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Abstract

Identification of solar coronal holes (CHs) provides information both for operational space weather forecasting and
long-term investigation of solar activity. Source data for the first problem are typically from the most recent solar
disk observations, while for the second problem it is convenient to consider solar synoptic maps. Motivated by the
idea that the concept of CHs should be similar for both cases we investigate universal models that can learn CH
segmentation in disk images and reproduce the same segmentation in synoptic maps. We demonstrate that
convolutional neural networks trained on daily disk images provide an accurate CH segmentation in synoptic maps
and their pole-centric projections. Using this approach we construct a catalog of synoptic maps for the period of
2010-20 based on SDO/AIA observations in the 193 A wavelength. The obtained CH synoptic maps are
compared with magnetic synoptic maps in the time-latitude and time-longitude diagrams. The initial results
demonstrate that while in some cases the CHs are associated with magnetic flux-transport events there are other
mechanisms contributing to the CH formation and evolution. To stimulate further investigations the catalog of
synoptic maps is published in open access.

Unified Astronomy Thesaurus concepts: Solar coronal holes (1484); Astronomy data analysis (1858); Solar
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1. Introduction

Solar magnetic fields play a key role in the formation of solar
activity tracers that are observed in solar disk images (Solanki
et al. 2006). Regions where magnetic field lines are open in the
outer space and appear darker in EUV images are called
coronal holes (CHs). Direct observation of such structures is a
challenging procedure and requires special conditions (Lin
et al. 2004). Another option based on a reconstruction of
magnetic field lines from solar magnetograms requires
additional modeling (see, e.g., Stenflo 2013 for details of
observations). There have been long-term and intense debates
about proper magnetic field reconstruction and there currently
is no single accepted method (see Wiegelmann et al.
2014, 2017, for a review of models and their limitations).

A search for a robust detection procedure for CHs is
motivated by at least two aspects. First, due to the open
magnetic field line configuration, high-energy particles can
easily flow into the outer space and form a solar wind (Nolte
et al. 1976; Abramenko et al. 2009; Cranmer 2009; Obridko
et al. 2009). The solar wind from CHs can reach the Earth and
manifest itself in geomagnetic storms (Robbins et al. 2006;
Vrs$nak et al. 2007). Thus, the detection of CHs is essential for
space weather forecasting. Second, in the view of the solar
dynamo theory, periods of solar activity minima are associated
with a strong poloidal magnetic field (Parker 1955). Thus,
observations of polar CHs may provide information about the
poloidal field strength and also the upcoming solar cycle
(Harvey & Recely 2002). Identification of CHs as open field
regions in reconstructed solar magnetic field lines is doable,
however, with significant uncertainties (see, e.g., Linker et al.
2017).

Fortunately, CHs have an easily accessible tracer. They
appear as massive dark regions when the solar disk is observed
in the EUV or X-ray spectrum. The reason for its darker
appearance is a lower density and temperature of the solar
corona due to the special magnetic field configuration
(Priest 2014). Detection of such specific dark regions is
convenient for CH identification. We review some common
approaches to this problem below.

Detection of CHs is performed both in solar disk images and
in solar synoptic (Carrington) maps that are a compilation of
successive disk images during a solar rotation period. Methods
for CH identification in the disk images are remarkably diverse.
They range from fully manual procedures to fully automatic
ones and use observations in various wavelengths (Table 1). In
addition, source data providers often apply a custom data
preprocessing that contributes to disagreements among various
identification attempts. A detailed and unbiased analysis of the
various approaches and their uncertainties is outside the scope
of this research.

Further progress in methods for CH identification in disk
images will help to reduce uncertainties in the determination of
CH boundaries. However, CHs are typically large structures,
and a single disk image may reveal only the part of a CH that is
on the visible side of the Sun. This means that we need to
compile a series of disk images to capture the whole CH region.
Solar synoptic maps are a convenient way to create such a
representation. A straightforward approach to account for the
CHs boundaries in a synoptic map is to include a compilation
of the CHs boundaries detected in disk images. This approach
was implemented, e.g., by Caplan et al. (2016). We note that
this approach may unambiguously work only if all disk images
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Table 1
Input Data Used for CHs Segmentation in Previous Studies

Illarionov, Kosovichev, & Tlatov

Author Reference Name

Input Wavelength

Henney & Harvey (2005)

Scholl & Habbal (2008)

Krista & Gallagher (2009)

Reiss et al. (2014)

Verbeeck et al. (2014) SPoCA
Lowder et al. (2017)

Garton et al. (2018) CHIMERA
Heinemann et al. (2019) CATCH

10830 A and magnetogram
171, 195, 304 A and magnetogram
195 A
193 A
193 A or 195 A or (171 and 195 A)
(193 or 195 A) and magnetogram
171, 193 and 211 A
193 A and magnetogram

are taken at the same time and cover the whole solar surface.
However, CHs evolve and change their shape with time. Even
long-living CHs may appear substantially different in the disk
images after a single solar rotation. The instantaneous coverage
of the whole solar surface was only available during the
STEREO observations of the far-side of the Sun.

An alternative approach first suggests merging the solar disk
images into full-surface synoptic maps, and then identifying
CHs in the synoptic map directly. Of course, we still have
uncertainties in pixel intensities; however, it is more convenient
to resolve them for continuous values (pixel intensities) than
for binary values (CH boundaries). Quite surprisingly we find
much fewer recent publications on CH identification in
the synoptic maps. Toma & Arge (2005) and Toma (2011)
developed a CH identification procedure using synoptic maps
in the 171, 195, 284, 304, and 10830 A spectrum lines along
with the Ha and magnetic synoptic maps. The data set and
analysis cover a period from 2006 to 2009. Hess Webber et al.
(2014) investigated polar coronal holes from 1996 through
2010 and compared the identification of CHs in the disk images
with two techniques that identify CHs in the synoptic maps.
One method is based on a combination of synoptic maps in the
171, 195, and 304 A wavelengths, while the second one works
with the magnetic synoptic maps. The authors concluded that
these methods produced comparable results. An extended time
period from 1996 to 2016 was considered by Hamada et al.
(2018) who used the multiwavelength synoptic maps together
with magnetograms. An important contribution of this paper is
the development of a homogenization procedure for data from
different observational instruments, which allowed them to
perform a joint analysis of two solar cycles (23 and 24).

The previous methods were developed to analyze specifi-
cally either disk images or synoptic maps. We did not find any
method that has been validated both in solar disk images and
synoptic maps. This motivates us to develop a unified
procedure that can be applied to various representations of
solar observations.

In this paper, we suggest an idea that for a unified detection
algorithm there should be no dramatic difference between CHs
captured in solar disk images and synoptic maps. Of course, we
note that the CHs in the disk images are physical objects while
in the synoptic maps they are synthetic objects to some extent.
Nevertheless, visual interpretation works similarly in both
cases. One can say that the concept of CHs is the same in both
representations.

The suggested idea provides some desired properties of the
unified algorithm. First, it should be local in the sense that it
should be independent on the global image scale and context.
For example, it should demonstrate the same output whether
we feed a whole solar disk or just a cropped patch with no

information about its location in the original disk image.
Second, reasonable geometrical transformations should not
affect the CH identification, e.g., there should be no difference
to which plane the solar sphere is projected,—the concept of
CH remains the same.

Analyzing the desired properties we note that if the
algorithm acts as a convolution with some local kernel, it can
be a proper candidate. Of course, the kernel should be
sophisticated enough to provide binary masks of CHs from
input images. This is very close to what convolutional neural
networks (CNN) do.

The CNN are special types of neural networks commonly
used in image analysis. They can be assumed as a set of
successive convolutional operations with the kernels that are
adjusted during a model training phase to minimize some loss
function, e.g., a segmentation error. Once the model is trained,
the kernels are fixed and inference in new images can be done.
A nice and useful property of such models is that due to their
architecture they do not depend on the input image size (the
situation is similar to the well-known Gaussian or Sobel filters
that can be applied to images of arbitrary shape).

In our research, we apply a CNN trained on segmentation of
CHs in solar disk images to solar synoptic maps. We present an
algorithm of solar synoptic map construction and demonstrate
that the CNN model provides an accurate segmentation output.
As a special case, we consider synoptic maps projected onto the
northern and southern solar hemispheres (pole-centric projec-
tions) and demonstrate that the output of the CNN model is also
in agreement with the original synoptic map. The obtained
statistics are analyzed with respect to solar activity variations.

2. Data

We analyze a data set of the Solar Dynamics Observatory
(SDO) Atmospheric Imaging Assembly (AIA) 193 A solar disk
images with a cadence of one image per day (Lemen et al.
2012). The start date is 2010 June 16, and the end date is 2020
March 1. This period covers 130 full solar rotation periods
starting from Carrington rotation (CR) number 2098 to 2227
inclusively. The data set was obtained from the SunInTime’
website in JPEG quality and 1K resolution. There are two
reasons for this choice. First, this is the same data set that was
used by Illarionov & Tlatov (2018) for the CNN model
training. In the context of neural network models, the data set
uniformity is essential. Second, this data set is already
calibrated with respect to any known instrument issues by the
instrument team (Lemen et al. 2012). This allows a direct
assessment of the input data quality and prevents possible
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Figure 1. Pixel intensity distribution of synoptic maps before histogram matching in comparison to the distribution of contributing disk projections. The histogram
matching procedure adjusts the synoptic map to make it similar to disk projections. Carrington rotations: (a) CR 2098, (b) CR 2145, and (c) CR 2219 are shown.

misinterpretation in data preprocessing steps. Based on this
data we construct solar synoptic maps as described in the next
section.

In the data analysis section, we also use Carrington rotation
synoptic charts of the radial magnetic field component® from the
Helioseismic and Magnetic Imager (HMI; Scherrer et al. 2012).

Additionally, we use a catalog of filaments’ provided by
the Kislovodsk Mountain Astronomical Station'® to make a
comparison with CHs identified by the CNN model.

3. Construction of Synoptic Maps

A standard method of synoptic map construction consists of
two steps. First, we project the solar disk images onto the
Carrington coordinate system. Second, we select latitudinal
strips centered at the central meridian and concatenate them
within a single solar rotation period. Other catalogs of the
SDO/AIA synoptic maps were prepared similarly (e.g., Karna
et al. 2014; Caplan et al. 2016; Hamada et al. 2020).

For the construction of the synoptic maps, we use a data set
of solar disk images described in Section 2. The disk images
have a resolution of 1024 x 1024 pixels; the synoptic maps are
calculated with a resolution of 720 x 360 (however, this is a
free parameter). First, we map each disk image into the
Carrington coordinate system. A technical problem here is how
to map pixels of disk images onto synoptic maps. On the one
hand, for each pixel in a disk image, one can find a
corresponding pixel in the synoptic map using basic trigono-
metric formulas. The advantage is that we use information from
all pixels that cover the solar disk; the disadvantage is that the
corresponding pixels of the synoptic map are sparse. The
higher the resolution of the synoptic map, the greater its
sparsity. On the other hand, one can construct a reverse
mapping. The advantage here is that pixels of the synoptic map
are dense, however, some pixels of disk image will be ignored
and not contribute to the synoptic map. In this case, the higher
the resolution of the disk image, the greater the number of
pixels ignored in this image. Since we want to keep the
resolution of the synoptic maps as a free parameter, we suggest
using the mapping of both types and averaging the pixel values
that correspond to the same pixel of a synoptic map.

The next step is to select a strip around the central meridian of
the projected disk image. It is convenient to consider this step as
a part of an averaging procedure, in which we take into account
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the distance between the pixel longitudes and the central
meridian longitude in the contributing disk image. The greater
the distance, the smaller the pixel weighting factor. The
proposed weighting function is defined as sigmoid((—d + a)/
b), where sigmoid(x) = 1/(1 + exp(—x)) is a standard sigmoid
function, d is distance in degrees, and @ and b are the shift and
scale parameters that help to select the desired blending. Indeed,
varying these parameters we will obtain wider or narrower
rectangular domains and can play with the softness of its
borders. As a particular choice in this work, we use the
weighting function: sigmoid((—d + 13.2)/2). It approximately
specifies that each pixel in the synoptic map is mostly a result of
the blending of two nearest disk images. In Section 5 we will
demonstrate that the CH detection is stable against the various
choice of these parameters. This particular choice was motivated
mostly by the visual appearance of the produced synoptic maps.
Larger values of the shift parameter result in losing fine
structures in the synoptic maps, while smaller values make the
transition zones between the successive disk images visible.

The final step is a histogram matching that corrects the
brightness and contrast variations in the disk area due to the limb-
brightening effect. Because of this effect, a synoptic map
constructed from the central meridian strips appears darker than
the original disk images. As a result, the pixel intensity distribution
is biased. A variety of physics- and data-driven models have been
proposed for correction of this effect (see, e.g., Caplan et al. 2016).
We apply the most straightforward approach of direct histogram
matching. First, we construct a cumulative distribution function
(CDF) F, for pixel intensities from all contributing projected disk
images. Then we construct a CDF F, for the synoptic map. We
note that if we replace each pixel intensity level p of a synoptic
map with Ffl(Fz( p)) then we obtain a new distribution with CDF
equal to F; (see, e.g., Gonzalez & Woods 2006, for implementa-
tion details). Figure 1 shows the pixel intensity distributions for a
sample of synoptic maps before the histogram matching and the
distribution of disk projections.

In Figure 2 we demonstrate examples of the constructed
synoptic maps for the solar activity maximum and minimum.
Specifically, for the demonstration in this and in the following
figures, we choose three Carrington rotations: CR 2098 (during
the solar minimum between Cycles 23 and 24), CR 2145
(during the Cycle 24 maximum), and CR 2229 (during the
minimum between Cycles 24 and 25). Note that the synoptic
maps during solar minimum tend to be darker. This is even
clearer if we average the synoptic maps over longitude and
concatenate them in chronological order (Figure 3). Apart from
the long-term intensity variations associated with the solar
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Figure 2. Sample synoptic maps for Carrington rotations: (a) CR 2098, (b) CR 2145, and (c) CR 2219.
cycle we also find annual variations associated with the solar the visibility of polar CHs observed close to the limb. This
BO angle, best seen along a fixed latitude. In our opinion, the effect has been discussed in Kirk et al. (2009). The nature of
cyclic variations is a matter of a separate investigation. Another

latter effect can be related to the emitting plasma that reduces
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Figure 3. Concatenation of synoptic maps averaged over longitudes. Green vertical lines mark timestamps corresponding to CR 2098, CR 2145, and CR 2219 shown
in Figure 2.
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Figure 4. The U-Net architecture with compression and decompression branches and skip-connections. The input images (e.g., solar disk image or synoptic map) have
spatial dimensions N x M and C;, channels. Each convolutional-downsampling block compresses spatial dimensions and increases the number of channels. The

decompression branch acts as an inverse operation, the output images (e.g., segmentation mask) have spatial dimensions N x M and C,,, channels.

point that should be mentioned is the instrument degradation
issue. In our research, we employ images provided by the SDO
team, which are corrected for the degradation effects, and do
not apply additional processing. However, the calibration
process is not unique, and one could consider alternative data
sets, e.g., the one prepared by Galvez et al. (2019).

To conclude this section we would like to mention that the
source code for synoptic maps construction is open-sourced
in the GitHub repository https://github.com/observethesun/
synoptic_maps, while the synoptic maps produced for each
Carrington rotation are available in a catalog https://sun.njit.
edu/coronal_holes/.

4. Segmentation Model

We start with a brief description of the neural network model
proposed by Illarionov & Tlatov (2018) and discuss how to

apply it to the synoptic maps or, generally speaking, to input
images of arbitrary shape.

The model is a typical U-Net convolutional model
(Ronneberger et al. 2015). Figure 4 schematically shows the
model architecture. It consists of two branches. The first branch
compresses an input image via a set of convolutional and
downsampling operations into a tensor with reduced spatial
dimensions but an increased channel dimension. Each down-
sampling operation reduces the spatial dimensions by a factor
of 2, while each convolutional operation increases the number
of channels by the same factor of 2. The number of the
channels after the first convolutional operation (denoted K in
Figure 4) is a parameter of the model. The model we use has
K =24. In total, the compression branch consists of four
convolutional-downsampling steps. For example, for an input
image of (256, 256) pixels and K = 24 the compression branch
will result in a (16, 16, 384) tensor.
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Figure 5. A heatmap of CHs in the output of the CNN model for CR 2219 (shown in grayscale). Green lines correspond to a threshold value of 0.5 used for
binarization. In the following figures, we show only the boundaries of the binarized heatmaps.

The second branch of the model is a decompression branch.
It consists of a set of convolutional-upsampling operations that,
simply speaking, act as an operation inverse to the compression
branch. The output image tensor will have the same dimensions
as the input image. Because the compression-branch localiza-
tion information becomes more and more limited because of
the downsamplings, the U-Net architecture includes skip-
connections between the corresponding tensors in the compres-
sion and decompression branches. This operation stacks a copy
of tensors in the compression branch to tensors in the
decompression branch. Thus, layers in the decompression
branch obtain information from earlier layers with the
localization information present. Additional technical details
of the implemented model can be found in the original paper
(Illarionov & Tlatov 2018). The source code for the model
application to synoptic maps is available in the repository
https://github.com/observethesun /synoptic_maps.

An important feature of the proposed model architecture is
that it is independent of the input image shape. This means that
the model can be trained on patches extracted from original
images, and then used for the analysis of full-size images. In
this work, we apply the model trained on a set of disk images to
the synoptic maps and pole-centric projections constructed
from these maps.

For the model training Illarionov & Tlatov (2018) used the
binary masks of CHs obtained at the Kislovodsk Mountain
Astronomical Station. These binary masks separate CH and
non-CH regions, including flaments. The binary masks along
with other products are contained in daily reports of the station.
An archive of solar activity maps, including CH boundaries is
available at https://observethesun.com. Thus, the model train-
ing represents a semiautomated and manually controlled
process of the CH identification applied at the station.

We use the same convolutional kernels and other trainable
parameters that were obtained by Illarionov & Tlatov (2018).
This means that the presented results can be directly correlated
with the previous work.

There are some technical issues that we would like to
mention. First, the synoptic maps presented in Section 3 have a
spatial resolution of 720 x 360 pixels. The model was trained
on the 256 x 256 pixel disk images. Thus, it makes sense to
downscale the synoptic maps to better match the pixel sizes.
Second, it is recommended to apply a maximal intensity
padding to the synoptic maps to avoid some artifacts near the

boundaries. The point is that due to the convolutional nature of
the model, each pixel of the next layer is connected only with a
local group of pixels in the previous layer and thus have a
bounded receptive field. It follows that the neurons in the
deepest layer classify pixels based on their local surroundings.
Pixels near image boundaries have fewer pixels around them in
contrast to, e.g., pixels in the image center. In practice, we can
see border artifacts in segmentation output. Image padding is a
common way to overcome this problem. It can be shown that
neurons at the end of the compression branch have a receptive
field of 140 x 140 pixels in the input image. Thus, additional
padding of about 70 pixels around the synoptic map will
provide a full receptive field for pixels near synoptic map
boundaries. Note that this action is not required for the solar
disk images since the space around the solar disk acts as natural
padding. We have tested various approaches, e.g., constant,
mean, and reflection padding, and find that the most
straightforward maximal intensity constant padding works
well. To be more detailed, we downsample the synoptic maps
to 360 x 180 pixels and apply the spatial padding to obtain the
target size of 512 x 256 pixels. The CNN model applied to the
512 x 256 input images produces the segmentation masks of
the same size from which we extract a 360 x 180 region that
contains the desired segmentation map for the synoptic map,
and is the final output.

Figure 5 shows a sample segmentation map obtained using
the CNN model. The model outputs a score for each pixel to be
a part of a CH. The score ranges from O to 1. We apply a 0.5
thresholding to convert the heatmaps into binary masks. For
example, Figure 6 shows that the identified CH boundaries
correspond to visual expectation and accurately detects CHs
regions. Moreover, we do not find misclassification examples
with respect to the catalog of filaments provided by the
Kislovodsk Mountain Astronomical Station and shown in blue
color in the same plot. In the next section, we provide a detailed
analysis.

To demonstrate an additional application of the CNN model,
we apply it to the pole-centric projections of the synoptic maps.
The model inference in this case is the same as for the solar
disk images. Figure 7 shows sample segmentation maps
obtained for the polar projection inputs. For comparison, we
put in the same figure pole-centric projections of CHs obtained
in synoptic maps. We note that both methods are in good
agreement as should be expected.
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Figure 6. Overlaid synoptic maps and reconstructed CH boundaries (green lines) for (a) CR 2098, (b) CR 2145, and (c) CR 2219. These are the same CRs as in
Figure 2. For comparison, filaments from the catalog of the Kislovodsk Mountain Astronomical Station are shown in blue color.
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boundaries deduced from the synoptic maps (blue lines). Columns correspond to the same CRs as in Figure 2. Top and bottom rows show the north and south pole

projections.

In the Appendix, we discuss a possible interpretation of the
segmentation procedure within the CNN model from a physical
point of view.

5. Analysis

In this section, we demonstrate that the CH detection method
is stable against parameters of the construction of the synoptic
maps, and investigate general physical properties of CHs.

The most essential parameter in the synoptic map construc-
tion is the strip width (in our notation it is represented by the
shift and scale parameters). Indeed, the wider strips result in
smoother maps without finer details, while narrower strips
preserve details but provide noisier maps. Another point is that
due to the limb-brightening effect the strip width also affects
the pixel intensity distribution. To avoid this effect we apply
the histogram matching procedure as described in Section 3.

For the uncertainty estimation we consider all combinations
of values of the shift parameter: {66, 13°2, 1998, 26°4, 33°0,
3996} and the scale parameter: {0.5, 1, 2, 4}. Note that the
extreme cases correspond approximately to the narrowest
possible strip (about +6%6 around the central meridian with a
thin blending zone), and a case where each pixel of the
synoptic map results from averaging of six of the nearest disk
images. In Figure 8 we show intervals between the smallest and
largest total areas obtained for all parameter combinations.
Note that the uncertainties are rather negligible. This important
point allows us to conclude that the CH regions detected in the

synoptic maps do not depend on a particular map compilation,
but represent stable and physical structures.

Figure 8 shows the CH areas as a function of time separately
for the northern and southern hemispheres as well as for the
polar (6] > 50°) and low-latitude (|f] < 50°) zones. Our
choice of separating boundary 6 = £50° is consistent with
the work of Hess Webber et al. (2014). We take into account
the contribution of individual pixels into each of these groups
rather than attributing a whole CH based on the location of its
center. Thus, pixels from the same CH may contribute to the
different groups. We make several observations from the
figure. First, large annual variations seen in the middle panel
have a clear connection to the variations of the solar BO angle
shown in the upper panel (due to its variations, the north and
south poles of the Sun are alternately hidden from the
observations). Peaks of both lines in the middle panel
correspond to the maximal absolute values of BO when the
north or south poles are best seen. Second, there is an
asymmetry between the north and south. We observe the
hemispheric asymmetry both in time (the area of the southern
polar CHs decreases later and starts to increase earlier than the
area of the northern CHs) and in amplitude (the southern polar
CHs demonstrate an increasing trend during the solar minimum
between Cycles 24 and 25, while the northern CHs do not show
this trend). Hess Webber et al. (2014) also demonstrated
asymmetries in the polar CHs during the solar minimum
between Cycles 23 and 24. Third, from the bottom panel, we
find that the solar minimum manifests itself in increasing both
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Figure 8. Upper panel: yearly variation of the solar BO angle. Middle panel: areas of the northern and southern polar CHs. Bottom panel: areas of the polar and low-
latitude CHs. The separating boundary between polar and low-latitude regions is 6 = +50°. Line width corresponds to uncertainties that arise from different

parameters of synoptic map construction.

the polar and low-latitude areas of CHs. Moreover, while the
areas of the polar CHs continue to increase, the low-latitude
CH areas fluctuate near constant value. This may be consistent
with ideas of the solar flux-transport theory that magnetic fields
migrate from low latitudes to the poles and accumulate there
during solar minimums (see Babcock 1961; Leighton 1969).
As we noted before, synoptic maps are not directly
observable data in contrast to solar disk images. Thus it is
interesting to compare CHs identified in disk images and
synoptic maps. To make this comparison feasible we apply the
CNN model to solar disk images as described in Illarionov &
Tlatov (2018) and stack obtained binary masks of CHs into
synoptic maps. To construct the synoptic maps from binary CH
masks we apply the same procedure as for solar disk images
excluding the histogram matching step. Figure 9 shows the
total area of CHs identified in solar disk images and stacked
into a synoptic map in comparison to CHs identified directly in
synoptic maps. In should be noted that production of synoptic
maps from binary masks is much more sensible to the shift and
scale parameters in comparison to production of synoptic maps
from disk images. The point is that the narrower the strips are,

the more noisy the map we obtain is. We set the shift parameter
to 3996 and scale to 4 to ensure that only stable structures
identified in disk images contribute to synoptic maps. We find
that this choice of parameters provides the best correlation with
CHs identified directly in synoptic maps. Thus we conclude
from Figure 9 that CH identification in solar disk images and
synoptic maps is in agreement.

Now we consider synoptic maps of CHs with respect to
magnetic synoptic maps and construct time-latitude and time-
longitude diagrams. We start with the time-latitude diagram
that shows a ratio of total unsigned magnetic flux in CHs to the
total unsigned magnetic flux integrated over all longitudes
(Figure 10). We conclude from this plot that while the solar
minimum is accompanied by an increase of the low-latitude CH
areas (see Figure 8, lower panel), its contribution to the total
unsigned flux is not dominant. In contrast, polar CHs generate
almost the whole unsigned magnetic flux. Note that for
construction of this plot we thresholded unsigned magnetic
synoptic maps at 10 Gauss to avoid noise contribution.

For a more detailed investigation, we take into account the
sign of the magnetic field. In Figure 11, the grayscale
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Figure 10. Ratio of total unsigned magnetic flux in CHs to the total unsigned magnetic flux integrated over all longitudes.

background is a magnetic field averaged over all longitudes
while blue and red colors show the magnetic field averaged
over longitudes only in CH regions. Note that averaging CH
magnetic field we filter out latitudes where CHs cover less than
20° of longitudes in total to prevent plotting of statistically
insignificant values. We find from this plot that polar latitudes
have a prevalent sign of the magnetic field that is opposite in
North and South and between solar cycles. Also in agreement
with Figure 10, we find that CHs at lower latitudes in the
minimum between Cycles 24 and 25 have significantly lower
magnetic fields in contrast to polar CHs.

A detailed investigation of results presented in Figure 11 can
give insights about the origin of the CH open magnetic flux and
its relation to the flux-transport mechanism. For example,
Golubeva & Mordvinov (2017) associated CHs with decaying
complexes of magnetic activity, while the studies of Tlatov
et al. (2014) and Huang et al. (2017) revealed pole-to-pole open
flux migration. Hamada et al. (2018) presented a similar plot
showing dominant polarity and relative areas of CHs for Cycles
23 and 24. To facilitate we have constructed the CH catalog
and made it publicly available.

10

Finally, we demonstrate time-longitude diagrams of the CH
magnetic fields. Panels in Figure 12 correspond to three regions
located at northern polar latitudes, low latitudes, and southern
polar latitudes. The separating boundaries are § = £50° as in
Figure 8. We observe that CH patterns are substantially different
in the high- and low-latitude regions. At high latitudes, we find
large-scale structures that exist for about a year. This indicates
that CHs form stable sector structures in the magnetic field
distribution. In the low-latitude region, we find a mixture of two
populations. Before 2015 (during the solar maximum) one can
observe small-scale structures that exist for several months. After
2015 (during the solar minimum) we find characteristics strip
structures that can be traced for several years. A final remark
from Figure 12 is about the inclination of the structures across all
there panels. The elongation from the bottom right to the top left
(which we see in the high-latitude zones) means that the region
rotates slower than the Carrington coordinate system. In contrast,
opposite elongation at the low latitudes means faster rotation.
This is consistent with the general picture of the differential
rotation of the Sun. However, a detailed analysis and rotation
speed estimation is out of the scope of this paper.
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6. Conclusions

We have demonstrated that a convolutional neural network
(CNN) model trained to identify CHs in the solar disk images is
capable of detecting CHs in the solar synoptic maps without
any additional adjustments. Being composed of only convolu-
tional operations the CNN processes images of any shape in the
same way. This also implies that the local image content
dominates over the global content (i.e., the segmentation result
will be the same for portions of the image and the whole
image). Due to these facts, one can expect that for CNN it
should be the same whether it sees the whole disk image, a
partial disk image, or a synoptic map (we suppose that human
interpretation acts similarly).

To illustrate this idea, we constructed a data set of synoptic
maps from daily solar disk images used for model training. The
process of synoptic map construction is not unique and
contains free parameters. We have shown that the segmentation
procedure is stable for a wide range of parameter values
(Figure 8).

It is not trivial to compare properties of CHs identified in the
disk images and synoptic maps, because it requires a
construction of the binary synoptic maps from binary
segmentation masks of the disk images. However, there is a
more feasible option. One can build pole-centric projections of
the synoptic maps, make a segmentation using the CNN model,
and compare the output with the pole-centric projections of the
binary synoptic maps. For a proper segmentation model, the
results should be in agreement. Indeed, in Figure 7 we find that
the CH boundaries obtained by both methods are very close.
Thus, we conclude that the CNN model recognizes CHs
regardless of the way we project them. In other words, it learns
what a CH is itself rather than how a CH looks in the solar disk
context.

For our initial investigation of the physical properties of the
CHs, we separated them into polar and low-latitudinal, and also
into northern and southern. In Figure 8 we find that the CH
areas are minimal during the solar maximum and start to
increase during the declining phase of the solar cycle. There are
visible asymmetries between the north and south both in the
temporal behavior and in the magnitude of CH areas.

Finally, in Figures 10-12 we demonstrated magnetic field
patterns associated with CHs in the time-latitude and time-
longitude domains. In Figure 11, we compare the CH patterns
with the longitudinally averaged magnetic synoptic maps (the
so-called magnetic “butterfly” diagram). The magnetic butterfly
diagram reveals the transport of magnetic flux of decaying
active regions from the low- and mid-latitudes to the polar
regions. As we mentioned above, it was previously suggested
that the CHs are formed at high latitudes from the magnetic
field associated with the flux-transport events. Figure 11 shows
that this association is not common. In some cases, e.g., in the
southern hemisphere around 2015, 2016, and 2017 we can see
the association of CHs of negative polarity with the negative
flux transport. In particular, in the southern hemisphere the
most prominent zone of CH formation, which was around
2015, partially overlaps with a major flux-transport event
(Figure 11). In the northern hemisphere, the CH activity was a
year later and lasted longer, in 2016—17. It is unclear whether
the CH activity is associated with the flux-transport events.
This zone was also compact in the Carrington longitude,
located around 240-300 degrees (Figure 12b). A major
complex of activity was in the zone, but a year earlier. On
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the other hand, CHs of the southern (negative) polarity were
more scattered in longitude. Perhaps, as shown in a case study
by Benevolenskaya (2012), CHs can also be associated with
magnetic fields emerging at high latitudes from the subphoto-
spheric layers. The relationship between the CHs and magnetic
flux emergence and transport requires further detailed
investigation.

Thus, our research demonstrates that CNN is a powerful and
flexible tool for the investigation of solar activity. In particular,
it enables a unified approach to the identification and
characterization of CHs in various geometrical representations
of solar image data. To make this approach more readily
available, we open-sourced the code for synoptic map
construction and CHs segmentation in the repository https://
github.com/observethesun/synoptic_maps and opened free
access to CHs synoptic maps in the catalog https://sun.njit.
edu/coronal_holes/ available in FITS and JPEG formats.
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Appendix

Here we provide some insights about how the proposed
CNN model works. We stress that this discussion is only an
interpretation rather than an explanation. Nevertheless, it helps
to reveal a physical basis for the produced segmentation maps.

A typical alternative to the CNN segmentation is a threshold-
based segmentation. The most straightforward approach is to
select some threshold level for pixel intensities and declare
everything beyond this level to be a CH. It is interesting to
investigate to what extent the CNN model is more advanced. In
our experiments, we consider several synoptic maps (same as
in Figure 2) and determine the threshold levels that result in the
same number of pixels corresponding to CHs as in the
segmentation masks from the CNN model. We stress that we
only match pixel counts while finding the thresholds. In
Figure 13 we demonstrate the input synoptic maps, the CH
segmentation maps produced by the CNN model, and
equivalent (in the sense of the CH pixel counts) segmentation
maps produced by the thresholding. The histograms show pixel
intensity distributions in the synoptic maps and the threshold
levels. We make several observations from these plots. The
CNN segmentation maps look less noisy compared to the
threshold-based segmentation. This means that the CNN acts
not as a thresholding procedure but includes some high-level
processing. The second and more important observation is that
the equivalent threshold in the CNN segmentation varies from
image to image. This means that it depends on the image
context. However, from a physical point of view, the most
interesting note is that the equivalent threshold corresponds to
the first minimum in the intensity distribution. Most of the CH
segmentation algorithms proposed earlier rely on this idea more
or less explicitly. In this respect, the CNN model automatically
finds this more or less to be a reasonable and intuitive strategy.

Now we want to take a step deeper and consider some
synthetic cases. We noted in Figure 13 that while being
equivalent in terms of the CH pixel counts to the thresholding
procedure, the CNN segmentation masks are not as noisy as the
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Figure 13. Comparison of CNN and threshold-based segmentation. Columns correspond to CR 2098 (a), CR 2145 (b), and CR 2219 (c). These are the same CRs as
in Figure 2. Top row shows the input synoptic maps. Second row demonstrates the CH segmentation by the CNN model. Third row shows the equivalent, in terms of
CH pixel counts, threshold-based segmentation. Bottom row shows histograms of the pixel intensity distributions and the threshold levels, which provide the
equivalent segmentation in terms of the pixel counts.
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threshold-based ones. To investigate this fact in more detail, we for each ry. Figure 14 shows a sample of the synthetic map for
generate a set of synthetic synoptic maps as Gaussian random various ry and the corresponding segmentation maps.
structures with the radial exponential correlation function We note in Figure 14 that both segmentation methods give
K (r) = exp(—r/rp). Here r is the distance between pixels in mostly similar results for large-scale structures, but substan-
the pixel units, and ry is a correlation radius. Varying r, we tially differ for small-scale structures. This is also a reason-
obtain a set of synthetic maps ranging from the maps with able feature of the CNN model trained for the CH
almost uncorrelated noise for small r, to the maps with large- segmentation. Indeed, CHs are typically large-scale structures
scale correlated random structures for large ry. For each map, so a proper model should take into account the size factor.
we apply the histogram matching procedure and make its While for a typical CH segmentation method a region filtering
distribution similar to the solar synoptic map corresponding to procedure is an explicit part of the algorithm, for the CNN
CR 2219 (see the right column in Figure 13). Thus, for the model this step works automatically. Figure 15 demonstrates
threshold-based approach, each synthetic map contains the the number of pixels labeled as CHs against the scale factor
same number of pixels assigned to CHs (the threshold is also (or the correlation radius ry in our notations). Note that for the
the same as for the synoptic map corresponding to CR 2219). threshold-based segmentation the pixel count is a constant
Our goal is to compare this against the CNN model. In fact, we because each synthetic synoptic map has the same intensity
vary ro from 0.01 to 20 and use a sample of 10 synthetic maps distribution.
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Figure 14. Sample of synthetic synoptic maps and corresponding segmentation maps. Columns correspond to the correlation radius parameter ro = 0.01 (a), 10 (b),

and 20 (c). Top row shows the synthetic synoptic maps. Middle row shows the segmentation maps obtained using the CNN model. Bottom row shows the threshold-
based segmentation.
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synthetic synoptic map sampling. Gray color shows a min—max range within 10 samples.
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