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achine learning (ML)—the use of computer

algorithms that can learn complex pat-

terns from data—has significant potential
to affect cardiology due to the number of diagnostic
and management decisions that rely on digitized,
patient-specific information such as electrocardio-
grams (ECGs), echocardiograms, and more (1), and
due to the growing amount and complexity of medi-
cal knowledge. The staggering volume of health care
data—clinical notes, wearable and sensor data, medi-
cation lists, imaging, and much more—continues to
increase astronomically, with 2 zettabytes (1
zettabyte = 1 trillion gigabytes) estimated to be pro-
duced in 2020 (2). Simply put, “the complexity of
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medicine now exceeds the capacity of the human
mind” (3). As a result, our knowledge and interpreta-
tion of available data, our skills, and our practice may
vary from clinician to clinician, sometimes failing to
leverage all of medical knowledge. Designed, vali-
dated, and implemented appropriately, ML algo-
rithms will help in acquiring, interpreting, and
synthesizing health care data from disparate sources
and putting it at our fingertips—as if we had an expert
subspecialist to call upon for every patient and every
clinical situation.

As ML algorithms permeate into clinical cardiol-
ogy, they may be deployed in multiple areas. Algo-
rithms may help the front office schedule different
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ABBREVIATIONS
AND ACRONYMS

will lead clinical trials evaluating efficacy and
HIGHLIGHTS safety of ML algorithms, just as they do for
drugs or medical devices. In the clinic, car-
diologists will help decide, for example,

whether to buy new ML-powered software to

e ML algorithms can find sophisticated
patterns in medical data and have the
potential to improve cardiovascular care.

Al = artificial intelligence

CMR = cardiac magnetic
resonance imaging

e Cardiologists must take an active role in
shaping how ML is used in cardiovascular
practice and research.

e To empower cardiologists in this role, we
provide a framework to help critically
evaluate developments in ML.

e We also provide an open-source biblio-
metric survey of ML in cardiology.

patients with the appropriate amount of time based
on their electronic health record (EHR) data, or help
primary care physicians better guide referrals to the
cardiologist’s office. ML will help in remote testing
and monitoring of patients, guiding the data acqui-
sition that will be sent to a clinic or hospital. Perhaps
the computer-generated ECG reports will become
more reliable, because ML algorithms are analyzing
the signal. Ultrasound, nuclear, computed tomogra-
phy (CT), and cardiac magnetic resonance (CMR) im-
ages will be better-protocolled and have less image
noise or fewer artifacts. Automated cardiac mea-
surements from echocardiograms, CT scans, and
CMRs may become more accurate and reliable (4).
Perhaps cardiac risk scores will not be calculated from
just a handful of variables, but from every piece of
data in the patient’s chart. Perhaps ML algorithms
will help us discover new and subtle patterns in data
that may change how we care for our patients.
Perhaps clinical guidelines may recommend ML-
enabled testing for patient diagnosis and manage-
ment. Taken together, these and other ML-based
improvements may make for a revolution in cardiol-
ogy. Despite this potential, and a growing body of
literature (detailed in the following text), ML’s real-
world impact on clinical cardiologists and their pa-
tients has been quite limited to date (1,5).

To borrow from American poet and musician Gil
Scott-Heron, this revolution will not be televised. By
the time algorithms like those described in the pre-
vious text make it into the clinic, their presence will
be largely invisible to the practitioner. Cardiologists’
active involvement in ML before it reaches the clinic
is critical to help it reach its full potential for patient
care. Cardiologists will be the ones to follow new
developments in medical ML, serve as peer reviewers,
and evaluate whether new work is impactful or in-
cremental to patients and providers. Cardiologists

improve clinical operations or diagnosis.
When an ML algorithm suggests an unusual
result, cardiologists will have to decide
whether that result is spurious or a truly
novel finding that a physician would not see
on his or her own. And they will have to
explain their reliance on or rejection of ML-

based test results to their patients. For all of these
reasons, even cardiologists who are not ML experts
can benefit from some basic tools and concepts with
which to understand, evaluate, and, when appro-
priate, champion the incorporation of evidence-based
ML research into their practice.

The goal of this review is to present these concepts
for ML, to provide a way to survey the ever-growing
body of literature in ML for cardiology, and to pro-
vide suggestions for how cardiologists who are not
data science experts can participate in the ML
revolution.

ML: KEY CONCEPTS FOR BUSY CLINICIANS

In this section we will provide a brief overview of 6
ML concepts that clinicians need to be familiar with to
read clinical papers using ML methods and, eventu-
ally, to facilitate the use of novel ML algorithms in-
side the clinic. Our goal is not to provide a
comprehensive technical primer on ML algorithms,
which is already well covered in several excellent
resources (4-11).

Artificial intelligence (AI), simply defined as a
computer system that is able to perform tasks that
normally require human intelligence, is something
cardiologists have been taking advantage of for de-
cades virtually every day as hundreds of millions of
ECGs are interpreted by computers worldwide every
year (12,13). Here, we will use ECG analysis as a ca-
nonical example to illustrate several concepts in ML,
because it is clinically familiar and has been well-
studied by humans, non-ML computer algorithms,
and ML algorithms alike.

CONCEPT 1. TRADITIONAL RULES-BASED ALGORITHMS
APPLY RULES TO DATA, WHILE ML ALGORITHMS LEARN
PATTERNS FROM DATA. Computers can mimic human
intelligence through rules-based algorithms, used in
traditional computerized ECG interpretation (12), or,
through ML algorithms. Rules-based algorithms make
use of a set of rules explicitly programmed by humans
to mimic the knowledge a cardiologist might use in

ECG = electrocardiogram

ML = machine learning

VTE = venous
thromboembolism

CT = computed tomography

EHR = electronic health record
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reading the ECG, for example: determining the rate,
identifying P waves before every QRS, and recog-
nizing pathognomonic waveform changes. In this
case, the rules used that lead to a computer’s ECG
diagnosis are well understood.

In contrast to rules-based algorithms, ML algo-
rithms that learn rules and patterns from the data fed
to them, rather than having those rules explicitly
programmed. This fundamental difference is
responsible for both the excitement about ML algo-
rithms’ potential to solve problems in cardiology
beyond human capability—for example, detecting
patients with ejection fraction =35% or detecting
patients with hypoglycemia based on an ECG alone
(14,15)—but it is also cause for the caution clinicians
must have in evaluating and eventually implement-
ing ML solutions.

There are several types of ML algorithms, from
decision trees and support vector machines, to highly
complex, data-hungry algorithms called neural net-
works. Neural networks are used in deep ML (deep
learning), and their ability to analyze large amounts
of highly complex data—EHR data, for example, or the
collection of pixels that make up medical images—are
especially exciting for cardiology applications. An ML
algorithm is trained on data, yielding a trained ML
model that can then be evaluated on never-before-
seen test data. Several excellent reviews discuss
different types of ML algorithms, including neural
networks, in more detail (10,16-18).

CONCEPT 2. ML ALGORITHMS CAN LEARN PATTERNS
FROM LABELED EXAMPLES: SUPERVISED LEARNING. ML
algorithms can learn patterns from data in 2 main
ways. The first approach is to provide data (e.g., a set
of ECGs from patients visiting a clinic) along with a
corresponding label for what the algorithm is meant
to learn (in this example, the label would be the
diagnosis for each single ECG). This approach is called
supervised learning (14,19-21). Based on the labeled
examples alone, the algorithm learns for itself the
most important features of the ECG that drive its
decision and devises rules to exploit those features
for diagnosis of new ECGs never seen before.
Supervised learning algorithms have the advantage
of having a clear goal: predicting the label of interest.
But the disadvantage of supervised ML algorithms is
that their ability to find interesting patterns in the
data is also constrained by those labels. As any clini-
cian who has written question-and-answers for board
prep or put together a self-assessment program
knows, choosing the right data for training and
deciding on the correct answer or label is critically
important to training and takes a lot of work.
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Similarly, a major challenge in supervised ML is the
availability of datasets of adequate size that have
correctly annotated labels of interest. This is not al-
ways straightforward. For example, data scientists
may trust that when a patient has a specific diagnostic
code in their EHR, such as acute venous thrombo-
embolism (VTE), that the diagnostic code can serve as
an accurate clinical label for VTE. However, studies
have founded that a VTE diagnosis in the EHR has a
positive predictive value as low as 31% for an outpa-
tient diagnosis and 65% for an inpatient diagnosis
(22). Therefore, correct labelling of datasets requires
active curation by physicians, and will often require
consensus from more than 1 physician.

CONCEPT 3. ML ALGORITHMS CAN LEARN PATTERNS
WITHOUT LABELED EXAMPLES: UNSUPERVISED AND
REINFORCEMENT LEARNING. The second approach for
learning that can be used is unsupervised learning,
designed to discover the hidden patterns by
analyzing data without a label. An unsupervised
learning approach is similar to a medical student that
is given a huge number of ECGs without any diag-
nosis. The student may not have been told what atrial
fibrillation is or what a left bundle branch block looks
like, or that pericarditis can cause PR segment
depression, but he/she can still classify the examples
in similar groups, selecting the most important ECG
characteristics that he/she thinks differentiate one
example from another. He/she may learn on his/her
own that the bumps and squiggles in an ECG seem to
follow a certain sequence and that they have different
durations and morphologies, or he/she may notice an
entirely novel characteristic not typically taught in
the textbooks. In the same way, an algorithm can
cluster available data in several groups, and can learn
the data features that are most relevant in differen-
tiating the examples.

Unsupervised learning holds several advantages in
ML: it allows the algorithm to develop an under-
standing of the data that is unconstrained by labor-
intensive and often variable human labels, and it
allows the algorithm to come up with novel groupings
and clusters of the data that a human being may not
be aware of. These learned features as groupings can
also be exploited by a subsequent supervised learning
step (23), just as the medical student, having pre-
digested the ECGs on his/her own, then has an
easier time learning that certain patterns correspond
to sinus arrhythmia or hyperkalemia.

Unsupervised learning approaches are common in
the analysis of EHR or genetic data to automatically
extract the most useful information (24) to identify
distinct disease subgroups—of type 2 diabetes, for
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Beta-testing Al-enabled products in the clinical setting.

Participating in annotation of datasets as the clinical expert.
Participating in validating model predictions as the clinical expert.

TABLE 1 Roles for the Non-ML Expert in Machine Learning for Cardiology

Being an informed consumer of the literature and of cardiac ML research projects.
Collaborating with ML and data science experts to innovate clinical practice.

Advising one's medical center, clinic, or institution on investments in data science and ML tools.

Advocating for responsible data sharing at one's institution and via professional societies.

Advocating for harmonization and standardization of data formats and data processing across institutions.

Ensuring that algorithms have been trained from data that adequately represents patients, acquisition methods, and equipment, and other factors.

Testing Al-enabled clinical products and/or novel insights in randomized controlled trials.

Evaluating and incorporating Al-based decision making in updated clinical guidelines documents.

Creating and promoting training opportunities (courses, fellowships) in data science for cardiology trainees and in clinical science for data scientists.
Evaluating and updating cardiology training—what core competencies will remain a requirement, and what will be replaced by ML?

Al = artificial intelligence; ML = machine learning.

example (25)—or to find a new set of biomarkers that
may be better predictors than standard biomarkers in
defining distinct subsets of individuals with similar
health status (26). Clustering—dividing any type of
data in groups of similar datapoints based on the
data’s characteristics—is indeed a successful applica-
tion of unsupervised learning to clinical data (27,28).
As in the previous text, the clusters generated may
lead to novel groups of datapoints that may illumi-
nate novel subgroups of disease, new biomarkers, or
new predictors of a clinical outcome of interest.
However, clustering often represents only the first
step to group the data before a more insightful anal-
ysis. Importantly, clusters that may suggest new
groupings of disease or other novel insights must be

validated clinically, as it can be easy to set clustering
parameters to create subgroups, or lump together
groups that should be separate.

In addition to supervised and unsupervised
learning, a third category of learning methods, rein-
forcement learning, is used when the ML algorithm is
given iterative information about the outcome of its
predictions in the environment as feedback that helps
guide its future predictions. Imagine training an ML
algorithm to dose intravenous heparin, for example.
For this task, neither a supervised approach, such as
labeling different doses of heparin as “good” or
“bad,” nor an unsupervised approach (no label at all)
would work well. Instead, in a reinforcement learning
approach, the algorithm would have a goal—optimize
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partial thromboplastin time—and would predict
different heparin doses, receiving a positive or
negative reward depending on how close to the goal
partial thromboplastin time it got. That reward would
then inform the algorithm’s next guess, and so forth.
Reinforcement learning has been used with success to
learn complex strategy games like Go (23), where the
goals and the effect of the algorithm’s decision on the
environment is clear, and where the algorithm can
play Go millions of times, often losing the game until
it learns. It has also been studied for some clinical
tasks, such as guiding dofetilide dosing or ventilator
settings (29,30). However, reinforcement learning
may be of limited use in clinical tasks where the goal
and the environment’s possible response are much
more complex, and where “losing the game” in a
clinical setting during the learning phase of the al-
gorithm is not ethically acceptable.

CONCEPT 4. WHEN ML ALGORITHMS LEARN RULES
THAT PERFORM WELL ON TRAINING DATA BUT FAIL
ON TEST DATA, THEY HAVE FAILED TO LEARN
RULES THAT ARE GENERALIZABLE. This problem,
called overfitting, happens when there is mismatch
between the complexity of the ML algorithm and the

size of the training dataset provided to it. Take, for
example, a very complex algorithm trained on a small
dataset: the algorithm learns rules so tailored to the
specific training examples at hand that it has in effect
“memorized” them instead of learning the general
rules behind them. This means the model perfor-
mance will appear to be very good, but then fail when
deployed on larger datasets. The problem is even
more severe in the presence of class imbalance, that
is, when 1 subgroup of the training data has only very
few samples.

Overfitting is one of the most common problems
encountered when using supervised ML algorithms,
and the main limitation to their application to real-life
clinical situations (31). Overfitting can happen to hu-
man learners as well, for example, the fellow who has
studied 10 ECGs very closely but then fails the board
examination. To date, however, a human learner is
typically much better at generalizing knowledge from
a small dataset than an ML algorithm.

It is common to estimate the complexity of an ML
model based on the number of parameters in the
trained model, which can be in the order of hundreds
of millions for modern deep learning architectures,
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FIGURE 2 Content in Cardiac Al/ML Publications on PubMed
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even when trained on just a few thousand training
examples (32). Methods to mitigate overfitting
include: 1) reducing the model complexity; 2)
increasing the number of examples in the training set
(although this is often not possible); 3) limiting the

number of iterations of the algorithm (i.e., training
cycles) on the training data; 4) balancing the param-
eters learned in the model (regularization) to obtain a
simpler model that underfits on the training data but
generalizes better; and 5) using not one model but an
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FIGURE 3 An International and Collaborative Effort
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ensemble of separate models to come to the desired
prediction so that various overfitting effects of each
singular model balance out (33).

Given the common and dangerous issue of over-
fitting, the performance of the trained model must be
tested on cases that are completely independent from
the training examples, and ideally, from test data
from multiple external medical centers. To evaluate
performance of any ML algorithm on a clinical task,
full information on the data and methods used in
training and testing must be reported (11).

CONCEPT 5. ACCURACY, INTERPRETABILITY, AND
EXPLAINABILITY OF AN ML ALGORITHM. Simply
put, diagnostic accuracy is defined by the proportion
of correct predictions (true positives and true nega-
tives) in a given test dataset. Supervised ML models
can be more accurate on a given diagnostic task than
the average clinician, as shown by deep learning al-
gorithms matching the diagnostic accuracy of a team
of 21 board-certified practicing cardiologists in the
classification of 12 heart rhythm types from single-
lead ECGs (19).

However accurate they may be, typically, the rules
by which ML models have achieved their performance
are not clear—this is especially true for highly com-
plex neural networks. This lack of easy interpret-
ability of the neural networks’ decision-making

means that it can be difficult to verify the learned
rules have truly generalized to real-life clinical situ-
ations (34).

It can also be difficult to learn from novel features
or patterns the ML algorithms may have detected.
Lack of interpretability raises some important ques-
tions for the clinician.

First, does it matter that we do not know how a tool
works, as long as we have validated that it works very
well? Second, what is the level of testing an ML model
must go through to be considered safe for clinical
situations, especially when we do not know how it
works?

Although one would like an ML model to maximize
both accuracy and interpretability, to date there is a
tradeoff between the 2, especially when using neural
networks (deep learning), whose operations are often
too complicated to analyze and interpret. As clini-
cians, we may need to choose whether to take
advantage of a “black-box” algorithm with proven
99% accuracy, or an interpretable algorithm with
recognizable features that lead to the model decision,
but has only 80% accuracy (35). The debate on this
topic is still open and it is one of the reasons for the
slow adoption of current ML techniques in medicine.
Possible solutions to this dilemma are the use of
interpretable models substituting the black box algo-
rithms (34), or the use of model-agnostic methods to
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explain the decision of the black box with local (case-
specific) and global (model-specific) explanations
(36). Clinicians will need to evaluate algorithms in
clinical trials and incorporate their recommendations
in guidelines documents (Table 1). A more futuristic
approach involves the redesign of Al models toward a
knowledge-driven reasoning-based approach, which
may be extremely valuable in medicine, but these
methods are currently under investigation in the
computer science world, while their applicability in
medicine is likely at least a decade away (37).

CONCEPT 6. ML ALGORITHMS CAN BE RETRAINED
TO INCLUDE MORE DATA OR DIFFERENT DATA
TYPES. Like a medical student can learn to interpret
many different types of data—ECGs, chest X-rays,
laboratory values—and, with proper training, can
improve the more data they see, ML algorithms are
dynamic and can be retrained with additional and/or
different types of labeled data with minimal or no
human supervision. For example, the same deep
learning algorithms developed for classification of
nonclinical images (dogs, cats, trees) have been
adapted and reused to detect congenital heart dis-
ease, diabetic retinopathy, cardiac views, skin le-
sions, and a host of other clinical tasks (20,38-40).
This is quite important, as an ML algorithm does not
need to be fundamentally redesigned when facing a
new problem and dataset: the algorithms used to
implement a classification task are fundamentally
similar whether the data is ECG, ultrasound, or nu-
clear imaging, the algorithms used to implement a
segmentation task are similar whether it is on CT or
CMR data, and so forth.

A given neural network can be trained “from
scratch” on different datasets for different tasks, or, it
can be “pre-trained” on a more general dataset and
task to learn very basic data features before being
“fine-tuned” on, for example, a cardiology-specific
dataset and task (38,40-45). This approach is called
transfer learning, and it can be useful when the
specialized medical data is rare. Similarly, a model
that was trained on a certain cohort of medical data
can also be further trained on additional medical
data, for example, from another hospital.

Finally, although ML algorithms can be used on
different problems with very little tweaking needed, a
model trained on a particular data type still has dif-
ficulty generalizing knowledge across different data
types. For example, integrating the information about
the left ventricle from multiple data types like an
ECG, an echocardiogram, a nuclear study, and a car-
diac catheterization is still a task that is much easier
for a trained clinician than for an ML model. Such
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cross-modal synthesis of knowledge from different
data types is a task where ML algorithms could have
the potential to shine, and this is an active topic of
research in computer science.

ML IN CARDIOLOGY: A COMPUTATIONAL
SURVEY OF THE LITERATURE AND
CASE STUDIES

With a conceptual framework for ML algorithms in
place, we now present a survey of the literature on
ML in cardiology, highlighting several applications
(Central Illustration). Because ML papers in cardiology
are growing so quickly, we provide an open-source
semiautomated method to survey all ML papers in
cardiology that can be updated over time, as well as
specific case studies to detail several use cases to
date: denoising and image enhancement, feature
extraction and representation, improving traditional
algorithms with data repurposing, novel insights, and
improving health care systems.

RESEARCH LANDSCAPE. To provide an informal
survey of the research landscape, we retrieved bib-
liometric information on all publications fitting
search terms corresponding to ML and cardiology.
These publications were annotated according to
whether they were original research or reviews, edi-
torials, or other commentary, as well as according to
the ML problem(s) addressed, the ML method(s) used,
the cardiology disease(s) studied, and the type(s) of
medical data studied. To provide an informal survey
of the research landscape, we retrieved bibliometric
information on all publications fitting search terms
corresponding to machine learning and cardiology.
These publications were annotated according to
whether they were original research or reviews, edi-
torials, or other commentary; as well as according to
the machine learning problem(s) addressed, the ma-
chine learning method(s) used, the cardiology dis-
ease(s) studied, and the type(s) of medical data
studied. These data were retrieved, analyzed, and
visualized using the Python programming language
and application programming interfaces (APIs) from
NCBI PubMed (46) and preprint servers arXiv (47),
bioRxiv (48), and medRxiv (49). This approach
allowed a method for surveying the literature which
can be easily updated and applied toward other
search topics. Code is available for use and adaptation
by the research community (50). (Figures in the
published version of this manuscript use data
through July 20, 2020.)

The past 5 years have seen over 3,000 papers on
ML in cardiology published in PubMed (about 80%
original research) or posted on the popular preprint
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Questions to Ask

TABLE 2 Considerations When Evaluating Machine Learning Manuscripts or Projects

Examples

What is the problem being addressed? Is
solving the problem impactful for
medicine?

What is the current state-of-the-art and how
does it perform?

Does the problem need a machine learning
solution?

What benchmark is the machine learning
solution trying to beat?

If supervised learning is used, what is the
ground truth, or gold-standard, label?

If unsupervised learning is used, what
methods will be used to validate the
patterns learned by the model?

Is the training dataset appropriate for the
task at hand?

Are the validation and test datasets
independent from the training dataset?

Are all datapoints being processed or
manipulated in the same manner?

How is the clinical use case being formulated?
Are methods clear and reproducible?

Are results reported both for the algorithm
output and for the clinical problem of
interest?

High value: An unrecognized or unsolved problem; a problem where clinical practice has been shown to fall short.

Intermediate value: A solution exists, but the new solution provides much better accuracy, reproducibility or time
(efficiency) or can work in a different environment or patient group from the current standard.

Low value: A solution for something that is not a significant clinical problem, or, a robust, well-benchmarked solution
already exists.

Does a highly accurate, scalable, and efficient solution already exist? Is there no good current solution in clinical practice?

Is it a problem of complex pattern finding in complex/nonlinear data? Will the use of machine learning significantly improve
the performance with respect to a standard rule-based algorithm?

High clinical impact: Beating current standard of care (human expertise, prevailing risk prediction model), or no benchmark
may exist for an entirely novel model.

Intermediate impact: A benchmark established by a prior ML model.

Low impact: Benchmark exists but is not referenced.

Strong ground-truth label: A gold-standard diagnosis, such as pathologic diagnosis, as the basis for a disease label.

Intermediate label: Blinded and/or independent votes from expert clinicians; electronic health record data (depends on the
quality of the electronic health record data).

Weak label: International Classification of Diseases codes alone, or other surrogates that are known to have poor sensitivity
and specificity for the condition under study.

A common example of unsupervised learning is in clustering data into subgroups without a priori knowledge of whether
those subgroups are meaningful. In this case, clinically relevant methods of sampling and measuring differences among
the learned subgroups are important.

Classification problems typically need a large amount of training data to avoid overfitting; the only method to verify that the
model does not overfit the training data is to verify that the testing set is completely independent from the training set,
and that the model performs well in the testing set.

Examples of dependent features would include 2 QRS morphologies from 2 electrocardiograms from the same patient, 2
image slices from the same computed tomography scan, or 2 blood glucose measurements from the same patient.
Putting one in the training dataset and the other in the test set will make test set performance falsely high. Instead,
training and test datasets should be split in a manner that retains sample independence.

Often, training data needs to be pre-processed to be ready for machine learning. However, it must all be processed in the
same way, or else the model runs the risk of learning the manipulations made to one subgroup of data compared to
another, rather than learning the meaningful patterns in the data.

Whether as a classification problem, a segmentation problem, a time series problem, or something else, the machine
learning formulation of the problem should be relevant to the clinical task.

All information on data preprocessing steps, machine learning algorithms used, and the parameters of those algorithms
should be presented. Code can be included, but it must then be tested to run as described.

Performance metrics from machine learning algorithms (precision, recall, Dice score, and others) are important. However,
results should also be reported in terms clinically relevant to the task (e.g., sensitivity, specificity, number needed to
treat, time to diagnosis, and so on). Often, the costs for a false positive or a false negative error are quite different, so it
is important to choose a working point that takes into account these different costs. Metrics should include confidence
intervals and p values to demonstrate whether they are statistically significantly different from the chosen benchmarks.
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servers arXiv and bioRxiv, where scientists are
increasingly sharing their papers with each other and
with the public before, during, and sometimes as an
alternative to, the peer review process (51) (Figure 1).
This represents tremendous growth, such that in 2020
nearly 1in every 1,000 new papers in PubMed will be
on Al and/or ML in cardiology.

Despite this uptick in publications, there are still
several areas that are open for study. For peer-
reviewed papers in PubMed, approximately
two-thirds involve atherosclerosis (including dysli-
pidemia and cerebrovascular disease), heart failure,
or hypertension and other cardiac risk factors
(Figure 2). Publications fairly evenly cover the major
data types: EHR data, ECG, ultrasound, CMR, and CT.
Omics is also a popular subject. The 2 least expensive
data types, X-rays and laboratory studies, have
received less attention.

The vast majority of publications involving CT
looked at atherosclerosis; most heart failure studies

used the EHR and ultrasound; and, predictably, most
studies of arrhythmia used ECG data (Figure 2). Three-
quarters of these papers are about diagnosis, predic-
tion, or classification, with relatively less attention to
object tracking and novel biomarker discovery.
Consistent with trends across Al and ML, most cardiac
AI/ML studies use neural networks (or an ensemble of
methods that usually include neural networks), with
a minority exclusively using more traditional tech-
niques like linear models, support vector machines,
and decision trees.

For papers published in PubMed, the leaders in
research output in cardiac AI/ML are the United States
(especially California, Massachusetts, and New York)
and the United Kingdom, followed by China, Ger-
many, and the Netherlands, with other developed
countries contributing materially as well (Figure 3).
This work is very broadly distributed, with high per-
capita contributions from all the developed coun-
tries but also work across much of the developing
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TABLE 3 Select FDA-Cleared Machine Learning Products for Cardiology

Indication

Company Product
AliveCor AliveCor Heart Monitor
Apple Apple Watch
Arterys CardioDL

Caption Health EchoMD AutoEF, Guidance

Al-ECG Platform & Tracker
SubtlePET,* SubtleMR*
EchoGo Core

HealthCCS

Shenzhen Carewell Electronics
Subtle Medical

Ultromics

Zebra Medical Vision

Canon Advanced Intelligent Clear-1Q Engine (AiCE)*
Eko Devices Eko Analysis Software

FitBit ECG App

PhysiQ Heart Rhythm and Respiration Module
Qompium FibriCheck

Atrial fibrillation detection

Atrial fibrillation detection

CMR measurement

Echocardiogram LVEF measurement, guidance
General biomedical image denoising
Audiogram interpretation

Atrial fibrillation detection

ECG, vital signs, cardiac function
Atrial fibrillation detection

ECG interpretation

General biomedical image denoising
Echocardiogram measurements

Coronary calcium score

*These products are not specifically cardiovascular, but provide general tools for image denoising
CMR = cardiac magnetic resonance imaging; ECG = electrocardiogram; LVEF = left ventricular ejection fraction.

world. Collaborations in cardiac AI/ML span the globe
and are similarly multi-institutional within the
United States.

CASE STUDIES OF ML IN ACTION. In terms of disease
topics and data modalities studied, the survey shows
which have been more and less studied. Building
from the ML concepts referenced in the previous
section, we developed a toolbox of questions and
considerations when evaluating the impact and rigor
of ML studies (Table 2). With this in mind, we have
noted several interesting applications of ML to car-
diology. Because of the largely “data-agnostic” nature
of ML algorithms (concept 6), we organize these case
studies by ML use case, rather than by clinical data
type or disease.

Denoising and image
several modalities, ML has been applied to the clinical

enhancement. Across

problem of image post-processing and de-noising. In
ultrasound (52,53), CT (54,55), CMR (56,57), and
nuclear imaging (58,59), the complex patterns of noise
encountered in clinical imaging have lent themselves
to neural network-based denoising. In terms of clinical
utility, ML has the potential to decrease the time and
labor involved in image post-processing and to reduce
interoperator, intervendor, and interinstitution
differences in data processing. In the case of X-ray and
CT imaging, neural network-based image analysis may
allow high-quality imaging with reduced radiation
dose compared with the current standard. Currently,
most ML approaches to denoising have taken a
supervised learning approach, where models are being
trained to approximate proprietary denoising software
as the ground-truth label (53), or are trained by adding
noise to input data. Several studies in the literature

have been trained on phantoms and relatively small
amounts of clinical data. This means that current
neural network denoisers may still be learning rela-
tively simple noise patterns rather than the true extent
of variability in clinical imaging. The performance of
denoising networks has been primarily measured in
terms of comparing input images to their ground-truth
labels, which is a necessary and important perfor-
mance metric; however, measuring changes in diag-
nostic performance based on machine-learning-based
image denoising is an important next step to vali-
dating their utility in clinical practice. Some clinical
trials are underway to test image denoising on a larger
scale (60,61)

Feature extraction and representation. Su-
pervised and unsupervised ML is also being used to
represent important features of clinical data into
simpler, more compact, more uniform formats: this
process is called feature extraction. For example,
free-text clinical notes can be analyzed and repre-
sented by the list of diseases and procedures
mentioned; an ECG can be analyzed and represented
by a small group of numbers that summarize the in-
tervals, axis, and QRS morphology; and an ultrasound
image can be represented by the structures detected
in that image. ML algorithms can also represent data
in ways that are not intuitive to a human, but that are
nevertheless simpler and more useful to computers.
The automatic extraction of these features via com-
plex nonlinear combination of the input data is
indeed the key for the superior classification perfor-
mance of modern deep learning algorithms (21,32).
These extracted features can allow for comparing
data across institutions (data harmonization), and
combining features extracted from different data
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types can enable a multimodal representation of a
particular patient or disease. Therefore, models that
effectively extract important clinical features from
different data types in a scalable fashion are funda-
mentally important to powering larger and more
complex ML studies in the near future.

To date, features learned from neural networks
and other ML algorithms have been used in cardiol-
ogy in myriad classification tasks, such as classifying
cardiac views from different imaging modalities
(20,62) or classifying the presence or absence of dis-
ease from image, ECG, text, auscultation, or labora-
tory data (63-66); segmentation of cardiac structures
and/or abnormalities (41,67,68) (Table 3); and tissue
characterization (69-71) of imaging, text, and ECG
data. Several ML algorithms that have been cleared by
the U.S. Food and Drug Administration, although
proprietary in nature, are likely based on classifica-
tion and/or segmentation algorithms (examples
shown in Table 3). Training models to perform these
foundational tasks has often required considerable
data labeling; therefore, this work will continue to
benefit from parallel research on leveraging small
datasets (20,72,73) as well as synthesizing larger
datasets from smaller ones (74,75).
Improving traditional algorithms and data
repurposing for advanced insights. ML is being
used to improve upon traditional risk prediction al-
gorithms using available registry data (76-79). ML can
enable development of biomarkers that otherwise
would be highly labor-intensive to calculate or were
not consistently scored on retrospective imaging,
such as the quantitation of epicardial adipose tissue
on imaging studies to improve risk prediction for
myocardial infarction (80); this work is now being
studied in a clinical trial (81). Researchers are also
using ML to test whether advanced insights are
possible from data types not typically used for those
insights: examples include using clinical data to
predict genetic variants, predicting pulmonary-to-
systolic blood flow ratios from chest X-rays, predict-
ing fall risk from wearable home sensors, and calcu-
lating a calcium score from chest CTs or from
perfusion imaging (45,82-85). These studies benefit
when a robust ground-truth label and clinical per-
formance benchmark are present from traditional
sources (e.g., genetic sequencing, right heart cathe-
terization, clinical falls data, and standard calcium
scores for the examples mentioned here).

Novel insights. In the previous examples, the in-
sights detected can be reasonably expected to be
found in the data type studied. For example, even
though we wuse blood chemistry to predict

JACC VOL. 77, NO. 3, 2021
JANUARY 26, 2021:300-13

hyperkalemia precisely, we know that signs of elec-
trolyte imbalance can be evident on ECG. Researchers
are using similar approaches to detect novel insight in
unexpected data types, finding patterns in data that
are not evident to the trained clinician. For example,
studies have reported detecting adverse drug re-
actions from social media, detecting sex from a fun-
doscopic retinal detecting coronary
microvascular resistance from ocular vessel exami-
nation (86-88). Especially when initial studies are
published from small datasets, there is a possibility
that the models are overfitting (Concept 4) rather
than finding a true insight. Such findings must be
validated rigorously in multicenter datasets and
clinical trials, and computational experiments such as
saliency and attention mapping must be performed to
help understand what data features the ML models
are detecting.

image, or

Health care systems. Finally, researchers are putt-
ing ML to work on systems-level problems in health
care, including deployment of AI algorithms for car-
diovascular disease screening, and remote moni-
toring of patient medication adherence and
optimization (89-93). The former trial, still underway,
studies how Al-derived ECG results to screen for low
ejection fraction are delivered to primary care phy-
sicians (93). A combination of clinical and adminis-
trative data can be used to predict optimal patient
scheduling and procedure protocoling, as well as
hospital readmission rates, transfer into and out of
the intensive care unit, and to reduce false alarms in
the intensive care unit (94-97).

These use cases demonstrate how widely ML ap-
proaches may change the practice of clinical cardiol-
ogy. Publications to date still feature largely small
and single-center datasets and demonstrate often
modest gains over standard-of-care clinical perfor-
mance; however, the quality and impact of ML in
cardiology continues to gain ground, and as these
proofs-of-concept mature, we may find them applied
to clinical cardiology in the near future.

CHALLENGES AND A CALL TO ACTION
FOR CLINICIANS

From our discussion, we see that there is an oppor-
tunity for advanced pattern-finding from ML algo-
rithms to help clinicians, especially as medical data is
increasing in amount and complexity. We see that in
cardiology, ML research is already well underway,
with several interesting proofs-of-concept from the
research community and some proprietary solutions
introduced by industry. We have also seen that
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several important concepts in ML research design—
including thoughtful selection of use cases and per-
formance metrics, meticulous annotation and cura-
tion of datasets, and broad testing and validation to
ensure generalizability of results—must be considered
and implemented carefully to solve real-world prob-
lems in clinical cardiology.

We believe that ML will become part of the clini-
cian’s toolbox, at the point of care (in electronic
health records and risk calculator algorithms), “under
the hood” in diagnostic and therapeutic devices (such
as ECG, CT, pacemakers, insulin pumps), and in
scheduling and protocolling medical tests and ap-
pointments. Although some cardiologists will choose
to specialize in ML and data science, cardiologists
who are not necessarily ML experts also have several
important roles to play in the responsible incorpora-
tion of ML into cardiology (Table 1), including
participating in annotation and curation of data as a
clinical expert; advocating for ML solutions that solve
important clinical problems for our patients without
racial, gender, or other forms of bias; and running
rigorous clinical trials of ML algorithms on large
patient cohorts. We hope that cardiologists as active
participants and informed users will help ensure
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that ML will live up to its potential to improve the
field.
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