221.479 2221.480(0.030) 2221.446(0.10)
255d — 2s6d  1249.149  1249.093 1248.843 1248.843(0.030) 1248.814(0.13)
256d — 2574 766.252  766.212 766.032 766.032(0.080) 766.33(0.17)
257d — 2584 502.511  502.483 502.341 502.341(0.080) 502.37(0.16)
28d — 2594 347.001  346.981 346.694 346.694(0.090) 347.03(0.19)
269d — 25104  249.726  249.711 249.817 249.817(0.090) 249.03(0.30)




