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Particles interacting with a prescribed quasimonochromatic gravitational wave (GW) exhibit sec-
ular (average) nonlinear dynamics that can be described by Hamilton’s equations. We derive the
Hamiltonian of this “ponderomotive” dynamics to the second order in the GW amplitude for a
general background metric. For the special case of vacuum GWs, we show that our Hamiltonian
is equivalent to that of a free particle in an effective metric, which we calculate explicitly. We also
show that already a linear GW pulse displaces a particle from its unperturbed trajectory by a finite
distance that is independent of the GW phase and proportional to the integral of the pulse intensity.
This effect is independent from the nonlinear memory effects that has been known. We calculate
the particle displacement analytically and show that our result is in agreement with numerical sim-
ulations. We also show how the Hamiltonian of the nonlinear averaged dynamics naturally leads
to the concept of the linear gravitational susceptibility of a particle gas with an arbitrary phase-
space distribution. We calculate this susceptibility explicitly to apply it, in a follow-up paper, toward
studying self-consistent GWs in inhomogeneous media within the geometrical-optics approximation.

I. INTRODUCTION

Recent detection of gravitational waves (GWs) [1-9]
is strengthening the interest of the physics community
in GW-matter interactions. Linear effects of GWgs have
long been studied in literature [10-12], particularly in the
context of GW dispersion in gases and plasmas [13-19].
Some authors have also explored the associated nonlin-
ear phenomena, such as the nonlinear memory effect [20-
23], the contribution of the GW tail from backscattering
off the background curvature [20, 24], and certain GW-
plasma interactions [25—41]. However, there remains an-
other fundamental nonlinear effect, the “ponderomotive”
effect, that is well-known for electromagnetic interactions
[42—-45] but has not yet received due attention in GW
research. Like the aforementioned memory effects that
have been known, the ponderomotive effect is hereditary,
i.e., depends on the whole GW-intensity profile. But un-
like the known memory effects, the ponderomotive effect
is determined by the particle-motion equations (not the
Einstein equations), so it can be produced even by linear
GWs propagating in flat background spacetime.

The essence of the ponderomotive effect by GWs is as
follows. Since the particle motion equations in a given
metric are nonlinear, a prescribed GW generally induces
not just quiver but also secular (average) nonlinear dy-
namics, regardless of whether the wave itself is linear
or not. This nonlinear dynamics of particles is generally
too complicated to study analytically; but it can be made
tractable for quasimonochromatic GWs. In this case, the
particle average motion can be described by relatively
simple Hamilton’s equations, with a Hamiltonian that
depends on the GW envelope and not on the GW phase.
To the lowest order, the GW contribution to this Hamil-
tonian is of the second order in the wave amplitude. The
resulting perturbations to the particle trajectories can be

significant near sources of gravitational radiation, where
the metric oscillations are substantial. These perturba-
tions can also be important when particles are exposed
to GWs long enough, since the ponderomotive effect is
phase-independent and cumulative (see below). But even
more importantly, the ponderomotive effect is inherently
related to the linear susceptibility of matter with re-
spect to GWs. The corresponding statement for elec-
tromagnetic interactions is known as the K-y theorem
in plasma theory [46, 47] and has also been extended to
more general Hamiltonian systems [48-51]. Hence, cal-
culating the ponderomotive effect readily yields not just
nonlinear forces on particles (which may or may not be
significant in practice) but also linear dispersive prop-
erties of GWs in gases and plasmas. In this sense, the
ponderomotive effect matters even in linear theory.

Here, we calculate the ponderomotive effect by weak
GWs on neutral particles in the general case, i.e., when
the GW envelope, wavevector, polarization, and back-
ground metric are arbitrary smooth functions of space-
time coordinates. Such general calculations are not easy
to do by directly averaging the particle-motion equations,
so we invoke variational methods that were recently de-
veloped within plasma theory for electromagnetic inter-
actions [52-55]. We derive the Hamiltonian of the parti-
cle ponderomotive dynamics to the second order in the
GW amplitude. For the special case of vacuum GWs,
we show that our Hamiltonian is equivalent to that of
a free particle in an effective metric, which we calculate
explicitly. We also show that already a linear GW pulse
displaces a particle from its unperturbed trajectory by a
finite distance that is independent of the GW phase and
proportional to the integral of the pulse intensity. In this
sense, the ponderomotive effect is cumulative. We calcu-
late the particle displacement analytically and show that
our result is in agreement with numerical simulations.
We also show how our general Hamiltonian yields the



linear gravitational susceptibility of a particle gas with
an arbitrary phase-space distribution. We calculate this
susceptibility explicitly to apply it, in a follow-up paper,
toward studying self-consistent GWs in inhomogeneous
media within the geometrical-optics approximation.

Our paper is organized as follows. In Sec. II, we discuss
the well-known equations of the particle motion in a pre-
scribed metric, which we use later on. In Sec. III, we in-
troduce the so-called oscillation-center formalism, which
we build upon, by analogy with how this is done for elec-
tromagnetic interactions in plasma theory. In Sec. IV,
we calculate the ponderomotive Hamiltonian and the en-
suing equations of the average motion of a point particle.
In Sec. V, we present an alternative derivation of the
same ponderomotive Hamiltonian by treating particles
as semiclassical quantum waves. We also apply these re-
sults to derive the gravitational susceptibility of a neutral
gas. In Sec. VI, we discuss the particle motion in a linear
vacuum GW pulse as an example, and we derive the total
displacement of a particle under the influence of such a
pulse. In Sec. VII, we present test-particle simulations,
which show good agreement with our analytic theory. In
Sec. VIII, we summarize our main results. Supplemen-
tary calculations are given in appendices. In particular,
Appendix A details the derivation of a general theorem
used in Sec. V B, and Appendix B provides the derivation
of an alternative form of the gravitational susceptibility
introduced in Sec. VE.

II. PARTICLE MOTION EQUATIONS
A. Basic equations

Let us start with reviewing the known equations of the
particle motion in a prescribed spacetime metric goz(x).
We assume units such that the speed of light equals one
(¢ = 1), and the metric signature is assumed to be (— +
++). Then, the action S of a particle traveling between
two fixed spacetime locations z1 5 = (7 2) is given by

5
S = —m/ \/ —Gapuuf dr. (1)
™

Here, the symbol = denotes definitions, m is the particle
mass, ©* = dz®/d7 is the particle four-velocity, u, =
gaguﬁ , and the proper time 7 is defined such that

upu® = —1. (2)

Equation (2) serves as a constraint on the variational
principle that governs the particle motion. Deriving the
motion equations rigorously for a constrained action can
be a subtle issue. However, we can sidestep this issue by
rewriting Eq. (1) as an unconstrained action of the form

P
S = —m/ dr, (3)
71

with d7 = \/—gagdz>dzf. Since this S is not quite
of the usual form [ #(z,dz/do)do, the resulting mo-

tion equations are not quite the standard Euler—Lagrange
equations either. However, these equations still can be
derived straightforwardly. Below, we describe two known
approaches to this problem in detail, because we will need
to refer to details of these approaches in later sections.

B. Covariant equations of motion

One way to derive the particle-motion equations from
Eq. (3) is to proceed as follows [56]. Consider a variation
z# — x# + dz# such that

dx*(11) = dzt () = 0. (4)

Then the variation of S given by Eq. (3) can be written as

T2
85 = —m/ édr
7'72—1 1

g
T

B 2 1 agag “ o 8
fm/ E(@x“ Szt dz® da? + 2gnp dz® dox

B 1aga5 g duy
m/ (2 dzr ut - dr

[Here, we have used symmetry of g,z; we have also in-
tegrated by parts to obtain the last equality and used
Eq. (4) to eliminate the boundary term.] Then, the re-
quirement that §5 = 0 for all dz* leads to the “geodesic
equation”:

— 90 (gag dz® dxﬁ)

) szt dr. (5)

duy 19090 o 5
dr 2 0an "

(6)

Equations (6) can be viewed as the Euler-Lagrange
equations corresponding to the Lagrangian
m B

5 [gas(z)uu

L{z,u) = 5

—1]. (7)
The second term is constant and could be omitted, but we
have introduced it to keep L. = —m on solutions [due to
Eq. (2); this is consistent with Eq. (3)] and to emphasize
parallels with the calculations in the later sections. Let
us also introduce the corresponding canonical momentum

oL
Pa = Jgo M (8)
and the Hamiltonian H = p,u® — L, or
H(z,p) = 5= 9" (@)paps + m’], 9)

2m

where g% is the inverse of the metric, 9 gus = (5;‘. (In
later sections, we show how this Hamiltonian emerges



more naturally from first principles.) The corresponding
Hamilton’s equations, equivalent to Eq. (6), are

dz® OH  dp. oH

il -7 10
dr Op,,’  dr Oz’ (10)
or explicitly,
dz®  ¢°Pps  dpo 1 dgm
_ o 1 . 11
dr m | dr 2m Oz Pupb (11)

C. Non-covariant equations of motion

Another way to avoid dealing with the constraint (2)
is to give up covariance of the motion equations and con-
sider only the spatial dynamics instead [57, 58]. Let us

use Eq. (2) to express u” as a function of t =z, 2%, and
dz®
= = —. 12
Y dt u (12)
Specifically, u” = u%(t,x, v), where
(U”)™! = V= gapvov — 2gopvP — goo. (13)

(Roman indices span from 1 to 3, unlike Greek indices,
which span from 0 to 3. We also use bold font to de-
note three-dimensional spatial variables in the index-free
form.) From Eq. (11), one has dt/dr = u", so S can
be written as a functional of only the spatial variables,
S = [ Lydt, where L; = —m/u®. In this representation,
the action is unconstrained, so the motion equations are
the usual Euler-Lagrange equations,

d /oL oL,

— =] == 14

dt (81}“) oz (14)
Let us also introduce the corresponding Hamiltonian

formulation. The canonical momenta are defined as p, =
AL /0v?, 50 py = mu®(gao + gapv®), or equivalently,

dz0 dazb
Pa =M <ga0 ? + gab F) = mgauuu7 (15)

where we used u” = dt/d7. Therefore, these momenta are
the same as the corresponding spatial components of the
four-vector canonical momenta (8). Let us also consider
p” = mu® and py = mgo,ut as functions of (¢,x, p) and
denote them as p°(¢,x,p) and po(t, X, p) respectively,

PO = mUO7 Po = muo, (16)
where the latter satisfies
H(t7x7 po(t7x7p)7p) =0. (17)

Using Eq. (2), we can find the explicit expressions for
p(t,x,p) and po(t,x,p). In order to proceed, consider

aab - gab _ gaOgbO/gOO. (18)

Then, one can show that [58]

po(t7 X, p) - my _9007 (19)
Oa
™ 9
Po (t7 X, p) - _gOO goo Pa, (20)

where v = /1 + 0%p,pp/m?. One can further find the
Hamiltonian of the spatial motion H; = p,v® — L; to be
Ht(t7x7p) - _po(t7x7p)' (21)
The corresponding Hamilton’s equations are
dz®  OH, dp, 0H,
ii_ﬂ o I (22)
dt g dt oz

As can be checked, these equations are in agreement with
the covariant Hamilton’s equations (11).

III. PARTICLES IN AN OSCILLATING
METRIC: BASIC CONCEPTS

A. Metric model

Let us suppose a metric in the form
Jap — gaﬁ + hoz5~ (23)

Here, gos = gap(ex) is a slow function of the spacetime
coordinates = and hqg is a quasimonochromatic pertur-
bation, i.e., can be expressed as hag = haglex,8(z)],
where ¢ is a small parameter and the dependence on the
scalar “phase” 0 is 2n-periodic. We also assume

(hag)o =0, (24)

where (...)g denotes average over 6. Then, g,z can be
understood as the #-average part of the total metric,

hozﬁ < 17

Gop = (Gap)o- (25)

We shall attribute such metric perturbation as a GW.
Note that

fioy = 00 = V 00 (26)

can be interpreted as the local wavevector and ¢ can be
interpreted as the geometrical-optics (GO) parameter,
which is roughly

e~ ML (27)

Here, X is the characteristic wavelength (in spacetime)
and £ ~ [min{dg(ex), dh(ex, 0), OX(ex)}] ! is the charac-
teristic inhomogeneity scale (in spacetime) of the back-
ground metric, GW envelope, and GW wavelength.
Note that the GW is mnot assumed linear. The
quasiperiodic functions h,g may contain multiple har-
monics, and any secular nonlinearity can be absorbed in
the background metric gog. Hence, the latter can be re-
sponsible for various nonlinear memory effects additional
to the ponderomotive effect derived in this paper. But
for our purposes, gog does not need to be specified, so
those additional memory effects will not be articulated.



B. Oscillation-center coordinates

Let us consider the particle motion in the metric (23).
We shall assume that a particle oscillates many times
while traveling the distance ¢. [We shall also assume,
to avoid introducing additional parameters, that the cor-
responding number of oscillations is O(e~!').] Then, its
motion is quasiperiodic in time, and one can use stan-
dard methods of plasma theory [59] to construct new
“oscillation-center” (OC) coordinates X in which the
particle dynamics is non-oscillatory. This amounts to
replacing the original particles with OCs, or “dressed”
particles, that do not exhibit oscillations. Here, we adopt
a less formal and perhaps more intuitive approach to con-
struct the same transformation to the leading order in e.

Let us start by introducing the local time average

(= ol (29)

where AT is much larger than the oscillation period yet
small enough such that the particle motion during this
time remains approximately periodic. Then, the particle
coordinates z can be separated into the slow OC coordi-
nates X* = (z%), and the quiver displacements 7*(X, V)
with zero time average:
2% =X+z% (@, =0. (29)

Similarly, we introduce the OC velocities V® as
AX®/AT, where AT is used in the same way as in
Eq. (28). Then, one finds from Eq. (28) that V¢ = (v®),.
In particular, V = 1. Also note that V' can be under-
stood as the derivatives of X with respect to the OC
time X0 =T, ie,V®=dX*/dT = AX/AT. Note that
as introduced here, the “infinitesimal” OC displacements
are well-defined only as averages over many oscillation
cycles. (However, this limitation is waived in the more
formal approach to the OC dynamics [59].)

Using Eq. (28) and dt = u"dr, we find that the average
of any quasiperiodic function f over ¢ and the correspond-
ing local average over 7 satisfy

J fuldr  (fu®);
- = : 30
<f>t f’U,Od’T <UO>7— ( )
Hence, the OC velocities can be expressed as follows:
(o4 e <uoz>7_
Vo= (@%y, = aty, (31)
Introducing U® = (u®),, we get V = U*/U° and
u*=U"4+u% (%), =0. (32)

Also, on an interval A7 that includes multiple oscillations
but is smaller than the characteristic scale of the OC
motion, one has

AXe dX©

UO[
AT dr ’

(33)

where, like in the case of V¥, the “infinitesimal” OC
displacements are understood as nonvanishing displace-
ments averaged over many oscillations.

The 7-average that enters the above formulas is con-
nected with the #-average introduced in Sec. III A via

JoTF Ao

fe =2 2 34
) ST ae Q1o B
where €1 is the “proper frequency” given by
de
Q=—=kyu”. (35)
dr

Note that € can be also be expressed as
=0  (36)

Hence, Q1 = (Q), ! —§<Q>;2+O(h2), so from Eq. (34),
one obtains

(fQ%)0
(Do

which yields (Q), — (Q)y = O(h?). Since (Q), = k,U?,
this leads to the following formulas, which we use later:

(Fr = o — +O(h?), (37)

(g =k U™+ OB, Q=kou®+0(h?). (38)

C. Linear and nonlinear dynamics

Using Eq. (23), it is readily seen that!
g°F = g — hP 1 b2 P + O(R?), (39)

where h denotes the characteristic value of by g and O(h?)
is henceforth neglected. Note that here and further, in-
dices in h,g are raised using the inverse of the back-
ground metric, g*?. Using v = ¢®Pug and Eqgs. (11),
we find

du® dgo? 1 ap 99"

?:uﬁ dr 29 ozP

Uy Uy (40)

To the lowest order in h, one has from Eq. (39) that
g®B = g — B Also,

oh b 09 dh Al kg
orf — A0 9zF  de P dr k\UX

(41)

1 Let us assume index-free notation g for the original metric da B>
g~ ! for the inverse metric ¢g®#, h for the perturbation metric
hapg, g for the background metric gog, and g1 for the in-
verse background metric g®#. Then, g1 = gt — g thg ! +
g thg~thg=! + O(h?), which is Eq. (39).



where we have substituted Eq. (35) and ignored Of(e)
corrections. Hence, Eq. (40) leads to

du® dhes

du® go‘ﬁkﬁg dh*v
dr — Frar ’

2k \UX “H7Y dr

(42)

This can be readily integrated, yvielding U ~ const and

kUL,

G~ —hvy, 4 ey
“ G2}

(43)

where, within the assumed accuracy, the indices are ma-
nipulated using the background metric.

Note that this result is only a linear approximation. If
the second and higher orders in h are retained in the
equation for u®, one finds that a particle experiences
a nonvanishing average force from a rapidly oscillating
GW, if the GW is inhomogeneous or propagates in an in-
homogeneous background. In analogy with electromag-
netic interactions, this effect can be understood as the
average gravitational ponderomotive force. Our goal is to
calculate this force and to describe its effects on the par-
ticle motion by studying the OC, or secular, dynamics.

One way to derive OC equations is by directly time-
averaging the equations for (x,v), which can be obtained
from Egs. (11). However, this approach is cumbersome
and not particularly instructive. More instructive is the
average-Lagrangian approach, which yields a manifestly
Hamiltonian form of the motion equation. (This ap-
proach is also used to describe the dynamics of plasma
particles in intense electromagnetic waves; see Ref. [52]
for an overview.) Below, we consider two versions of this
approach. In Sec. IV, we present a “point-particle” calcu-
lation, which is more direct but less tractable. In Sec. V,
we present a “field-theoretical” calculation, which is less
straightforward but yields the same results more trans-
parently and in a form advantageous for the applications
discussed in Sec. VE.

IV. OSCILLATION-CENTER DYNAMICS:
POINT-PARTICLE APPROACH

Let us express the action (1) as S = [ L, dr (the inte-
gration limits are henceforth omitted for brevity), where?
L; = —my/—gop(z)ucul. (44)

After substituting Eq. (29), one can express L, as a sum
of L, = (L;),, which is a slow function of the OC vari-

ables, and L., whose local m-average over rapid oscilla-
tions is zero. Since L., does not contribute to S at large

2 As discussed in Sec. II A, the function L, is not a Lagrangian.
It is used here only as a means to calculate the value of S, which
is the same in Egs. (1) and (3). How to infer motion equations
from this value will be discussed in Secs. IVB and IV C.

enough 7, one obtains

A. Average action

To calculate L, we proceed as follows. From Egs. (23)
and (32), we have

Ly = =) ~(gas + hap) (U + @) (U7 + T)

= —my/—GagUUB\/1+ ¢, (46)
where

hogUUP 4 2G,50 0 UP) 4 2,50 @UP) + g, 50°TP
gaBUO‘UB ’

Hence, to the second order in h,

ET _ ES_O) (1 + <§02>7' _ <Lp;>7'> 7 (47)

LO) = —my/—gagUUB. (48)

Within the same accuracy,

<4P>T = _ga5<ﬂaaﬁ>7 - <hoz577a>TU6
— (hog@?);UY — (hog), UUP,  (49)

(2, = AU U @@y, + AUUPU (hosi”) .
+ {haphys) UUPUYU?, (50)

where we used that to the leading (zeroth) order in h,
one has gaBU“UB ~ —1. Hence, L, = L@ +Lg), where

oL

= (@) 7 (Gap + Ualp)
+ (hagt?) - (6SUP + 65U~ + UUPU,)
+ i(hQBhV@TU“UﬁUVW
+ (hog) UUP. (51)

The terms in the first three angular brackets are already
of order h?, so averaging over 7 can be replaced with
averaging over §. Then, using Eq. (43), we obtain

URUY kLB
~on _ vrrd | mop =

<U UB>7— *Ep,l/'yc;U U {9 MQBVJFW

guakaB gvﬁyuka
kU kUM (52)

- L[ UREY

(hapt?)r = capulU (W - 9’”) . (83)
(hophys)r = Eapys, (54)



where £,34 iIs given by

Eapys = (haphys)e. (55)

Also, from Egs. (37) and (38), one has

(has)s = (hape _ (haghy @)
oBIT = T UN EUX
EapuU” Utk kY
A 56
EaUX ( WU )7 (56)

where we used Eq. (53) in the last step. Then, from
Eq. (51), one obtains

= m

k, k"
L(z) - _Eaﬁ'yé 7 |:95’YUO[U5 + ®

NNDE
1
U

vty

e

U“U%VUﬂ . (57)

where we have used the symmetry of €555 with respect
to index permutations a < 8, v < 4, and (o, 8) <
(v,9). Finally, the OC action can be expressed as

S o~ /(—m+i$2))d?7 (58)

d7 =/ —gapdX>d X5, (59)

where we have used Eq. (33) and ignored higher order
terms.

B. Covariant equations of motion

Using Eq. (58), the OC motion equations are obtained
as follows. First, note that

65 — —m/éd%Jr/(SEQ)d%Jr/Eg)éd%. (60)

5S1 5S2 533

The first integral in Eq. (60) is calculated as in Eq. (5),

o 18%5 P dUM o=
5Slm/<28XMU Ur— SR axrdr. (61)

The second integral in Eq. (60) is as usual,

oLt d [orL®
_ _ (2 tdF
459 / {axu e ( i >}(5X dr. (62)

The third integral in Eq. (60) is [cf. Eq. (5)]

1 8das ASXHN oy
583 = — 2B gepgB sXk 4 U, ——— ) L d
? m/(2ax~ o d7> -

dri?®
— 55, — / U, 9X*dr, (63)
T

where

_ 19908 7018 WUu\ 7(2) sy 4=
To the zeroth order in h, OCs travel along geodesics of the
unperturbed metric. Thu§< the expression in parenthesis
in Eq. (64) is o(h") and L = O(h?). Therefore, S, —
o(h?) and will be neglected. Then, from S = 0 and
Eqgs. (61)—(63), one obtains the following equation:

1 0G0s 1 1arrs AU,
m(iaXuU U

ars? a /oL
OXH  dr\ U~
dr®

U,. (65)

7

Let us introduce the new time 7 via d7/d7 =1 + ,
where ¢ = O(h?) is yet to be defined. Then,

_ 7(2)
10g08 ypayys _ AWa | L7
20X H dT7 oXw

d /L%
N d_T<aWu> =me, (66)

where W< = dX°/d7T and

d ¥ 193,
C=W, <g+—>—2§<—ﬂwaw
m

da 5 AW,
“dT 29Xn ’

A
Like in Eq. (64), the expression in the second parenthesis
is o(h") and ¢ = O(h?), so the second term is gghz) and
is, therefore, negligible. Then, adopting { = —Lg ) /m, or

d7/d7 =1 —L®) /m, (67)

allows one to neglect the whole C. In this case, Eq. (66)
can be viewed as an Euler—Lagrange equation

d [ oc or
a7 (avw) T oX* (68)

that corresponds to the following Lagrangian [cf. Eq. (7)]:

L(XW) = T [gas(XIWOW? = 1] 4 LE(X, W), (69)

Let us also introduce the OC canonical momentum

oL 8I}(2)
Rt B T
P, e MGagW?r + e (70)

and the OC Hamiltonian H = P, W — L. Since EQ) is
small, a general theorem [60, Sec. 40] yields that
H=HO HD O = [ (71)

to the first nonvanishing order in the perturbation. The
function H(® is the unperturbed Hamiltonian, i.e.,

HOX,P) = 5[ (X)PaPs + ], (72)

m



and one can adopt the lowest-order approximation W< ~
§“5P5 /m when evaluating E@. This leads to

afyd ko kb
@ =5 G Tns + L T T,
H 2m 9By a5+4(1€>‘P)\)2 aB<’vé
o
— k. P, 73
k}\PA Y 5 ? ( )
where we have introduced

Top = PoPg. (74)

The OC motion equations corresponding to the Hamil-
tonian (71) are

dX> 9H(X,P) dP,

dP.  H(X,P)
a7 op, ' dT

e (1)

C. Non-covariant equations of motion

Let us also derive these equations in a non-covariant
form that, in particular, will be useful in Sec. VD. Us-
ing Eq. (33) for U°, one can rewrite the OC action (45)
as § = [LdT, with L = L,/U°, and consider S as a
functional of X(7"). Like in Sec. 11 C, the variational
principle for the spatial dynamics is unconstrained, so L
can be understood as the spatial Lagrangian. This leads
to the usual Euler—Lagrange equations,

d aL aL
— - ) 76
dT <8V“> oxXe (76)
The spatial Lagrangian can be explicitly written as
L =L® — &, where Lg)) = —m(U%) ! and (cf. Sec. I1C)

(U™ =/ —Gop — 200,V — gapVoV?,  (77)

d = —LP/U°. (78)

The corresponding OC canonical momenta are P, =
dL/dV® and the corresponding OC Hamiltonian is H =

P,V® — L. Then [cf. Egs. (17) and (21)], H(T, X, P) =
—Po(T, X, P) + O(h?), where Pq solves

HO(T, X, Po(T, X, P), P) = 0, (79)
or explicitly [cf. Eq. (20)],
my
A /_900
where 5 = +/1+06%P,P,/m? and &% = go® —

g%%g%°/g"0. Using the same theorem [60, Sec. 40] as the
one used in Sec. IV B, one finds

=0a
Po(1,X,P) = — - gw by, (80)

HT, X, P) = —Po(1,X,P) + (T, X, P), (81)

and one can adopt P? = mU” when evaluating ®, so

— . |Ge T+ —E g 7
2P0 | 9708 T Az T8
Tas
S )
YNGR I

The corresponding Hamilton’s equations are

dxe oH dP,  OH
dT — oP,’ dT = 8Xe

(83)

According to Eq. (81), —Pg serves as the free-motion
OC Hamiltonian, and ® serves as the interaction Hamil-
tonian in the OC representation, or the ponderomotive
energy. Similar terms in electromagnetic wave—particle
interactions are often called ponderomotive potentials;
however, remember that ® depends not only on 7" and X
but on P too, so it is not a potential per se but a more
general part of the OC Hamiltonian.

V. OSCILLATION-CENTER DYNAMICS:
FIELD-THEORETICAL APPROACH

The calculations above are somewhat ad hoc and the
final results [e.g., Eq. (82)] are not particularly trans-
parent. Here, we propose an alternative derivation of
these results that, hopefully, makes them more under-
standable. The form of the equations derived below will
also be advantageous for the discussion in Sec. VE.

A. Semiclassical particle model

Let us consider a particle as a quantum wave. Since
we are not interested in spin effects, we shall assume that
this wave is governed by the Klein—Gordon equation,

9°PV oV —m* =0 (84)

(assuming units such that i = 1), for it is a simple enough
equation that leads to Egs. (11) in the classical limit, as
discussed below. Since this equation is linear and has real
coefficients, the scalar state function ¢ can be assumed
real or complex. We choose the latter for simplicity. (The
other choice leads to the same final results up to nota-
tion.) Then, the corresponding action is S = | gdiz,
where £ is the Lagrangian density given by

o= YU (00,050 — ) (85)

m

and g = det g,3. Let us represent the wavefunction in
the Madelung form, ¢ = ae¥ (where a and ¥ are real),
and assume the semiclassical (i.e., GO) limit, in which
p = V¥ is much larger than Va. Then, £ can be approx-
imated as

£ = —T(x)H(z, V¥, (36)



where T = a?\/—g and H is given by Eq. (9). There
are two motion equations that flow from here. One is
0S[Z,9]/6Z = 0, which leads to

H(z, V) =0. (87)

This can be recognized as a Hamilton—Jacobi equation
[60], with H serving as the Hamiltonian; hence, it readily
leads to Egs. (10) for point particles. The other motion
equation is 0S[Z, ¥]/69 = 0, which leads to

% {I(x) %} —0. (88)

Equation (88) is understood as a continuity equation
that represents the action conservation for Klein—Gordon
waves, i.e., particle conservation. For more details on lin-
ear GO as a field theory, see for example, Refs. [61-63].

B. Semiclassical OC model

Now, let us consider how a semiclassical particle is af-
fected by metric oscillations produced by a GW. To do
that, let us represent the Hamiltonian as

H~HO 4 HO ¢ ), (89)

where H(") = O(h") and higher-order terms are ne-
glected. Then using Eqs. (9) and (39), we find that H(
is given by Eq. (72) and

1

j2 O —5 haﬁpapﬁe? (90)
1

H® = o he b Ppaps. (91)

Then, like in Sec. IIT C, the particle action can be ap-
proximated as S = [ £d%z. Here, £ = (£), serves as the
Lagrangian density of the slow motion and, under the
GO approximation adopted in Sec. III A, one can also be
written as £ = (£)g.

The remaining calculation is similar to that in
Refs. [50, 51], where it was studied how adiabatic prop-
agation of a general linear wave (in our case, a semi-
classical particle) is affected by a general quasiperiodic
modulation (in our case, a GW) of the general under-
lying medium (in our case, a background metric). For
completeness, we also rederive the corresponding general
£ in Appendix A and show that

£ = —TH(z, V), (92)
where 7 = (I)y, ¥ = (¥)g, and
ke & [(HD,
— g @y, e Y A2 770
H=HY + (H")y 5 8PM< NI (93)
Here, all H™) are evaluated on (z, P), P = V¥, and

OHO)(X, P)

A -
U (X7P)* ap)\ 2

(94)

or in our case specifically,
UM (X, P) = g*(X) Pafm. (95)

The function ‘H is introduced here anew but it is, in fact,
the same function as in Eq. (71). Indeed, let us express
it as H = H® + H®) where H is given by Eq. (72)
and H?) is inferred from Eq. (93) to be

aByd 7o
£ k, o (JQBL/V(;)}? (96)

(2) = Gan Tos — M~
H om |79 T 4 9P, \ kAP,

with £#79 given by Eq. (55) and Tap given by Eq. (74).
A direct calculation shows that Eq. (96) is equivalent to
Eq. (73).

Like in the case of the original system (Sec. V A), the
corresponding motion equations are as follows:

H(z, VI) =0, (97)
% {I(x) %} —0. (98)

Equation (97) can be recognized as a Hamilton—Jacobi
equation in which H serves as a Hamiltonian. Hence, it
readily leads to the same Hamilton’s equations that we
derived earlier, Egs. (75). Equation (98) is a continuity
equation that represents the action conservation of the
waves governed by the Lagrangian density (92), i.e., OC
conservation. We shall revisit this equation in Sec. V D.

C. Non-covariant representation

Since H?) is small, Eq. (97) indicates that at a given
(T, X, P), the value of Py remains close to Po(T, X, P)
that is defined via Eq. (79). By Taylor-expanding
H(X, P) in Py around Po(7, X, P), one obtains

H(X, P) = HO(T,X,Po(T, X, P),P)
+ U (T, X, P)[Py — Po(T, X, P)], (99)

where we have introduced [cf. Eq. (94)]

UNT, X, P) = {L{(X? P)}
9By Py=Po(T,X,P)
=U%T,X,P) + O(h?). (100)
Up to O(h*), Eq. (99) can also be expressed as
H(X,P) =~ U (T, X,P)[P, + H(T,X,P)], (101
where H = —Py + ® and
2
q)(Tv7 X7P) _ H (T7 X, PO(T7 X7P)7P) (102)

UY(T, X, P)



This agrees with Eq. (78) [in conjunction with Eq. (71)]

and Eq. (81). Hamilton’s equations corresponding to the
approximate Hamiltonian (101) are as follows:
% = 88—173{0 =u°, (103)

where we used that, according to Egs. (9
Py+H({E X, P)=0.

Let us substitute Eq. (103) into Egs. (104) and (106).
Then, one arrives exactly at Hamilton’s equations (83),
with H serving as the Hamiltonian of the spatial OC dy-
namics. Using Eq. (96), one finds that

goBd by @ (Tus;
®= S50 |97 7~ 5P ( /ffpwﬂ '
[ A Po=Pyq

(108)

7) and (101),
(107)

This formula is in agreement with Eq. (8
rived earlier within a different approach.

2) that we de-

D. Interaction action

Using S = [ £d*z [where z = (¢,x)], Eq. (92) for £,
Eq. (101) for H, and Py = 8,9, one can write
= —/N[8t1§+ H(z, V9)|y/—gd'z, (109)

where g = det gog, V = Ox, and N = ZU"/ /=g, or
explicitly,

(110)

[Note that z in Eq. (109) is a dummy integration variable
and can just as well be replaced with X.] As flows from
Eq. (98), N satisfies a continuity equation,
L, Iv/=gN) +V - (NV)=
V=g ot
where V. = 9H/9P is the OC velocity [cf. Eq. (83)].
This means that N is the OC density, possibly up to
some constant factor C'. To calculate this factor, let us
consider the point- particle limit, N(t,x) = Cé[x, X(t)],
where 6(x',x"") = §(x’ — x")/+/—7g(t,x') is the general-
ized delta function [64] Then one can show [65] that S
given by Eq. (109) becomes

(111)

S = C/{ X Herx,py| ar (112)

[This can be viewed as a step towards an alterna-
tive derivation of Egs. (83), which readily flow from
Eq. (112).] By comparing Eq. (112) with the canoni-
cal action of a point object with phase-space coordinates
(X, P) [60], one finds that C = 1.

Let us express the OC action as S = S(@ + 5@ where
5 is the action of a “free” OC and S(?) describes the
OC interaction with a GW, which is of the second order
in h. Specifically, we have

SO — / N[&,0 + Ho(z, VI)]/—7 dz, (113)

S — / Nd/—gd*z. (114)

It can also be convenient to rewrite S) explicitly as a
bilinear functional of h,,. To do this, let us rewrite & as

.1, LT
= =3 e Maps = =5 (0 Aasysh™)  (115)
and accordingly,
S@ _ /Ngaﬁv Aosrs V=3 gdie. (116)

The linear coefficient 4,45 that enters these formulas
is specific up to any tensor that is anti-symmetric with
respect to index permutations a <+ 8, v < 9§, or (o, 8) <
(v, 6). Let us define A, g+s such that it be symmetric with
respect to all these permutations. Then,

1 a TagTys
Aa65:_— Qaﬁé_k—<ﬂ>:| ’
WP [P TR R \ TR ) fs
(117)
Qaﬁ'yé = (967%5 + goﬁ%'y + ga'y%5 + gﬁé %V)Po(zpo )
118

The significance of Eq. (116) and the physical meaning
of A,gs is explained below.

E. Gravitational susceptibility

Let us now consider the of the

“gas -+ spacetime” system,

action Swx

Sy = Sen + D[S + 5] = Seu + S+ > S0

Here, Sgy is the Einstein—Hilbert action [56], the summa-
tion 1ndex n denotes contrlbutlons from individual par-
ticles, and Sgas Z S 1s the total interaction action.
Usmg Eq. (1186), the latter can also be expressed as

1
Séii = 5 /5a575Xa575\/__§d4x7

Xogys i/.AagW;(ga7 P)F(z,P)dP,

(119)

(120)



where [ is the OC phase-space distribution normalized
to the OC density, [ F'(z,P)dP = N(z). This can be
used to calculate, both conveniently and systematically,
self-consistent metric oscillations in a particle gas from
the least-action principle 65y = 0. In particular, equa-
tions for has (equivalent to the linearized Einstein equa-
tions) can be derived from 655 /6has = 0. Since S are
independent of h,,, one obtains

)

1
o SEH+—/5“5”5Xa575\/—gd4x —0. (121)
Shop 2

Within the linear approximation, the OC distribution F
is a prescribed function. (In plasma theory, such distri-
bution is commonly known as fo.) Then, X,5,s is pre-
scribed too, and one readily obtains a self-contained lin-
ear equation for h,g. Such calculations will be presented
in a follow-up paper. Related calculations for electro-
magnetic waves are given, for example, in Refs. [52-55].

Note that X, s serves in Eq. (121) as the gravitational
susceptibility. Correspondingly, A,gys is the per-particle
gravitational susceptibility, or gravitational polarizabil-
ity. Remarkably, these linear response functions emerge
from a nonlinear (second-order) ponderomotive energy
(115), in which sense ponderomotive effects are never
actually negligible in linear theory. (The fundamental
connection between the ponderomotive energy and the
linear response function is known as the K-y theorem
[46—48]; see also Refs. [49-51, 66].) Also note that the
gravitational susceptibility can be rewritten as follows:

k-opF dP
Xaﬁ'y5 :/ <7P %Bﬂyé +FJ04B75> DO

w—k-V 4(P9)2°
(122)
A T
Jogys = NesTs) _ T Top Tos — P Qopys.  (123)

0P, po

(For the derivation and an alternative representation of
Jopys, see Appendix B.) Here, the integrand is eval-
uated at Py = Po(P) (80) and the parametrization
ko = (—w, k) is assumed, as usual.

Finally, note the following. Although we assumed,
throughout the paper, that k, is real and that particles
are not resonant to a wave [here, this implies F'(z, P) =0
where w = k - V], our Egs. (121)—(123) are not actually
restricted to this case. Our gravitational susceptibility
can be extended to complex k, via analytic continuation
as usual [67], and resonant particles can be systematically
introduced using the formalism from Ref. [66] such that
the final answer is not affected. For example, Eq. (121)
correctly describes the kinetic Jeans instability as one of
GW modes, as will be shown in a follow-up paper. (An
alternative, nonrelativistic approach to the kinetic Jeans
instability can be found in Ref. [68].)
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VI. EXAMPLE: GRAVITATIONAL
PONDEROMOTIVE EFFECTS IN VACUUM

A. Effective metric

As a special case, let us consider a linear GW pulse in
vacuum. Then, the dispersion relation is k,k% = 0, and
we also assume the Lorenz gauge h“ﬁkﬁe = 0. As seen
from Eq. (73), H@) is simplified then and is given by
Eaﬁ'yé

12 —

Gy T (124)

2m
[As a reminder, £%#7° is given by Eq. (55).] By substitut-
ing Eq. (124) into Eq. (71) and using Eq. (72) for H(®),
one finds that

1
— — (B*F 2
H - (B Py Pg+ m*), (125)

P = gof ey . (126)

Since ®# depends only on X and not on P, it can be
considered as the effective metric seen by a particle in
a GW, or more precisely, the OC metric. [In principle,
‘H can always be brought to the form (125), but in the
general case, &7 depends on P, in which case it cannot
be considered simply as a metric.]

B. Motion equations and conservation laws

For example, let us assume that background metric is
the Minkowski metric 1,5 = n°# = diag {—1,1,1,1} and
the perturbation is expressed in the transverse traceless
(TT) gange,

00 0 0
{0k b0

has = o 0l Tn.o | (127)
00 0 0

where we have assumed that the spatial wavector is par-
allel to the z® axis. Along with the vacuum dispersion
relation, this implies k, = (—w, 0,0, w). Also notice that

hoyhs = (B2 4+ h%)fag, (128)

where we have introduced the transverse part of the
Minkowski metric, o5 = #*? = diag {0, 1,1,0}. Then,

q= (h% +h% ).

Let us also assume that w = const and the GW pulse
is one-dimensional, i.e., its envelope depends only on ¢
and 23 but not on z! or 22. In vacuum, such envelope
can depend on z only through the wave phase 8(z). This
special case is tractable also without the OC formalism,
but the OC formalism makes the solution particularly

straightforward. Indeed, in this case, one has

o1 _ 01 _
ar -~ " ax,

e (129)

g (0) (130)



and P is conserved. (Here and further, | denotes com-
ponents parallel to k and | denotes components perpen-
dicular to k.) Also, Egs. (75) yield

ax,

P, 4% B

=1 0 131
=l s, (131)
Py dp W 5
o T ¥ p2yg). 132
a7~ ar - am e (132)
Note that Eq. (132) implies
Py + P = const. (133)
Since € = d#(X)/dT can be written as
- dX* k
Q =k, = 2 8PP
d7 m s
w w
- (=P + 9P P)) = ;;(}%)**Jﬂﬂ7 (134)

it also remains constant, according to Eq. (133). Then,
Eq. (132) can be integrated, yielding that the parallel
momentum P is given by

w

Pj=P—5-5

Piq(0), (135)
where P = P(T;) is the initial momentum and 7o is the
initial moment of time. Also, Eq. (134) for © yields

Q= wy(—1+ §)), (136)
where 4 is the initial Lorentz factor and B is the initial
velocity normalized to ¢,

P, . P
g Bbpe P (137)
m mAy
Using Eq. (133), one also finds APy = —AP. A

similar calculation for a charge interacting with a one-
dimensional vacuum electromagnetic pulse is discussed
in Ref. [69]; see also Ref. [56, Sec. 47].

C. Secular displacement

The above equations indicate that a particle in a GW
pulse experiences a secular displacement A£ from its un-
perturbed trajectory,

AL, = AX | —pLAT/ﬂL
Al = AX| — P AT /m,

(138)
(139)

just like a point charge does in an electromagnetic pulse
[56, Sec. 47]. [The symbols A denote the changes of the
corresponding quantities between 7y — —oo and T —
+o0o. Assuming w > 0, this corresponds to 8(73) —
+oo and #(T) — —oo, since in this case Q < 0.] From
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Egs. (131), together with Eqs. (135) for P and (136) for

Q, one obtains
2
> . (140)

Here, 2 is a dimensionless integral proportional to the
integral of the GW intensity,

~ ~

N %7 N g(

1
20\1 -8

2= / q(0) do ~ g.wl,, (141)

g. is the characteristic value of ¢, and ¢, is the char-
acteristic length of the GW pulse. Note that a long
enough pulse can cause a substantial displacement even
at small g.. Also, Al > 0; thus, the gravitational pon-
deromotive effect displaces a particle away from the GW
source. Finally, note that A£ vanishes in the frame where
B = 0; however, a relative displacement for objects with
different 3 is generally nonzero.

VII. NUMERICAL SIMULATIONS

In order to test our OC theory, we have numerically
solved the OC Hamilton’s equations [Egs. (75)] and com-
pared the results with the corresponding numerical so-
lutions of the first-principle equations [Eqgs. (11)]. Fig-
ure 1 shows the comparison for a linear vacuum GW
pulse like those discussed in Sec. VI. We also compare
the total particle displacement A€ from its unperturbed
trajectory with the analytic expressions (140). Figure 2
shows a similar comparison for an arbitrary non-vacuum
GW pulse. (In this case, particle trapping is possible
[70, 71], so there is no general analytic expression for A
to compare with.) In both cases, the OC theory demon-
strates good agreement with first-principle modeling of
the particle dynamics. Numerical simulations for other
GW profiles, polarizations, wavevectors, and initial con-
ditions have also been done (not shown) and demonstrate
good agreement as well.

Finally, as a general comment on test-particle simula-
tions in a prescribed GW, notice the following [72]. For
certain initial conditions and GW polarization, the effect
of the wave can be obscured by the coordinate effects
in the chosen gauge. For example, the coordinates of
a particle that is at rest in the T'T gauge remain con-
stant. However, the distance between two such particles
can nevertheless change.

VIII. CONCLUSIONS

Here, we study the nonlinear secular dynamics of parti-
cles in prescribed quasimonochromatic GWs in a general
background metric and for general GW dispersion and
polarization. We show that this “ponderomotive” dy-
namics can be described by Hamilton’s equations (75),



Ax, AX
Az, AZ
0.15
©
25 50 75 100 125 150
FIG. 1: Numerical comparison of the particle and OC dy-

namics in a quasimonochromatic GW: blue - particle dy-
namics as predicted by Eqgs. (11); red - the OC dynamics
as predicted by Eqgs. (75); black dashed - AG and Afy pre-
dicted by Eqs. (140). The GW propagates along the z axis
in vacuum with the Minkowski background metric. Space-
time scales are measured in units iW1, so the GW wavevector
is ka = (—1,0,0,1). The perturbation metric is given by
Eq. (127), with A+ = 7. = a{6)/2, a(6) = O.[sech(e0 +
13) — sech(e0 + 7)]sin0, 0 = kaxa, and e = 0.1 serves as
the small GO parameter (Sec. I11 A). The initial velocity is
ua(r = 0) = (V2,1,0,0). Shown are: (a) the transverse
displacements relative to the unperturbed trajectory, Ax(7)
and AA'[T(r)]; (b) the longitudinal displacements relative
to the unperturbed trajectory, Az{7) and AZ[T(r)]; (c) the
strength of the metric perturbation at the particle location,
a{0{r)}. The function T(r) is calculated by numerical inte-
gration of Eq. (67), but in fact, the difference between 7" and
7 is negligible for these figures.

and we derive the corresponding Hamiltonian A to the
second order in the GW amplitude. We find that H =
where is given by Eq. (72) and
is given by Eq. (73), or equivalently, Eq. (96). For the
special case of vacuum GWs, we show that our Hamil-
tonian H is equivalent to that of a free particle in an
effective metric (126). We also show that already a lin-
ear GW pulse displaces a particle from its unperturbed
trajectory by a finite distance that is independent of the
GW phase and proportional to the integral of the pulse
intensity. This effect is independent from the nonlinear
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Ax, AX

Az, AZ

0.15 ©

25 50 75 100 125 150

FIG. 2: Same as Fig. | but for non-vacuum dispersion and po-
larization, namely, ka = (-1,0,0, «2) and /2Q/j = a(6)5ap/2.

memory effect that has been known. We calculate the
particle displacement analytically [Eq. (140)] and show
that our result is in agreement with numerical simula-
tions. We also show how the Hamiltonian of the non-
linear averaged dynamics naturally leads to the concept
of the linear gravitational susceptibility of a particle gas
with an arbitrary phase-space distribution. This can be
understood as a manifestation of the so-called K- \ theo-
rem known from plasma physics. We calculate the gravi-
tational susceptibility explicitly [Eq. (122)] to apply it, in
a follow-up paper, toward studying self-consistent GWs
in inhomogeneous media within the geometrical-optics
approximation.

This material is based upon the work supported
by National Science Foundation under the grant No.
PHY 1903130.

Appendix A: Field-theoretical calculation of the OC
Hamiltonian

Here, we present a detailed field-theoretical derivation
of the general OC Hamiltonian of a semiclassical particle
that oscillates in a low-amplitude “modulating” wave.
The calculation is similar to that in Ref. [50] (see also
Ref. [51]), but the starting point is somewhat different,
so we shall restate the whole argument. Suppose a semi-



classical particle with quantum phase ¢ and action den-
sity Z. Assume that the particle Lagrangian density £ is
given by (86) and the Hamiltonian H has the form

H(x,p) = H(z,p) + H(z,p),
H(z,p) = (H(z,p))o, (H(z,p))o =0,

(A1)
(A2)

where H(z,p) = Hlex,p, 0(z)] is small (cf. Sec. IIT A)
and the average over the modulating-wave phase 6 is
taken at fixed momentum p = V¢. (We assume units
such that A =1.) Using

I=049, 9=, (A3)
IT=1+1Z, 1I-=(D), (A4)

we obtain the following formula for £:
L=—Z+D)H(z,P+p)+ Hx,P+p), (A5

where P = V@ and p = \3 Taylor-expanding H and
H in p = O(H) and neglecting terms of the third and
higher orders in H, we obtain

__  _90H T 0*H _ o~
~ TH-T Do Bobs — T H
. or. Y T 2 ap,op, PoPe
_OH _ _ oH _

where all functions are evaluated at (z, P). From the
part of Eq. (87) that is linear in the the modulating-wave
amplitude, one has

H+ paU> =0,

U = 0H /0Py, (A7)
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so the two last terms on the right-hand side on Eq. (A6)
mutually cancel out. [The definition of U* given here is
in agreement with Eq. (94) within the assumed accuracy.]
Then, the average Lagrangian density, £ = (£)g, is given
by £ = —1IH, where

1 o’ OH
=H+-—— (p,p, — D, ) . A8
H + 28PQ8P5 <pozp5>t9 + <8Pa poz>€ ( )

Just like H in Eq. (86) serves as a Hamiltonian for a
particle, H serves as a Hamiltonian for the particle OC.

The oscillating part of the particle phase is quasiperi-
odic in 6, so ¥ = Y[ex, 0(x)]. Then, p, = k,Ig¥, where
ko = Vo0 is the wavevector of the modulating wave.
Equation (A7) gives dg¥ ~ —H /(k\U?), so

N ko, H

Pa = —m~ (A9)

By substituting this into Eq. (A8), we then obtain

!

o ?H  koks(Hg ko <aﬁ ~>
%

=Mt 5P, 20077 U\ ap,
ko[, OUP (H?) 1 9(H?)y
2 "7 0P, (kaUM2 — k UX 0P,
772
ke @ (1YY
2 0Py \ kxUA

where we have used 8°H/9P,0P; = 0U?/OP,. For H
of the form (89), this readily leads to Eq. (93).

—Hy

(A10)

Appendix B: Derivation of the gravitational susceptibility

Here, we derive an explicit formula for the gravitational susceptibility X,z,s of a particle gas from Eqs. (117) and

(120). By combining the latter equations, one obtains

F 15}
Nopys = — /dP = {Qaﬁvé —ky ap,

Tog Tys

= (X1 + A2+ A3)apye, (B1)
kppp >:| Py=Pg .

where we have introduced [assuming the parametrization k, = (—w, k)]

. F
(A1) = — [ AP 155 Qs (B2)

o w F
(A2)apys = —Z/dP B0

 ka F
(X3)apys = /dP po

0 (Fap Ty (B3)
Py \ kP )| p .’

T Tis
P, \ kP, )]s,

a7 a7
= %/d‘*muﬂo —Py) o (‘/“5‘/”5> . (B4)
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The latter equality permits taking the corresponding integral by parts. (Remember that the derivative 9/9P, is taken
at fixed P,,, which are independent only in the four-dimensional momentum space.) Specifically, one obtains

3 PN F Tos Ty k d [ F\ TnsTs
Xs)agos = —2 [ d*P&'(Py - Po) [ -2 ) = “5”——“/d4P5P—P S R e
(Xs)asns = =5 / (o 0)< 8Pa> PO keP, 4 o =Po)5p \79) Twep,

i FVe o 9‘5 k 0 F T, 95
O P o __a/dp— #) o,
1 / (Py 0) po ke P, 4 opr, \ PO ke p, Py=Pg

:/d4P<5(Po—Po)k.V ro <%ﬁ$5> _@/dp <9F F9P0> (%5%5>
Py=Py

4P0 3P, \ krP, 4/ PO\apP, PP, kPP,
[ dP 0 ( TupTs OF  F AP\ [ TupTs
*/4P0 {(k'V)F P, ( kPP, ) ~ ka (apa " PYOOPR, kP, )] p b (B5)

where we have used —9Py/9F, =~ V [see Egs. (81) and (83)]. Then, notice that

kP, =k,P? =Pk -V —w), (B6)

so the sum of Eqgs. (B3) and (B5) can be written as follows:

dP [ F 0 [ Ts, Top 7. oF  F  9P° Top 7.
= | = |\krp — aByé 0ZaByd | o oy
04 K= [ LE i, 0o (To) o T (o, 00T 0 (ZaZa) )

Notice that d(k”P,)/0Py = k°, so the whole expression in the square brackets is simply 0(7,5.7,4)/0P,. Also,

P dPy

R — a''p —ObP _ 700 —0a ~ —0a _ —OOVa BT

op, — op, 9 Poto Rl =97 g gt =gt —gT VY, (B7)
k apo 7700,]f _7001f Vaiko_fook _—OOk Va7k0+—00(w_k.v)7k0_goo Lo P (Bg)
a ap, = a—9 Ra = g Ro—g Ra = g = po p-

Then, the above equation can be written as follows:

AP [ F 8(TsTs) aF F \ [ TasTos
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Py=Py
Together with Eqgs. (B1) and (B2), this leads to
dpP k-0pF
Kaprs = / 4(PO)? {w G Fjaﬁvﬁ} } : (B10)
Py=Py
where
. N TopTys) g O Fap Tys) Top Tys
I, - v ——%g—POa _ Y8/ p0y2 By N ) Bi1l
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Here, the tensor %0 = go® — 0% /3% (same as in Sec. IV C) is introduced by analogy with o%® in Eq. (18), and one
can further substitute

N Tap Tys)

S 30 P3Py Ps + Pod3PyPs + PoPsdyPs + PoPsPydy. (B12)
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