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Abstract

In this paper, we explore text classification
with extremely weak supervision, i.e., only
relying on the surface text of class names.
This is a more challenging setting than the
seed-driven weak supervision, which allows a
few seed words per class. We opt to attack
this problem from a representation learning
perspective—ideal document representations
should lead to nearly the same results between
clustering and the desired classification. In par-
ticular, one can classify the same corpus differ-
ently (e.g., based on topics and locations), so
document representations should be adaptive
to the given class names. We propose a novel
framework X-Class to realize the adaptive rep-
resentations.  Specifically, we first estimate
class representations by incrementally adding
the most similar word to each class until in-
consistency arises. Following a tailored mix-
ture of class attention mechanisms, we obtain
the document representation via a weighted av-
erage of contextualized word representations.
With the prior of each document assigned to its
nearest class, we then cluster and align the doc-
uments to classes. Finally, we pick the most
confident documents from each cluster to train
a text classifier. Extensive experiments demon-
strate that X-Class can rival and even outper-
form seed-driven weakly supervised methods
on 7 benchmark datasets.

1 Introduction

Weak supervision has been recently explored in text
classification to save human effort. Typical forms
of weak supervision include a few labeled docu-
ments per class (Meng et al., 2018; Jo and Cinarel,
2019), a few seed words per class (Meng et al.,
2018, 2020a; Mekala and Shang, 2020; Mekala
et al., 2020), and other similar open-data (Yin et al.,
2019).Though much weaker than a fully annotated
corpus, these forms still require non-trivial, corpus-
specific knowledge from experts. For example,
nominating seed words requires experts to consider
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(a) NYT-Topics

(b) NYT-Locations

Figure 1: Visualizations of the same news corpus using
Average BERT Representations on two criteria. Colors
denote different classes.

their relevance to not only the desired classes but
also the input corpus; To acquire a few labeled doc-
uments per class, unless the classes are balanced,
one needs to sample and annotate a much larger
number of documents to cover the minority class.

In this paper, we focus on extremely weak su-
pervision, i.e., only relying on the surface text of
class names. This setting is much more challeng-
ing than the ones above, and can be considered as
almost-unsupervised text classification.

We opt to attack this problem from a represen-
tation learning perspective—ideal document rep-
resentations should lead to nearly the same result
between clustering and the desired classification.
Recent advances in contextualized representation
learning using neural language models have demon-
strated the capability of clustering text to domains
with high accuracy (Aharoni and Goldberg, 2020).
Specifically, a simple average of word representa-
tions is sufficient to group documents on the same
topic together. However, the same corpus could be
classified using various criteria other than topics,
such as locations and sentiments. As visualized in
Figure 1, such class-invariant representations sep-
arate topics well but mix up locations. Therefore,
it is a necessity to make document representations
adaptive to the user-specified class names.

We propose a novel framework X-Class to con-
duct text classification with extremely weak super-
vision, as illustrated in Figure 2. Firstly, we esti-
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Raw Input Corpus
(Different classification criteria could
be applied on the same corpus.)

User-Specified
Class Names

Sentiment

ID Documents
D;  Icheered for Lakers winning NBA. a
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D,  Tam sad that Heat lost.
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D4  The new film is not satisfactory.
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Figure 2: An overview of our X-Class. Given a raw input corpus and user-specified class names, we first estimate a
class-oriented representation for each document. And then, we align documents to classes with confidence scores
by clustering. Finally, we train a supervised model (e.g., BERT) on the confident document-class pairs.

mate class representations by incrementally adding
the most similar word to each class and recalculat-
ing its representation. Following a tailored mixture
of class attention mechanisms, we obtain the doc-
ument representation via a weighted average of
contextualized word representations. These repre-
sentations are based on pre-trained neural language
models, and they are supposed to be in the same
latent space. We then adopt clustering methods
(e.g., Gaussian Mixture Models) to group the docu-
ments into K clusters, where K is the number of
desired classes. The clustering method is initial-
ized with the prior knowledge of each document
assigned to its nearest class. We preserve this as-
signment so we can easily align the final clusters
to the classes. In the end, we pick confident docu-
ments from each cluster to form a pseudo training
set, based on which, we can train any document
classifier. In our implementation, we use BERT as
both the pre-trained language model and the text
classifier. Compared with existing weakly super-
vised methods, X-Class has a stronger and more
consistent performance on 7 benchmark datasets,
despite some of them using at least 3 seed words
per class. It is also worth mentioning that X-Class
has a much more mild requirement on the exis-
tence of class names in the corpus, whereas exist-
ing methods rely on the variety of contexts of the
class names.

Our contributions are summarized as follows.

* We advocate an important but not-well-studied
problem of text classification with extremely
weak supervision.

* We develop a novel framework X-Class to attack
this problem from a representation learning per-
spective. It estimates high-quality, class-oriented
document representations based on pre-trained

neural language models so that the confident clus-
tering examples could form pseudo training set
for any document classifiers to train on.

¢ We show that on 7 benchmark datasets, X-Class
achieves comparable and even better perfor-
mance than existing weakly supervised methods
that require more human effort.

Reproducibility. We will release both datasets and

codes on Github!.

2 Preliminaries

In this section, we formally define the problem of
text classification with extremely weak supervision.
And then, we brief on some preliminaries about
BERT (Devlin et al., 2019), Attention (Luong et al.,
2015) and Gaussian Mixture Models.
Problem Formulation. The extremely weak su-
pervision setting confines our input to only a set
of documents D;,i € {1,...,n} and a list of class
names c;, j € {1,...,k}. The class names here are
expected to provide hints about the desired classifi-
cation objective, considering that different criteria
(e.g., topics, sentiments, and locations) could clas-
sify the same set of documents. Our goal is to build
a classifier to categorize a (new) document into one
of the classes based on the class names.
Seed-driven weak supervision requires carefully
designed label-indicative keywords that concisely
define what a class represents. This requires hu-
man experts to understand the corpus extensively.
One of our motivations is to relax this burdensome
requirement. Interestingly, in experiments, our pro-
posed X-Class using extremely weak supervision
can offer comparable and even better performance
than the seed-driven methods.

"https://github.com/ZihanWangKi/XClass
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BERT. BERT is a pre-trained masked language
model with a transformer structure (Devlin et al.,
2019). It takes one or more sentences as input,
breaks them up into word-pieces, and generates a
contextualized representation for each word-piece.
To handle long documents in BERT, we apply a
sliding window technique. To retrieve representa-
tions for words, we average the representations of
the word’s word-pieces. BERT has been widely
adopted in a large variety of NLP tasks as a back-
bone. In our work, we will utilize BERT for two
purposes: (1) representations for words in the doc-
uments and (2) the supervised text classifier.
Attention. Attention mechanisms assign weights
to a sequence of vectors, given a context vector (Lu-
ong et al., 2015). It first estimates a hidden state
h; = K(h;,c) for each vector hj, where K is a
similarity measure and c is the context vector. Then,
the hidden states are transformed into a distribution
via a softmax function. In our work, we use atten-
tions to assign weights to representations, which
we then average them accordingly.

Gaussian Mixture Model. Gaussian Mixture
Model (GMM) is a traditional clustering algo-
rithm (Duda and Hart, 1973). It assumes that each
cluster is generated through a Gaussian process.
Given an initialization of the cluster centers and
the co-variance matrix, it iteratively optimizes the
point-cluster memberships and the cluster parame-
ters following an Expectation—-Maximization frame-
work. Unlike K-Means, it does not restrict clusters
to have a perfect ball-like shape. Therefore, we ap-
ply GMM to cluster our document representations.

3 Our X-Class Framework

As shown in Figure 2, our X-Class framework
contains three modules: (1) class-oriented docu-
ment representation estimation, (2) document-class
alignment through clustering, and (3) text classifier
training based on confident labels.

3.1 Class-oriented Document Representation

Ideally, we wish to have some document represen-
tations such that clustering algorithms can find k
clusters very similar to the k£ desired classes.

We propose to estimate the document repre-
sentations and class representations based on pre-
trained neural language models. Algorithm 1 is an
overview. In our implementation, we use BERT
as an example. For each document, we want its
document representation to be similar to the class

Algorithm 1: Class-Oriented Document
Representation Estimation

Input: n documents D;, k class names c;,
max number of class-indicative words 7,
and attention mechanism set M

Compute t; ; (contextualized word rep.)

Compute s,, for all words (Eq. 1)

// class rep.

for=1...kdo

/Cl — < C >

fori=2...Tdo

Compute x; based on X; (Eq. 2)

W = arg max, g, Sim(Sw, X)

Compute x| based on K; & (w)

// consistency check

if x; changes the words in KC; then
| break

else
| K+ K& (w)

/ document rep. estimation

ori=1..ndo

for attention mechanism m € M do

Rank D; ; according to m
Tm,; < the rank of D; ;

Rank D; ; according to [ [, 7m ;

rj < the final rank

Compute E; (Eq. 3)

Return All document representations E;.

estimation

=,

representation of its desired class.

Aharoni and Goldberg (2020) demonstrated that
contextualized word representations generated by
BERT can preserve the domain (i.e., topic) infor-
mation of documents. Specifically, they generated
document representations by averaging contextual-
ized representations of its constituent words, and
they observed these document representations to
be very similar among documents belonging to the
same topic. This observation motivates us to “clas-
sify” documents by topics in an unsupervised way.
However, this unsupervised method may not work
well on criteria other than topics. For example, as
shown in Figure 1, such document representations
work well for topics but poorly for locations.

We therefore incorporate information from the
given class names and obtain class-oriented docu-
ment representations. We break down this module
into two parts, (1) class representation estimation
and (2) document representation estimation.

Class Representation Estimation. Inspired by
seed-driven weakly supervised methods, we argue
that a few keywords per class would be enough
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Figure 3: Overview of Our Class Rep. Estimation.

to understand the semantics of the user-specified
classes. Intuitively, the class name could be the
first keyword we can start with. We propose to
incrementally add new keywords to each class to
enrich our understanding.

Figure 3 shows an overview of our class rep-
resentation estimation. First, for each word, we
obtain its static representation via averaging the
contextualized representations of all its occurrences
in the input corpus. For words that are broken into
word-piece tokens, we average all the token repre-
sentations as the word’s representation. Then, we
define the static representation s,, of a word w as

S o ZDi,j:w tlv]
w = =
ZDZ"]':’LU 1

where D; ; is the j-th word in the document D;
and t; ; is its contextualized word representation.
Ethayarajh (2019) adopted a similar strategy of es-
timating a static representation using BERT. Such
static representations are used as anchors to initial-
ize our understanding of the classes.

A straightforward way to enrich the class repre-
sentation is to take a fixed number of words similar
to the class name and average them to get a class
representation. However, it suffers from two issues:
(1) setting the same number of keywords for all
classes may hurt the minority classes, and (2) a
simple average may shift the semantics away from
the class name itself. As an extreme example, when
the 99% of documents are talking about sports and
the rest 1% are about politics, it is not reasonable
to add as many keywords as sports to politics—it
will diverge the politics representation.

To address these two issues, we iteratively find
the next keyword for each class and recalculate the
class representation by a weighted average on all
the keywords found. We stop this iterative process

(D

token representations e
Figure 4: Overview of Our Document Rep. Estimation.

when the new representation is not consistent with
the previous one. In this way, different classes will
have a different number of keywords adaptively.
Specifically, we define a comprehensive representa-
tion x; for a class [ as a weighted average represen-
tation based on a ranked list of keywords K;. The
top-ranked keywords are expected to have more
similar static representations to the class represen-
tation. Assuming that the similarities follow Zipf’s
laws distribution (Powers, 1998), we define the
weight of the i-th keyword as 1/7 . That is,

IKil 4 /5
_ Zui=1 1/i- 8K

X = .
Sl

For a given class, the first keyword in this list is
always the class name. In the i-th iteration, we
retrieve the out-of-list word with the most similar
static representation to the current class representa-
tion. We then calculate a new class representation
based on all the ¢ + 1 words. We stop this expan-
sion if we already have enough (e.g., T' = 100)
keywords, or the new class representation cannot
yield the same set of top-¢ keywords in our list. In
our experiments, some classes indeed stop before
reaching 100 keywords.

Document Representation Estimation. Intu-
itively, the content of each document should stick
to its underlying class. For example, in the sentence
“I cheered for Lakers winning NBA”, its content cov-
ers sports and happy classes, but not arts, politics,
or sad. Therefore, we assume that each word in
a document is either similar to its desired class’s
representation or unrelated to all classes. Based on
this assumption, we upgrade the simple average of
contextualized word representations (Aharoni and
Goldberg, 2020) to a weighted average. Specifi-
cally, we follow the popular attention mechanisms
to assign weights to the words based on their simi-
larities to the class representations.

Figure 4 shows an overview of our document
representation estimation. We propose to employ a
mixture of attention mechanisms to make it more
robust. For the j-th word in the ¢-th document

2
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D; j = w, there are two possible representations:
(1) the contextualized word representation t; ; and
(2) the static representation of this word s,,. The
contextualized representations disambiguate words
with multiple senses by considering the context,
while the static version accounts for outliers that
may exist in documents. Therefore, it is reasonable
to use either of them as the word representation e
for attention mechanisms. Given the class represen-
tations x., we define two attention mechanisms:

* one-to-one: h; ; = max.{cos(e,xc)}. It cap-
tures the maximum similarity to one class. This
is useful for detecting words that are specifically
similar to one class, such as NBA to sports.

* one-to-all: h;; = cos(e,avg {x.}) which is
the similarity to the average of all classes. This
ranks words by how related it is to the general
set of classes in focus.

Combining 2 choices of e and 2 choices of atten-
tion mechanisms totals 4 ways to compute each
word’s attention weight. We further fuse these at-
tention weights in an unsupervised way. Instead
of using the similarity values directly, we rely on
the rankings. Specifically, we sort the words de-
creasingly based on attention weights to obtain 4
ranked lists. Following previous work (Mekala and
Shang, 2020; Tao et al., 2018), we utilize the geo-
metric mean of these ranks for each word and then
form a unified ranked list. Like class representa-
tion estimation, we follow Zipf’s law and assign
a weight of 1/r to a word ranked at the r-th posi-
tion in the end. Finally, we obtain the document
representation E; from t; ; with these weights.

1
> big

E; = .
27

3

3.2 Document-Class Alignment

One straightforward idea to align the documents
to classes is simply finding the most similar class
based on their representations. However, docu-
ment representations not necessarily distribute ball-
shape around the class representation—the dimen-
sions in the representation can be correlated freely.

To address this challenge, we leverage the Gaus-
sian Mixture Model (GMM) to capture the co-
variances for the clusters. Specifically, we set
the number of clusters the same as the number
of classes k£ and initialize the cluster parameters
based on the prior knowledge that each document

D; is assigned to its nearest class L;, as follows.
L; = argmax cos(E;, x.) 4)
(&

We use a tied co-variance matrix across all clusters
since we believe classes are similar in granularity.
We cluster the documents while remembering the
class each cluster is initialized to. In this way, we
can align the final clusters to the classes.

Considering the potential redundant noise in
these representations, we also apply principal com-
ponent analysis (PCA) for dimension reduction fol-
lowing the experience in topic clustering (Aharoni
and Goldberg, 2020). By default, we fix the PCA
dimension P = 64.

3.3 Text Classifier Training

The alignment between documents and classes pro-
duce high-quality pseudo labels for documents in
the training set. To generalize such knowledge to
unseen text documents, we train a text classifier
using these pseudo labels as ground truth. This
is a classical noisy training scenario (Angluin and
Laird, 1987; Goldberger and Ben-Reuven, 2017).
Since we know how confident we are on each in-
stance (i.e., the posterior probability on its assigned
cluster in GMM), we select the most confident ones
to train a text classifier (e.g., BERT). By default,
we set a confidence threshold 6 = 50%, i.e., the top
50% instances are selected for classifier training.

4 Experiments

We conduct extensive experiments to show and
ablate the performance of X-Class.

4.1 Compared Methods

We compare with two seed-driven weakly super-
vised methods. WeSTClass (Meng et al., 2018)
generates pseudo-labeled documents via word em-
beddings of keywords and employs a self-training
module to get the final classifier. We use the CNN
version of WeSTClass as it is reported to have better
performance compared to the HAN version. Con-
Wea (Mekala and Shang, 2020) utilizes pre-trained
neural language models to make the weak supervi-
sion contextualized. In our experiments, we feed at
least 3 seed words per class to these two.

We also compare with LOTClass (Meng et al.,
2020b), which works under the extremely weak
supervision setting. In their experiments, it mostly
relies on class names but has used a few keywords
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Table 1: An overview of our 7 benchmark datasets. They cover various domains and classification criteria. The
imbalance factor of a dataset refers to the ratio of its largest class’s size to the smallest class’s size.

AGNews 20News NYT-Small NYT-Topic NYT-Location Yelp DBpedia
Corpus Domain News News News News News Reviews  Wikipedia
Class Criterion Topics Topics Topics Topics Locations Sentiment  Ontology
# of Classes 4 5 5 9 10 2 14
# of Documents 120,000 17,871 13,081 31,997 31,997 38,000 560,000
Imbalance 1.0 2.02 16.65 27.09 15.84 1.0 1.0

Table 2: Evaluations of Compared Methods and X-Class. Both micro-/macro-F; scores are reported. Supervised
provides an upper bound. T indicates the use of at least 3 seed words per class. ¥ indicates the use of only class
names. 9 refers to number coming from other papers. ConWea is too slow on DBpedia, therefore not reported.

Model AGNews 20News NYT-Small NYT-Topic NYT-Location Yelp DBpedia
Supervised 93.99/93.99  96.45/96.42  97.95/95.46  94.29/89.90 95.99/94.99 95.7/95.7  98.96/98.96
WeSTClass’ 82.3/82.15  71.28/69.90  91.2/83.7%  68.26/57.02 63.15/53.22 81.6/81.6°  81.42/81.19
ConWeal . 74.6/742  75.73/73.26  95.23/90.79  81.67/71.54 85.31/83.81 71.4/71.2 N/A
LOTClass* 86.89/86.82  73.78/72.53  78.12/56.05 67.11/43.58 58.49/58.96 87.75/87.68  86.66/85.98
X-Class * 85.74/85.66  78.62/77.76  97.18/94.02  79.02/68.55 91.8/91.98 90.0/90.0  91.32/91.17
Ablations

X-Class-Rep* 77.86/76.84  75.37/73.7  92.13/83.69  77.06/65.05 86.36/88.1 78.0/77.19  74.05/71.74
X-Class-Align* 83.32/83.28  79.19/78.46  96.42/92.32  79.12/67.76 90.09/90.63 87.19/87.13  87.36/87.27
X-Class-ExactT* 84.85/84.76  73.95/74.13  97.18/94.02  79.18/68.96 88.94/88.02 90.0/90.0  88.48/88.37
X-Class-KMeans* ~ 81.29/81.08  70.79/71.18  94.96/89.66  72.83/64.79 93.88/92.94 80.6/80.56  65.76/66.94

to elaborate on some difficult classes. In our exper-
iments, we only feed the class names to it.

We denote our method as X-Class. To further
understand the effects of different modules, we
have four ablation versions. X-Class-Rep refers to
the prior labels L; derived based on class-oriented
document representation. X-Class-Align refers to
the labels obtained after document-class alignment.
X-Class-ExactT refers to not doing consistency
check when estimating class representations, and
having exactly T class words. X-Class-KMeans
refers to using K-Means (Lloyd, 1982) of GMM
during document class alignment.

We present the performance of supervised mod-
els, serving as an upper-bound for X-Class. Specif-
ically, Supervised refers to a BERT model cross-
validated on the training set with 2 folds (matching
our confidence selection threshold).

4.2 Datasets

Many different datasets have been adopted to eval-
uate weakly supervised methods in different works.
This makes it hard for systematic comparison.

In this paper, we pool the most popular datasets
to establish a benchmark on weakly supervised text
classification. Table 1 provides an overview of our
carefully selected 7 datasets, covering different text
sources (e.g., news, reviews, and Wikipedia arti-
cles) and different criteria of classes (e.g., topics,
locations, and sentiment).

* AGNews from (Zhang et al., 2015) (used in
WeSTClass and LOTClass) is for topic catego-
rization in news from AG’s corpus.

* 20News from (Lang, 1995)> (used in WeSTClass
and ConWea) is for topic categorization in news.

¢ NYT-Small (used in WeSTClass and ConWea)
is for classifying topic in New York Times news.

e NYT-Topic (used in (Meng et al., 2020a)) is an-
other larger dataset collected from New York
Times for topic categorization.

* NYT-Location (used in (Meng et al., 2020a)) is
the same corpus as NYT-Topic but for locations.
It is noteworthy to point out that many documents
from this dataset talk about several countries si-
multaneously, so simply checking the location
names will not lead to satisfactory results.

* Yelp from (Zhang et al., 2015) (used in WeST-
Class) is for sentiment analysis in reviews.

* DBpedia from (Zhang et al., 2015) (used in LOT-
Class) is for topic classification based on titles
and descriptions in DBpedia.

4.3 Experimental Settings

For all X-Class experiments, we report the per-
formance under one fixed random seed. By de-
fault, we set T = 100, P = 64,5 = 50%. For
contextualized token representations t; ;, we use
the BERT-base-uncased to group more occur-

http://qwone.com/~jason/20Newsgroups/
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(a) Our Class-Oriented Document Representations

(b) Simple Average of BERT Representations

Figure 5: t-SNE Visualizations of Representations. From left to right: NYT-Topics, NYT-Locations, Yelp.

Table 3: Example seed words and class names for meth-
ods for NYT-Small.

class Seed words Class name for X-Class
dance,art,
arts arts
ballet,museum
. shares,stocks, .
business business

markets,trading

rences of the same word. For supervised model
training, we follow BERT fine-tuning (Wolf et al.,
2019) with all hyper-parameters unchanged.

For both WeSTClass and ConWea, we have tried
our best to find keywords for the new datasets. Ta-
ble 3 shows an example on the seed words selected
for them on the NYT-Small dataset. For LOTClass,
we tune their hyper-parameters match_threshold
and mcp_epoch, and report the best performance
during their self-train process.

4.4 Performance Comparison and Analysis

From Table 2, one can see that X-Class achieves
the best overall performance. It is only 1% to 2%
away from LOTClass and ConWea on AGNews
and NYT-Topics, respectively. Note that, ConWea
consumes at least 3 keywords per class.

It is noteworthy that X-Class can approach the
supervised upper bound to a small spread, espe-
cially on the NYT-Small dataset.

Ablation on Modules. X-Class-Rep has achieved
high scores (e.g., on both NYT-Topics and NYT-
Locations) showing success of our class-oriented
representations. The improvement of X-Class-
Align over X-Class-Rep demonstrates the useful-
ness of our clustering module. It is also clear that
the classifier training is beneficial by comparing
X-Class and X-Class-Align.

Ablation on Consistency Check. The consistency
check in class representation estimation allows an
adaptive number of keywords for each class. With-
out it leads to a diverged class understanding and
degrading performance, as shown in Table 2.
Ablation on Clustering Methods. Table 2 also
shows that K-Means performs poorly on most
datasets. This matches our previous analysis as
K-Means assumes a hard spherical boundary, while

100
95
90

85
z 8
g 75
E 70
65
60
55 I
50
Yelp

AGNews 20News NYT-Small ~ NYT-Topic ~ NYT-Location DBpedia
Datasets
munweighted ® one-to-one = one-to-all = one-to-one-static ® one-to-all-static ® mixture (default)

Figure 6: Effects of Attention Mechanisms. We focus
on X-Class-Align to show their direct effects.

GMM models the boundary softly like an ellipse.

4.5 Effect of Attention

In Figure 5, we visualize our class-oriented docu-
ment representations and the unweighted variants
using t-SNE (Rauber et al., 2016). We can see
that while the simple-average representations are
well-separated like class-oriented representations
in NYT-Topics, they are much mixed up in NYT-
Locations and Yelp. We conjecture that this is be-
cause BERT representations has topic information
as its most significant feature.

We have also tried using different attention mech-
anisms in X-Class. From the results in Figure 6,
one can see that using a single mechanism, though
not under-performing much, is less stable than our
proposed mixture. The unweighted case works
well on all four datasets that focus on news topics
but not good enough on locations and sentiments.

4.6 Hyper-parameter Sensitivity in X-Class

Figure 7 visualizes the performance trend w.r.t.
to the three hyper-parameters in X-Class, i.e., the
limit of class words 7" in class representation esti-
mation, the PCA dimension P in document-class
alignment, and the confidence threshold ¢ in text
classifier training.

Intuitively, a class doesn’t have too many highly
relevant keywords. One can confirm this in Fig-
ure 7(a) as the performance of X-Class is relatively
stable unless 7" goes too large to 1000.

Choosing a proper PCA dimension could prune
out redundant information in the embeddings and
improve the running time. However, if P is too
small or too large, it may hurt due to information
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NYT-Topic ~====NYT-Location

(b) P in Document-Class Alignment
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Figure 7: Hyper-parameter Sensitivity in X-Class. For 7" and P, we report the performance of X-Class-Align to

explore their direct effects.

Table 4: Macro-F; score changes of methods when re-
moving all but one occurrence of a class name.

Model 20News NYT-Small
Original Removed Original Removed

X-Class 77.76 7448  94.02  93.29

LOTClass 72.53 8.82 56.05  29.53

loss or redundancy. One can observe this expected
trend in Figure 7(b) on all datasets.

Typically, we want to select a reasonable number
of confident training samples for the text classifier
training. Too few training samples (i.e., too large §)
would lead to insufficient training data. Too many
training samples (i.e., too small §) would lead to
too noisy training data. Figure 7(c) shows that
0 € 10.3,0.9] is a good choice on all datasets.

4.7 Requirements on Class Names

Compared with previous works (Meng et al., 2018;
Mekala and Shang, 2020; Meng et al., 2020b), our
X-Class has a significantly more mild requirement
on human-provided class names in terms of quan-
tity and quality. We have conducted an experiment
in Table 4 for X-Class on 20News and NYT-Small
by deleting all but one occurrence of a class name
from the input corpus. In other words, the user-
provided class name only appears once in the cor-
pus. Interestingly, the performance of X-Class only
drops less than 1%, still outperforming all com-
pared methods. In contrast, the most recent work,
LOTClass (Meng et al., 2020b), requires a wide
variety of contexts of class names from the input
corpus to ensure the quality of generated class vo-
cabulary in its very first step.

5 X-Class for Hierarchical Classification

There are two straightforward ways to extend
X-Class for hierarchical classification (1) X-Class-
End: We can give all fine-grained class names as in-
put to X-Class and conduct classification in an end-
to-end manner; and (2) X-Class-Hier: We can first

Table 5: Micro-/Macro-F; scores for Fine-grained Clas-
sification on NYT-Small. All compared methods use 3
keywords per class. LOTClass failed to discover docu-
ments with category indicative terms, thus not reported.
§ refers to numbers coming from other papers.

Model

Coarse (5 classes) Fine (26 classes)

WeSTClass ; 50/36¢
WeSHClass o1/84 87.4/63.28
ConWea 95.23/90.79 91/798
X-Class-End 86.07/75.30
X-Class-Hier ~ 20-67/92.98 92.66/30.92

give only coarse-grained class names to X-Class
and obtain coarse-grained predictions. Then, for
each coarse-grained class and its predicted docu-
ments, we further create a new X-Class classifier
based on the fine-grained class names.

We experiment with hierarchical classification
on the NYT-Small dataset, which has annotations
for 26 fine-grained classes. We also introduce
WeSHClass (Meng et al., 2019), the hierarchical
version of WeSTClass, for comparison. LOTClass
is not investigated here due to its poor coarse-
grained performance on this dataset. The results
in Table 5 show that X-Class-Hier performs the
best, and it is a better solution than X-Class-End.
We conjecture that this is because the fine-grained
classes’ similarities are drastically different (a pair
of fine-grained classes can much similar than an-
other pair). Overall, we show that we can apply our
method to a hierarchy of classes.

6 Related Work

We discuss related work from two angles.

Weakly supervised text classification. Weakly
supervised text classification has attracted much
attention from researchers (Tao et al., 2018; Meng
et al., 2020a; Mekala and Shang, 2020; Meng et al.,
2020b). The general pipeline is to generate a set of
document-class pairs to train a supervised model
above them. Most previous work utilizes keywords
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to find such pseudo data for training, which re-
quires an expert that understands the corpus well.
In this paper, we show that it is possible to reach a
similar, and often better, performance on various
datasets without such guidance from experts.

A recent work (Meng et al., 2020b) also stud-

ied the same topic — extremely weak supervision
on text classification. It follows a similar idea
of (Meng et al., 2020a) and further utilizes BERT
to query replacements for class names to find key-
words for classes, identifying potential classes for
documents via string matching. Compared with
LoTClass, our X-Class has a less strict requirement
of class names being existent in the corpus, and can
work well even when there is only one occurrence
(refer to Section 4.7).
BERT for topic clustering. Aharoni and Gold-
berg (2020) showed that document representations
obtained by an average of token representations
from BERT preserve domain information well. We
borrow this idea to improve our document repre-
sentations through clustering. Our work differs
from theirs in that our document representations
are guided by the given class names.

7 Conclusions and Future Work

We propose our method X-Class for extremely
weak supervision on text classification, which is to
classify text with only class names as supervision.
X-Class leverages BERT representations to gener-
ate class-oriented document presentations, which
we then cluster to form document-class pairs, and
in the end, fed to a supervised model to train on.
We further set up benchmark datasets for this task
that covers different data (news and reviews) and
various class types (topics, locations, and senti-
ments). Through extensive experiments, we show
the strong performance and stability of our method.
There are two directions that are possible to ex-
plore. First, focusing on the extremely weak super-
vision setting, we can extend to many other natu-
ral language tasks to eliminate human effort, such
as Named Entity Recognition and Entity Linking.
Second, based on the results on extremely weak su-
pervision, we can expect an unsupervised version
of text classification, where machines suggest class
names and classify documents automatically.
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