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The propagation of electromagnetic waves in vacuum is often described within the geometrical
optics approximation, which predicts that wave rays follow null geodesics. However, this model is
valid only in the limit of infinitely high frequencies. At large but finite frequencies, diffraction can
still be negligible, but the ray dynamics becomes affected by the evolution of the wave polarization.
Hence, rays can deviate from null geodesics, which is known as the gravitational spin Hall effect
of light. In the literature, this effect has been calculated ad hoc for a number of special cases, but
no general description has been proposed. Here, we present a covariant Wentzel-Kramers-Brillouin
analysis from first principles for the propagation of light in arbitrary curved spacetimes. We obtain
polarization-dependent ray equations describing the gravitational spin Hall effect of light. We also
present numerical examples of polarization-dependent ray dynamics in the Schwarzschild spacetime,
and the magnitude of the effect is briefly discussed. The analysis reported here is analogous to that
of the spin Hall effect of light in inhomogeneous media, which has been experimentally verified.

I. INTRODUCTION

The propagation of electromagnetic waves in curved
spacetime is often described within the geometrical op-
tics approximation, which applies in the limit of infinitely
high frequencies [1, 2]. In geometrical optics, Maxwell’s
equations are reduced to a set of ray equations and a
set of transport equations along these rays. The ray
equations are the null geodesics of the underlying space-
time, and the transport equations govern the evolution of
the intensity and the polarization vector. In particular,
the geometrical optics approximation predicts that the
ray equations determine the evolution of the polarization
vector and there is no backreaction from the polariza-
tion vector onto the ray equations. However, this model
is valid only in the limit of infinitely high frequencies,
and there has been interest in calculating the light prop-
agation more accurately. At large but finite frequencies,
diffraction can still be negligible but rays can deviate
from geodesics. This is known as the gravitational spin
Hall effect of light [3].

The mechanism behind the spin Hall effect is the spin-
orbit interaction [4], i.e., the coupling of the wave po-
larization (spin) with the translational (orbital) motion
of the ray as a particle, resulting in polarization(spin)-
dependent rays. Related phenomena are found in many
areas of physics. In condensed matter physics, electrons
traveling in certain materials experience a spin Hall ef-

*Electronic address: marius.oanceca@aci.mpg.de
TElectronic address: jeremie.joudioux@aei.mpg.de
{Electronic address: idodin@princeton.edu
§Electronic address: derniz@sandia.gov
YElectronic address: claudio.paganini@aei.mpg.de
**Electronic address: lars.andersson@aei.mpg.de

fect, resulting in spin-dependent trajectories, and spin
accumulation on the lateral sides of the material [5, 6].
The effect was theoretically predicted by Dyakonov and
Perel in 1971 [7, 8], followed by experimental observation
in 1984 [9] and 2004 [10]. In optics, the polarization-
dependent deflection of light traveling in an inhomoge-
neous medium is known as the spin Hall effect of light
[4, 11]. The effect was predicted by several authors
[12-18] and has recently been verified experimentally by
Hosten and Kwiat [19] and also by Bliokh et al. [20].
The spin Hall effect of light provides corrections to the
geometrical optics limit, which scale roughly with the in-
verse of frequency. This, and several other effects, can
be explained in terms of the Berry curvature [1, 20-22].

There are several approaches aiming to describe the
dynamics of spinning particles or wave packets in gen-
eral relativity. Using a multipole expansion of the energy-
momentum tensor, the dynamics of massive spinning test
particles has been extensively studied in the form of
the Mathisson-Papapetrou-Dixon equations [23-27]. A
massless limit of these equations was derived by Souriau
and Saturnini [28, 29], and particular examples adapted
to certain spacetimes have been discussed in Refs. [30-
32].  Another commonly used method is the Wentzel-
—Kramers—Brillouin (WKB) approximation for various
field equations on curved spacetimes. For massive fields,
this has been done in Refs. [33, 34] by considering a
WKB approximation for the Dirac equation. For mass-
less fields, using a WKB approximation for Maxwell’s
equations on a stationary spacetime, Frolov and Shoom
derived polarization-dependent ray equations [35, 36] (see
also Refs. [37-40]). With methods less familiar in gen-
eral relativity, using the Foldy-Wouthuysen transforma-
tion for the Bargmann-Wigner equations in a perturba-
tive way, Gosselin et al. derived ray equations for photons
[41] and electrons [42] traveling in static spacetimes (see
also Refs. [43—45]). The gravitational spin Hall effect of



gravitational waves was also considered in Refs. [37, 46].
However, as discussed in Ref. [3], there are inconsisten-
cies between the predictions of these different models,
and some of these models only work in particular space-
times.

In this work, we are concerned with describing the
propagation of electromagnetic waves in curved space-
time beyond the traditional geometrical optics approxi-
mation. We carry out a covariant WKB analysis of the
vacuum Maxwell’s equations, closely following the deriva-
tion of the spin Hall effect in optics [20, 47, 48], as well
as the work of Littlejohn and Flynn [19]. As a result, we
derive ray equations that contain polarization-dependent
corrections to those of traditional geometrical optics and
capture the gravitational spin Hall effect of light. As
in optics, these corrections can be interpreted in terms
of the Berry curvature. To illustrate the effect, we give
some numerical examples of the effective ray trajectories
in the Schwarzschild spacetime.

Our paper is organized as follows. In Sec. II, we start
by introducing the variational formulation of the vacuum
Maxwell’s equations. Then, we present the specific form
of the WKB ansatz to be used, discuss the role of the
Lorenz gauge condition, and state the assumptions that
we are considering on the initial conditions. In Sec. III,
we present the WKB approximation of the field action
and the corresponding Euler-Lagrange equations. After
analyzing these equations at each order in the geometri-
cal optics parameter €, we obtain the well-known results
of geometrical optics. The dynamics of the polarization
vector is expressed in terms of the Berry phase. Finally,
we derive an effective Hamilton-Jacobi system that con-
tains O(¢) corrections over the standard geometrical op-
tics results. In Sec. IV, we use the corrected Hamilton-
Jacobi equation to derive the ray equations that account
for the gravitational spin Hall effect of light. The gauge
invariance of these equations is discussed, and noncanon-
ical coordinates are introduced. In Sec. V, we present
some basic examples. For Minkowski spacetime, we ana-
lytically show how the effective ray equations reproduce
the relativistic Hall effect [50] and the Wigner transla-
tions of polarized electromagnetic wave packets [51]. Us-
ing numerical computations, we consider the effective ray
equations on a Schwarzschild background and compare
with the results of Gosselin et al. [41]. The magnitude
of the effect is also estimated numerically. A summary
of the main results, including the effective Hamiltonian
and the effective ray equations, can be found in Sec. VI.

Notations and conventions

We consider an arbitrary smooth Lorentzian mani-
fold (M, g,.,), where the metric tensor g, has signature
— 4 +-+. The absolute value of the metric determinant is
denoted as g = | det g,,,|. The phase space is defined as
the cotangent bundle 7% M, and phase space points are
denoted as (x,p). The Einstein summation convention

is assumed. Greek indices represent spacetime indices
and run from 0 to 3. Latin indices from the beginning
of the alphabet, (a,b,c,...), represent tetrad indices and
run from 0 to 3. Latin indices from the middle of the
alphabet, (i,4,k,...), label the components of 3-vectors
and run from 1 to 3. For the curvature, we use the con-
ventions of Hawking and Ellis [52]. Finally, we use the O
notation as follows: a scalar function f depending on a
parameter € satisfies f(e) = O(e®) if there is a constant
M such that |f(€)| < Me® for small e.

II. MAXWELL’S EQUATIONS AND THE WKB
APPROXIMATION

A. Lagrangian formulation of Maxwell’s equations

Electromagnetic waves in vacuum can be described
by the electromagnetic tensor F,3. This is a skew-
symmetric real 2-form, which satisfies the vacuum
Maxwell’s equations [1, Sec. 22.4]

VoFa5=0,  ViaTs,=0. (2.1)

Solutions to Maxwell’s equations can also be represented
by introducing the electromagnetic four-potential A,
which is a real 1-form. Then, the electromagnetic ten-
sor can be expressed as

Fap = 2V s, (2.2)
and Eq. (2.1) becomes [1, Sec. 22.4]
DAz =0, D)f=vVPv,-6viv,.  (23)

This equation can be obtained as the Euler-Lagrange
equation of the following action:
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where the last equality is obtained using integration by
parts.

(2.4)

B. WKB ansatz

We assume that the vector potential admits a WKB
expansion of the form

Aa(z) = Re [Aa(x, k(x),e)eism/f] :

A2, k(x),€) = Ao (2, k(x)) + €A1 (2, k(2)) + O(c?),
(2.5)

where S is a real scalar function, A, is a complex ampli-
tude, and € is a small expansion parameter. The gradient
of S is denoted as

k(1) = V,,8(x). (2.6)



Note that the ansatz (2.5) differs from the classical
WKB ansatz since the complex amplitude A, depends
on the phase gradient k,(z). In other words, we as-
sume that A, is defined on the Lagrangian submanifold
x> (z,k(x)) € T*M. Such a dependency can be found
in standard textbooks, for example Ref. [53, Sec. 3.3]. Up
to an application of the chain rule, our Eq. (2.5) is equiv-
alent to the standard WKB ansatz. In particular, the de-
pendency of A in k appears naturally in the geometrical
optics equation (3.16), and we observe in Sec. ITI D that
the polarization vector and the polarization basis natu-
rally depend on k, which is why the k dependence was
introduced in Eq. (2.5).

The limit ¢ < 1 indicates that the phase of the
vector potential rapidly oscillates and its variations are
much faster than those corresponding to the amplitude
Au(z,k,€). The role of the expansion parameter € be-
comes clear if we consider a timelike observer traveling
along the worldline A — y*(\) with proper time A. This
observer measures the frequency

t%q
W= - 5
€

(2.7)

where t* = dy®/dA is the velocity vector field of the ob-
server. The phase function S and e are dimensionless
quantities. In geometrized units, such that ¢ = G =1
[54, Appendix F|, the velocity ¢t is dimensionless, and
ko has dimension of inverse length. Hence, w has the di-
mension of the inverse length, as expected for frequency.
Then, the observer sees the frequency going to infinity as
€ goes to 0.

C. Lorenz gauge

In this section, we introduce the Lorenz gauge in the
context of WKB approximations. We shall impose this
gauge condition [cf. (2.21) below] in the rest of the paper,
with the exception of Sec. III B, where it is relevant to
discuss some aspects of geometrical optics without this
condition.

Maxwell’s equations in the form (2.3) do not have a
well-posed Cauchy problem. In particular, they admit
pure gauge solutions. This problem is usually eliminated
by introducing a gauge condition. Here we shall focus on
the Lorenz gauge condition

Vad® = 0. (2.8)

We reproduce here, in the context of a WKB analy-
sis, the classical argument regarding the gauge fixing for
Maxwell’s equations (see for instance [55, Lemma 10.2]).
Using the identity

D,PAs —VaVPAs = —VPVsAs + RapA®,  (2.9)

one observes that, if Maxwell’s equations (2.3) and the
Lorenz gauge (2.8) are satisfied, then the wave equation

— VPV A0+ RapA® =0 (2.10)

holds. Conversely, by solving Eq. (2.10), with Cauchy
data satisfying constraint and gauge conditions, one ob-
tains a solution to Maxwell’s equations in the Lorenz
gauge.

Note that we consider here approximate solutions to
Maxwell’s equations

D, %Az = O(). (2.11)

Hence, it is sufficient to consider that the Lorenz gauge
is satisfied at the appropriate order:

VA = 0(ch).

We reproduce the standard argument recovering
Maxwell’s equation in the Lorenz gauge from the wave
Eq. (2.10), taking into account that we are considering
only approximate solutions. Assume that the wave equa-
tion holds:

(2.12)

— VAV sA o + RupAP = 0(). (2.13)
Upon inserting the WKB ansatz, this is equivalent to

kPksApa =0,

ikPkgArg + Aoo VP + 26V 540, = 0.

Furthermore, assume that the initial data for the wave
equation (2.13) satisfy

(2.14)

ko Ao =0,
P (2.15)
VaAg® + ik, A1¢ = 0.
Equation (2.13) implies that
VAV 5 (Vod®) = O(e71). (2.16)

The initial data (2.15) for Eq. (2.13) imply that, initially,

Vo A® = 0(eh). (2.17)
Observe that the condition
TPV 5 (Vo AY) = O(e%) (2.18)

is automatically satisfied, where 7% is a unit future-
oriented normal vector to the hypersurface on which ini-
tial data are prescribed. Hence, the equation satisfied
by the Lorenz gauge source function (2.16) admits initial
data as in Egs. (2.17) and (2.18) vanishing at the appro-
priate order in € [at O(e!) and O(e?), respectively]. This
implies that Maxwell’s equations

DAz = O(%), (2.19)
which can be expanded as
kP Aogka) = 0,
267V 300 — (VAo + ikaAr” ) ko — K*VaAos
— APV ko + AgaVsk? +ikPEgAi, =0,
(2.20)

are satisfied in the Lorenz gauge

kaAp® =0

o 1
Vo™ =0(e) & { Vodo® +ika A1 —0

(2.21)



D. Assumptions on the initial conditions

We end Sec. II by summarizing the initial conditions
that we shall use in the WKB ansatz for Maxwell’s equa-
tions.

1. The Lorenz gauge (2.21) is satisfied initially. This
condition is used to obtain a well-defined solution
to the equations of motion, as discussed in Sec. IT C.

2. The initial phase gradient k, is a future-oriented
null covector. As will be seen, the condition that
ko is null is a compatibility condition that follows
from the Euler-Lagrange equations and the Lorenz
gauge condition (2.21) at the lowest order in ¢; cf.
dispersion relation (3.8) below.

3. Initially, the beam has circular polarization; cf.
Eq. (3.47). In Sec. IIID we show that the ini-
tial state of circular polarization is conserved. In
Sec. IV B this assumption ensures a consistent tran-
sition transition between the effective dispersion re-
lation and the effective ray equations. Heuristically
speaking, due to the spin Hall effect, a localized
wave packet that initially has linear polarization
can split into two localized wave packets of oppo-
site circular polarization. While this does not rep-
resent a problem at the level of Maxwell’s equa-
tions (which are partial differential equations), the
same behavior cannot be captured by the effective
ray equations (which are ordinary differential equa-
tions) obtained in Sec. IV B.

III. HIGHER-ORDER GEOMETRICAL OPTICS

A. WKB approximation of the field action

We compute the WKB approximation for our field the-
ory by inserting the WKB ansatz (2.5) in the field action
(2.4):

J= / d'z \/gRe (Aaeis/c) D PRe (Ageis/e)
M
= i/M d4a:\/§ [A*O‘e_is/ﬁf?aﬁ (Ageis/6> + c.c.]
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(3.1)

D,PAg —ic (%“Df) Vuds -5 <vﬁﬂDaB> Ag = 0(e2),

D,PA* 1 e (%“Daﬁ) Vet 2 <vﬁﬂpa5> A% = 0(e2),

Vi

(%MD,ﬁ) Aoy -2 <%“%”Da5) (A" OV, Ay — AgV,A™)

If S has a nonvanishing gradient, then e*5/¢ is rapidly
oscillating. In this case, for f sufficiently regular, the

method of stationary phase [50, Sec. 2.3] implies

/ dta /g et23@/ e f(z) = O(€2). (3.2)
M

Upon expanding the derivative terms in Eq. (3.1), and
keeping only terms of the lowest two orders in €, we obtain
the following WKB approximation of the field action [for
convenience, we are shifting the powers of €, such that
the lowest-order term is of O(?)]:

—62J=/ diz /5| D, A% A
M

- %%“Daﬂ (A7V, A5 = AgV, A7) ] +0(e),
(3.3)

where

1 1
B_ Ly ausp 1y 8
Da Qk,uk 60( Qkak )

1

v 1 (3.4)
VltDaﬁ — k:“ég _ §5gkﬂ _ Egﬂﬂk’a-

Here, D,” represents the symbol [77] of the operator

D,P, evaluated at the phase space point (z,p) = (x, k),
v

and we are using the notation V#D_? for the vertical

derivative (Appendix A) of D,?, evaluated at the phase
space point (z,p) = (z, k).

The action depends on the following fields: S(x),
VuS(x), Au(z,VS), V,[Au(z,VS)], A" (z,VS),
V. [A**(z,VS)]. Following the calculations in Ap-
pendix B, the Euler-Lagrange equations are

= O(e?).




In the above equations, the symbol D_# and its verti-
cal derivatives are all evaluated at the phase space point
(z,k). Note that the same set of equations can be ob-
tained in a more traditional way, by inserting the WKB
ansatz (2.5) directly into the field equation (2.3), or by
following the approach presented in Ref. [58]. More gen-
erally, a detailed discussion about the variational for-
mulation of the WKB approximation can be found in
Ref. [59].

B. Zeroth-order geometrical optics

Starting with Egs. (3.5)-(3.7), and keeping only terms
of O(?), we obtain

D, Ags =0, (3.8)

D PA* =0, (3.9)

Vi

(%“Df) Ag™Ags| =0. (3.10)

Equation (3.8) can also be written as

D, P Aog = = (kuk"05 — kokP) Agg = 0. (3.11)

N | =

The matrix D,” admits two cigenvalues when k, is not
a null covector. The first eigenvalue is 1k,k* with
eigenspace consisting of covectors perpendicular to k.
The second eigenvalue is 0 with eigenvector k,. When k,
is null, the matrix D, ? is nilpotent. Tt admits a unique
eigenvalue 0 whose eigenspace is the orthogonal to k,
which contains the covector k.

The Lorenz gauge condition (2.21) implies that Ay,
is orthogonal to k,. Hence, a necessary condition for
Eq. (3.8) to admit a nontrivial solution is that k, is a
null covector. It is also possible to deduce that k, is
a null covector without using the gauge condition. For
completeness, we present this argument below.

Equation (3.11) admits nontrivial solutions if and only
if Ao is an eigenvector of D, ? with zero eigenvalue. Two
cases should be discussed: k. is a null covector, or k, is
not a null covector.

Assume first that k. is not a null covector, k*k, # 0.
Then, Eq. (3.11) leads to

kP Ao g
Aoy = —Fka- 12
0(1 kuku (3 )
This entails that
Ao[akﬁ] =0 or ?aﬁ = V[Q.A/g] = O(EO). (3.13)

In other words, when k£, is not a null covector, the cor-
responding solution is, at the lowest order in €, a pure

gauge solution. Since the corresponding electromagnetic
field vanishes, we do not consider this case further.
If kq is null, k#k, =0, Eq. (3.11) implies

kP Aoz = 0. (3.14)

This is consistent with the Lorenz gauge condition (2.21)
at the lowest order in €. A similar argument can be ap-
plied for the complex-conjugate Eq. (3.9), from which we
obtain ko, A" = 0.

Using Egs. (3.8)-(3.10), we obtain the well-known sys-
tem of equations governing the geometrical optics ap-
proximation at the lowest order in e:

k ki =0, (3.15)
kAo, = kaAg*™® =0, (3.16)
Y, (k"J0) = 0, (3.17)

where Jy = Ag** Ay, is the lowest-order intensity (more
precisely, Jo is proportional to the wave action density
[59]). Equation (3.17) is obtained from Eq. (3.10) by
using the orthogonality condition (3.16). Using Eq. (2.6),
we have

Vika = Vaky,, (3.18)

and we can use Eq. (3.15) to derive the geodesic equation
for K,

KV, k, = 0. (3.19)

C. First-order geometrical optics
Here, we examine Eqs. (3.5) and (3.6) at order €' only:

DA, i (%#Dal*) VAo
. (3.20)
1 v
-3 (vwwf) Ao =0,
DA +i (%ﬂgﬁ) V, A"
(3.21)

5 (vﬁwﬁ) Ag*® =0,

Using Eq. (3.4), we can also rewrite Eq. (3.20) as follows:
Iz 1 Iz 1 B
MV, Ag — §kaVNA0 — §k5VaA0
1 1
- §kakﬂA1B + 5400 Vyuk! (3.22)
1 1
— ZlAoﬁvﬁka — Z—leﬁvakﬁ =0.
Using Eq. (3.18), we can rewrite the last two terms as

1 1 1
- ZAoﬁvﬁka - ZAoﬁvakg = —§A0@vak5. (3.23)



Using Eq. (3.16), we also have

0=Va(ksA”) = ksVaAs” + A’Vaks.  (3.24)
Then, Eq. (3.22) becomes
1
MV Ao + §A0avuk”
(3.25)

- %ka (V, Ag* + ik, A*) = 0.

The last term can be eliminated by using the Lorenz
gauge (2.21). The same steps can be applied to the
complex-conjugate Eq. (3.21):

1
BV Aon + 5 A0 Vuk =0,
) R ) (3.26)
k VMA() ‘ +§A0 V. k' =0.

Furthermore, using the lowest-order intensity Jy, we can
write the amplitude in the following way:

AOa - \/j_Oa()om AO*a = \/%aﬂ*aa

where ag,, is a unit complex covector (i.e., ag**ag, =
1) describing the polarization. Then, from Eq. (3.26),
together with Eq. (3.17), we obtain

k“Vuaga = k“Vuao*a = 0.

(3.27)

(3.28)

The parallel propagation of the complex covector ag,
along the integral curve of k* is another well-known re-
sult of the geometrical optics approximation.

D. The polarization vector in a null tetrad

We observed that the polarization vector satisfies the
orthogonality condition

k%ag, = 0. (3.29)
Consider a null tetrad [60, Sec. 3] {ka, T, Mo, Mo} sat-
isfying
mem® =1, kon® = —1,
kok® = nen® = mem® = mam® =0, (3.30)

kom® = kom® = negm® = nom® = 0.

Note that we use the metric signature opposite to that
used in Ref. [60, Sec. 3]. The covectors ngy,mq, My are
not assumed to be parallel-propagated along the geodesic
generated by k<. It is only &, that is parallel-propagated
along the geodesic generated by k¢, in accordance with
Eq. (3.19). Since the null tetrad is adapted to the cov-
ector kq, the orthogonality conditions (3.30) imply that
me and m, are functions of k,. The polarization cov-
ector ag, is orthogonal to k., so we can decompose it
as

0o (T, k) = z1(x)ma(x, k) + 20(x) M (T, k) + 23(2) ko (),
(3.31)

where z1, 29, and z3 are complex scalar functions. Since
ape 18 a unit complex covector, the scalar functions z;
and zo are constrained by

2121+ 2520 = 1. (3.32)
It is important to note that the decomposition (3.31), and
more specifically, the choice of m,, requires choosing a
null covector n,. Fixing n, is equivalent to choosing a
unit timelike covector field ¢, that can represent a family
of timelike observers. We can always take n, as

1
ta = — ko + ewng.

3.33
2ew ( )

Once ny (or ty) is fixed, the remaining SO(2) gauge free-
dom in the choice of m,, is described by the spin rotation
ko = kay  Na = Ny Mo — €@ m (3.34)
for ¢(z) € R. Polarization measurements will always
depend on the choice of m, and m,. However, as shown
in Sec. IV B 1, the modified ray equations describing the
gravitational spin Hall effect of light do not depend on the
particular choice of m, and m,. Thus, we can work with
any smooth choice of m,, and m,, that satisfy Eq. (3.30).
Using Egs. (3.31) and (3.19), the parallel-transport
equation for the polarization vector becomes

0= k“Vuaoa
= 21k*V, ma + 20k*V Mg + Mo k*V 21
+ Mo kHV 20 + ko k*V |, 23.

(3.35)

Contracting the above equation with m®, m®, and n®,
we obtain

MV 21 = —21mOkHV ymeg,
KMV p2o = —2om®kPV ymg, (3.36)
KMV 25 = —(21m® + 2om®)kHV yng,.

Recall that in the above equations, the covectors m, and
Mg are functions of x and k(z). The covariant derivatives
are applied as follows:

KMV yme = k*V, [ma(z, k)]

u .
+ R (V) <V”ma> (z, k)

h
= kuvumaa

h
where V, is the horizontal derivative (Appendix A). It
is convenient to introduce the two-dimensional unit com-
plex vector

(3.38)



which is analogous to the Jones vector in optics [47, 48,
61, 62]. We also use the Hermitian transpose z', defined
as follows:

2f = (25 23). (3.39)

Then, the equations for z; and z; can be written in a
more compact form:

kMY 2z = ik* BLo3z, (3.40)
where o3 is the third Pauli matrix,
1 0
g3 = (0 _1) 5 (341)

and B,, is the real 1-form extending to general relativity
the Berry connection used in optics [17, 62]:

j h h
B, (z,k) = : (m‘lvuma — mavuma>
2 (3.42)
h
= im*V,ma.

Furthermore, if we restrict z to an affinely parametrized
null geodesic 7 — z#(7), with &* = k*, we can write
2 =1k"B,03%, (3.43)

where 2 = ##V,z. Integrating along the worldline, we

obtain
et(7) 0
Z(T) = 0 e—i'y(r) Z(O)v (344)
where 7 represents the Berry phase [47, (2],
71
v(11) = / drk*B,,. (3.45)
TO

Using either Eq. (3.36) or Eq. (3.43), we see that the
evolution of z; and z3 is decoupled in the circular polar-
ization basis, and the following quantities are conserved
along k*:

1=zl + 2320 = 272,

T (3.46)

s=2121 — 2520 = 2032,

Based on our assumptions on the initial conditions
(Sec. 11 D), we only consider beams which are circularly
polarized, i.e. one of the conditions

z(0)=<(1)> or z(O):<(1)> (3.47)

holds. Thus, we have s = +1, depending on the choice
of the initial polarization state.

The results described in this section are similar to the
description of the polarization of electromagnetic waves
traveling in a medium with an inhomogeneous index of
refraction [62].

E. Extended geometrical optics

Now, we take Egs. (3.5)-(3.7), but without splitting
them order by order in €. Our aim is to derive an ef-
fective Hamilton-Jacobi system that would give us O(e)
corrections to the ray equations.

1. Effective dispersion relation

By contracting Eq. (3.5) with A** and Eq. (3.6) with
Apg, and also adding them together, we obtain the follow-
ing equation:

D, PA* A,
1€

; (%ﬂpf) (A"V, Ay — AgV, A™) = 0(2).

(3.48)

Using Eqs. (3.4) and (3.16), we can rewrite the above
equation as follows:

1 *Q *Qu *Qu
Ekuk‘u(Ag Aoa + EAQ Ala + €A1 Aoa)

1€ « *
— 5 (A" Vi doa — A0aVido™) (3.49)
+ %ka (Ag™V,, Ag® — A"V, Ag™®) = O(c2).
Using Eq. (3.16), we obtain
0=A0""V, (kaAp”
el (3.50)
= ko A"V Ao + Ay AV K,
SO we can write
Tha (A, Ao — 40"V, A0™)
= _gvukaAo*[“Aoa] (3.51)
where the last equality is due to Eq. (3.18). Then,
Eq. (3.48) becomes
%kuk“(Aoona +€Ag™ A1 + €A1 Ag,)
. (3.52)
= 5k (A" Vi doa — Ao Vido™) = 0(e?).
Let us introduce the O(e!) intensity
J=A"A,
. . . 5 (3.53)
= Ay aA()a + €Ay aAla + €Ay aAoa + O(E )
Then, we can rewrite the amplitude as
Aq = V9aa = VI (agy + €a14) + O(€?), (3.54)



where a, is a unit complex covector. Then, from

Eq. (3.52) we obtain
1 M i€ m *o *O 2
§kﬂ,]€ - Ek' (ao Vuaoa - aoavuao ) = O(E )
(3.55)
This can be viewed as an effective dispersion relation,

containing O(e) corrections to the geometrical optics
equation (3.15). Finally, let us introduce

1€

K=k = 5

(a0™*V a0 — 0o Vyao™) (3.56)
and rewrite the effective dispersion relation as
1 u 9
§KNK = 0(e”). (3.57)
It is worth noting that this equation can also be obtained

directly from the effective field action (3.3), specifically
by varying the latter with respect to J.

2. Effective transport equation

Using Eqs. (3.4), (3.15), and (3.16), the effective trans-
port equation (3.7) becomes

VM kH (A()*aAoa + €A0*aA1a + €A1*aA0a)

— %g#” (Ao*avona _ AOQVI/AO*&)
+ % (Ag™* Vo Agh — AgH'V o Ag™) (3.58)

7 (A0 Vads® — A" Vado™)

€

= gk (Ao™As" + A" Ag") | = O(€?).

We can perform the following replacements in the above
equation:
Ap" Vo Ao = Vo (A" Ag") — VAo ™ Ao,

3.59
Vo Ao™ Ag® = Va (Ag™ Ag®) — Ag™ Vo Ag®. (3.59)

After rearranging terms, the effective transport equation
becomes

VM [k“ (Ao*aAga + €A0*aA1a + EAl*aA()a)

i€ *Qu *Qu
- Egl“/ (AO VI/AO(M - AOavVAO )

- %Ao” (Vado™ — ikgAy™) (3.60)
i€

+ 51‘10*‘u (VQAOQ + ikaAla)

+ %va (AO*[QAOM)] — 0(e2).

The last term above vanishes due to the symmetry of the
Ricei tensor:

ViV (A0 40" ) = V1, V) (40" Ag")

= (ROWMV _ leau) AO*aAON
= (Ray — Rua) Ao™™ Ap"
=0.
(3.61)

Furthermore, after using the Lorenz gauge condition
(2.21), we are left with the following form of the effective
transport equation:

VM kH(AO*OéAOa + €A0*aA1a + EAl*aAoa)

— L g (40"V, gy — AgaVyAg™)

5 = 0(€?).

(3.62)

Introducing the intensity J and the vector K*, we obtain

VH{J {k” - %QW (a0 *Vy a0, — aOavuaO*a)] }
=V, (IK") = 0(e?).
(3.63)

This is an effective transport equation for the intensity J,
which includes O(¢) corrections to the geometrical optics
Eq. (3.17). As discussed in Ref. [59], the direction of K*
coincides with the direction of the wave action flux.

IV. EFFECTIVE RAY EQUATIONS
A. Hamilton-Jacobi system at the leading order

The lowest-order geometrical optics equations (3.15)
and (3.17) can be viewed as a system of coupled partial
differential equations:

(4.1)
(4.2)

Lo
59” kukv =0,
Y, (Jokt) = 0,

where k, = V,S. Equation (4.1) is a Hamilton-Jacobi
equation for the phase function S, and Eq. (4.2) is
a transport equation for the intensity Jo [63]. The
Hamilton-Jacobi equation can be solved using the
method of characteristics. This is done by defining a
Hamiltonian function on 7% M, such that

1
H(z,VS) = §g‘“’kuk,, =0. (4.3)
It is obvious that in this case, the Hamiltonian is
1
H(z,p) = 59" pups- (4.4)
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Note that in contrast to the dispersion relation (4.3), the
Hamiltonian (4.4) is a function on the whole phase space
T*M, with p, being an arbitrary covector. Hamilton’s
equations take the following form:

OH
j}u = % = g,ul/p”’ (4.5)
i
. OH 1
P =" ~ —§3ugaﬁpap5. (4.6)

Given a solution {z*(7),p,(7)} for Hamilton’s equations,
we obtain a solution of the Hamilton-Jacobi Eq. (4.3) by
taking [64, p. 433]:

T1

dr [i#p, — H(z,p)) + cost.

(4.7)
Note that the above equation represents an action, with
the corresponding Lagrangian related to the Hamiltonian
(4.4) by a Legendre transformation [65, Ex. 3.6.10]. The
Euler-Lagrange equation is equivalent to the geodesic
equation [65, Th. 3.7.1] and with Hamilton’s equations
(4.5) and (4.6). Once the Hamilton-Jacobi equation is
solved, the transport Eq. (4.2) can also be solved, at least
in principle [63]. However, our main interest is in the ray
equations governed by the Hamiltonian (4.4). The cor-
responding Hamilton’s equations (4.5) and (4.6) describe
null geodesics. These equations can easily be rewritten
as

S (), pu(m) = /

To

B 4 Th i’ =0, (4.8)
or in the explicitly covariant form:
PV, pt =iV, i = 0. (4.9)

B. Effective Hamilton-Jacobi system

The effective dispersion relation (3.57), together with
the effective transport equation (3.63) introduce O(el)
corrections over the system discussed above:

1
2

Vu{j |:k'” — %ng (ao*avyaoa — aoavyao*a):l } = 0(62).

(4.11)

Using Eq. (3.31), the effective dispersion relation be-
comes
L kb, — Sk (10,2 — 8,212) — eskB, = O(

2g kv =5 (z Wz Wz z) €S = 0(€7),
(4.12)

where B, = B, (x, k) is the Berry connection introduced

in Eq. (3.42), and s = +1, depending on the initial polar-

ization. Using Eq. (3.44), together with the assumption

9"k, k, — %elf” (a0 *V 4age — 06 Vuao™®) = 0(e?),

on the initial polarization, we can write:

- gkz“ (20,2 — 0,272) = esk” 0, (4.13)

Since the value of s is fixed by the initial conditions, the
only unknowns are the phase function S and the Berry
phase 7. We can write an effective Hamilton-Jacobi equa-
tion for the total phase S = S + esy:

N1
H (:c vs) = 59" kuk, + esk" 0,y — esk" By, + O(€?)

1 - - -
§Q‘WVMSVVS — €sg" BV, S + 0(e?).

(4.14)

Note that the phase S represents the overall phase factor,
up to order O(€?), of a circularly polarized WKB solution,
Ao = Re(vVImaee’S/€) or A, = Re(VImae 1e/e),
depending on the state of circular polarization. As dis-
cussed in Ref. [15], the Berry phase «y, which comes as a
correction to the overall phase of the WKB solution, is
responsible for the spin Hall effect of light. The corre-
sponding Hamiltonian function on T*M is

1 v 174
H(a?,p) = 59” Pubv — 539” p;LBv($7p)a (4'15)
and we have the following Hamilton’s equations:
v
o = g"p, —es (B“ +paV“Ba> , (4.16)

. 1
Dy = —3 Mgo‘ﬁpapg + €SPa (Bug“BB@ + g“ﬁa”Bﬁ) )
(4.17)

These equations contain polarization-dependent correc-
tions to the null geodesic Eqs. (4.5) and (4.6), represent-
ing the gravitational spin Hall effect of light. For e = 0,
one recovers the standard geodesic equation in canonical
coordinates.

We can also write these ray equations in a more com-

pact form
in 0 5#) ( §H>
. = v Y ",
() - (5 ) (2

where the constant matrix on the right-hand side is the
inverse of the symplectic 2-form, or the Poisson tensor

[66].

(4.18)

1. Noncanonical coordinates

The Hamiltonian (4.15) contains the Berry connection
B,,, which is gauge dependent. The latter means that
B,, depends on the choice of m, and m,; for example,
the transformation mgy — mqee'® causes the following
transformation of the Berry connection:

By~ B, — V6. (4.19)



This kind of gauge dependence was considered by Little-
john and Flynn in Ref. [19], where they also proposed
how to make the Hamiltonian and the equations of mo-
tion gauge invariant. The main idea is to introduce
noncanonical coordinates such that the Berry connec-
tion is removed from the Hamiltonian and the symplectic
form acquires the corresponding Berry curvature, which
is gauge invariant. This is similar to the description of
a charged particle in an electromagnetic field in terms
of either the canonical or the kinetic momentum of the
particle. The Berry connection and Berry curvature play
a similar role as the electromagnetic vector potential and
the electromagnetic tensor [67].
We start by rewriting the Hamiltonian (4.15) as

H($7p) = HO(J:?p) - GSgHVpHBU(LE,p), (420)

where Hy = % 9"pupy. Following Ref. [19], the Berry
connection can be written in the following way, by using
the definition of the horizontal derivative:
h
P B, (x, p) = ip"m*V  mg
v
= ip'm*V ma +ip'p. Ty ,m*VPm, (4.21)

. . HO v
=i—m*V, mq —i=—m*V’m,.
oxH

The Berry connection can be eliminated formally from
the Hamiltonian (4.15) by considering the following sub-
stitution on T M:

v
XH =t + iesm®*VFmyg,

— i O
P, =p, —iesm®V mq.

(4.22)
(4.23)

It is possible to obtain this substitution as the lineariza-
tion of a change of coordinates. For more details, see
Appendix D.

Since the symplectic form transforms nontrivially un-
der this substitution, (X, P) are noncanonical coordi-
nates. The Hamiltonian (4.15) is a scalar, so we obtain

H'(X,P)=H(x,p)

v
=H (X“ —iesm*Vhmey, P, + 7168772,‘”Vuma)

OH, dH
=H(X,P) - iesﬁma%"mo{ + ies ap; m*V Mg,
— Hy(X, P).

(4.24)

In the new coordinate system (X, P), we obtain the fol-
lowing Hamiltonian:

1 14
H'(X,P) = 5¢" (X)PP,. (4.25)

The corresponding Hamilton’s equations can be written
in a matrix form as

5 =T %)}(I' )
(5) - (%

(4.26)
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where T is the Poisson tensor in the new variables. Fol-
lowing Marsden and Ratiu [66, p. 343], we obtain

T — €s (Fpp)w 5
—6;, — s (Fap),

where we have the following Berry curvature terms:

0F + €s (Fxp)uu

s (For) ) ., (427)

v

(Fpp)l/u — i(%l—bﬁla%wﬂla _ %yﬁla%”’ﬂla
+ m“%[“%”]ma — ma%[“%y]m“)
(FII)VH = i(VumaVVma - Vumuvuma
+ MV, Vi me — maV[uV,,]ma) ,
(pr>llu - = (Ffp)ﬂu
—i (%”mavyma - v,ma%ﬂma> .
(4.28)

The Poisson tensor in noncanonical coordinates 7" auto-
matically satisfies the Jacobi identity, since it is a covari-
ant quantity obtained from the Poisson tensor in canon-
ical coordinates 1" through a change of variables on the
cotangent bundle.

Simplified expressions for the Berry curvature terms
can be found in Appendix C. Now we can write Hamil-
ton’s equations in the new variables:

XH = P* + esP” (Fp) !

+ esIG, Po PP (Fyp)™,
By = I'§,PoP’ — esP” (Fra),,

— esTg, PaP? (Fup)”, -

(4.29)

(4.30)

The last term on the right-hand side of Eq. (4.29) is the
covariant analogue of the spin Hall effect correction ob-
tained in optics, (p x p) /|p|?, due to the Berry curva-
ture in momentum space [4, 47]. This term is also the
source of the gravitational spin Hall effect in the work
of Gosselin et al. [41]. In Eq. (4.30), the second term
on the right-hand side contains the Riemann tensor and
resembles the curvature term obtained in the Mathisson-
Papapetrou-Dixon equations [27].

Given a null covector P, the class of Lorentz trans-
formations leaving P, invariant define the little group,
which is isomorphic to SE(2), the symmetry group of the
two-dimensional Euclidean plane [51]. In terms of a null
tetrad {P,n,m,m}, the action of the little group can be
split into the following types of transformations [68, p.
53]:

Type 1: P— P n—n,
m > mei‘z’, m ﬁw_w,
Type 2: P— P, n—n+am+am+ adb,

m— m+aP, m— m+aP,
(4.31)



where ¢ is a real scalar function and a is a complex scalar
function. The transformations of Type 1 are the spin ro-
tations mentioned in Sec. III D, while the transformations
of Type 2 can be considered as a change of observer t,,
based on Eq. (3.33). It can easily be checked that the
Berry curvature terms in Eq. (4.28) are invariant under
Type 1 transformations. However, the Berry curvature
terms are not invariant under Type 2 transformations.
As a consequence, the ray equations (4.29) and (4.30)
depend on the choice of observer. It is shown in the fol-
lowing section how this observer dependence is related
to the problem of localizing massless spinning particles
[50, 51].

V. EXAMPLES

In this section, we apply the modified ray equations
describing the gravitational spin Hall effect of light to
two concrete examples. The first example, concerning
the relativistic Hall effect and Wigner translations, is
treated analytically, while the second example, describ-
ing the propagation of polarized light rays close to a
Schwarzschild black hole, is treated numerically.

When working with the modified ray equations, in ei-
ther the canonical form given in Eqgs. (4.16) and (4.17)
or the noncanonical form given in Eqgs. (4.29) and (4.30),
one needs to specify the background metric g,,, and
the choice of polarization vectors m® and m®. The po-
larization vectors are needed in order to compute the
Berry connection and the Berry curvature. A partic-
ular choice of polarization vectors can easily be con-
structed by introducing an orthonormal tetrad (eq)*,
with (eg)# = t* representing our choice of family of time-
like observers. Adapting the polarization vectors used in
optics [47], we can write p* = P%(eq)*, v# = V%(eq)H,
and w* = W% (e, )", where the components of these vec-
tors are given by

PO 0
P! 1 [ —p2
a __ a _
Pt = P2 ) Ve = Pp Pl )
p3 0
0 (5.1)
1 pip3
a __
we = 1—:)])]_-)g P2P3 )
—(Pp)?
where
P, =\/(PY)* + (P?)?,
(5.2)

Py = (P’ + (P2)? + (P9,

The vectors v* and w* are real unit spacelike vectors that
represent a linear polarization basis satisfying Eq. (C2).
They are related to the circular polarization vectors m®
and m® by Eq. (C1). Using this particular choice of po-
larization vectors, the Berry connection and the Berry
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curvature terms can be computed, and the modified ray
equations can be integrated, either analytically or numer-
ically.

A. Relativistic Hall effect and Wigner translations

The relativistic Hall effect [50] is a special relativis-
tic effect that occurs when Lorentz transformations are
applied to objects carrying angular momentum. In par-
ticular, consider a localized wave packet carrying intrin-
sic angular momentum and propagating in the z direc-
tion in Minkowski spacetime. If a Lorentz boost is ap-
plied in the = direction, then the location of the Lorentz-
transformed energy density centroid is shifted in the y
direction, depending on the orientation of the angular
momentum. This shift corresponds to the Wigner trans-
lation [51, 69, 70].

The following example shows that an effect analogous
to the Wigner translation discussed in Ref. [51] appears
in the effective ray equations (4.29) and (4.30). We con-
sider the Minkowski spacetime in Cartesian coordinates
(t,z,vy,z), with

ds? = —dt? + da? + dy? + d2?, (5.3)
and we want to compare the effective rays obtained from
Egs. (4.29) and (4.30) with two different choices of ob-
server. In the first case, we consider the standard or-
thonormal tetrad

ey — é)t, €1 = (’)m, €y = {)y, €3 = (f)z, (54)
where (eg)* is our first choice of observer. With this or-
thonormal tetrad, the polarization vectors are defined as
in Eq. (5.1), and the Berry curvature terms can be com-
puted. The ray equations reduce to the geodesic equa-
tions

Xt =pr P,=0. (5.5)
In order to describe light rays traveling in the z direc-
tion, we impose initial conditions X*(0) = (0,0,0,0) and

P,(0) =(—1,0,0,1), and we obtain

XH(r) = (r,0,0,7),

P,(r)=(-1,0,0,1). (56)

As a second case, we apply a time-dependent boost in
the z direction to the standard orthonormal tetrad in
Eq. (5.3). We obtain

cosht 9y —sinhtd,,

ey = A
—sinhtd; + cosht d,, ey =0,

!
€1

where (e)" is our second choice of observer. Note that
(e()" represents a family of observers boosted in the z di-
rection, with the rapidity of the boost represented by the
time coordinate t. The polarization vectors are chosen as
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Figure 1: Results of numerical simulations illustrating the gravitational spin Hall effect of light around a Schwarzschild black
hole. The effect is exaggerated for visualization purposes. The two figures present the same rays from different viewing angles.
The central sphere represents the Schwarzschild black hole, and the small orange sphere represents a source of light. The blue
and the red trajectories correspond to rays of opposite circular polarization, s = +1, while the green trajectory represents a
null geodesic. We take rs = 1, and we start with the initial position z°(0) = (=50rs, 15r5,0), and initial normalized momentum
p; = (1,0,0). The wavelength X is set to a sufficiently large value to make the effect visible on this plot.

in Eq. (5.1), but this time with respect to the orthonor-
mal tetrad in Eq. (5.7). The Berry curvature terms in
Egs. (4.29) and (4.30) can be explicitly computed, and
we obtain

XH = PH + esP” (Fpy) M

P,=0,
where
0
P, 0
PV (F) = ——t 5.10
(Fpz), wrrl | P (5.10)
-P,

We impose the same initial conditions as in the previous
case: X#(0) =(0,0,0,0) and P,(0) = (—1,0,0,1). Since
the frequency is defined as w = —(ep)" P, /e, the small
parameter € can be identified with the wavelength of the
initial light ray, as measured by the observer (ep)* at the
spacetime point z# = X#(0). Then, the ray equations
can be analytically integrated, and we obtain

B} — _
XH"(r) = (7,0, —setanh 7, 7) , (5.11)
P,(r)=(-1,0,0,1).
Thus, given a circularly polarized light ray traveling in
the z direction and two families of observers (eg)* and
(eg)*, which are related by boosts in the z direction, we
obtained the polarization-dependent Wigner translation
in the y direction, Ay = setanhr, in agreement with
[51, Eq. 28]. Note that the Wigner translation is always
smaller than one wavelength.

Recovering the results of Ref. [51] suggests that a
worldline X*#(7) representing a solution of Egs. (4.29)
and (4.30) could be interpreted as the location of the

energy density centroid of a localized wave packed with
definite circular polarization, as measured by the chosen
family of observers.

B. The gravitational spin Hall effect on a
Schwarzschild background

To illustrate how the polarization-dependent correc-
tion terms modify the ray trajectories on a Schwarzschild
background, let us provide some numerical examples. For
convenience, we perform the numerical computations us-
ing canonical coordinates (7, p) and treat 2° as a parame-
ter along the rays. Hence, Egs. (4.16) and (4.17) become

20 =1, (5.12)
g¥p, —€s (Bz + po‘V’Ba)

it = . , (5.13)
g%p, — €s (BO —l—pO‘VOBa)

i = ~10:9°Ppaps + €spa (0:g°° Bg + g*P9,B5)

1 T ) b
9%p, — €s (BO + p"‘VOBa>
(5.14)
and pyg is calculated from

1
59" Pupy — €59" By (2, p) = 0. (5.15)
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This equation can be solved explicitly, using the fact that
the velocity ¢ is future oriented:

1 .
Po= 0 [ — (¢""pi — esg™B,,)

+\/ (9% p: — esgBy,)* — g% (g¥pip; — 2esp¢gi“Bu)] :
(5.16)

Note that in general B,, depends on py. However, since
this is an O(e!) term, we can replace the O(e?) expression
for po in B,,.

In order to compare with the results of Gosselin et al.
[41], we consider a Schwarzschild spacetime in Cartesian
isotropic coordinates (t,xz,y, z):

ds? = — (2= iR 2dt2+ (1 + 5)4(dx2+dy2+dz2)
L+ 5 4R ’

(5.17)

where ry = 2GM/c? is the Schwarzschild radius and R =

22 + y2 + 22. We also define the following orthonormal
tetrad:

14 I -2
eozl_gam 612(14-2—;%) Oz,
T (5.18)
Ts -2 Ts —2
€y = (1+E) 8y, €3 = (1—'—@) 627

where t* = (eg)* is our choice of observer.

The Berry connection By, can be explicitly computed
by introducing a particular choice of polarization vec-
tors, using Eq. (5.1) and the orthonormal tetrad (5.18).
We now have all the elements required for the numerical
integration of Egs. (5.12)-(5.14). For this purpose, we
used the NDSoOLVE function of Mathematica [71]. For
these examples, we used the default settings for integra-
tion method, precision and accuracy.

After obtaining a numerical solution (z(t),p(t)) to
Egs. (5.12)-(5.14), in order to ensure the gauge invari-
ance of our results, we have to evaluate the gauge-
invariant noncanonical quantities (X (t), P(t)), as given
in Egs. (4.22) and (4.23). These are the quantities used
to represent the trajectories in Figs. 1 and 2. A compar-
ative discussion between the use of canonical and non-
canonical ray equations in optics, together with numeri-
cal examples, can be found in Ref. [47].

As the first step, we numerically compare our ray
Egs. (5.12)-(5.14) with those predicted by Gosselin et al.
[41]. This is done by numerically integrating Eqs. (5.12)-
(5.14), as well as Eq. (23) from Ref. [41]. Up to nu-
merical errors, we obtain the same ray trajectories with
both sets of equations. However, while the equations ob-
tained by Gosselin et al. only apply to static spacetimes,
Egs. (5.12)-(5.14) do not have this limitation.

The results of our numerical simulations are shown in
Fig. 1, which illustrates the general behavior of the grav-
itational spin Hall effect of light around a Schwarzschild
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black hole. [The actual effect is small, so the figure is
obtained by numerical integration of Eqs. (5.12)-(5.14)
for unrealistic parameters.] Here, we consider rays of op-
posite circular polarization (s = 1) passing close to a
Schwarzschild black hole, together with a reference null
geodesic (s = 0). Except for the value of s, we are consid-
ering the same initial conditions, (z%(0),p;(0)), for these
rays. Unlike the null geodesic, for which the motion is
planar, the circularly polarized rays are not confined to
a plane.

As another example, we wused initial conditions
(2°(0),pi(0)) such that the rays are initialized as radi-
ally ingoing or outgoing. In this case (not illustrated,
since it is trivial), the gravitational spin Hall effect van-
ishes, and the circularly polarized rays coincide with the
radial null geodesic.

Using these numerical methods, we can also estimate
the magnitude of the gravitational spin Hall effect. As
a particular example, we consider a similar situation to
the one presented in Fig. 1, where the black hole is re-
placed with the Sun. More precisely, we model this sit-
uation by considering a Schwarzschild black hole with
rs &= 3 km. We consider the deflection of circularly po-
larized rays coming from a light source far away, passing
close to the surface of the Sun, and then observed on
the Earth. This situation is illustrated in Fig. 2. The
numerical results are based on the initial data presented
in the caption of Fig. 2. When reaching the Earth, the
separation distance between the rays of opposite circular
polarization depends on the wavelength. For example,
taking wavelengths of the order A ~ 10~? m results in
a separation distance of the order d ~ 10~'® m, while
for wavelengths of the order of A =~ 1 m we obtain a
separation distance of the order d ~ 107% m. Although
the ray separation is small (about six orders of magni-
tude smaller than the wavelength), what really matters
is that the rays are scattered by a finite angle. Therefore,
the ray separation grows linearly with distance after the
reintersection point. This means that the effect should
be robustly observable if one measures it sufficiently far
from the Sun. Furthermore, massive compact astronom-
ical objects, such as black holes or neutron stars, are
expected to produce a larger gravitational spin Hall ef-
fect.

As a consistency check, we also performed the numeri-
cal computations using different coordinates, such as the
standard Schwarzschild spherical coordinates and Gull-
strand—Painlevé coordinates. The results are indepen-
dent of the choice of coordinates. However, the polarized
rays are not invariant under a change of observer. This
is due to an effect analogous to the Wigner translations
discussed in Sec. V A. For example, instead of the static
observer introduced in Eq. (5.18), one could consider a
free-falling observer. In this case, the ray trajectories
presented in Figs. 1 and 2 are slightly modified, due to
the Wigner translations, and preliminary investigations
indicate that these modifications are smaller than one
wavelength, as in the case discussed in Sec. V A. It is not
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Figure 2: Results of numerical simulations illustrating the gravitational spin Hall effect of light around the Sun. The effect is
exaggerated for visualization purposes. The separation distance d is observed from the Earth. The blue and the red trajectories
correspond to rays of opposite circular polarization, s = +1, while the green trajectory represents a null geodesic. We take
rs = 3 km, and we start with the initial position 2*(0) = (—=107r, 3 x 10%r, 0), and initial normalized momentum p; = (1,0, 0).

clear how to separate the purely gravitational effect from
the observer-dependent Wigner translations. However,
this is not a problem. The Wigner translation represents
the observer-dependent ambiguity in defining the loca-
tion of the ray on a single-wavelength scale and remains
bounded. In contrast, the purely gravitational effect can
affect the angle of light scattering off a gravitating object
and thus the ray displacement associated with this effect
accumulates linearly with the distance. This means that
the latter effect dominates at large distances. A more
detailed analysis of the modified ray equations, at both
the analytical and the numerical levels, will be carried
out in future work.

VI. CONCLUSIONS

In summary, we have presented a first comprehensive
theory of the gravitational spin Hall effect that occurs
due to the coupling of the polarization with the transla-
tional dynamics of the light rays. The ray dynamics is
governed by the corrected Hamiltonian

1
H(z,p) = 59“”10“19” —esg"pu B, (x,p). (6.1)

Here, the first term represents the geometrical optics
Hamiltonian, and the second term represents a correc-
tion of O(e!) that is due to the Berry connection, which
is given by

L 0 0
Bu(x,p) = im® (@ma - rg,urmo —+ Fprna_ppma>

h
=im*V, mq.
(6.2)

Assuming the noncanonical coordinates (4.22), the cor-
responding ray equations are

XH = PH 4 esP” (F,,) !

v

2ies (6.3)

+ =22 _ra p pBplvmHl
(tap, )2 vl '

PH — g“PaPﬁJrESPV [iRaguymaﬁlﬁJr(ﬁzx)yu

+esTg, PaP? (Fpa),”

(6.4)

where the terms Fj,; and F’m and the timelike vector t¢
are given in Appendix C. The last term on the right-
hand side of Eq. (6.3) is the covariant analogue of the
spin Hall correction term usually encountered in optics
[20, 41], while the Riemann curvature term in Eq. (6.4) is
reminiscent of a similar term appearing in the Mathisson-
Papapetrou-Dixon equations [27]. In Minkowski space-
time, the Fp; term is responsible for the relativistic Hall
effect [50] and Wigner translations [51].

The resulting deviation of the ray trajectories from
those predicted by geometrical optics is weak but not un-
observable. First of all, even small angular deviations are
observable at large enough distances. Second, as shown
in Ref. [19], weak quantum measurement techniques can
be used to detect the spin Hall effect of light, even when
the spatial separation between the left-polarized and the
right-polarized beams of light is smaller than the wave-
length.

Potentially, this work can be naturally extended in two
directions. First, the corrected ray equations are yet to
be studied more thoroughly, both analytically and nu-
merically. Rigorous numerical investigations are needed
to obtain a precise prediction of the effect, in particular
for Kerr black holes. Second, Maxwell’s equations are a
proxy to linearized gravity. It is expected that a similar
approach can be carried out to obtain an effective point-
wise description of a gravitational wave packet, extending
the results of Ref. [46].



As discussed in Ref. [4], the spin Hall effect of light
is directly related to the conservation of total angular
momentum. For the discussion presented so far, the con-
sidered rays carry extrinsic orbital angular momentum,
associated with the ray trajectory, and intrinsic spin an-
gular momentum, associated with the polarization. How-
ever, it is well-known that light can also carry intrinsic
orbital angular momentum [72-74] (see also Ref. [75] and
references therein). In principle, the magnitude of the
spin Hall effect can be increased by considering optical
beams carrying intrinsic orbital angular momentum [76].
The method and ansatz that we have adopted are in-
sufficient to describe this effect. A more realistic and
more precise approach involving wave packets, such as
Laguerre-Gaussian beams, should be considered. It may
be possible to do so using the machinery developed in
Ref. [58].

A formulation of the special-relativistic dynamics of
massless spinning particles and wave packets beyond the
geometrical optics limit has been previously reported by
Duval and collaborators ( cf. Ref. [77] for the spin-1/2
case; see also Ref. [78]). This analysis relates the mod-
ified dynamics to the approach of Souriau [79], making
use of so-called spin enslaving. This has been extended
to general helicity by Andrzejewski et al. [30]. We expect
that the Hamiltonian formulation presented here corre-
sponds to a general relativistic version of the models con-
sidered in the mentioned papers. This will be considered
in a future work.
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Appendix A: HORIZONTAL AND VERTICAL

DERIVATIVES ON T*M

Let (z',p,) be canonical coordinates on T*M. Con-
sidering fields defined on T*M, such as u,(z,p) and
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v¥(x,p), the horizontal and vertical derivatives are de-

fined as follows [81, Sec. 3.5]:

%“ua = —Uq, Ala
o (Ala)

h 0 - o 0 A

Ve = Fpi e ™ Lopue + Fuppga—ppua, (Alb)

%“7)”‘ = i?)“, (A2a)
Opu

h 0

Vot = v + g 07 + T po=—v®. (A2D)

oz p,

The extension to general tensor fields on 7% M is straight-
forward. Note that in contrast to Ref. [81, Sec. 3.5], we
have the opposite sign for the last term in the definition
of the horizontal derivative. This is because our fields,
uo(x,p) and v*(x,p), are defined on T*M, and not on
T M, as is the case in the reference mentioned before. We
can make use of the following properties:

Appendix B: VARIATION OF THE ACTION

Here, we derive the Euler-Lagrange equations that cor-
respond to the action

J= /M d'z /3L, (B1)

where the Lagrangian density is of the following form:

L=0 (S(J:),V”S(x),
Anz, VS(x)],V, {Aa[z, VS(2)]},
A%z, VS(2)], V, {A*[z, VS(2)]} )

(B2)

Here, S(z) is an independent field, while A, and A*®
cannot be considered independent, since they depend on
V,.S. Following Hawking and Ellis [52, p. 65], we define
the variation of a field ¥; as a one-parameter family of
fields W;(u,z), with u € (—¢,¢) and x € M. We use the
following notation:

oV, (u, x)

= AY;.
ou

u=0

(B3)

Note that the derivative with respect to the parameter u
commutes with the covariant derivative, so we have:



d
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aS
@VNS(U, l‘) = V” <%> 5 (B4)
d 0A, 0A, oS
@Aa (u,z,VS(u,x)) = ou T ov.s (0_u> , (B5)
d d 0A, 0A, oS
@VM [Ay (v, 2, VS(u,2))] =V, {@Aa (u,a:,VS(u,a:))} =V, {% + mvy <%>] . (B6)
We consider the variation of the action, taking special care when applying the chain rule:
dJ T oL oL
- = = : A —A
0= Q| ,/Mdf‘/f_’{as St 5,50 (Vud)
oL 0A oL 0A
—— |AA, + =2 AS —_— AA, + =—=2V,(AS B7
T oA, [ tav,s vl )} TV, A, { w5V )] (B7)
0L vo | OA*® oL vo | OA*
Integrating by parts and assuming the boundary terms vanish, we obtain:
dJ 0L 0L oL 0L
0o=—| =/ 4 — AAg+ | 7 — Vs | AA™
du /M v \/‘7{ <8Aa Vu E)VMAC) + (aA*a Vu avﬂA*a)
u=0 (B8)
0L oL 0A oL 0L OA* 0L oL
ZZAS — o -V, -V, AS 5.
T o529~ Vu lavus tov,s <8Aa v av,,Aa) T ov,.s (aA*a v av,,ma) }

Since the above equation must be satisfied for all variations AS, AA,, and AA** we obtain the following Euler-

Lagrange equations:

oL oL

—_ R — 2
gar ~ Vegy,aa O (B9)

oL 2L )
oAn VMOV, AL 0(€%), (B10)

L 0L A, (0L o0 sA" / 8L oe 2
as S -V = : B11
05 VH lavus i av/‘S (8‘401 v 8VI/AO¢> i GVMS <8A*0¢ v 8VVA*Q> O(e ) ( )

Furthermore, Eq. (B11) can be simplified by using
Eqgs. (B9) and (B10). Thus, as a final result, we have
the following set of Euler-Lagrange equations:

0L oL _ 9
gAm Vs OV, A (e,
oL oL 9
m - Vum = 0(e7), (B12)
oL oL 9
% — VM—GVMS = 0(6 )

Appendix C: BERRY CURVATURE

In order to calculate the Berry curvature terms (4.28),
it is enough to use a tetrad {t%, p®, v*, w*}, where t* is a

future-oriented timelike vector field representing a fam-
ily of observers and p® is a generic vector, not necessar-
ily null, representing the momentum of a point particle
(ray). The vectors v® and w® are real spacelike vectors
related to m® and m® by the following relations:
1 1
m* = — (v* + w* m® = — (v* —iw®). (C1
75 i) 75 0 i) ()
The elements of the tetrad {t, p®, v*, w*} satisty the
following relations:

(e}

tat® = —1, Pab” = K, tap® = —ew,

Va0 = waw® =1, (C2)
LoV = taWa = Pat® = paw® = vow® = 0.

Note that the vectors v* and w® depend of p* through

the orthogonality condition, while ¢* is independent of



p*. We start by computing the vertical derivatives of the
vectors v® and w®. Using the tetrad, we can write:
2 (0% az)a (e (0% (0% (e
VH® = — = c1#1% + 2#p® + c3#v® 4 csfw®, (C3)
Opy,
(o34

ow

Pu

v
VHw® = = d "t + doF'p® + dstv® + dyHw®,

(C4)

where ¢;# and d;* are unknown vector fields that need to
be determined. Using the properties from Eq. (C2), we
obtain

Uua ew JTeY 1 JTNe' 0

VHv :T?Jt—TUp + cmw,
‘W + K ‘W + K

v €w 1

Viw® = o———wht® — o———wh'p® + dz"v*.
€“we + K €“w® + K

(C5)

Applying the same arguments to the terms V, v, and
V ,Weq, we also obtain

Vo = — P (ewps V07 + Kto V07 ) ta
ﬁ (Po V07 — ewtsV,07) po + f1,Wa,
VW = — PR (ewps VW + KoV, ,w?) ty
ﬁ (Po Vw0 — ewtsV,07) pa + g3,V

(C6)

Note that the fields c4,, d3,, f1,, and g3, are undeter-
mined within this approach, but this is not a problem,
because they do not affect the Berry curvature.

1. Fp
We compute (F,,)"" by using Eq. (C5) and setting

% = 0. Since vertical derivatives commute (see Eq. (A3)),
we can write

v v v v
(Fpp)™ =i (V“mavuma - V”ﬁlaV“ma)

’UV a’U v a’UU
= V"0*V*w, — VFo*V w0,

2 o (C7)
J— v L
= ezwzv w!
21 y
= mm[ m
2 Fyx
‘We have
(Fxx)up, = Z-(vl—bﬁlavvf”la - Vﬂﬂavﬂma
(C8)

+m*V [, Vyme — mav[ﬂvy]m“).
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The last two terms can be expressed in terms of the Rie-
mann tensor:

i(ﬁlaV[uvy]ma - mav[uvy]m"‘) = _iRaﬁuymamﬁ.
(C9)
The first two terms can be computed using Eq. (C6) and
rk=0:

(Foa ) = i(V,LmaV,,ma - v,,mavl,,ma)

=V, 0V, we — V0 Vywe
1
=32 (pavuv”ppvywp — po Vo v7p,V wP
— ewps V07t ,Vy,wf + ewpeV, 0tV w?
—ewt, V,u7p,Vy,wf + ewtgvyv”ppvﬂw”)

1 _ _
:m (povumﬂppvump - povumoppvump
— ewpe V,um7t,V,mf + ewp,V,mt,V m”
—ewt, V,mp,V,m" + 6wtavym”ppvump>.

(C10)

3. Fpp and Fyyp

Since (Fpg)," = — (Fyp)”,, it is enough to compute
only one term. Using Eqs. (C5) and (C6), and setting
k = 0, we obtain

(sz)yu =1 (%umavyma — Vyma%“ma>

v v
[e% L,
V., 0*V*w, — VRV, we

27
= (pe Vyw’ — ewt,V,w?) vt
ew? L7 7 (C11)
— (poe V07 — ewt,V,v7) w“]
— %}2 { (po VMm% — ewt,V,m)mt
€

— (peVum? — ewt,V,m?) m“].

Appendix D: COORDINATE TRANSFORMATION

The substitution from Egs. (4.22) and (4.23) can be
obtained, up to terms of order €2, as a linearization of
the following composition of changes of coordinates on
the cotangent bundle T*M. Consider the family of dif-
feomorphisms (®.) generated by the vector field on M

v
Y = ism®VF madyn, (D1)

that is to say



By construction, the Taylor expansion in a coordinate
chart of ®. at order ¢! leads to Eq. (4.22). ®, naturally
lifts to the cotangent bundle using the pullback ®}:

O : (z,p) = (Pe(x),po d<I>€_1

o, (x))- (D3)

Note that the choice of the lift is not unique. The map-
ping ®! is, at order one in ¢, in coordinates,

v v
(2", py) = (2" +isem NV mey, py—iespsOuen (M V7M,)).
(D4)
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Consider next the translation of the momentum variable
defined by

V. :(z,p) = (z,p —€0), (D5)

v
where o = is(M*V, M + pgder (M*Vmy,))da*. The
linearization in € of the diffecomorphism ¥, o® . * provides
by construction the change of variables in Egs. (4.22) and
(4.23).
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