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Abstract— In this study, we propose a post-hoc ex-
plainability framework for deep learning models applied to
quasi-periodic biomedical time-series classification. As a
case study, we focus on the problem of atrial fibrillation
(AF) detection from electrocardiography signals, which has
strong clinical relevance. Starting from a state-of-the-art
pretrained model, we tackle the problem from two differ-
ent perspectives: global and local explanation. With global
explanation, we analyze the model behavior by looking at
entire classes of data, showing which regions of the input
repetitive patterns have the most influence for a specific
outcome of the model. Our explanation results align with
the expectations of clinical experts, showing that features
crucial for AF detection contribute heavily to the final
decision. These features include R-R interval regularity,
absence of the P-wave or presence of electrical activity
in the isoelectric period. On the other hand, with local
explanation, we analyze specific input signals and model
outcomes. We present a comprehensive analysis of the
network facing different conditions, whether the model has
correctly classified the input signal or not. This enables a
deeper understanding of the network’s behavior, showing
the most informative regions that trigger the classification
decision and highlighting possible causes of misbehavior.

Index Terms— Atrial fibrillation, deep learning, ECG, ex-
plainable AI, global explanation, local explanation, time-
series.

I. INTRODUCTION

The application of deep learning (DL) is in constant ex-
pansion in the medical field. DL solutions are approaching
state-of-the-art diagnostic accuracy, even performing better
than clinicians in some specific tasks [1]. For example, DL
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algorithms obtained sensitivity and specificity similar to that
of a certified ophthalmologist in the detection of referable
diabetic retinopathy using retinal fundus images from adults
with diabetes [2]. To automatically classify malignant versus
benign skin lesion images of epidermal or melanocytic origin,
DL-based models have been shown to achieve performance
on par with board-certified dermatologists [3]. Beside image
analysis, an increasing interest is devoted to time-series data,
including the use of long short-term memory recurrent neural
networks in pediatric intensive unit care [4] and predictive
medicine based on patient history [5]. A specific type of
time-series is the electrocardiogram (ECG), representing the
electrical signal of the heart. Inside the clinic, a 10 second 12-
lead clinical ECG (usually sampled at 500 Hz) is commonly
used by cardiologists, providing accurate information on the
status of the heart for a short time interval. For non-permanent
issues like paroxysmal atrial fibrillation (AF), a common non-
persistent form of arrhythmia, a 10 second ECG is unlikely to
capture intermittent, but meaningful, real-world cardiac events.
Instead, a longitudinal view of cardiac electrical activity is
needed [6]. While non-invasive wireless devices can provide
continuous single-lead ECG recording for up to two weeks,
they provide too much information to be analyzed in the
limited time that a clinician can dedicate to a patient, thus an
automated analysis such as DL is needed [7]. Accuracy of DL
in the automatic identification of arrhythmia from single-lead
ECG has been highlighted recently in a retrospective study [8],
together with a comparison between DL and manual feature
engineering methods [9] showing the benefits of representation
learning. Nevertheless, these algorithms are data-driven and
leverage complex representations of data, thereby making the
interpretation of the underlying model difficult. The lack of
transparency and accountability can be detrimental in the clin-
ical setting, where additional information besides the model
inputs needs to be combined for final risk assessment [10].
This highlights the need for understanding the model, in order
to have a more effective clinical adoption of these methods.
There are two solutions to understand the model and its
behavior. The first one is to build a transparent (interpretable)
model from the ground up, such that its output is meaningful
through human readable rules established before training. Tra-
ditional symbolic machine learning approaches like decision
trees, rule lists and rule sets are usually interpretable and
can explicitly model our assumptions for rules, examples and
sparsity [11]. Alternatively, if the model is too complex (black-
box), it is possible to approximate the relationship between
input and output in human-understandable terms after training,
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explaining how high-level features affect the output.
Since for unstructured and noisy data a black-box DL model

may provide higher accuracy, as demonstrated for single-lead
ECG data in [9], there have been significant attempts to create
human understandable explanations for DL-based models.
Most of these efforts were devoted to image classification,
where explanations are directly interpretable for humans, e.g.,
natural association to similar looking details in the analyzed
images [12]. The domain specific nature of time-series data
makes it difficult to directly transfer these ideas for improved
human understanding of the model. The use of attention
systems embedded in the network architecture has also been
investigated for improving interpretability of DL models, even
if with some limitations [13]. In this paper, we focus on local
and global explanation techniques applied to time-series data.
Local explainability techniques deal with individual examples,
and use visualization techniques like saliency maps [14] or
deconvolutions [15] to identify specific regions of input that
have the most influence on the network output. While they
can be very effective in understanding regions of the input
that were responsible for a particular prediction, it is not
clear which characteristics of the highlighted region trigger
a specific output. Thus, global explanations are also needed
to capture the overall relationship between input and output
variables from all examples in the training set. They may
provide useful information for clinicians to understand what
feature or part of signal is triggering the model decision.

The goal of this study is to present a model-agnostic
explanation framework for models that analyze clinical time-
series data. The main contributions are summarized as follows.

• We propose a general pre-processing pipeline for quasi-
periodic time-series signals, which will be the basis for
the analysis of a DL classification algorithm.

• We introduce global explanation methods to enhance
transparency of the decision-making process, and to pro-
vide global insights into the model’s behavior.

• We discuss local explanation techniques for biomedical
time-series, focusing on individual examples, which can
be used to identify important segments/features of the
input data.

• As a clinical case study, we consider the detection of AF
from single-lead ECG signals. We discuss both global
and local explanation results for AF detection, revealing
interesting model behaviors in accordance with clinical
analysis of these signals.

The rest of the paper is organized as follows. We discuss
previous work on explaining DL models and time-series
signals in Sec. II. In Sec. III we describe the case study under
investigation, in Sec. IV we detail the methods for global and
local explanations, while in Sec. V and Sec. VI we present
the corresponding quantitative results.1 Finally, in Sec. VII
we discuss results and future directions.

1The source code used in these experiments is available at https://
github.com/pi242/medx.git

II. RELATED WORK

There has been a variety of work on building interpretable
models or explaining predictions of black box models for time-
series classification [16]. Classical rule-based models, such as
decision trees, decision lists, and decision sets, produce easy to
understand decision boundaries in terms of the input features.
A popular approach to explainable time-series classification
is the use of shapelet-based classifiers, introduced in [17].
Shapelets are short time-series which are used to classify
inputs based on whether a shapelet is present in most series
of one class and absent from others. Authors in [18] and [19]
focus on jointly learning a shapelet-based representation of
data, and generating explanations from these internally learned
shapelets. Recently, more inherently interpretable architectures
have been shown to achieve performance similar to deep
networks. Authors in [20] and [21] demonstrated the use of
multiple symbolic representations and random convolutional
kernels respectively, to obtain accurate classification using
linear classifiers.

On the other hand, local proxy methods like LIME [22]
and SHAP [23], including frameworks built upon these meth-
ods [24], have been used for post-hoc explanations. However
for applications of convolutional neural networks (CNNs)
in the clinical context, most explanations are presented as
visualizations, in order to provide an interpretable feedback
that highlights the reason for a certain decision taken by
the classifier. In [25], authors explore one-dimensional Class
Activation Map (CAM) [26] with an application to time-series
classification to highlight the parts of the series that contribute
most for a given class identification. Authors in [27] also use a
similar technique of Gradient-weighted Class Activation Map
(Grad-CAM) [28] for visualizing saliency of the CNN model.
Similarly, authors in [29] generate representative attribution
maps obtained by layer-wise relevance propagation [30]. Re-
cent work in [31] proposes a framework for evaluation, in or-
der to compare the informativeness of occasionally conflicting
explanations generated through these methods.

III. CASE STUDY: ATRIAL FIBRILLATION

In order to design a framework for the explainability of
quasi-periodic time-series models, we consider the detection
of AF from single-lead ECG signals as a case study. This
is a clinical task that can be successfully automated, but it
needs to be explained in order to be fully useful in a clinical
environment. In the clinic, cardiologists analyze short ECG
traces by visual inspection to spot anomalous events. Among
the many features typically related to AF detection, the most
prominent ones can be identified as: absence of the P-wave,
the electrical activity representing the atrial depolarization2;
irregularity of R-R intervals; and absence of the isoelectric
baseline, a short interval without electrical activity between
the end of T wave and the start of P wave.

The proposed explainability framework aims at identifying
the main signal characteristics leveraged by DL approaches
during the detection process. This can verify if the learned

2Further details on the terminology regarding the different parts of the ECG
signal can be found in [9].
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Layer Type Kernel Shape / Stride Input Size

Conv. 16 × 32 / 2 1 × 9000

Depthwise Conv. 16 × 64 / 1 32 × 4500

Depthwise Conv. 16 × 128 / 2 64 × 4500

Depthwise Conv. 16 × 128 / 1 128 × 2250

Depthwise Conv. 16 × 256 / 2 128 × 2250

Depthwise Conv. 16 × 256 / 1 256 × 1125

Depthwise Conv. 16 × 512 / 2 256 × 1125

Depthwise Conv. 16 × 512 / 1 512 × 563

Depthwise Conv. 16 × 512 / 2 512 × 563

Depthwise Conv. 16 × 512 / 1 512 × 282

Depthwise Conv. 16 × 512 / 2 512 × 282

Depthwise Conv. 16 × 512 / 1 512 × 141

Depthwise Conv. 16 × 1024 / 2 512 × 141

Depthwise Conv. 16 × 1024 / 1 1024 × 71

Average Pooling Pool 1 × 71 1024 × 71

Fully Connected 1024 × 4 1024 × 1

TABLE I: MobileNet architecture used as baseline classifica-
tion model.

representation corresponds to the human understanding of the
underlying process.

A. Dataset

The dataset used in this study is publicly available as part of
the 2017 PhysioNet and Computing in Cardiology Challenge:
AF Classification from a short single-lead ECG recording [32].
All ECG recordings were collected using AliveCor devices.
The dataset contains 8,528 single-lead ECG recordings lasting
from 9 seconds to just over 60 seconds. All ECG recordings
are labeled into one of four categories: normal sinus rhythm
(5,154 data points in the public data set), AF (771 data points),
other types of arrhythmia (2,557 data points) and noisy data
(46 data points). For all the results reported henceforth, the
class labels used are referred to as S (normal sinus rhythm), A
(atrial fibrillation), O (other arrhythmia) and Z (Noisy signal).

B. Baseline Classification Model

The DL architecture used for all experiments in this study is
a MobileNet model [33]. MobileNet is a lightweight CNN pri-
marily used for mobile and embedded applications in computer
vision due to its smaller model size and computational com-
plexity. We use an architecture optimized for classification of
single-lead ECG signals into one of the four classes described
in III-A. The network was trained according to the guidelines
in [9]. In general, a CNN learns operations to capture local
dependencies in the input signal. A convolution operation
consists of a kernel that slides over the input signal, performing
element-wise matrix multiplications to output a feature map.
Considering a convolutional layer with kernel of size dK ,
number of input channels m and number of output channels
n, a standard convolution with input dimensionality of dF has
a computational cost of dK ·dK ·m ·n ·dF ·dF . The MobileNet
architecture is based on depthwise separable convolutions,

Predicted Label
S A O Z

True
Label

S 93.01± 1.00% 0.43± 0.05% 6.04± 1.23% 0.51± 0.31%

A 3.95± 1.17% 80.08± 3.07% 14.91± 2.55% 1.05± 0.52%

O 22.48± 3.89% 4.55± 0.97% 71.76± 4.51% 1.20± 0.08%

Z 30.94± 3.72% 5.40± 3.44% 15.44± 5.06% 48.21± 4.82%

TABLE II: Confusion matrix C of the baseline classification
model. Ci,j denotes the percentage of ECGs with true label i
predicted as label j.

which split the computation of a standard convolution into two
steps: a depthwise convolution and a pointwise convolution.
Depthwise convolutions apply a single kernel for each input
channel. Pointwise convolutions, implemented as 1×1 convo-
lutions, are used to create a linear combination of the output
of the depthwise layer. Depthwise separable convolutions have
a much lower cost of dK ·dK ·m ·dF ·dF +m ·n ·dF ·dF . For
dK = 3, it leads to a reduction in computation costs by 8 to
9 times. This allows the network to deal with a large number
of parameters and high computational complexity [33].

Architecture of the MobileNet model used in this study is
described in Tab. I. The model was trained for 200 epochs,
with batch size 50, a step-based learning rate annealing policy
(starting from a learning rate of 0.1 and reducing by a factor
of 3 every 25 epochs). Dropout, gradient clipping, momentum
and weight decay were used to stabilize training and improve
generalization.

We use 5-fold cross validation to report model performance
for global explanation. The data set was split randomly into 5
subsets, maintaining the original distribution between classes.
Each unique subset was used as a testing set, while the
others were used for training. The accuracy so obtained is
84.38± 0.96%, with the confusion matrix reported in Tab. II.
Results are reported in terms of average ± standard deviation
across the 5 folds.

IV. METHODS

In this study, we propose two different approaches to ana-
lyze network behavior: 1) global explanation methods, which
are used to analyze the overall model behavior for a given class
of data, and 2) local explanation methods, which explain how
the model makes a specific decision on a single input signal.

Although we primarily focus on the specific case study, the
proposed framework is model-agnostic, as it is not limited
to any specific model. In the same manner as concept-based
methods for model interpretation [34], we aim to provide
evidence that the high-level representation, automatically ex-
tracted and processed by deep networks, are in accordance
with the physiological knowledge of the underlying mecha-
nism.

A. Signal processing
To properly highlight and understand the most important

characteristics of the input signal considered by the model,
some relevant regions of the ECG should be selected and
analyzed independently. To this end, we propose a segmen-
tation procedure (Sec. IV-A.1) for dividing periodic patterns.
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Fig. 1: Segmentation of one R-R interval into 8 segments of
equal length.

The signal between two consecutive R-peaks is divided into
specific sub-regions corresponding to different phases of the
cardiac cycle. We also define a periodicity normalization
function (Sec. IV-A.2) to properly analyze the effect of R-R
variability on the model’s behavior. R-R variability represents
a measure of variation in the beat-to-beat interval, and is a very
important ECG feature. Here, we detail the specific processing
used for the case study analyzed, but analogous approaches can
be applied to other signals with similar periodicity, a common
characteristic in human data.

1) Segmentation: To understand how each sub-region of the
cardiac cycle is affecting the classification decision, we define
a segmentation function, which can be easily extended to any
quasi-periodic signals. For each ECG E in the dataset, we
first evaluate the temporal position of all R-peaks. An R-R
interval is defined as the segment between two consecutive R-
peaks. Each R-R interval is further divided into 8 equally sized
segments, which will be used in the analysis3. An example of
this segmentation technique is illustrated in Figure 1.

2) Periodicity Normalization: In order to analyze the impor-
tance of R-R intervals variability in the detection of AF from
ECG signal E, we define a normalized version of the signal
E, by applying a periodicity normalization function. First, we
evaluate the median value of all R-R intervals rE . Then, E
is obtained by stretching or compressing each R-R interval
forcing its duration to be equal to rE . While the information
about R-R variability has been completely removed in the
new signal, most of the intra-beat features are unaffected.
An example of this normalization technique is illustrated in
Figure 2.

B. Global Explanation
The proposed framework includes three different techniques

for global explanation: ablation study, permutation study,
and LIME method. First, we divide each ECG cycle into
8 segments (numbered 0-7) using the segmentation function
defined in Sec. IV-A.1. For most signals the P-wave lies
entirely in Segment 6. Segment 4 corresponds to the isoelectric
baseline, sometimes extending into segments 3 & 5.

3Each of the 8 segments corresponds approximately to a region of interest,
like P wave, T wave, or isoelectric baseline; we have also tested a division
into 16 segments, which has not provided additional insight regarding feature
importance.
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Fig. 2: Illustration of periodicity normalization. (a) Original
ECG E. (b) Normalized ECG E.

1) Ablation Study: In general, ablation study refers to a
procedure wherein certain parts of the network architecture
or input features are removed, and then predictions of the
model are analysed to understand the importance of the corre-
sponding ablated section. Specifically to this study, the main
goal is to quantify the contribution provided to the network’s
decision by each one of the periodic segments defined in
Sec. IV-A.1. To emulate the absence of electrical activity in
that particular region of the ECG, we effectively removed the
information contained in the corresponding segment by replac-
ing it with a straight line through its endpoints. This removal
can be achieved through other approaches like replacing the
corresponding segment with zero or a scalar mean. But these
methods can create discontinuities within the signal which may
affect the model outcome during analysis. Similarly, to inves-
tigate the importance of R-R interval variability, we leveraged
the periodicity normalization function defined in Sec. IV-A.2.
The prediction changes of the classification model are then
evaluated to estimate how the removed information contributed
to the original output. Ablation of specific information in the
input signal is one of the most intuitive ways to understand
whether and how much the corresponding feature affected
the original outcome (feature importance). This procedure
highlights the most important regions of the ECG that lead
the network to a specific decision. Each of the ECG waves
is associated to a specific event of the cardiac cycle, enabling
a direct connection from the physiological functioning of the
heart to the model’s prediction.

2) Permutation Study: First introduced in [35], permutation
study is a different approach to quantify feature importance.
It analyzes how model behavior is affected when the corre-
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Fig. 3: Explaining a prediction using LIME: (1) Original ECG signal (class label S). (2) Perturbed signals with a random
subset of segments removed, along with corresponding probability scores for class S obtained through the deep network. (3)
Interpretable regression model. (4) Quantitative explanations.

sponding feature is randomly substituted with values from
other samples. This procedure breaks the relationship between
feature and target, thus the variation in model output is
indicative of how much the model depends on the feature.
As opposed to the ablation study, where contribution of the
feature is entirely or drastically suppressed, in this case the
information content is replaced with a random selection from
other data. Also in this case, we focus our study on the effect
of each one of the 8 ECG segments, along with R-R interval
variability. In order to focus on the specific information,
and how it affects predictions, the replacement has to be
targeted to the specific feature under analysis. To this end,
we propose a permutation based on sample-wise shuffling
and periodicity alignment. With sample-wise shuffling, starting
from an input ECG sample, we randomly select another ECG
having equal or greater number of R-peaks. All occurrences
of a specific segment in the original ECG are changed to
the corresponding segment of the new sample. To focus even
more on the specific characteristic, we consider a permutation
with periodicity alignment. In particular, after the replacement,
the new segment instance is resampled to have the same
length as in the original ECG. This allows to maintain R-
R separations in the entire sample, which would otherwise
affect the outcome when analyzing a specific segment. The
specific analysis for R-R interval variability is then considered
separately. In this case, the information between the R-peaks
are kept the same, but the signal is resampled to match R-R
separations from the permuted ECG. The overall changes in
predictions are evaluated before and after permutation for
each sample category, thus providing a class-level overview
of feature importance.

3) LIME Study: The LIME [22] (Local Interpretable Model-
agnostic Explanations) method attempts to explain a system
by analyzing how predictions change when a perturbation is
applied to input data samples, without additional information
about the model. The general idea is to approximate a complex

model with a collection of many simpler models, each of
which is faithful in the neighborhood of a unique sample.
Fig. 3 illustrates how LIME can be used to explain model
predictions. Starting from a specific ECG signal, perturbations
are generated by removing a random selection of features.
These perturbed samples along with their probability scores
obtained through the deep network are then used to train
an interpretable model (typically Lasso regression or decision
tree). The losses for perturbed samples are weighted according
to their proximity to the original, which means that the
interpretable model incurs a greater cost when it incorrectly
labels a sample which is close to the original. This model is
an approximation of the deep network only for small regions
of the feature space in the neighborhood of the original signal,
but can be used to evaluate the contribution of each perturbed
feature to the final prediction, as an estimation of overall
feature importance.

In this study, we apply LIME to each of the 8 ECG segments
(defined in Sec. IV-A.1) and to R-R interval variability. The
perturbations are achieved in the same way as described for
the ablation study (IV-B.1). These perturbed samples are then
used to train a Lasso regression model as a local approxima-
tion, in order to predict the corresponding class probability
scores from the pre-trained deep network. Coefficients of the
linear regression model denote the change in class probability
score when the corresponding feature is perturbed. These
coefficients are used to quantify the corresponding feature
importance. Finally, the outcomes for all samples of a specific
class are averaged to estimate a class-level feature importance
(global explanation).

C. Local Explanation

As opposed to global explanation studies, where the overall
performance of the classifier are analyzed, local explanations
consider each example in the dataset individually. They try
to highlight the sections or features of the input signal that
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Feature
Total S A O Z

Abl. Perm. Abl. Perm. Abl. Perm. Abl. Perm. Abl. Perm.

Seg 0 −0.18± 0.68 −1.52± 0.81 0.22± 0.25 −0.08± 0.14 −3.70± 2.97 −14.40± 6.95 0.37± 1.11 −0.46± 0.73 −2.51± 1.82 −2.16± 1.35

Seg 1 0.47± 0.26 −0.22± 0.50 0.06± 0.17 0.20± 0.27 2.11± 0.87 −7.14± 5.26 0.91± 0.41 0.95± 0.41 −0.35± 1.35 0.72± 1.43

Seg 2 0.35± 0.40 0.22± 0.50 0.08± 0.07 0.28± 0.34 1.45± 2.61 −4.89± 3.67 0.54± 0.77 1.41± 0.46 0.72± 1.82 2.89± 3.73

Seg 3 −0.26± 0.30 0.87± 0.64 0.02± 0.17 0.41± 0.33 −1.97± 2.88 −0.67± 4.92 −0.21± 0.57 2.53± 1.00 −1.07± 0.87 −1.08± 4.22

Seg 4 −0.38± 0.29 1.84± 1.06 −0.14± 0.16 0.75± 0.85 −2.51± 1.64 −2.38± 3.47 −0.21± 0.71 5.71± 1.70 −0.36± 1.34 −0.34± 2.64

Seg 5 −0.02± 0.30 0.63± 0.79 0.00± 0.11 0.30± 0.37 −0.79± 2.71 −5.02± 3.37 0.08± 0.59 3.19± 1.73 0.71± 1.44 0.01± 2.81

Seg 6 1.37± 0.46 −1.06± 0.78 0.41± 0.10 −0.02± 0.16 4.88± 2.55 −17.56± 4.40 2.28± 0.71 1.78± 1.60 1.45± 1.77 0.34± 3.50

Seg 7 −0.59± 0.47 −3.87± 0.55 0.47± 0.20 −0.35± 0.12 −10.03± 3.16 −33.92± 5.65 0.25± 1.47 −1.86± 0.35 −1.44± 2.08 −3.59± 2.54

Seg 0, 1 −1.34± 1.31 0.36± 0.46 −0.04± 0.24 0.10± 0.34 −13.58± 8.67 −2.51± 3.27 −0.08± 1.74 1.53± 0.87 −2.51± 1.82 2.88± 1.84

Seg 1, 2 0.08± 0.47 0.21± 0.36 0.14± 0.25 0.20± 0.29 −1.18± 3.62 −2.25± 3.65 0.41± 1.12 1.20± 0.61 −0.36± 1.78 −1.43± 3.28

Seg 2, 3 −1.52± 0.37 1.42± 0.81 −0.22± 0.11 0.83± 0.45 −10.95± 1.68 0.65± 4.44 −1.24± 1.63 3.19± 1.66 −2.16± 2.89 −1.09± 4.64

Seg 3, 4 −2.16± 0.41 2.20± 1.17 −0.22± 0.20 1.02± 0.54 −17.67± 4.32 1.18± 3.85 −1.33± 1.02 5.34± 2.54 −2.52± 3.72 −0.72± 2.43

Seg 4, 5 −1.95± 0.47 1.34± 0.70 −0.18± 0.13 0.61± 0.36 −16.88± 2.99 −2.12± 2.11 −1.08± 1.45 4.27± 1.69 −1.08± 0.47 −1.44± 2.11

Seg 5, 6 1.52± 0.48 −0.18± 0.38 0.73± 0.12 0.26± 0.28 3.29± 3.08 −10.16± 3.87 2.48± 0.80 1.95± 1.28 2.86± 2.44 0.72± 1.82

Seg 6, 7 −1.16± 1.78 −0.13± 0.38 0.51± 0.42 0.81± 0.43 −17.57± 9.78 −14.12± 2.52 0.54± 2.61 1.99± 0.72 −1.79± 4.12 2.52± 2.92

Seg 7, 0 −6.92± 0.60 1.10± 0.56 0.12± 0.35 1.48± 0.48 −66.63± 4.16 −8.32± 2.92 −3.40± 0.91 3.27± 0.86 −3.23± 2.10 1.08± 1.45

R-R variability −6.88± 0.40 5.58± 0.94 −0.37± 0.07 9.75± 0.84 −65.70± 2.34 −38.52± 3.58 −2.44± 1.30 12.67± 0.90 −3.97± 3.12 −2.90± 4.38

TABLE III: Results of the ablation (Abl.) and permutation (Perm.) global explanation studies. Change in percentage of samples
predicted as AF is reported for each class. Cross-validation variability is reported in terms of standard deviation.

have the most influence on the classifier output. Evaluation
of the contribution of each input feature to the output of a
model has been largely investigated in the computer vision
field [23], [28], [36]. Here, our goal is to extend previous
findings to biomedical time-series, which are less intuitive
to be interpreted from a visual perspective. To this end, we
consider two different approaches: the first is based on saliency
maps, to provide a direct evidence of the contribution of
individual input samples; the second leverages LIME, which
refers to the contributions of the same features presented for
global explanation. With local explanations, each example
is propagated through the classification network to obtain a
probability score for each of the four classes. The class label
with the highest probability is said to be the predicted label.
In this study we present results for two specific cases:
Case 1) Correct classification with high confidence: we con-
sider examples where the predicted label matches the true
label.
Case 2) Incorrect predictions with high confidence: in this
case, we consider examples where the predicted label and the
true label do not match.

For both cases, 20% of the data was selected as a testing
set for local explanations, and has not been used in training.

1) Saliency Map: We utilize saliency maps with the guided
back-propagation technique [37] to highlight the most im-
portant regions of input data [14]. Through our analysis
we have observed that guided back-propagation, deconvolu-
tion and GradCAM all provide similar local explanations,
with vanilla back-propagation being noisier. Guided back-
propagation method is similar to the vanilla back-propagation
approach [14], which provides a model-agnostic approach
for computing primary attributions by analyzing the gradient
of output with respect to the input, and approximating the
network’s behavior with a linear representation. More specif-
ically, the input ECG E is propagated through the classi-
fication network to obtain a probability score GC(E), with
C ∈ {S,A,O,Z}. For any class label C, the score GC(E)
is estimated by the first-order Taylor expansion GC(E) ≈

wTE + b. Here w is the gradient of GC with respect to the
input, computed using a single pass of the back-propagation
algorithm. With guided back-propagation, negative gradients
are additionally clamped to zero during the backward pass.
The absolute value of the coefficients w are considered an
estimation of feature importance.

As any individual ECG signal in the dataset lasts for 9 to
60 seconds, we select an interval of 3 seconds for our study,
focusing on the time of highest importance.

2) LIME Study: With a procedure similar to the one de-
scribed in Sec. IV-B.3, LIME can also be used for local
explanation. In fact, with LIME we can study the contribution
of a specific segment (among the 8 segments defined in
Sec. IV-A.1) in the classification of a specific ECG signal.

V. RESULTS: GLOBAL EXPLANATIONS

A. Ablation and Permutation Studies

The results of ablation and permutation studies for each of
the 8 segments and for R-R variability analysis are shown in
Tab. III, where the variation of samples predicted as AF by the
perturbed model is shown with respect to what was detected
by the baseline model. In this case, we focus specifically on
the AF class. In the first 8 rows of Tab. III, only one segment is
perturbed, while in the following 8 rows we show the impact of
a larger perturbation produced by two consecutive segments.
We also report the results for R-R variability, as described in
Sec. IV-B.

The most evident result is related to R-R variability. We
observe a major average drop of 65.7% in samples predicted
as AF for class A when we remove the variability. This means
that out of 100 samples classified as A, when we remove the
information about R-R variability only 34 are classified as A.
Therefore, the DL model automatically extracts and utilize this
information for its final decision. This is also confirmed by the
permutation study results, which shows a drop of 38.5% for
class A. When the true label is S or O instead, by permuting
the information about R-R variability we have an increase
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in sample incorrectly classified as A, of 9.7% and 12.7%,
respectively.

We also observe similar outcomes for all analyses involving
segment 7 and 0, which correspond to the QRS complex.
Intuitively, this part of the signal is crucial for a correct
estimation of R-peaks, and consequently for R-R intervals.
This effect is most prominent when both segments are removed
(ablation study), with a general drop (considering all samples)
of 6.9% of samples classified as AF, and 66.6% specifically
for class A.

An interesting outcome is related to segment 6, which
corresponds to the P-wave for most samples. When we remove
the signal from this area (ablation study), we observe an
overall increase in samples detected as AF for all classes
with and increase of 0.41%, 4.9%, and 2.3% for class S, A
and O, respectively. On the other hand, with the permutation
study, which typically entails an increase in P-wave energy,
we observe a consistent drop in samples detected as AF, in
particular for class A (17.6%). This is in accordance with
our intuition: in a cardiac cycle, the P-wave is associated
with atrial contraction, but during AF the electrical pulse that
cause this contraction is irregular both in location of onset
and timing, resulting in complete loss of the P-wave in the
ECG tracing. The results show that the model was able to
automatically associate the absence of the P-wave to an AF
event.

To correctly interpret these results, we should notice that the
results for ablation and permutation studies analyze comple-
mentary aspects of the same specific feature, as shown in this
particular case. For example, ablation removes the effect of
the P wave, which leads to a higher percentage of A samples
classified as A. On the other hand, permutation introduces P
wave into AF signals, which leads to a lower percentage of
samples predicted as A. Both the suppression and replacement
of information from a sample allow to analyze the importance
of the corresponding feature, but interpretation of the induced
effects on the model’s behavior lead to a deeper understanding
from two different points of view.

Finally, the isoelectric region of the cardiac cycle (segments
3, 4, 5) is another aspect taken into account by the DL model.
During an AF event, since the action potential might start from
a random area of the atria, and without the usual coordination
and synchronous efforts of the sinoatrial (SA) node, there may
be some electrical activities also in the hypothetical isolectric
section of the cycle. In fact, ablation of segment 4 causes a
drop in samples detected as AF by 2.5% for class A, which is
increased to 17.7% when both segment 3 and 4 are removed or
16.9% when segments 4 and 5 are removed. Once again, the
representation learned by the DL model includes features that
are consistent with the clinical interpretation of these signals.

B. LIME Study

Similar results are obtained with LIME and reported in
Fig. 4. Results for class Z do not hold practical interpretation,
so have been skipped for brevity. For class A, we observe
that segments 0 and 7 (corresponding to R-peaks) have the
most positive weight from linear regression, on average. This
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Fig. 4: LIME average segment and R-R variability weights for
S, A and O classes. Error bars represent the cross-validation
variability in terms of standard deviation.

means that if segments corresponding to the peaks are kept,
the probability score of correct classification is significantly
higher on average as compared to when they are removed.
Additionally, an average positive weight for class A can be also
noted for segments 3, 4 and 5. This supports the hypothesis
that the presence of electrical activity in the isoelectric baseline
of the ECG is effectively taken into account by the network for
AF detection. As shown in Fig. 4, the highest average LIME
weight corresponds to R-R variability. This implies a greater
probability score for A on average, which in turn means higher
rate of correct classification when the original variability is
kept, proving once again the primary importance of this feature
during the representation learning process. Also for class S,
the most prominent results are related to segments containing
the QRS complex (segments 0 and 7). The behavior is similar
to what is observed for class A, but the magnitude is even
larger. On the other hand, the behavior when R-R variability
is removed is vastly different among the two classes. As
expected, removing the variability does not significantly affect
the probability score of class S.

Similar results are shown also for class O, where the R-R
normalization leads to a substantial drop in the probability
score of O. Segments 0 and 7 (R-peaks) and segment 6
(P-wave) also show significant positive weights. Moreover,
segments 3, 4 and 5 have negligible weights, implying that
the isoelectric baseline is either present for most samples of
class O or considered not important for prediction during the
representation learning phase. Nevertheless, it is worth noting
that class O is a group containing multiple arrhythmias, thus
limiting a direct comparison to human understandable features
associated to a specific condition. Global explanations can also
be used to compare faithfulness of different architectures to the
clinical features (P-Wave, R-R variability, isoelectric baseline).
We use LIME quantitative scores to compare the baseline
MobileNet architecture with two deep networks: AlexNet and
ResNet (further details about the architectures can be found
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Class Network Outcome
LIME Weights

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7 RR

S predicted correctly 0.27 0.03 -0.04 0.12 -0.06 -0.02 -0.13 0.60 0.03

S predicted as O -0.08 0.13 0.01 0.11 0.01 -0.05 0.15 0.12 0.32

A predicted correctly 0.19 -0.04 -0.07 0.17 0.00 -0.06 0.02 0.20 0.67

A predicted as S 0.21 -0.07 0.10 0.08 0.02 -0.28 -0.15 0.38 0.05

O predicted correctly -0.05 -0.07 0.14 0.03 -1.52 0.00 -0.08 -0.11 0.34

O predicted as A 0.19 -0.03 -0.08 0.13 0.14 -0.03 -0.03 0.26 0.65

TABLE IV: Local explanation results using the individual weights from LIME for each segment and for RR variability are
reported in the table. Some relevant samples with different class and outcome are considered.
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Fig. 5: LIME average segment and R-R variability weights for
class A. Results for three different architectures are reported:
MobileNet, AlexNet and ResNet. Error bars represent the
cross-validation variability in terms of standard deviation.

in [9]). These results are reported in Fig. 5. With 5-fold
cross validation, AlexNet achieved overall accuracy of 82.06±
0.45% and ResNet obtained overall accuracy of 84.93±0.62%.
Although performance of all the deep networks is similar
in terms of accuracy, we can see significant difference in
their use of clinical features. We observe that the baseline
MobileNet model and ResNet both have similar LIME weights
for all segments and R-R variability. AlexNet presents some
differences with respect to the other two, with a noticeable
positive weight for Seg. 6. This means that the presence
of P-wave would increase the chance of prediction of label
A, which is not intuitively explainable from a clinical point
of view, and will require additional studies to be properly
interpreted.

VI. RESULTS: LOCAL EXPLANATIONS

Since local explanations are unique to each example, we
present here representative cases for high confidence correct
and incorrect classifications for S, A, and O examples.

Two examples of class S are reported in Fig. 6a and 6b
corresponding to a high confidence correct and incorrect

classification, respectively. Saliency maps give an immediate
feedback on the parts of the input signal that are considered
important for the final DL classification. While the ECG in
Fig. 6a was correctly classified as S, Fig. 6b shows an example
where the network focuses its attention on a premature atrial
contraction event that occurred in a sample labelled as normal
sinus rhythm. The high saliency of this region proves that this
event is the primary reason for the input being incorrectly
classified as O. This is an important outcome, since it shows
that the erroneous behavior of the network has been triggered
by an anomalous physiological event, and not by some un-
explained reason, in a similar way a human may be misled
during the analysis. Furthermore, automatic highlighting of
these important regions of the signal may be an additional
tool for clinicians for a more targeted manual analysis. LIME
weights for the same examples are reported in Tab. IV, in order
to provide additional insights into the specific information used
by the network for high confidence predictions. For class S, we
can see that the example classified correctly has a small weight
for R-R variability, whereas this feature has a large weight in
the example classified incorrectly as O. This confirms that
R-R variability is one of the main reason for the classification
outcome. Additionally, the LIME weight for Segment 6 is a
large positive value, showing that the presence of P wave has
been important to classify the erroneous example as O, instead
of A.

Two examples for class A with high confidence correct
and incorrect classification are shown in Fig. 6c and 6d,
respectively. The saliency map in Fig. 6c identifies an interval
with non uniform separation between R-peaks, as expected
for A. The separation between R-peaks seems to be constant
in the saliency map from Fig. 6d, which could be a possi-
ble reason for the network being incorrectly predicting the
corresponding input as S. This hypothesis is also supported
by the corresponding LIME weights (Tab. IV). In fact, the
example predicted correctly has a very large weight for the
R-R variability, as opposed to the small value observed for
the example predicted incorrectly as S.

Finally, two examples for class O with correct and incorrect
classification are shown in Fig. 6e and 6f, respectively. Fig. 6e
shows how the network focuses on specific heartbeats of
the input signal, which may be considered the discriminating
factors for a general arrhythmia. The LIME weights in Tab. IV
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Fig. 6: Local explanations using saliency map. (a) S, predicted correctly. (b) S, predicted as O. (c) A, predicted correctly. (d)
A, predicted as S. (e) O, predicted correctly. (f) O, predicted as A.

reveal that Seg. 4, corresponding to the isoelectric region of the
ECG cycles, has a large negative weight, which means that the
presence of a signal in Seg. 4 leads to a lower probability score
as compared to when it is removed. This confirms that the
focus for prediction is not based only on changes in the heart-
rate, but a more in-depth analysis is required to discriminate
between different arrhythmias. Also for the example shown
in Fig. 6f, the network automatically identifies a region with
large R-R variability as highly informative. In this case the
network wrongly classifies the sample as A, probably due to
high noise and the abnormal rhythm.

In all these examples, we observed how the network often
focuses on anomalous regions of the ECG, which drove the
classification of the signal, in accordance to a manual analysis
performed by human experts.

VII. DISCUSSION AND CONCLUSION

Recent improvements in both accuracy and usability of
personal medical sensors contributed to a rapid increase in
their use and consequently to the collection of large datasets of
biomedical data. The availability of such large datasets makes
DL methodologies very attractive, with recent outstanding
results. Their use in clinical applications, however, is currently
a strong source of debate. This is mainly due to their black-box
nature, and the challenge to understand which aspects of input
data drive the final decisions of the model. To encourage the
widespread diffusion of these approaches inside and outside
the clinic, it is thus important to be sure that these decisions are
driven by a combinations of data features that are appropriate
in the specific context.
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While classical and interpretable models are typically
preferable [10] as they facilitate the work of clinical experts
that can confirm the algorithm’s diagnosis or identify a poten-
tial artifact triggering the fallacious decision, on the other side
it is often difficult to design an interpretable model reaching
the performance of a black-box DL model. Also, classical
models rely on the selection of a unique set of clinical features,
which are usually suggested by clinical studies, and on the
subsequent detection of such features in the signal. These
approaches typically require a specific domain knowledge to
transform unprocessed data into suitable representations that
can generalize to unseen data. DL showed its value where
other types of classical models have showed poor performance,
from forecasts based on electronic medical records [38], to
the classification of echocardiograms [39], and other types of
medical images [40]. Additionally, DL can be valuable also in
the detection of COVID-19 from longitudinal wearable device
data [41]. In all these cases, if a native interpretation of the
DL output is not possible, a valuable alternative is to rely
on post-hoc explanation techniques, highlighting particular
features of the input that triggered the DL decisions [42]. Post-
hoc explanation techniques can provide both global and local
explanations. The former is used to explain the behavior of the
DL technique at a high level for any type of input, while the
latter focuses on specific input cases and features that triggered
the DL decision.

In this work, we focused on explanation of time-series
and we chose as a case study the detection of AF from 30
seconds single-lead ECG signals. AF is often undiagnosed [43]
and has significant clinical consequences including a 5-fold
increase in the risk of stroke. But when diagnosed, there
exist therapies proven to be effective in significantly reducing
severe consequences. Therefore, there is substantial value in
frequent (and potentially automated) screening for individuals
at risks [44], [45] and the potential prediction of AF from ECG
in normal sinus rhythm [46]. The use of portable devices could
facilitate the cost-effective collection of cardiac electrical ac-
tivity outside of the clinic [47], and a large prospective trial has
already been made with commercial smartwatches [48]. An-
other option involves short at-home measurements of single-
lead ECG with other commercial devices, but there is a trade-
off between continuous measurements, and intermittent or
symptomatic screening [49]. In any case, the interpretation
of these signals will be fully useful to cardiologists only if
the automatic output can be explained and related to specific
features/intervals of the ECG input. In this study, we provide
a framework for both global and local interpretation of ECG
signals and other quasi-periodic signals alike. Using ablation
tests, permutation tests and LIME method, we showed that
the network effectively considers physiological features, such
as the absence of P-wave, variability of R-R intervals and
electrical activity in the isoelectric region of the ECG, as
important factors for the classification of AF. We were able to
establish that, at least in part, the model leverages features that
match with those used by cardiologists in clinical diagnoses.
Furthermore, through the use of saliency maps and LIME, we
also present local explanations for some relevant examples,
which can be used to confer useful information about the

model’s behavior for a specific input by highlighting most
important regions and features in the input. Moreover, even in
the case of erroneous behavior, the network is often misled by
actual anomalous conditions in the input signal, that can be
easily highlighted and further investigated.

While clinical cardiologists have helped in the definition of
clinical features used in the study and interpretation of the
explanations, these techniques should be used in a prospective
study and their clinical effectiveness should be demonstrated
before they can be adopted.

In conclusion, the presented framework enables an in-
depth exploration of the DL network and its decision-making
process. This exploration will help in understanding the net-
work itself as well as enable new improvements within the
architecture, with the ultimate goal of exploiting the immense
potential of DL for biomedical data analysis, and help make
the use of neural networks more transparent and fully useful
for clinicians.
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