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Abstract

Deep learning has drawn significant interest in recent years due to its effectiveness in processing big and complex
observational data gathered from diverse instruments. Here we propose a new deep learning method, called
SolarUnet, to identify and track solar magnetic flux elements or features in observed vector magnetograms based
on the Southwest Automatic Magnetic Identification Suite (SWAMIS). Our method consists of a data
preprocessing component that prepares training data from the SWAMIS tool, a deep learning model implemented
as a U-shaped convolutional neural network for fast and accurate image segmentation, and a postprocessing
component that prepares tracking results. SolarUnet is applied to data from the 1.6 m Goode Solar Telescope at the
Big Bear Solar Observatory. When compared to the widely used SWAMIS tool, SolarUnet is faster while agreeing
mostly with SWAMIS on feature size and flux distributions and complementing SWAMIS in tracking long-
lifetime features. Thus, the proposed physics-guided deep learning-based tool can be considered as an alternative

method for solar magnetic tracking.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar photosphere (1518); Convolutional

neural networks (1938)

1. Introduction

Tracking magnetic flux elements is an important subject in
heliophysics research (DeForest et al. 2007; Leenaarts et al.
2015; Wang et al. 2018).” Identifying and tracking the surface
magnetic elements is useful in deriving statistical parameters of
the local and global solar dynamo, allowing for sophisticated
analyses of solar activity (DeForest et al. 2007). It not only
helps scientists understand the distribution of magnetic fluxes
(Parnell 2002), but also helps estimate the amount of energy in
acoustic waves, which plays an important part in the heating of
the solar chromosphere and corona (Fossum & Carlsson 2006).
In addition, magnetic tracking is useful in deriving boundary
conditions of magnetohydrodynamic modeling of the solar
corona and solar wind. In the past, many researchers have
studied the behaviors and patterns of magnetic flux elements. For
instance, Chen et al. (2015) developed a technique to detect and
classify small-scale magnetic flux cancellations and link them to
chromospheric rapid blueshifted excursions. Giannattasio et al.
(2018) investigated the occurrence and persistence of magnetic
elements in the quiet Sun to understand the scales of organization
at which turbulent convection operates. Moreno-Insertis et al.
(2018) reported findings related to small-scale magnetic flux
emergence in the quiet Sun.

In magnetic tracking, features are defined as a visually
identifiable part of an image, such as a clump of magnetic flux
or a blob in a magnetogram. One of the most popular software
tools for magnetic feature tracking across multiple images/
frames is the Southwest Automatic Magnetic Identification
Suite (SWAMIS; DeForest et al. 2007). SWAMIS takes five
steps to track magnetic flux elements: (1) feature discrimination
for each frame, (2) feature identification within a frame, (3)

5 Inthe study presented here, we focus on tracking signed, including positive
and negative, magnetic flux elements.

feature association across frames, (4) occasional noise filtering,
and (5) event detection (Chen et al. 2015). Magnetic events are
broadly classified into two categories: death and birth (Lamb
et al. 2008); the former refers to the end of a magnetic feature’s
existence while the latter refers to the start of a magnetic
feature’s existence.

In this paper, we present a new tool, called SolarUnet, to
track magnetic flux elements. Our tool is built using deep
learning (LeCun et al. 2015). The tool can detect three different
types of events in each category, namely (i) disappearance and
appearance, (ii) merging and splitting, and (iii) cancellation and
emergence. The event “disappearance” is defined as the end of
a single unipolar magnetic feature that “fades away” to nothing
in the absence of nearby features across two frames; the
opposite event “appearance” is defined as the origin of a single
unipolar feature where the unipolar feature does not exist in
the previous frame. The event “merging” is defined as the
combination of two or more like-sign features into a single
magnetic feature; the opposite event “splitting” is defined as the
breakup of a single magnetic feature into at least two like-sign
features, where the total flux of all child features is roughly the
same as that of the parent feature. The event “cancellation” is
defined as the demise of a magnetic feature that collides with
one or more opposite-sign features, resulting in the demise of
these features or an alive feature carrying the remaining flux;
the event “emergence” is defined as the appearance of opposite-
sign features with approximately the same magnitude or a new
feature adjacent to previously existing opposite-sign features in
a nearly flux-conserving manner.

Deep learning, which is a subfield of machine learning,
has drawn significant interest in recent years (LeCun et al.
2015). Inspired by its success in computer vision, speech
recognition, and natural language processing, researchers have
started to use deep learning in astronomy and astrophysics
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Table 1
Numbers of Images Used in Our Study

Number of Training Images Number of Testing Images

196 (from the second collection) 147 (from the first collection)

(Huertas-Company et al. 2018; Leung & Bovy 2018; Kim et al.
2019; Lieu et al. 2019; Liu et al. 2019; Wu & Boada 2019). In
contrast to the existing methods for magnetic tracking (Lamb
et al. 2010, 2013; Chen et al. 2015), our SolarUnet tool is built
using deep learning. Compared to the most closely related
magnetic tracking tool, SWAMIS, which uses hysteresis as the
discrimination scheme and a gradient-based “downhill” method
to identify features in a frame, SolarUnet runs faster while
producing similar or complementary results.

The rest of this paper is organized as follows. Section 2
describes observations and data used in this study. Section 3
presents details of SolarUnet and tracking algorithms used by
the tool. Section 4 reports experimental results. Section 5
concludes the paper.

2. Observations and Data Preparation

We adopted two collections of observations in this study.
The first collection was conducted by the Near InfraRed
Imaging Spectropolarimeter (NIRIS; Cao et al. 2012) of the
1.6 m Goode Solar Telescope (GST) at the Big Bear Solar
Observatory (BBSO; Cao et al. 2010; Goode et al. 2010;
Goode & Cao 2012; Varsik et al. 2014). This collection
contained observations of the magnetic polarity inversion
region in National Oceanic and Atmospheric Administration
Active Region (NOAA AR) 12665 (431", —131") during
~20:16-22:42 UT on 2017 July 13. The obtained data included
spectro-polarimetric observations of a full set of Stokes
measurements at the Fel 1564.8 nm line (0.25 A bandpass)
by NIRIS with a field of view (FOV) of 80" at 0724 resolution
and 56s cadence. Vector magnetic field products in local
coordinates were constructed after removing azimuth ambi-
guity (Leka et al. 2009).

The second collection of observations was conducted with a
clear seeing condition; BBSO/GST achieved diffraction-
limited imaging during ~16:17-22:17 UT on 2018 June 7.
The obtained multiwavelength observations revealed detailed
structural and evolutionary properties of small-scale magnetic
polarities in quiescent solar regions north of the disk center
(—32", 294"). The essential data included in this collection
were the images taken by the GST’s NIRIS using a
2048 x 2048 pixels Teledyne camera with a ~80” FOV. The
spatial resolution (at a diffraction limit of 6 = \/D) of the
NIRIS images was 072, and the temporal cadence was 56 s.
The magnetograms were then aligned based on sunspot and
plage features, with an alignment accuracy within 0”3, which
was the best accuracy by using interpolation.

We prepared our training and testing sets by using the
magnetograms taken from the two collections of observations
described above. Because the magnetograms taken on 2018
June 7 had higher quality than the observations conducted on
2017 July 13, we used the higher-quality magnetograms to
prepare our training data so as to obtain a better magnetic
tracking model. Specifically, we gathered all 202 frames
from the second collection of observations and excluded 6
images with poor quality (these excluded images were very
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noisy). The remaining 196 frames were used as training
data for magnetic tracking. The testing set contained all 147
magnetograms from the first collection of observations. Table 1
summarizes the numbers of training and testing images used in
this study.

3. Methodology
3.1. Overview of SolarUnet

Figure 1 explains how SolarUnet works. Training magneto-
grams are pre-processed in steps 1 and 2, and then used to train
the deep learning model for image segmentation (step 3). The
trained model takes a testing magnetogram (step 4) and
produces a predicted mask (step 5). Through postprocessing of
the predicted mask, SolarUnet produces magnetic tracking
results (step 6).

Specifically, in step 1, we apply SWAMIS with the downhill
option to the 196 training magnetograms to get 196 masks.
These images, including the magnetograms and masks, are
converted to 8 bit grayscale images of 720 x 720 pixels, which
are suitable for our deep learning model. Pixels in the masks
belong to three classes represented by three colors/labels
respectively: positive magnetic flux with a label of 1 (white),
negative magnetic flux with a label of —1 (black), and
nonsignificant flux with a label of 0 (gray). During preproces-
sing, we convert the 196 three-class masks obtained from
SWAMIS to 196 two-class (binary) masks by (i) changing the
label of the nonsignificant flux regions from O to 1, and (ii)
changing both the positive magnetic flux regions and negative
magnetic flux regions to significant flux regions with label —1
(step 2).

The 196 magnetograms (images) and two-class (binary)
masks are then used to train the deep learning model,
implemented in TensorFlow (Abadi et al. 2016) and Keras
(Chollet 2018), for image segmentation (step 3). Because our
deep learning model needs a large amount of data in order to
train successfully, the model invokes the ImageDataGenerator6
in Keras to perform data augmentation, expanding the training
set by shifting, rotating, flipping and scaling the training
images during the model training process. Shifting an image is
to move all pixels of the image horizontally or vertically while
keeping the dimensions of the image the same. Rotating an
image is to rotate the image clockwise by a given number of
degrees from 0 to 360. Flipping an image is to reverse the rows
or columns of pixels in the image. Scaling an image is to
randomly zoom in on the image and either add new pixel
values around the image or interpolate pixel values in the
image. We train the deep learning model using 1 epoch with
10,000 iterations /epoch. In each iteration, the model randomly
selects one of the 196 training magnetograms and its binary
mask, feeds them to the ImageDataGenerator to generate a
synthetic magnetogram and binary mask, and uses the synthetic
magnetogram and binary mask to train the model. There are
10,000 iterations and hence 10,000 synthetic magnetograms
and binary masks are generated through the data augmentation
process, where the 10,000 generated magnetograms and binary
masks are used for model training.” We have chosen to use data

5 hitps: //www.tensorflow.org/api_docs/python/tf/keras /preprocessing /
image/ImageDataGenerator

7 Notice that SWAMIS is applied only to the 196 training magnetograms
mentioned in Table 1; SWAMIS is never run on the 10,000 generated
(synthetic) magnetograms.


https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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Figure 1. Illustration of the proposed method (SolarUnet) for identifying and tracking solar magnetic flux elements. SolarUnet employs a deep learning model for
image segmentation. The training data used to train the deep learning model are highlighted in the dashed box.

augmentation as opposed to acquiring more training data
because the quality of ground-based observations is subject to
many factors such as seeing conditions and observing time
limits. Obtaining large volumes of high-quality training data
requires further observations. Nevertheless, using the synthetic
training images produces reasonably good results as shown in
Section 4.

When a testing magnetogram is submitted, it is converted to
a 8bit grayscale image of 720 x 720 pixels and fed to the
trained deep learning model (step 4). The trained deep learning
model predicts a two-class (binary) mask, containing non-
significant flux regions with label 1 and significant flux regions
with label —1 (step 5). We convert the predicted two-class
(binary) mask back to a three-class mask via postprocessing as
follows. For the nonsignificant flux regions with label 1, we
change their label from 1 to 0. For the significant flux regions
with label —1, we use the information of radial components in
the vertical magnetic field image shown in Figure 1, where the
radial components are perpendicular to the plane of the Sun, to
reconstruct positive and negative magnetic flux regions.
Specifically, for each pixel x in the significant flux regions in
the predicted binary mask, we check the magnetic strength of
the pixel, y, at x’s corresponding location in the vertical
magnetic field image. If y’s magnetic strength is greater than
150 G, we set x as a positive magnetic flux and change the label
of this pixel from —1 to 1. If y’s magnetic strength is smaller
than —150 G, we set x as a negative magnetic flux and the label
of this pixel remains —1. If y’s magnetic strength is between
—150 and 150 G, we set x as a nonsignificant flux and change
the label of this pixel from —1 to 0. This yields a three-class
mask with the polarity information.

Finally, we apply our magnetic tracking algorithms
described in Section 3.3 to the testing magnetogram and masks
to get tracking results (step 6). Magnetic tracking is often
involved with more than one testing magnetogram, and we
output the tracking results in all of the testing magnetograms.

3.2. Implementation of the Deep Learning Model in SolarUnet

Figure 2 illustrates the deep learning model used in
SolarUnet, which is a U-shaped convolutional neural network.
We adapt U-Net (Falk et al. 2019) to our work, enhancing it to
obtain our model. The model has an encoder, a bottleneck, and

a decoder, followed by a pixel-wise binary classification layer.®
The encoder consists of four blocks: E1, E2, E3, and E4. Each
block has two 3 x 3 convolution layers, represented by blue
arrows, followed by a 2 x 2 max pooling layer, represented
by a red arrow. In each convolution layer, we adopt batch
normalization (BN; Ioffe & Szegedy 2015) after convolution,
followed by a rectified linear unit (ReLLU) activation function.
Furthermore, we add a dropout layer (Srivastava et al.
2014) after each max pooling layer. The four encoder blocks
El, E2, E3, and E4 have 32, 64, 128, and 256 kernels,
respectively.

The bottleneck, denoted Bot, mediates between the encoder
and the decoder. It uses two 3 x 3 convolution layers followed
by a2 x 2 up-convolution layer, represented by a green arrow.
The bottleneck has 512 kernels. Similar to the encoder, the
decoder consists of four blocks: D1, D2, D3, and D4. Each
block has two 3 x 3 convolution layers followed by a 2 x 2
up-convolution layer. The four decoder blocks D1, D2, D3, and
D4 have 256, 128, 64, and 32 kernels, respectively. The input
of each decoder block is concatenated by the output of the
corresponding encoder block where the concatenation is
represented by a gray arrow. A dropout layer is added after
each concatenation. Finally, a 1 x 1 convolution layer,
represented by a turquoise arrow, with two kernels followed
by a softmax activation function, is used to produce a
segmentation mask. During testing, the deep learning model
takes as input a testing magnetogram and produces a two-class
mask as an output.

The input resolution of the encoder block El is set to
720 x 720 pixels to match the size of the testing magnetogram.
Each max pooling layer reduces the size by a factor of 2.
Hence, the input resolution of the encoder block E2 (E3 and
E4, respectively) is 360 x 360 (180 x 180 and 90 x 90,
respectively) pixels. The input resolution of the bottleneck,
Bot, is 45 x 45 pixels. Each up-convolution layer increases the
size by a factor of 2. Thus, the input resolution of the decoder
block D1 (D2, D3, and D4, respectively) is 90 x 90
(180 x 180, 360 x 360, and 720 x 720, respectively) pixels.

8 Please see the Appendix for more detailed descriptions of the technical

terms used here.
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Figure 2. Illustration of the deep learning model used in SolarUnet. This model is a U-shaped convolutional neural network, consisting of an encoder, a bottleneck, a
decoder, followed by a pixel-wise binary classification layer. The encoder is comprised of four blocks: E1, E2, E3, and E4. Each block has two 3 x 3 convolution
layers, represented by blue arrows, followed by a 2 x 2 max pooling layer, represented by a red arrow. The decoder is also comprised of four blocks: D1, D2, D3, and
D4. Each block has two 3 x 3 convolution layers followed by a 2 x 2 up-convolution layer, represented by a green arrow. The bottleneck, denoted Bot, mediates
between the encoder and the decoder. It uses two 3 x 3 convolution layers followed by a 2 x 2 up-convolution layer.

The loss function, L, used by the deep learning model is the
binary cross-entropy function defined below:

L=—Ylogy(x, W). (1)

Here, W is the parameters of the convolutional neural network,
v.(x, W) is the output of the softmax layer of the convolutional
neural network, and c is the class label (1 versus —1) of each
pixel x.

In training the deep learning model, we adopt adaptive
moment estimation (Adam) to find the optimal parameters of
the model. The learning rate of Adam is set to 0.0001. Adam
combines the advantages of two popular methods: AdaGrad
and RMSProp (Goodfellow et al. 2016). In most cases, Adam
achieves better performance than other stochastic optimization
methods including the stochastic gradient descent (SGD) with
momentum employed by U-Net (Goodfellow et al. 2016).

Although both our deep learning model and U-Net (Falk
et al. 2019) have the same U-shaped architecture, they differ in
several ways. First, U-Net used SGD with a momentum of 0.99
to train and optimize its model. By contrast, we choose Adam
because it achieves better performance in our case where the
training process would be trapped in a poor local minimum if
SGD were used. Second, U-Net focused on imbalanced data
sets and used a weighted cross-entropy loss function to tackle
the imbalanced classification problem. By contrast, because our
training set is relatively balanced in the sense that nonsigni-
ficant flux regions roughly have the same number of pixels as
significant flux regions, we use the binary cross-entropy loss
function as defined in Equation (1). Third, we adopt BN and
dropout layers, which were not used by U-Net. BN improves
model learning, stabilizes the learning process, reduces the
learning (training) time, and improves prediction accuracy
(Ioffe & Szegedy 2015). Dropout prevents neural networks
from overfitting (Srivastava et al. 2014), where overfitting
means that a trained model fits training data too well and
cannot generalize to make predictions on unseen testing data.

Finally, we reduce the numbers of kernels of the encoder,
bottleneck, and decoder blocks by a factor of 2 compared to
U-Net to speed up the training process and reduce GPU
memory usage.

3.3. Algorithms for Magnetic Tracking and Event Detection

After describing the deep learning model used in SolarUnet,
we now turn to the magnetic tracking algorithms employed by
SolarUnet. Based on the positive magnetic flux regions and
negative magnetic flux regions found in Section 3.1, we
identify signed magnetic flux elements or features in a
magnetogram (image/frame) by utilizing a connected-comp-
onent labeling algorithm (He et al. 2009) to group all adjacent
segments in the positive magnetic flux regions and negative
magnetic flux regions, respectively, if their pixels in edges or
corners touch each other. We filter out those magnetic features
whose sizes are smaller than a user-determined threshold. The
features eliminated from consideration are treated as noise.
Then, we assign each of the remaining features a label number
and highlight the features with different bordering colors.
Finally, we consider the association of features (magnetic flux
elements) across different frames to perform event detection.

Based on the observational data and instruments used, we
calculate the moving distance D (number of pixels) of a
magnetic flux element X as follows:

. C x cadence
725 km arcsec™! x As’

@)

where C is the transverse speed (kms™') on the photosphere
according to the observational environment and Sun’s activity,
and As is the pixel scale. In this study, C is set to 4 km s~ '. For
the NIRIS magnetograms used here, As = 0”083 pixel . We
then calculate the radius of the region of interest (ROI) with
respect to the location or position of the magnetic flux element
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X, denoted ROL,x), as follows:
radius(ROI,ix)) =2 X D + r, 3)

where r is the radius of the smallest region that covers the
magnetic flux element. The ROI,x, defines the region that the
magnetic flux element X cannot move beyond between two
contiguous frames.

The magnetic flux ®(X) is calculated by the surface integral
of the normal component of magnetic field passing through X,
as follows:

dX) = fs B. dS, 4)

where B, is the magnitude of the magnetic field from the
vertical magnetic field image of the testing magnetogram and S
is the area of the surface of X.

For any two features or magnetic flux elements X and Y in a
frame, we define the distance between X and Y, denoted Dist(X,
Y), as follows:

Dist(X, Y) = min d(x,y), )
xeX,yeY

where x and y are pixels in X and Y, respectively, and d(x, y) is
the Euclidean distance between x and y. For a given magnetic
flux element X in a frame, the adjacent features of X are defined
as the k-nearest neighboring features of X in the frame. (In the
study presented here, k is set to 10.)

Let X; be a magnetic flux element in the current frame F;. Let
Y; be a magnetic flux element in the next frame F, where Y;
occurs in the ROI,(x,) in F,. We say X; is approximately equal
to Y;, denoted X; ~ Y;, if X; and Y; have the same sign, and

‘ d(X;) — B(Y)

BX) < 6, (6)

where € is a user-determined threshold based on the observation
setting and tracking task requirement. (In the study presented here,
€; 1s set to 0.33.)

With the above terms and definitions, we are now ready to
describe our algorithms for magnetic tracking and event
detection. For each magnetic flux element or feature X; in the
current frame Fy, the algorithms below determine and indicate
whether X; exists in the next frame F,, or X; is involved in a
merging or cancellation event, or X; disappears.

(Main Algorithm)

(1) If there exists a magnetic feature Y; in the ROI ,x, in the
next frame F, such that X; ~ Y;, then indicate X; exists in
F, (more precisely, X; becomes Y; in F,) and go to (ii);
otherwise go to (iii).

(i1) Check the sign of X;, highlighting X; by yellow bordering
if X; is positive and by green bordering if X; is negative.
Exit the Main Algorithm.

(iii) Find all magnetic features in the ROI ,(x, in the current
frame F;. Group those features in the ROI,, whose
signs are the same as the sign of X; into G (X;) and
group those features in the ROI,x, whose signs are
opposite to the sign of X; into Gopposite (X;).

(iv) Go to the Merging Algorithm to check whether X; and the
features in Ggype (X;) meet the merging criterion. If yes,
perform the merging using the Merging Algorithm and
then exit the Main Algorithm; otherwise indicate X; is not
involved in a merging event.

Jiang et al.

(v) Go to the Cancellation Algorithm to check whether X; and
the features in Gypposite (X;) meet the cancellation criterion. If
yes, perform the cancellation using the Cancellation
Algorithm and then exit the Main Algorithm; otherwise
indicate X; is not involved in a cancellation event.

(vi) If X; is not involved in a merging event according to (iv)
and X; is not involved in a cancellation event based on
(v), indicate X; disappears and highlight X; by purple
bordering.” Exit the Main Algorithm.

(Merging Algorithm)

(i) For each feature X; in Ggme(X;), check whether there
exists a feature Y; in the ROI,(y, in the next frame F,
such that X; ~ Y}, and if yes, delete X; from Gyyme (X;). Call
the remaining set, G,,.(X;). If there are too many
features in G., . (X;), only keep those adjacent features of
Xi in Gs/ame (Xl)

(ii) If there exist a combination C, of features in Gsﬁlme(Xi)
and a magnetic feature Y; in the ROI,(x, in the next frame
F, where Y; and X; have the same sign, such that
Equation (7) below is satisfied, then we say X; and the
features in C, are merged into Y;:

(20X + 3y 20) — @)

<
B < e, (N

where ®(X;) and ®(X) have the same sign and ¢; is a
user-determined threshold (which is set to 0.5). Indicate
X; and the features in C, are merged into Y; by
highlighting X; and the features in C; using amber
bordering. Exit the Merging Algorithm.

(iii) If there does not exist Y; or a combination of features
satisfying Equation (7) (i.e., the condition in (ii) is not
satisfied), indicate X; and the features in G,pe (X;) do not
meet the merging criterion. Exit the Merging Algorithm.

(Cancellation Algorithm)

(i) For each feature X; in Gypposite (Xi), check whether there
exists a feature ¥; in the ROI,(x,) in the next frame F,
such that X; ~Y}, and if yes, delete X; from Gopposie (X;).
Call the remaining set, Gépposite (X;). If there are too many
features in Gépposite (X;), only keep those adjacent features
of Xi in G(;pposile ()(1)

(ii) If there exists a combination C, of features in Gépposite (X»
such that Equation (8) below is satisfied, then we say X;
and the features in C, cancel each other (referred to as
balanced cancellation in DeForest et al. 2007):

DO + Yy, )
(X;)

< e, (8)

where ®(X;) and ®(X) have opposite signs. Indicate X;
and the features in C, cancel each other by highlighting

° For the events belonging to the death category, namely disappearance,

merging, and cancellation, magnetic features involved in the events are
highlighted by different bordering colors (purple for disappearance, amber for
merging, and pink for cancellation) in the current frame F,. For the events
belonging to the birth category, namely appearance, splitting, and emergence,
magnetic features involved in the events are highlighted by different bordering
colors (blue for appearance, aqua for splitting, and red for emergence) in the
next frame F,.
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Figure 3. Example of BBSO/GST images of a disappearance event. The negative magnetic flux element highlighted by purple bordering in (A) disappears in (B).

Time in UT is at the bottom right of each image.

X; and the features in C, using pink bordering. Exit the
Cancellation Algorithm.

(iii) If there exist a combination C, of features in (fpposite (X)
and a magnetic feature Y; in the ROI ,(x, in the next frame
F,, such that Equation (9) below is satisfied, then we say
X; and the features in C, are canceled to yield a feature,
Y;, carrying the remaining flux (referred to as unbalanced
cancellation in DeForest et al. 2007):

1200 + 5, 201 12(3)
T3e7)

where ®(X;) and ®(X) have opposite signs. Indicate X;
and the features in C, are canceled by highlighting X;
and the features in C, using pink bordering. Exit the
Cancellation Algorithm.

@iv) If neither the condition in (ii) nor the condition in (iii) is
satisfied, indicate X; and the features in Gopposite (X;) do not
meet the cancellation criterion. Exit the Cancellation
Algorithm.

)

< e,

To determine whether the magnetic feature X; appears or is
involved in a splitting or emergence event, we use the same
algorithms as described above except that we treat the next
frame F, as the current frame and the current frame F; as the
next frame.

4. Results

SolarUnet is implemented in Python.'® Our deep learning
model is coded with TensorFlow'! (Abadi et al. 2016) and
Keras'? (Chollet 2018) libraries. The data processed by
SolarUnet, with the aid of Astropy'® (Astropy Collaboration
et al. 2013), include FITS files containing vector magnetic
fields, PNG images of the observational data described in
Section 2, and image masks obtained from the SWAMIS
tool presented in DeForest et al. (2007). SWAMIS, written in
Perl Data Language (PDL)' and available via SolarSoft'

19 hitps: //www.python.org/

" hitps: //www.tensorflow.org/
'2 hitps: //keras.io/

13 https:/ /www.astropy.org/

14 http:/ /pdl.perl.org/
3 https:/ /sohowww.nascom.nasa.gov /solarsoft/

(Freeland & Handy 1998), was run with the downhill option.
Figures in this section were produced with the aid of
matplotlib'® (Hunter 2007). Statistical tests were performed
by SciPy'” (Virtanen et al. 2020). All experiments were
conducted on a Dell PC with 17-8700k CPU, 32 GB RAM, and
a NVIDIA GeForce RTX 2080 GPU for training and testing the
deep learning model.

4.1. Magnetic Tracking and Event Detection Results

In this series of experiments, we used the 196 magnetograms
mentioned in Table 1 and the corresponding masks obtained
from SWAMIS to train SolarUnet as described in Section 3.1,
and then we performed testing on the set of 147 magnetograms
mentioned in Table 1. The testing set contained observations in
NOAA AR 12665 (431", —131") during ~20:16-22:42 UT on
2017 July 13. The filter size threshold was fixed at 10 pixels.
Thus, in the experiments we considered features or magnetic
flux elements having at least 10 pixels.

We present figures to illustrate the six events studied here.
Frames taken at 20:15:49 UT and 20:16:45 UT are used to
illustrate a disappearance event. Frames taken at 21:00:48 UT
and 21:01:45 UT are used to illustrate an appearance event.
Frames taken at 20:18:38 UT and 20:19:34 UT are used to
illustrate a merging event. Frames taken at 20:19:34 UT and
20:20:30 UT are used to illustrate a splitting event and a
cancellation event. Frames taken at 20:17:41 UT and 20:18:38
UT are used to illustrate an emergence event. We present
enlarged FOV results in these figures with a FOV of 7”5 where
each figure has two axes: E-W (x-axis) and S-N (y-axis).

Figure 3 shows a disappearance event. In Figure 3(A), a
magnetic feature highlighted by purple bordering exists at
E-W = 421" and S-N = —191”, which is pointed to by a red
arrow in the frame from 20:15:49 UT. This feature disappears
in the next frame from 20:16:45 UT as shown in Figure 3(B).
Figure 4 illustrates an appearance event. In Figure 4(A), there
exists no feature at E-W = 420" and S-N = —192” in the
frame from 21:00:48 UT. However, a new feature appears in
the next frame from 21:01:45 UT, which is highlighted by
blue bordering and pointed to by a red arrow as shown in
Figure 4(B).

16 hitps: / /matplotlib.org/
7 hitps: //www.scipy.org/
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Figure 4. Example of BBSO/GST images of an appearance event. The positive magnetic flux element highlighted in blue bordering in (B) does not exist in (A), and
hence an appearance event is detected. Time in UT is at the bottom right of each image.
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Figure 5. Example of BBSO/GST images of a merging event. Two positive magnetic flux elements highlighted by amber bordering in (A) are merged into a single
positive magnetic flux element in (B). Time in UT is at the bottom right of each image.
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Figure 6. Example of BBSO/GST images of a splitting event. A negative magnetic flux element in (A) is split into two negative magnetic flux elements highlighted

by aqua bordering in (B). Time in UT is at the bottom right of each image.

Figure 5 shows a merging event. In Figure 5(A), two
separate positive polarity magnetic features highlighted by
amber bordering and pointed to by a red arrow in the frame
from 20:18:38 UT are merged into a single positive polarity
feature at E-W = 453" and S-N = —180” in the frame from

20:19:34 UT as shown in Figure 5(B). Figure 6 illustrates a
splitting event. In Figure 6(A), a negative polarity feature
exists at E-W = 448" and S-N = —179” in the frame from
20:19:34 UT. This negative polarity feature is split into two
negative polarity features highlighted by aqua bordering and



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 250:5 (13pp), 2020 September

=156

-157

-158

-159

S-N (arcsec)
S-N (arcsec)

-160

-161

-162

433 434 435 436 437 438

E-W (arcsec)

(A)

439 440

=156

=157

-158

-159

-160

-161

=162

433

434

Jiang et al.

400

200

o
Gauss

—-200

—400

435 436 437 438 439 440

E-W (arcsec)

(B)

Figure 7. Example of BBSO/GST images of an unbalanced cancellation event. A positive magnetic flux element and a negative magnetic flux element, both of which
are highlighted by pink bordering in (A), are canceled to yield a negative magnetic flux element carrying the remaining flux, which is pointed to by a red arrow in (B).

Time in UT is at the bottom right of each image.
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Figure 8. Example of BBSO/GST images of an unbalanced emergence event. A new negative magnetic flux element emerges, next to a pre-existing positive magnetic
flux element in (A), in a nearly flux-conserving manner where the two magnetic flux elements with opposite signs are highlighted by red bordering in (B). Time in UT

is at the bottom right of each image.

pointed to by a red arrow in the frame from 20:20:30 UT as
shown in Figure 6(B).

Figure 7 shows an unbalanced -cancellation event. In
Figure 7(A), there exist two magnetic features with opposite
signs around E-W = 437" and S-N = —158.5" in the frame from
20:19:34 UT. The two magnetic features with opposite signs,
highlighted by pink bordering, are canceled to yield a negative
polarity magnetic feature carrying the remaining flux, pointed to
by a red arrow, in the frame from 20:20:30 UT as shown in
Figure 7(B). Figure 8 illustrates an unbalanced emergence event.
A new negative polarity feature emerges, next to a pre-existing
positive polarity feature, in the frame from 20:18:38 UT as shown
in Figure 8(B). The flux of the positive polarity feature pointed to
by a red arrow in Figure 8(A) is approximately equal to the total
flux of the two features with opposite signs, highlighted by red
bordering and pointed to by a red arrow in Figure 8(B).

4.2. Comparison with SWAMIS

‘While both SolarUnet and SWAMIS (DeForest et al. 2007)
aim to track magnetic features and detect magnetic events, they
differ in two ways.

1. Their feature discrimination and identification algorithms
are different. SWAMIS used hysteresis and a threshold-

based method to separate nonsignificant flux regions,
positive magnetic flux regions, and negative magnetic
flux regions. Then it used direct clumping and a gradient-
based (“downhill”) method to identify magnetic features
in these regions. By contrast, SolarUnet employs a
U-shaped convolutional neural network to gain knowl-
edge from training data and then predicts a binary (two-
class) mask containing nonsignificant flux regions and
significant flux regions. Next, SolarUnet separates the
significant flux regions into positive magnetic flux
regions and negative magnetic flux regions through
postprocessing of the binary mask. Finally, SolarUnet
uses a connected-component labeling algorithm (He et al.
2009) to group all adjacent segments in the positive
magnetic flux regions and negative magnetic flux regions
respectively if their pixels in edges or corners touch each
other to identify positive and negative magnetic flux
elements.

. Their feature tracking and event detection algorithms are

different. SWAMIS used a dual-maximum-overlap criter-
ion to find persistent features across frames. In contrast,
SolarUnet defines the ROI of a magnetic feature and
traces the flux changes of the magnetic features in the
ROI to find the association of features across frames.
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Figure 9. Illustration of the magnetic flux elements detected by SolarUnet but not found by SWAMIS on the testing magnetogram from AR 12665 collected on 2017
July 13 20:15:49 UT. (A) SolarUnet identifies a positive feature highlighted by yellow bordering and a negative feature highlighted by green bordering where the two
highlighted features are enclosed by red square boxes numbered by 1 and 2, respectively. (B) SWAMIS does not find the two features as no bordering is shown inside
the red square boxes numbered by 1 and 2, respectively. Time in UT is at the bottom right of each image.
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Figure 10. Magnetic feature size distributions as derived by SWAMIS (represented by blue) and SolarUnet (represented by orange) on the testing magnetogram from
AR 12665 collected on 2017 July 13 20:15:49 UT. SolarUnet agrees mostly with SWAMIS on the feature size distributions.

It should be pointed out that, although the U-shaped network
(i.e., the deep learning model) in SolarUnet gains knowledge
from the training data prepared by SWAMIS, the model is able
to generalize learned features to more generic forms. In our
work, the model gains knowledge from the training images in
quiescent solar regions collected on 2018 June 7 and uses the
acquired knowledge to make predictions on unseen testing
images from an active region (NOAA AR 12665) collected on
2017 July 13. With the generalization and inference capability,
the model may discover new magnetic flux elements not found
by the SWAMIS method. For example, with the filter size
threshold of SolarUnet fixed at 10 pixels, SolarUnet detected
two opposite-sign features not found by SWAMIS on the
testing image (magnetogram) from AR 12665 collected on
2017 July 13 20:15:49 UT. Figure 9(A) highlights these two
features; Figure 9(B) shows that the two features were not
found by SWAMIS.

Figure 10 compares the feature size distributions of
SWAMIS and SolarUnet on the testing image (magneto%ram)
where the features had at least 2 pixels (0.007242 Mm?)."® The

'® In this and subsequent experiments, features with 1 pixel were considered as
noise and excluded.

feature sizes of SWAMIS are represented by blue and those of
SolarUnet are represented by orange. Figure 10 shows that
SolarUnet agrees mostly with SWAMIS on the feature size
distributions. To quantify this finding, we conducted the Epps-
Singleton two-sample test (Epps & Singleton 1986; Goerg &
Kaiser 2009; Gibbons & Chakraborti 2011). According to the
test, the results of SolarUnet and SWAMIS have a significant
difference when p < 0.05. In our case p = 0.858 > 0.05, and
hence we conclude that the results of the two tools are similar.
Table 2 shows the minimum, maximum, median, mean, and
standard deviation (SD) of the feature sizes found by SWAMIS
and SolarUnet, respectively. SWAMIS detected 548 features
while SolarUnet identified 543 features. The largest magnetic
feature, which was a negative feature, found by SWAMIS had
60,213 pixels (218.03 Mm?). This feature was also detected by
SolarUnet, with a smaller size of 57,662 pixels (208.80 Mmz).
This size difference occurs due to the different feature
identification and tracking algorithms used by the two tools.
Next, for each feature detected by the tools, we calculated its
flux using the formula in Equation (4). Figure 11 compares the
feature flux distributions of SWAMIS and SolarUnet. The
results in Figure 11 are consistent with those in Figure 10;
SolarUnet agrees mostly with SWAMIS on the feature flux
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Table 2
Summary Statistics of Feature Size and Flux Distributions as Derived by SWAMIS and SolarUnet”
Method Minimum Maximum Median Mean SD
Feature size SWAMIS® 0.007242 218.03 0.029 0.94 10.14
(Mm?) SolarUnet” 0.007242 208.80 0.022 0.89 9.72
Feature flux SWAMIS® 0.009507 1805.13 0.048 6.70 81.59
(10" Mx) SolarUnet® 0.011051 1780.96 0.048 6.61 80.89
Notes.

? The data presented in this table are based on the testing magnetogram from AR 12665 collected on 2017 July 13 20:15:49 UT.

® SWAMIS detected 548 features in the testing magnetogram.
¢ SolarUnet identified 543 features in the testing magnetogram.

distributions. According to the Epps-Singleton two-sample test,
the feature flux distributions of SolarUnet and SWAMIS
have a significant difference when p < 0.05. In our case,
p = 0.983 > 0.05, and consequently we conclude that the
feature flux distributions of SolarUnet and SWAMIS are
similar. Table 2 shows the minimum, maximum, median,
mean, and SD of the feature fluxes found by SWAMIS and
SolarUnet, respectively. The feature fluxes detected by
SWAMIS ranged from 0.009507 x 10" to 1805.13 x 10'®
Mx. The feature fluxes detected by SolarUnet ranged from
0.011051 x 10'® to 1780.96 x 10'® Mx. Some of the small
fluxes could be noise whiles others might be involved in small-
scale magnetic flux emergence (Moreno-Insertis et al. 2018) or
small-scale magnetic flux cancellation (Chen et al. 2015).
Similar results on feature size and flux distributions were
obtained from the other magnetograms in the testing set.

To further understand the behavior of SolarUnet and
compare it with SWAMIS, we performed additional experi-
ments to examine the lifetimes of the features identified and
tracked by the two tools. We applied SolarUnet and SWAMIS
to all of the 147 testing magnetograms mentioned in Table 1.
The lifetime of a feature X is defined as X’s disappearance time
minus X’s appearance time. More precisely, assuming X
appears in the mth frame and disappears after the nth frame
(i.e., X is not shown in the (n + 1)th frame), the lifetime of X is
defined to be n — m + 1 frames. Feature lifetime is strongly
dependent on the feature identification and tracking algorithms
employed by a tool (DeForest et al. 2007) and can be used to
measure flux turnover rate (Hagenaar et al. 2003).

Figure 12 compares the lifetimes of features found by
SWAMIS and SolarUnet. SWAMIS tracked 48,145 features
across the 147 testing magnetograms while SolarUnet tracked
42,470 features. The lifetimes of features found by SWAMIS
ranged from 1 frame (56 s) to 138 frames (128.8 minutes). The
lifetimes of features detected by SolarUnet ranged from 1 frame
to 147 frames (137.2 minutes). SWAMIS tracked more short-
lifetime features than SolarUnet while SolarUnet tracked more
long-lifetime features than SWAMIS. Specifically, among the
48,145 features tracked by SWAMIS, 37,110 features had a
lifetime of one frame while SolarUnet only identified and
tracked 22,657 such features. On the other hand, SolarUnet
tracked 19,813 features whose lifetimes lasted more than one
frame while SWAMIS only identified and tracked 11,035 such
features. SolarUnet complements SWAMIS in tracking long-
lifetime features. We note that the training data of SolarUnet
are from SWAMIS. For those features with short lifetime in the
training images, our deep learning model may not acquire
enough knowledge about them and hence may miss similar
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features in the testing images. This may explain why SolarUnet
detects fewer short-lifetime features than SWAMIS.

5. Discussion and Conclusions

We develop a deep learning method, SolarUnet, for tracking
signed magnetic flux elements (features) and detecting magnetic
events in observed vector magnetograms. We apply the
SolarUnet tool to data from the 1.6 m GST at the BBSO. The
tool is able to identify the magnetic features and detect three
types of events, namely disappearance, merging and cancella-
tion, in the death category and three types of events, namely
appearance, splitting and emergence, in the birth category. We
use the BBSO/GST images to illustrate how our tool works on
feature identification and event detection and compares with the
widely used SWAMIS tool (DeForest et al. 2007).

Our main results are summarized as follows:

1. For the testing data considered, SolarUnet agrees mostly
with SWAMIS on feature size (area) and flux distribu-
tions and complements SWAMIS in tracking long-
lifetime features. It is worth noting that because
SolarUnet performs magnetic tracking through making
predictions, it is faster than the current version of
SWAMIS. In general, SolarUnet runs in seconds on a
testing magnetogram while the current version of
SWAMIS runs in minutes on the same testing
magnetogram.

2. SolarUnet is a physics-guided tool in the sense that it
incorporates physics knowledge into its model and
algorithms in several ways. First, the training data of
SolarUnet are from the physics-based SWAMIS tool.
Second, when designing the loss function for the deep
learning model used by SolarUnet, based on the
observation that nonsignificant flux regions roughly have
the same number of pixels as significant flux regions in
the training set, we adopt a binary cross-entropy loss
function as defined in Equation (1) instead of the
weighted cross-entropy loss function used by the related
U-Net model (Falk et al. 2019). Third, when converting
the binary (two-class) mask predicted by our deep
learning model for a testing magnetogram to a three-
class mask with polarity information, we use the
information of radial components in the vertical magnetic
field image of the testing magnetogram to reconstruct
positive and negative magnetic flux regions in the
predicted mask. Lastly, by exploiting physics knowledge
and based on the observational data and instruments
used, we introduce the moving distance as defined in
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Figure 11. Magnetic feature flux distributions as derived by SWAMIS (represented by blue) and SolarUnet (represented by orange) on the testing magnetogram from
AR 12665 collected on 2017 July 13 20:15:49 UT. SolarUnet agrees mostly with SWAMIS on the feature flux distributions.

Equation (2) and ROI as defined in Equation (3) of a
magnetic flux element to find the association of features
across frames so as to track these features.

3. Although SolarUnet gets training data from SWAMIS,
our tool may discover new features not found by the
SWAMIS method. For example, refer to Figure 9.
SolarUnet may detect smaller opposite-polarity features,
as shown and highlighted in Figure 9(A), near larger
magnetic flux elements. Small-scale energy release
phenomena, ranging from coronal jets down to spicules,
may be responsible for providing the upward flux of
energy and momentum for the observed heatings and
flows in the corona and may plausibly drive the small
transients in the solar wind recently discovered by the
Parker Solar Probe (Parker 2020). There is mounting
evidence that these events are generated via small-scale
magnetic reconnection (e.g., Samanta et al. 2019), the
photospheric signature of which is flux cancellation
involving opposite magnetic polarities (Zwaan 1987).
The ability of SolarUnet in detecting smaller opposite-
polarity features near larger magnetic flux elements in a
faster manner can result in an improved determination of
magnetic reconnection rate, thus contributing to the
understanding of the mechanisms of solar coronal heating
and the acceleration of the solar wind.

4. The deep learning model in SolarUnet performs binary
(two-class) classification, i.e., predicting a two-class
mask, rather than three-class classification, i.e., predicting
a three-class mask, during image segmentation. Solar-
Unet produces a three-class mask through postprocessing
of the predicted two-class mask as described in item 2
above and in Section 3.1. As indicated in the machine-
learning literature, multiclass classification including
three-class classification often adds more noise to the
loss function (see, e.g., the Abstract of Gupta et al. 2014),
and it is easier to devise algorithms for binary classifica-
tion (see, e.g., the Introduction in Allwein et al. 2001).
We conducted additional experiments to compare
SolarUnet with a three-class classification method. This
method trained its deep learning model using the three-
class masks obtained directly from SWAMIS and
predicted three-class masks. Its model was the same as
SolarUnet’s model except that (i) its loss function was
changed from the binary cross-entropy function defined
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in Equation (1) to a categorical cross-entropy loss with
three-class labels (1, 0, —1), and (ii) its softmax activation
function was modified to output three-class masks. The
three-class classification method used the same tracking
algorithms as described in Section 3.3 for magnetic
tracking and event detection. The results of the three-class
classification method were not as good as those of
SolarUnet. For example, the feature size distribution
obtained from the three-class classification method was
significantly different from the feature size distribution
obtained from SWAMIS with p = 0.025 < 0.05 accord-
ing to the Epps-Singleton two-sample test on the testing
magnetogram from AR 12665 collected on 2017 July 13
20:15:49 UT.

Based on our experimental results, we conclude that the
proposed SolarUnet should be considered a novel and
alternative method for identifying and tracking magnetic flux
elements. More testing of the method, using different training
and test data, should be performed. With the advent of big and
complex observational data gathered from diverse instruments
such as BBSO/GST and the upcoming Daniel K. Inouye Solar
Telescope (DKIST), it is expected that the physics-guided deep
learning-based SolarUnet tool will be a useful utility for
processing and analyzing the data.
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Figure 12. Feature lifetime histograms derived from SWAMIS and SolarUnet based on the 147 testing magnetograms (frames) from AR 12665 collected on 2017 July
13. SWAMIS tracks 48,145 features, among which 37,110 features have a lifetime of one frame. SolarUnet tracks 42,470 features, among which 22,657 features have
a lifetime of 1 frame. On the other hand, SolarUnet tracks 19,813 features whose lifetimes last more than one frame while SWAMIS only tracks 11,035 such features.

SolarUnet complements SWAMIS in tracking long-lifetime features.

Appendix

Here we explain the technical terms used in describing our
deep learning model (i.e., the U-shaped convolutional neural
network).

Encoder is a neural network, which takes an input image and
generates a high-dimensional vector that is an abstract
representation of the image (see Chapter 8.5.2 in Aggarwal
2018). By using the encoder, our model can better understand
the content and context of the image.

Decoder is a neural network, which takes a high-dimensional
vector and generates a segmentation mask (see Chapter 8.5.2 in
Aggarwal 2018). By using the decoder, our model can recover
the spatial information in the input image.

Bottleneck, also known as the ‘“compressed code” (see
Chapter 8.5.2 in Aggarwal 2018), is a layer with less neurons
than the layer below or above it (Gehring et al. 2013). In
general, it can be used to obtain a representation of the input
with reduced size (dimensionality). In our model, bottleneck
mediates between the encoder and the decoder.

Convolution layer contains multiple kernels where a kernel
is a matrix whose elements (weights) need to be learned from
training data (see Chapter 9 in Goodfellow et al. 2016). Each
kernel is multiplied with an image vector X (via element-wise
multiplications) to produce a new image vector that contains
only the important information in X (see Chapter 8 in Aggarwal
2018).

Max pooling layer reduces the size of an image vector X
while retaining only the important information in X (see
Chapter 8.2 in Aggarwal 2018).

Up-convolution layer, containing learnable parameters
(weights), increases the size of an image vector X. This layer,
also called an upsampling (Shelhamer et al. 2017) or
deconvolution layer, can recover the spatial information in X
(see Chapter 8.5.2 in Aggarwal 2018).

Softmax activation function converts a vector of k real values
to a vector of k real values that sum to 1 (see page 14 in
Aggarwal 2018). Softmax is useful because it converts the
scores in the vector to a normalized probability distribution,
which can be displayed to a user. In our model, softmax is used
to output the class label (1 versus —1 or nonsignificant flux
versus significant flux) of each pixel.

12

ReLU employs an activation function f(x), defined as
f(x) = max(0, x), where x is the input to a neuron, f(x) = x
if x>0 and f(x) =0 otherwise (see Chapter 1.2 in
Aggarwal 2018). It is easy to train a model that uses ReLUs,
which often achieves good performance.
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