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ABSTRACT

High-accuracy calculations are performed on the 1D spectrum of beryllium with the use of all-

electron explicitly correlated Gaussian (ECG) functions. In the first step, a nonrelativistic wave

function is generated for each state with the ECG nonlinear parameters variationally optimized

using a procedure employing energy gradient determined with respect to these parameters. The

wave functions are used to calculate the leading relativistic corrections employing the recently im-

plemented algorithms. The state total energies and the interstate transition energies are compared

with the high-quality experimental results.

I. INTRODUCTION

The ultimate criterion for refining theoretical methods for calculating atomic electronic structures and spectra is

the comparison with high-precision experimental measurements. Precision spectroscopy of the light elements has been

quickly advancing in recent years resulting in the need for refining the methods for high-accuracy quantum-mechanical

atomic calculations. Model systems frequently used for verifying the theoretical atomic-calculation models are the

beryllium atom and beryllium-type ions. For these systems, the presently available computational resources are, in

general, sufficient to achieve adequate convergence of the calculations in terms of the basis set size. Thus, the remaining

cause of the uncertainties is mainly limited to the theoretical model used to describe the interactions and other effects

present in the atom. The trend in improving the theoretical model is very well demonstrated in recent calculations
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of S and P energy levels of beryllium performed with the use of explicitly correlated Gaussian functions (ECGs) and

with the account of the leading relativistic and quantum electrodynamics (QED) corrections [1–4]. The nonrelativistic

ground-state energy of beryllium was also recently calculated using the Hylleraas-configuration-interaction (Hy-CI)

method [5]. One should also mention the recent Hy-CI calculations of a large number of energy levels for both singlet

and triplet excited states of beryllium performed with the millihartree precision [6, 7] and high-accuracy ECG isotope-

shift calculations of some lowest beryllium Rydberg states performed with the inclusion of the leading relativistic and

QED corrections [8].

The beryllium Rydberg 1D spectrum was a subject of nonrelativistic calculations carried out by our group [9].

However, as those calculations did not include the relativistic corrections, the results were off from the experimental

values by more than the uncertainties of the experimental results. This deficiency is eliminated in the present work

due to the inclusion of the leading relativistic corrections. However, the present calculations still do not include the

leading QED corrections that usually contribute approximately a tenth of a wavenumber to the interstate transition

energies.

The beryllium energy levels and the corresponding interstate transitions energies have been a subject of several

precision measurements performed over the last half century. In particular, one should mention the 1953 work of

Bozman et al. [10] and Johansson [11]. The latter author measured an array of transitions with 0.01-0.02 cm−1

precision. Johansson measurements also included a transition involving the lowest D state, i.e. the 2s2p 1P → 2s3d
1D transition. The absolute energy of the lowest 1D state beryllium was also first measured by Johansson to be

64 428.31(10) cm−1 [12]. The precision of the measurement of this quantity was recently increased 180 fold by Cook

et al. [13] who obtained the value of 64 428.40 321(55) cm−1 for this quantity.

Accurate description of the electron correlation effects is key in precision calculations of atomic spectra. These

effects originate from electrostatic repulsion of the electrons and a decrease of the probability of finding two or

more electrons close to each other. The most effective approach to represent this probability decrease in the wave

function is making the basis functions used to expand the spatial part of the wave function explicitly dependent on

the inter-electron distances. ECGs are such functions. However, as the ECGs depend exponentially on the squares

of the internuclear distances, they do not strictly satisfy the Kato cusp conditions. This deficiency can be effectively

remediated by increasing the size of the ECG basis set and by performing a thorough variational optimization of the

ECG exponential parameters [14–17]. This is how the calculations described in this work are performed.

The use of the all-electron ECGs in atomic calculations is convenient because the formulas for the Hamiltonian and

overlap matrix elements for these functions are relatively simple and can be coded into a computer program in a general

form for an arbitrary number of electrons in the system. Also, ECGs for expanding the wave functions corresponding

to atomic states with different non-zero angular momentum quantum numbers, L, can be easily constructed by

multiplying the S-type ECGs by appropriate Cartesian spherical harmonics. In this way, the basis functions for

expanding wave functions of atomic D states were constructed in our previous works [20, 21].

The high accuracy of the atomic ECG calculations is exemplified by, for example, our previous works on lowest

S and P Rydberg states of four- and five-electron atoms [14–17]. It should also be mentioned, that, even though
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we wrote codes to perform ECG calculations of atoms with six and seven electrons, such as the neutral carbon and

nitrogen atoms [18, 19], the use of these codes to accurately calculate the spectra of these systems require an allotment

computer time which is currently out of reach to our group.

The optimization of the ECG exponential parameters is the most time-consuming part of our atomic calculations

especially when the size of the basis set becomes large. To expediate the optimization, we developed procedures for

calculating the analytical energy gradient determined with respect to these parameters [14–17]. The formulas for

calculating the gradient matrix elements are slightly more complicated than those used to calculate the Hamiltonian

and overlap matrix elements, but they have closed forms and can be calculated almost as fast as the latter matrix

elements. The formulas for the energy-gradient matrix elements for atomic D states were derived an implemented

in our previous work [20]. The work also included the formulas for the Hamiltonian and overlap matrix elements.

When the energy gradient is provided to the procedure that runs the parameter optimization, the variational lowering

of the energy advances much faster than without the gradient. The situation is similar to the optimization of a

molecular structure in a calculation where the wave function of the system is expanded in terms of orbital Gaussians.

There also, when the analytical gradient of the total energy of the system determined with respect to the geometrical

parameters of the structure of the molecule is provided to the procedure that runs the search for the equilibrium

molecular geometry, the determination of this geometry proceeds much faster than if the gradient is not available.

The gradient aided optimization of the exponential parameters of the ECGs is key in achieving high accuracy in the

calculations.

The internal motion of the particles forming the atom involves a coupled motion of the electrons and the nucleus

around the center of mass of the system. Bound quantum states representing this motion in the beryllium atom

and corresponding to L = 2 and ML = 0 are the states considered in the present work. Unlike in the conventional

approach, where that the nuclear mass is usually assumed to be infinite and the nuclear motion is excluded from

the consideration (the effects related to this motion can subsequently be included as corrections obtained using the

perturbation-theory calculations), in the present approach, the finite nuclear mass is present in the model starting

from the first step of the calculations. This first step is the variational calculation of the nonrelativistic energy

and the corresponding wave function of each considered state of the system. In this calculation, the ECG basis

set for that state is generated and optimized. The inclusion of the finite mass of the nucleus in the model is done

using a Hamiltonian, called the internal Hamiltonian, that explicitly depends on the nuclear mass. The Hamiltonian is

obtained by subtraction out the operator representing the kinetic energy of the motion of the center-of-mass of the atom

from the laboratory-frame non-relativistic Hamiltonian of the system. This Hamiltonian consists of the kinetic energy

operators representing the motions of the nucleus and the electrons and the operators representing all electrostatic

interactions present in the atom. If, before the subtraction, the lab-frame nonrelativistic Hamiltonian is transformed

from the lab-frame Cartesian coordinate system to a new system of coordinates whose first three coordinates are the

lab-frame coordinates of the center-of-mass and the remaining coordinates are the so-called internal coordinates, the

Hamiltonian automatically and rigorously separates into the operator representing the kinetic energy of the center-of-

mass motion and the internal Hamiltonian (see the next section). The energies and the wave functions calculated with
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the internal Hamiltonian obtained this way are specific to a particular isotope of the atom. These energies are used

to calculate the interstate nonrelativistic transition energies of the isotope and the isotope shifts of these energies.

In the case of the beryllium atom which has only one stable isotope, 9Be, the shifts calculated in this work are the

differences between the corresponding transition energies of 9Be and ∞Be.

The present calculations include the leading relativistic corrections. The algorithms for calculating these corrections

were recently implemented [21]. The operators representing the corrections are obtained by transforming the lab-frame

relativistic operators to the internal coordinates. The transformed operators are used to calculate the corrections as

expectation values with the wave functions obtained from the finite-nuclear-mass nonrelativistic calculations. Thus,

the corrections explicitly include the so-called recoil effects, i.e., the relativistic effects associated with the motion of

the nucleus about the center of mass.

II. THE METHOD

A. The Hamiltonian

The center of the internal coordinate system used in this work is placed at the nucleus of the atom and the internal

coordinates are the Cartesian coordinates of the vectors, ri, i = 1, . . . ,n (n is the number of the electrons in the atom)

that have their origins in the center of the coordinate system and the ends at the different electrons. The internal

Hamiltonian has the following form:

Ĥ = −
1
2


n∑

i=1

1
µi
∇

T
ri
· ∇ri +

1
m0

n∑
i, j=1
i, j

∇
T
ri
· ∇r j

 +

n∑
i=1

q0qi

ri
+

n∑
i> j=1

qiq j

ri j
, (1)

where m0 is the mass of the nucleus and q0 is its charge, qi are electron charges, and µi = m0mi/ (m0 + mi) are electron

reduced masses (mi, i = 1, . . . ,n, are the electron masses). T in (1) denotes the matrix/vector transpose (this notation

is used throughout this work). The internal Hamiltonian, Eq. (1), represents the motion of n particles, whose charges

are the electron charges and the masses are the reduced electron masses, in the central field of the charge of the

nucleus. We call these particles the ”pseudo-electrons”. As one notices, the approach used in the derivation of the

internal Hamiltonian is the same as the standard textbook approach used for the hydrogen atom.

The motions for the pseudo-electrons in (1) are coupled through the Coulombic interactions,
n∑

i=1

q0qi

ri
+

n∑
i> j=1

qiq j

ri j
, where

ri j = |r j − ri|, and through the so-called mass-polarization term, − 1
2

n∑
i, j=1
i, j

(1/m0)∇T
ri
· ∇r j . Hamiltonian (1) is used to grow

and optimize the basis set and to calculate the nonrelativistic energy and the corresponding wave function for each

state considered in the present work.
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B. Basis functions

The special part of the wave function for a D state of the beryllium atom considered in the present work is expanded

in terms of the basis functions being the following products of Gaussian exponentials and Cartesian angular harmonics:

φ(L=2)
k =

(
xik x jk + y jk yik − 2zik z jk

)
exp

[
−rT (Ak ⊗ I3) r

]
, (2)

where electron labels ik and jk can vary from 1 to n, with ik ≥ jk. ik and jk can either be equal or not equal to each

other. For the beryllium atom n = 4. Ak in (2) is an n × n symmetric matrix of the exponential parameters. This

matrix is unique to each ECG. ⊗ denotes the Kronecker product, I3 is an 3× 3 identity matrix, and r is the following

3n vector of the internal Cartesian coordinates:

r =



r1

r2

...

rn


=



x1

y1

z1

...

xn

yn

zn



. (3)

We denote (Ak ⊗ I3) in (2) as Ak.

As the considered states are bound states, the basis functions (2) need to be square integrable. In order for this

to happen Ak has to be positive definite. To achieve this, Ak is represented in the following Cholesky-factored form:

Ak = (LkLT
k ) ⊗ I3, where Lk is a n × n lower triangular matrix. If all matrix elements of Lk are real numbers, Ak

becomes automatically positive definite. The matrix elements of Lk are the variational parameters in the calculations

performed in this work. As these parameters can be varied without any restrictions in the range from −∞ to +∞,

the optimization of these parameters is unconstrained. This is always a desirable feature in any multiparameter

optimization.

We use the so-called spin-free formalism to impose the proper permutational symmetry of the wave function in the

present calculations [22–24]. The formalism involves the construction of an appropriate symmetry projector, P, that

by acting on the special part of each basis function implements the desired permutational symmetry. P is constructed

using the standard procedure that employs the appropriate Young operator specific to the spin state of the system

[22–24]. The construction of the Young operators in the ECG calculations was described in our earlier work [25]. For

1D states of the beryllium atom, the symmetry projector can be chosen as: P = (1 − P13)(1 − P24)(1 + P12)(1 + P34),

where Pi j permutes the spatial coordinates of the i-th and j-th electrons.

The internal Hamiltonian and the operators representing the relativistic corrections are symmetric with respect

to any permutation of the electron labels. Thus, in calculating the corresponding matrix elements (integrals), the

symmetry operator can be placed only in the ”ket” part of the integral. It appears there as P†P. For beryllium,

P†P consists of 4! = 24 terms. Thus, each matrix element is a sum of 24 different elementary spatial integrals. The
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algorithms for calculating the Hamiltonian and overlap matrix elements, and the matrix elements of the analytical

energy gradient vector with ECGs (2), were presented in Ref. [20].

C. Relativistic operators

The leading relativistic correction of the order of α2, where α is the fine-structure constant (α = 1
c , where c is the

speed of light in the atomic units), includes the mass-velocity (MV), Darwin (D), orbit-orbit (OO), and spin-spin

(SS) effects. As the considered states are singlet states, the spin-orbit interaction vanishes. In the internal coordinate

system, the MV, D, OO, and SS operators have the following forms:

mass-velocity term:

ĤMV = −
1
8

 1
m3

0

 n∑
i=1

∇ri


4

+

n∑
i=1

1
m3

i

∇
4
ri

 , (4)

Darwin term:

ĤD =
π
2

n∑
i=1

4
3

1
m2

0

+
1

m2
i

 q0qi δ
3(ri) +

π
2

n∑
i=1

n∑
j,i

1
mn

i
qiq j δ

3(ri j), (5)

orbit-orbit term:

ĤOO = −
1
2

n∑
i=1

n∑
j=1

q0q j

m0m j

 1
r j
∇ri

T
· ∇r j +

1
r3

j

rT
j · (r

T
j · ∇ri )∇r j


+

1
2

n∑
i=1

n∑
j>i

qiq j

mim j

 1
ri j
∇

T
ri
· ∇r j +

1
r3

i j

rT
ij · (r

T
ij · ∇ri )∇r j

 , (6)

and spin-spin term:

HSS = −
8π
3

4∑
i, j=1
j>i

qiq j

mim j

(
si · s j

)
δ
(
ri j

)
, (7)

where δ(r) is the Dirac delta function, ∇ri is the usual nabla operator acting on the coordinates of vector ri, and si

is the spin operator for electron i. For the states considered in this work si · s j = −3/4. The formulas for the matrix

elements of the above relativistic operators were presented in our recent paper [21].

D. The calculations

The present calculations are performed using double precision. In the first step of the calculations, the nonrelativistic

energies and the corresponding wave functions are determined for the lowest nine 1D states of beryllium. For each

state, the basis set is generated in a separate calculation that involves growing the set from a small number of functions

to the final basis set of 13500 ECGs using a procedure consisting of adding a certain number of functions one by one

and optimizing them. The optimization involves the use of the analytical energy gradient. After a certain number of

functions is added to the basis set (usually 100 functions), the whole set is reoptimized using one-function-at-a-time
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procedure. Such an approach allows to monitor whether a linear dependency appears in the basis set. After an

addition of a basis function or after an optimization of a basis function, the overlap integrals of the function with all

other functions in the basis set are checked and, if any of them exceeds an assumed threshold (e.g. 0.99), the function

is removed from the set and a new function is added in its place and optimized. A linear dependency among the basis

functions is undesirable because it may cause numerical instabilities in the calculation. The standard procedure is

used to solve the secular equation problem and to determine the linear expansion coefficients, ck, of the wave function

in terms of the ECGs and the corresponding total nonrelativistic energy. The basis set optimizations are carried out

for the 9Be isotope. After the basis-size reaches the size of 13500 functions for a particular state, the basis set is used

to determine the energy and the corresponding wave function for that state for ∞Be without reoptimization of the

Gaussian exponential parameters. As our previous calculations of S, P, and D states of atomic isotopomers showed

[20], a reoptimization of the nonlinear variational parameters is not needed when states of different isotopologues are

calculated. A recalculation of the ck expansion coefficients usually suffices to account for small changes of the total

energy and the wave function caused by the change of the nuclear mass [21]. The process of growing the basis sets for

the nine 1D states is by far the most time-consuming part of the calculations. These calculates have lasted for several

months. More details concerning the procedure used in growing the ECG basis set and in optimizing the Gaussian

exponential parameters are described in our previous paper [21].

The nonrelativistic wave functions obtained for the nine lowest states of 9Be and ∞Be are used in the calculations

of the relativistic corrections. After adding these corrections to the nonrelativistic energies, the interstate transition

energies are calculated.

III. RESULTS

The calculations are performed using a computer code written in Fortran 90 that employs the MPI (message passing

interface) protocol for parallelization. The procedures for calculating the MV, D, OO, and SS relativistic corrections

were recently added to the code [21]. The present work is the first full-scale application of the code to perform

high-accuracy study of a spectrum of Rydberg D states of a four-electron atom.

The first set of results concerns the nonrelativistic calculations. The results are shown in Table I. For each state the

results include the total 9Be nonrelativistic energies obtained with 10800, 11700, 12600, 13500, and 14400 ECGs and

the ∞Be energies obtained with 14400 ECGs. The 9Be results allow for assessing the convergence of the nonrelativistic

energies in terms of the number of Gaussians in the basis set. As one can see, for the first five states, the increase of

the basis set size by almost a thousand results in the decrease of the energy value expressed in hartrees in the ninth

digit after the decimal point. For the sixth state, the corresponding energy decrease is about 2×10−8, for the seventh

state, it is 5×10−8, and for the ninth state, it is 2×10−7. This type of the convergence pattern is expected. As the

excitation level increases, the number of the radial nodes in the wave function also increases and this leads to the need

to increase the number of ECGs in the basis set. When the same number of basis functions is used for all considered

states, the lower states are represented somewhat better than the upper states. The results suggest that the basis set

for the seventh, eighth, and ninth states should be, perhaps, grown more so that a similar convergence level of the
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energy is achieved for all nine states.

The convergence of the one- and two-electron Dirac delta functions, δri and δri j , the mass-velocity, Darwin, orbit-

orbit, and spin-spin relativistic corrections, and the total relativistic correction, ∆Er, for each of the nine considered

states of 9Be are shown in Table II. The calculations of these quantities are performed for 9Be for basis sets of 5100,

6000, and 6900 ECGs (5100, 6200, and 7100 for state 41D).

The corrections obtained with 6900 ECGs are added to the nonrelativistic energy obtained with the 13500 ECGs

to obtain the most accurate total energy that this work provides for each considered state. However, in order for

this procedure to work, the total relativistic correction needs to be well convergent at the 6900 ECG level. The ∆Er

value show in Table II. It should be noted that the relativistic correction shown in the last column of the table

is multiplied by α2 before it is added to the nonrelativistic energy to generate the final energy of each 1D state of

9Be. Upon examining the values of ∆Er one notices that for the lowest six states the results in going from 6000 to

6900 ECGs change in the eighth figure after the decimal point. For the last three states the change is the seventh

figure. This convergence level is sufficient to produce the interstate transition energies with accuracy similar or better

than the accuracy of the presently available experimental data. Table II also includes the relativistic corrections for

∞Be obtained with the 6900 ECGs. The total energies that include the relativistic corrections for the lowest nine

1D states of 9Be and ∞Be are shown in Table III. The results are obtained by adding the 6900-ECG relativistic

corrections to the corresponding nonrelativistic energies obtained with 14400 ECGs. The difference between the

relativistic corrections of 9Be and ∞Be accounts for the recoil effects. As one can see, this effect lowers the relativistic

correction by only 0.000000065 hatree for the lowest 1s22p2 state with respect to the ∞Be result. The lowering is equal

to 0.000000098 hartree for the 1s22s3d state, and 0.000000088-0.000000090 hartree for the next seven states. As the

lowering is only of the order of 0.002 cm−1, it has a negligible effect on the transition energies discussed next.

The nonrelativistic 9Be and ∞Be energies and the energies obtained by adding the relativistic corrections to the

nonrelativistic energies are used to calculate the interstate transition energies between adjacent 1D states. A com-

parison between the calculated and experimental results are shown in Table IV. As one can see, for the lowest

1s22p2
→ 1s22s3d transition, the finite mass effect contributes to the transition energy about 3 cm−1. The contri-

bution from the relativistic effects has an opposite sign and amounts to about -10 cm−1. The finite-mass effects

and the relativistic corrections are much smaller for transitions between higher excited states. For example, for the

1s22s4d → 1s22s5d transition, the finite-mass correction is only about 0.05 cm−1 while the relativistic correction is

about 0.40 cm−1. For the lowest transition, our best result of 7545.745(0.020) cm−1 agrees with the experimental

value of 7545.8558(0.0215) cm−1 within 0.1 cm−1. For the 1s22s4d → 1s22s5d transition, the best calculated energy

is 2221.480(0.030) cm−1 and the experimental energy of 2221.446(0.1) cm−1 is only by about 0.03 cm−1 lower. The

estimates of the uncertainties of the transition energies calculated at the ∆Enr (9Be) + ∆Er (9Be) level are shown in

parenthesis. The estimates correspond to the uncertainties due to using incomplete basis sets in the calculations of

the nonrelativistic energies and the relativistic corrections (not to neglecting higher order effects).
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IV. SUMMARY

In summary, transition energies between the adjacent nine lowest 1D Rydberg states (i.e. singlet L = 2 ML = 0 states)

of beryllium are calculated using the finite-nuclear-mass approach and with the inclusion of the leading relativistic

corrections. The algorithms for calculating these corrections were recently implemented [21]. The nonrelativistic

wave functions of the considered states are expanded in terms of explicitly correlated Gaussian functions. 13500

ECGs are used for each state. The calculated transition energies agree well with the experimental values. However,

the agreement can certainly be improved by including the leading quantum electrodynamics (QED) effects. Algorithms

for calculating these effects will be derived and implemented in our future work.
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TABLE I: Convergence of the nonrelativistic energy of the nine lowest 1D states of 9Be. The results for ∞Be calculated with

14400 ECGs are also shown. 1s2, which is common to all configurations, is omitted from the configuration designation of the

state (e.g. configuration 1s22p2 is abbreviated as 2p2). All values are given in a.u.

Enr (9Be) Enr (∞Be)

State 10800 11700 12600 13500 14400 14400

2p2 -14.407351369 -14.407351372 -14.407351374 -14.407351376 -14.407351377 -14.408237286

2s3d -14.372924943 -14.372924946 -14.372924949 -14.372924950 -14.372924952 -14.373824606

2s4d -14.353081965 -14.353081970 -14.353081974 -14.353081977 -14.353081979 -14.353982921

2s5d -14.342957421 -14.342957427 -14.342957432 -14.342957435 -14.342957439 -14.343858137

2s6d -14.337266124 -14.337266134 -14.337266141 -14.337266147 -14.337266153 -14.338166595

2s7d -14.333774957 -14.333774983 -14.333775003 -14.333775019 -14.333775032 -14.334675292

2s8d -14.331485295 -14.331485382 -14.331485447 -14.331485500 -14.331485551 -14.332385684

2s9d -14.329903838 -14.329904083 -14.329904280 -14.329904437 -14.329904590 -14.330804633

2s10d -14.328764726 -14.328765432 -14.328765988 -14.328766421 -14.328766823 -14.329666799
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TABLE II: Convergence of the one- and two-electron Dirac delta func-

tions, δri and δri j , the mass-velocity (MV), Darwin (D), orbit-orbit (OO),

and spin-spin (SS) relativistic corrections, and the total relativistic cor-

rection ∆Er of the nine lowest 1D states of 9Be. The results for ∞Be are

also shown. 1s2, which is common to all configurations, is omitted from

the configuration designation of the state (e.g. configuration 1s22p2 is

abbreviated as 2p2). The MV, D, OO, and SS corrections do not include

the α2 factor. All values are given in a.u.

State System Basis δri δri j MV D OO SS ∆Er

2p2
9Be

4200 8.633558 0.254970 -263.578907 212.164659 -0.716925 9.612133 -0.002264196

5100 8.633933 0.254964 -263.586368 212.174202 -0.716926 9.611901 -0.002264098

6000 8.634379 0.254962 -263.597258 212.185448 -0.716926 9.611840 -0.002264082

6900 8.634567 0.254950 -263.602407 212.190392 -0.716926 9.611398 -0.002264117

∞Be 6900 8.636206 0.254995 -263.668958 212.230732 -0.691180 9.613075 -0.002264052

2s3d
9Be

4200 8.735234 0.261564 -266.959430 214.605886 -0.878108 9.860744 -0.002309560

5100 8.735753 0.261556 -266.974376 214.619073 -0.878108 9.860427 -0.002309670

6200 8.736245 0.261540 -266.985919 214.631753 -0.878108 9.859827 -0.002309642

7100 8.736281 0.261535 -266.985932 214.632738 -0.878108 9.859652 -0.002309599

∞Be 7100 8.737868 0.261578 -267.051028 214.671813 -0.851836 9.861245 -0.002309501

2s4d
9Be

4200 8.761854 0.263001 -267.842749 215.250677 -0.920043 9.914906 -0.002321610

5100 8.761996 0.262958 -267.845767 215.255061 -0.920042 9.913287 -0.002321624

6000 8.762524 0.262933 -267.859370 215.268802 -0.920042 9.912335 -0.002321667

6900 8.762601 0.262927 -267.861287 215.270829 -0.920042 9.912130 -0.002321672

∞Be 6900 8.764210 0.262971 -267.927220 215.310458 -0.893685 9.913767 -0.002321582

2s5d
9Be

4200 8.767886 0.263333 -268.046505 215.396729 -0.929524 9.927435 -0.002324521

5100 8.767945 0.263288 -268.047324 215.399082 -0.929523 9.925710 -0.002324531

6000 8.768260 0.263240 -268.054719 215.407897 -0.929523 9.923919 -0.002324551

6900 8.768653 0.263239 -268.061844 215.417799 -0.929523 9.923873 -0.002324405

∞Be 6900 8.770267 0.263283 -268.127948 215.457539 -0.903145 9.925518 -0.002324317

2s6d
9Be

4200 8.769512 0.263423 -268.106365 215.436164 -0.932789 9.930817 -0.002325602

5100 8.769832 0.263407 -268.114479 215.444514 -0.932790 9.930211 -0.002325622

6000 8.770364 0.263378 -268.128185 215.458433 -0.932790 9.929131 -0.002325668

6900 8.770556 0.263365 -268.130397 215.463497 -0.932789 9.928630 -0.002325543

∞Be 6900 8.772171 0.263409 -268.196555 215.503274 -0.906403 9.930278 -0.002325455
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State System Basis δri δri j MV D OO SS ∆Er

2s7d
9Be

4200 8.768005 0.263574 -268.085616 215.395531 -0.934227 9.936522 -0.002326434

5100 8.770340 0.263460 -268.152689 215.456394 -0.934227 9.932209 -0.002326994

6000 8.770562 0.263432 -268.156083 215.462514 -0.934228 9.931145 -0.002326906

6900 8.770928 0.263420 -268.154863 215.471938 -0.934229 9.930686 -0.002326364

∞Be 6900 8.772544 0.263463 -268.221043 215.511729 -0.907838 9.932335 -0.002326276

2s8d
9Be

4200 8.765105 0.263781 -268.035300 215.318809 -0.934968 9.944314 -0.002327465

5100 8.768748 0.263659 -268.129188 215.412702 -0.934968 9.939699 -0.002327710

6000 8.769246 0.263565 -268.126803 215.426995 -0.934971 9.936159 -0.002327011

6900 8.769645 0.263536 -268.136303 215.437574 -0.934971 9.935061 -0.002327012

∞Be 6900 8.771261 0.263579 -268.202480 215.477363 -0.908577 9.936711 -0.002326923

2s9d
9Be

4200 8.762599 0.263948 -268.001648 215.252739 -0.935364 9.950613 -0.002328877

5100 8.764758 0.263884 -268.060442 215.308225 -0.935384 9.948204 -0.002329182

6000 8.766114 0.263813 -268.081960 215.343651 -0.935394 9.945525 -0.002328585

6900 8.766759 0.263796 -268.092858 215.360177 -0.935396 9.944869 -0.002328320

∞Be 6900 8.768376 0.263840 -268.159058 215.399986 -0.908997 9.946519 -0.002328232

2s10d
9Be

4200 0.264321 8.758158 -267.905564 215.134202 -0.935602 9.964658 -0.002329337

5100 0.264157 8.759324 -267.930308 215.166584 -0.935605 9.958500 -0.002329258

6000 0.263989 8.761740 -267.963175 215.230472 -0.935620 9.952138 -0.002327946

6900 0.263933 8.762366 -267.975800 215.247253 -0.935624 9.950058 -0.002327836

∞Be 6900 0.263977 8.763983 -268.041978 215.287050 -0.909219 9.951710 -0.002327747
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TABLE III: Energy values that are sums of the nonrelativistic energies and the relativistic corrections, Er, of the lowest nine

1D states of 9Be and ∞Be. 1s2, which is common to all configurations, is omitted from the configuration designation of the

state (e.g. configuration 1s22p2 is abbreviated as 2p2). The nonrelativistic energies are calculated with 14400 ECGs and the

relativistic corrections are calculated with 6900 ECGs. All values given in a.u.

State Er (9Be) Er (∞Be)

2p2 -14.409615494 -14.410501338

2s3d -14.375234551 -14.376134107

2s4d -14.355403651 -14.356304503

2s5d -14.345281845 -14.346182454

2s6d -14.339591696 -14.340492051

2s7d -14.336101396 -14.337001568

2s8d -14.333812562 -14.334712607

2s9d -14.332232910 -14.333132865

2s10d -14.331094659 -14.331994546
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TABLE IV: Comparison of the calculated interstate transition energies and with the experimental values [12] for the lowest

nine 1D states of the beryllium atom. 1s2, which is common to all configurations, is omitted from the configuration designation

of the state (e.g. configuration 1s22p2 is abbreviated as 2p2). The transition energies are calculated for ∞Be and 9Be without the

relativistic corrections (∆Enr) using the total nonrelativistic energies obtained with 14400 ECGs, and with the addition of the

relativistic correction ∆Er calculated with 6900 ECGs. The estimates of the uncertainties of the transition energies calculated

at the ∆Enr (9Be) + ∆Er (9Be) level are shown in parenthesis. The estimates correspond to the uncertainties due to using

incomplete basis sets in the calculations of the nonrelativistic energies and the relativistic corrections (not to neglecting higher

order effects). All energies are given in cm−1.

Transition ∆Enr (∞Be) ∆Enr (9Be) ∆Enr (9Be) + ∆Er (∞Be) ∆Enr (9Be) + ∆Er (9Be) Experiment

2p2
→ 2s3d 7552.710 7555.727 7545.752 7545.745(0.020) 7545.8558(0.0215)

2s3d→ 2s4d 4354.747 4355.029 4352.378 4352.379(0.020) 4352.5568(0.0705)

2s4d→ 2s5d 2222.133 2222.080 2221.479 2221.480(0.030) 2221.446(0.10)

2s5d→ 2s6d 1249.149 1249.093 1248.843 1248.843(0.030) 1248.814(0.13)

2s6d→ 2s7d 766.252 766.212 766.032 766.032(0.080) 766.33(0.17)

2s7d→ 2s8d 502.511 502.483 502.341 502.341(0.080) 502.37(0.16)

2s8d→ 2s9d 347.001 346.981 346.694 346.694(0.090) 347.03(0.19)

2s9d→ 2s10d 249.726 249.711 249.817 249.817(0.090) 249.03(0.30)


