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Abstract
Digital cameras, particularly on smartphones, have led to the proliferation of amateur photographers. Of interest here is the use of smartphone
cameras to conduct rapid, low-cost compositional mapping of geologic bedrock, such as plutons and batholiths, in combination with chemical
analyses of rocks in the laboratory. This paper discusses some of the challenges in geochemical mapping using image analysis. We discuss
methods for color calibration through a series of experiments under different light intensities and conditions (spectra). All indoor and outdoor
experiments show good reproducibility, but suffer from biases imparted by different light intensities, light conditions, and camera exposure
times. These biases can be greatly reduced with a linear color calibration method. Over-exposed and under-exposed images, however, cannot be
fully calibrated, so we discuss methods that ensure images are properly exposed. We applied our method to 59 natural granitoid and mafic
enclave samples of known chemical composition. Multivariate linear regression has been explored for relating calibrated rock images with
chemical compositions. Among all the chromatic and texture features of rock images, we show that average gray levels strongly correlate with
major oxide concentrations. Subtle variations in bulk composition can potentially be rapidly assessed using calibrated photographs of outcrops.
Copyright © 2020, Guangzhou Institute of Geochemistry. Production and hosting by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

There is a growing need for rapid, large-scale composi-
tional mapping of outcrops and land surface as the pressures
for mineral exploration and environmental assessment grow.
The most accurate approach for compositional mapping is to
collect samples from the field and analyze them in the labo-
ratory through various geo-analytical methods (X-ray fluo-
rescence, inductively coupled plasma mass spectrometry, etc.),
but these approaches are too expensive and too slow to fully
support rapid, large-scale compositional mapping (Potts,
2012). There is thus a need to explore other methods that
may be less precise but compensate for this deficiency by
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allowing for the accumulation of large datasets. The best
trained geologists serve as walking image processors and an-
alyzers as they are trained to identify rocks and interpret their
origins from rock textures and colors based solely on the un-
aided eye and years of experience. Human eyes and brains are
not the same, so considerable observer variability and bias is
introduced when more than one geologist is conducting a
lithological survey. Computer-aided processing of rock tex-
tures has thus become an important part of quantifying such
quantities as grain size, shape and spatial distribution in
igneous and metamorphic petrology (Åkesson et al., 2003;
Cashman and Ferry, 1988; Cashman and Marsh, 1988;
Heilbronner, 2000; Jerram et al., 2003; Kemeny et al., 1993).

In this paper, we explore the use of color and grayscale in
quantifying the composition of plutonic igneous rocks.
Because color can correlate with mineralogy, it might be ex-
pected to correlate with composition within a certain group of
geologic materials. There are, however, many challenges in
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using color quantitatively because many variables control
color and its perception (Stevens et al., 2007). For example,
alteration can easily modify the surface color of mineral
grains. In addition, apparent color varies depending on the
spectrum of light, which can change throughout the day or
under different lighting conditions (Foster, 2011; Romero
et al., 2003). There is thus a need for robust color calibra-
tion, particularly if color is being assessed outdoors when
conditions change continually. In the soil science community,
eye-based side-by-side comparison with the Munsell color
chart has been widely used to quantify soil color in the field
(Color, 2015; Pendleton and Nickerson, 1951; Rossel et al.,
2006). Similar computer-based calibration against color
guides (Joshi and Jensen, 2004; Pascale, 2006) has been
applied to problems in food science, biosciences, agriculture
and planetary exploration (Allender et al., 2018; Costa et al.,
2010; Fischer, 2019; Wu and Sun, 2013).

We note that the development of plant and animal identi-
fication algorithms in mobile phone apps has decreased the
barriers for citizens to report observations, resulting in the
largest and most comprehensive biodiversity survey of the
planet to date, a feat that could never have been accomplished
by all living scientists combined (Sullivan et al., 2014; Van
Horn et al., 2018). In the Earth science community, a mobile
app named StraboTools has recently been developed for
quantifying field observations of textural features, such as
foliation, mineral alignment and mineral proportion (Glazner
and Walker, 2020), opening up an opportunity for large-
scale, high resolution mapping using citizen science. Strabo-
Tools also incorporates color, but a number of calibration is-
sues persist when estimating color from natural samples. Here,
we develop a method for calibrating and quantifying color
from images taken from simple hand-held digital cameras or
phone cameras. Our method can help geologists accumulate
and report color-calibrated rock images, contributing to the
buildup of a color-calibrated rock image database. Like the
widespread geochemical database such as GeoRoc and
EarthChem, this rock image database may provide another
opportunity for using big data to solve earth science problems.
One promising long-term goal is to map out compositional
variations of a pluton on the scale of meters or less with color
and texture-based image analysis, helping us better understand
the dynamics of magmatic systems. In this paper, we focus on
the color consistency of rocks under different ambient light
conditions, which is a small step towards that goal. It is the
hope that subtle variations in composition can be detected by
quantifying subtle variations in color.

2. Material and methods
2.1. Samples
Image analyses were conducted on felsic granitoids and
mafic enclaves from the Bernasconi Hills pluton, northern
Peninsular Ranges Batholith in California, USA (Farner et al,
2014, 2018). These samples consist primarily of quartz and
plagioclase with small amounts of hornblende and biotite.
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Felsic or silicic minerals, such as quartz and plagioclase,
appear as transparent or white, whereas mafic or dark minerals
like hornblende and biotite are dark brown to black. In this
study, we will estimate two useful indices, the average gray
level and relative proportion of dark minerals, that may relate
to the chemical compositions of rocks, and in particular, to
explore the challenges of quantifying these two indices under
variable lighting conditions.
2.2. Experimental setup
We first conducted a series of indoor experiments under
controlled light conditions to gain a sense of how ambient
light affects perceived color. In all experiments, we used an
iPhone 7 Plus digital camera with an aperture of f/1.8. For
indoor lighting, we used two TaoTronics™ LED table lamps
(12 W and 410 lumens). These LED table lamps have 5
lighting conditions (cold white - CW, white - W, natural - N,
yellow -Y and warm yellow - WY) and 7 intensity levels
where level 1 refers to the lowest intensity and level 7 for
highest intensity. The two LED lamps were placed 26 cm over
the sample and with a separation distance between the two
lamps of 23 cm to minimize shadows (Fig. 1a). The camera
was placed slightly higher than the lamps to avoid generating
shadows (Fig. 1a). A phone holder and camera shutter remote
control were used to avoid vibrations.

In order to calibrate color, we placed an X-Rite Color-
Checker Passport™, which has 24 pure color patches with
known sRGB values, adjacent to the rock sample for all
photographs (Fig. 1b). sRGB is short for standard Red Green
Blue and is one of the most common color spaces. sRGB uses
the combinations of three primary colors (red, green and
blue) with varying amounts to simulate most colors. Instead
of using the default camera application in the iPhone 7 Plus,
which stores images in the form of JPEGs, photographs were
taken using an app called Cameraþ™. Cameraþ™ stores
images in DNG format, which is a raw file format that does
not normalize the spectral histogram of an image. Cam-
eraþ™ also allows the option to manually change camera
settings, such as exposure time and ISO, etc. However, for
indoor experiments, we used auto mode, which allows the
program to automatically choose the proper exposure time
and ISO.

Image experiments were also performed outdoors under
natural daylight conditions. Due to the high intensity of
daylight and the ease to which iPhone cameras become satu-
rated, pictures taken with an iPhone under bright daylight are
usually overexposed, making it difficult if not impossible to
calibrate an overexposed image. To solve this problem, we
attached a PolarPro™ Iris neutral density filter (ND filter) in
front of the camera lens. We used the ND8 filter, which re-
duces the amount of incident light by a factor of 8 but does not
change the spectrum of the incident light. Unlike the auto
mode choice for indoor experiments, we manually set the
exposure time and ISO for outdoor experiments and explored
the effect of camera settings on the performance of the
calibration.



Fig. 1. Indoor experiment environment and materials used in this project. (a) Two LED lamps were placed in parallel over the sample. An iPhone was placed above

the lamps. (b) A mafic enclave sample, along with a color checker, was placed under the lamps.
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2.3. Calibration method
Luminosity calibration is usually required before color
calibration to compensate for spatially heterogeneous trans-
mission of light across the camera lens area (Hong et al., 2001;
Losey, 2003). We used a white calibration board on the X-Rite
ColorChecker Passport™ to check for spatial homogeneity of
luminosity distribution by placing the whiteboard in the same
positions where the sample and the color checker would sit.
The same camera settings were adopted for all photographs
(exposure time of 1/120 s and ISO of 25). Our results show
that the gray level histograms of the two areas (sample and
color checker) were very similar, with mean grayscale values
within 2% (Fig. 2a and b). There was thus no need to perform
any luminosity calibrations before color calibrations. In the
field, so long as the light source is diffuse on the length scale
of the sample, luminosity corrections are not needed.

Color was calibrated with the X-Rite ColorChecker Pass-
port™, which offers 24 color patches with known sRGB
values. RGB measurements of each of the 24 color patches
were mapped to the ‘real’ RGB tristimulus values (the values
of red, blue and green channels) to develop a calibration model
Fig. 2. Results of luminosity experiments. (a) Comparison of two gray level histog

histogram) and the color checker (blue histogram) should sit. (b) Zoomed in view

~190, respectively.
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for each photograph. A linear model shown below was
assumed:

Redcalib¼a0 þ a1*Redþ a2*Greenþ a3*Blue

Greencalib¼b0 þ b1*Redþ b2*Greenþ b3*Blue

Bluecalib¼g0 þ g1*Redþ g2*Greenþ g3*Blue ð1Þ
where Redcalib, Greencalib and Bluecalib refer to the red, green
and blue values of a patch on the color checker after calibra-
tion, Red, Green and Blue represent the RGB measurements of
that patch before calibration, and a, b and g are the parameters
of the model. These parameters are determined by minimizing
the total discrepancy between measured RGB tristimulus
values of these 24 patches and their corresponding standard
values. The smaller the total discrepancy is, the better the fit
will be for the color checker. It is assumed that this mapping
function derived from the color checker is valid for our rock
samples.

The color histogram is an important feature of an image
since it represents the distribution of colors in the image.
Therefore, in this study we are also interested in studying the
rams of the same whiteboard placed at the positions where the sample (orange

of (a). Gray level mean for sample and color checker locations are ~185 and
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histogram consistency of images before and after color cali-
bration. Because the colors of minerals in our rock samples are
primarily black and white, we studied the gray level histogram
of the images instead of three separated RGB histograms. The
algorithm of converting RGB tristimulus values of a pixel in
the sRGB color space to one gray level value used in this paper
follows the ITU-R Recommendation BT.601, which specifies
methods for digitally coding video signals (BT, 2011):

Gray¼Red*0:299þGreen* 0:587þBlue*0:114 ð2Þ
2.4. Feature extraction from histograms
The gray level histogram of the rock image is assumed to
be a mixture of two signals, each of which represents the
signal of a dark or light mineral group. These two signals can
be segmented by the Otsu thresholding algorithm (Otsu,
1979). The dark and light mineral proportions were then
estimated based on the binarization result. In addition, the
average gray level intensity of histograms, which evaluate the
overall gray level intensity of the rock image, also was
considered in this study. All the programs in this study were
coded in Python 3.6 (code can be accessed via https://github.
com/Zhangjulin/Color_calibration/blob/master/Color_
calibration.py).
Fig. 3. Results of reproducibility experiments. (a) Indoor result before calibration,

outdoor result after calibration. Each panel shows the results of 10 independent ex
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3. Results
3.1. Reproducibility of indoor and outdoor experiments
In order to evaluate internal reproducibility, images of a
same rock sample along with the color checker (Fig. 1b) were
taken 10 times under the same light condition. We checked the
consistency of gray level histograms among these 10 images
before and after color calibration. The reproducibility exper-
iments were done both indoor and outdoor. For the indoor
reproducibility experiments, two LED lamps were set to white
(W) light condition and intensity level of 5. Auto mode on the
iPhone was used, resulting in an exposure time of 1/300 and
ISO of 25. For the outdoor reproducibility experiments under
daylight, we attached an ND8 filter to the iPhone camera to
avoid overexposure and we manually set the exposure time to
1/750 and ISO to 25.

The results show that both indoor and outdoor histograms
have good internal consistency before and after color cali-
bration (Fig. 3). We note that there is a small spike at gray
level intensity of 0 in the outdoor non-calibrated histograms
(Fig. 3c), indicating a slight underexposure. In any case, his-
tograms are bimodal with the left peak representing the dark
mineral mode and the right peak representing the light mineral
mode. These two modes overlap between gray level intensity
60 to 130.
(b) indoor result after calibration, (c) outdoor result before calibration and (d)

periments.

https://github.com/Zhangjulin/Color_calibration/blob/master/Color_calibration.py
https://github.com/Zhangjulin/Color_calibration/blob/master/Color_calibration.py
https://github.com/Zhangjulin/Color_calibration/blob/master/Color_calibration.py
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Average gray level intensities and mineral proportions were
later determined from calibrated histograms. We also evalu-
ated the reproducibility of these two indices. The results show
that the mean value of dark mineral proportion for indoor
experiments is 0.365 with a relative two standard deviation
(2RSD) of 1.54% while the mean and 2RSD for outdoor ex-
periments are 0.354 and 0.680% (detailed data can be found in
the supplemental materials). The mean and 2RSD of dark
mineral proportions between indoor and outdoor experiments
were similar. The average gray level for indoor experiments is
125.2 (2RSD ¼ 0.12%) and 117.2 (2RSD ¼ 0.22%) for out-
door experiments.
3.2. Indoor experiments
We accumulated 35 images of the same rock sample
(Fig. 1b) indoors with different LED light conditions or in-
tensities. The results show that light conditions and intensities
significantly influence image colors. Two representative rock
images taken under different conditions are shown in Fig. 4:
one was taken under CW light condition with intensity level of
2 (Fig. 4a) and the other under WY light condition with in-
tensity level of 6 (Fig. 4b). The uncalibrated images show
differences in yellow hues, but are consistent with each other
after calibration (Fig. 4c and d), validating our color calibra-
tion method.
Fig. 4. RGB images of the rock sample taken under (a) CW light condition with inte

6 before calibration, (c) CW light condition with intensity level of 2 after calibrat
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We also checked the consistency of gray level histograms
for all 35 rock images. The gray level histograms of these
images after color calibration show more internal consistency
than before color calibration (Fig. 5). The discrepancy of
uncalibrated histograms is due to differences in LED light
conditions and intensities. More results and discussions about
the influence of light conditions and intensities on image
colors are in the Appendix.

Average gray levels and mineral proportions were esti-
mated from both uncalibrated and calibrated histograms. The
mean value of average gray levels of uncalibrated histograms
is 115.0 (2RSD ¼ 6.2%) and that of calibrated histograms is
125.3 (2RSD ¼ 0.78%). The mean value of calibrated results
is ~9% larger than that of the uncalibrated results, and the
variance of calibrated results is much smaller. The mean value
of the dark mineral proportions estimated from uncalibrated
histograms is 0.359 (2RSD ¼ 2.68%), and 0.360
(2RSD ¼ 2.80%) for calibrated histograms. The mineral
proportions estimated from uncalibrated and calibrated histo-
grams are similar. While the mean values of average gray
levels and dark mineral proportions are similar for different
light conditions, there is more variation in the magnitude of
the 2RSDs across light conditions (Table 1). CW light displays
the largest variability whereas WY light displays the smallest
variability, with 2RSD decreasing as the softness of light
increases.
nsity level of 2 before calibration, (b) WY light condition with intensity level of

ion, and (d) WY light condition with intensity level of 6 after calibration.



Fig. 5. Gray level histograms of the same rock sample under different indoor

LED light conditions and intensities. (a) Histograms before color calibration

and (b) histograms after color calibration.
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For comparisons, we also applied the built-in color index
(CI) tool in StraboTools (Glazner and Walker, 2020). Strabo-
Tools allows users to highlight the desired pixels by using a
slider to manually set the threshold, providing another way to
estimate the dark mineral proportion. Here, we compare the
results between the StraboTools CI function and the Otsu
method used in this study. A representative color-calibrated
gray level rock image, taken under N light condition and
light intensity level of 4, has been used for the comparison
Table 1

Average gray levels and dark mineral proportions estimated from calibrated

histograms under different light conditions.

Light condition Average gray level Dark mineral

proportion

Mean 2RSD Mean 2RSD

Cold white (CW) 125.2 0.59% 0.357 3.95%

White (W) 125.4 0.42% 0.358 1.81%

Natural light (N) 125.6 0.27% 0.357 1.29%

Yellow (Y) 125.7 0.16% 0.359 1.75%

Warm yellow (WY) 124.5 0.18% 0.366 0.491%

All 125.3 0.78% 0.360 2.80%
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(Fig. 6a). The dark mineral pixels are highlighted in red
(Fig. 6b and c). Using StraboTools and manually setting the
threshold based on visual inspection, we find that the Strabo-
Tools dark mineral proportion is within error of the Otsu
method (Fig. 6b and c). However, we emphasize that our
automated algorithmic approach ensures consistency between
observers. Relying on manual threshold setting may introduce
uncertainties associated with observer bias.
3.3. Outdoor experiments under uncontrolled daylight
In order to study the influence of dynamic daylight in gray
level histograms, we conducted 20 series of outdoor experi-
ments at different times of the day (from morning to after-
noon) and on days with different light conditions (sunny and
cloudy days).

Here, we present the results of one representative outdoor
experiment performed on a sunny afternoon. We first explored
auto mode (exposure time of ~1/3500 and ISO of 20). Every
data point in Fig. 7a represents red (green or blue) measure-
ments corresponding to the 24 calibration standards. Nearly all
RGB measurements of the color checker deviate positively
from the standard values (Fig. 7a). Some RGB measurements
even approach the saturation limit (255), which indicates
overexposure. The uncalibrated histogram under auto mode
shifts much lighter compared to indoor uncalibrated histograms
as exemplified in Fig. 7b for N light condition and intensity
level of 4. A linear color calibration was found to fix the shift
but there remains obvious discrepancy between the histogram
shape, especially towards the dark mineral mode (Fig. 7c).

To improve on this, we attached an ND8 filter to the
iPhone 7 Plus, which reduces the amount of light transmitted
to the camera. Images were taken with a series of different
exposure times (1/500, 1/750, 1/1000 and 1/1500) with ISO
manually fixed to 25 to be consistent with the indoor ex-
periments. The exposure time of 1/500 combined with an
ND8 filter still results in overexposure and does not improve
results (Fig. 7def). When the exposure time decreases to 1/
750 and 1/1000, the discrepancy between measurements and
standards in the color checker are reduced, and both the
uncalibrated and calibrated histograms match better with
reference histograms (Fig. 7g-l). However, when exposure
time decreases to 1/1500, all the RGB measurements fall
below the corresponding standards due to underexposure
(Fig. 7m). This underexposure drives the uncalibrated histo-
gram to shift darker (Fig. 7n) and worsens the calibrated
histogram (Fig. 7o). These results show that a too small or
too large exposure time will distort the histogram even after
calibration. Therefore, an optimal exposure time window is
necessary, and for this outdoor experiment, exposure time of
1/750e1/1000 is favored.

The results of other 19 outdoor experiments show that the
optimal exposure time varies under different daylight condi-
tions (see supplemental material). Average gray levels and
dark mineral proportions of the 20 outdoor experiments were
determined from calibrated histograms that were properly
exposed. The mean value of average gray levels for these 20
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experiments is 115.5 (2RSD ¼ 4.3%, Table 2). The outdoor
mean value is ~8% lower than the indoor result (125.3,
2RSD ¼ 0.78%) and has a larger 2RSD. The mean value of
dark mineral proportions is 0.365 (2RSD ¼ 8.07%), which is
close to the indoor result (0.360, 2RSD ¼ 2.80%) but has a
larger 2RSD. Without the assistance of a ND filter, both the
average gray level (115.9, 2RSD ¼ 6.0%) and mineral pro-
portion estimates (0.339, 2RSD ¼ 18.6%) exhibit much larger
variation (Table 2).

4. Discussion
4.1. Prospects and pitfalls of imaging
Fig. 6. A comparison of the dark mineral proportion estimates between the

Otsu method and color index (CI) tool in the StraboTools. (a) A representative

rock image taken under N light condition and light intensity level of 4. Dark

mineral proportions determined from (b) Otsu method and (c) CI tool. Dark

mineral pixels are highlighted in red.
The reproducibility tests show that an iPhone 7 Plus,
combined with the Cameraþ app, can obtain consistent gray
level histograms under the same light condition (Fig. 3a, c).
The linear color calibration method maintains this consistency
even though histogram shapes are changed (Fig. 3b, d).
Limited variation of average gray level and dark mineral
proportions estimated from calibrated histograms indicate that
our method is robust.

Indoor experiments show that varying light conditions
impact color information (Fig. 4a and b). Differences in the
light condition or intensity can lead to inconsistency of gray
level histograms on the same rock sample (Fig. 5a). However,
we showed that consistency can be improved significantly with
a linear calibration (Fig. 4c and d, Fig. 5b), supporting the
validity of our method to calibrate histograms under indoor
conditions. Outdoor experiment results show that auto mode is
very likely to overexpose images (Fig. 7a and b). We also
show that a linear calibration cannot perfectly calibrate the
histograms (Fig. 7c). Therefore, for field geological mapping,
it is wise to use manual mode with an ND filter and set proper
exposure time appropriate to the daylight condition (Fig. 7d-
o).

Average gray level and dark mineral proportion were
determined from the histograms. Overall, these two indices
of indoor experiments vary much smaller than outdoor
experiments (Table 2). This may due to the uncontrolled
property of daylight. Indoor experiment results show that
the average gray level of calibrated histograms has a much
smaller variation (2RSD ¼ 0.78%) than uncalibrated his-
tograms (2RSD ¼ 6.2%). This means that calibration can
greatly improve the consistency of the average gray level
under different light conditions. The dark mineral pro-
portion results between calibrated and uncalibrated histo-
grams are similar. This is because within the variability of
indoor light conditions, calibration does not significantly
change the shapes of the histograms which determine the
Otsu thresholding results. In contrast, for the outdoor ex-
periments without the ND filter, calibration significantly
changes the shapes of histograms (Fig. 7c). Therefore, the
dark mineral proportion results (0.339, 2RSD ¼ 18.6%)
are not consistent well with the indoor experiments (0.360,
2RSD ¼ 2.80%, Table 2). The much better result of
proper exposed outdoor experiments with an ND filter
18



Fig. 7. Outdoor color calibration results with different exposure times. (a) Comparison of the measured RGB values to standard values of the color checker, (b)

uncalibrated and (c) calibrated histograms of the rock sample when using auto exposure. The results when manually setting the exposure time to (d)e(f) 1/500,
(g)e(i) 1/750, (j)e(l) 1/1000 and (m)e(o) 1/1500 s.
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(0.365, 2RSD ¼ 8.07%, Table 2) supports the necessity of
an ND filter under daylight conditions.

The advantage of our method is that it is simple, quanti-
tative and objective, and eliminates biases between multiple
observers or inconsistencies within an individual observer.
19
However, there are some limitations. In addition to the varying
light conditions and intensities, weathering of surfaces in the
field can bias the color of rocks. The roughness of rock sur-
faces can also influence the average grey level due to shadows
and reflections (Adams and Filice, 1967).



Table 2

Average gray levels and dark mineral proportions estimated from calibrated

histograms indoors and outdoors.

Indoor/Outdoor ND filter Average gray

level

Dark mineral

proportion

Mean 2RSD Mean 2RSD

Indoor No 125.3 0.78% 0.360 2.80%

Outdoor Yes 115.5 4.3% 0.365 8.07%

Outdoor No 115.9 6.0% 0.339 18.6%
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4.2. Application to petrology
Many studies have explored the use of chromatic features
and/or textural features to classify rocks (Bianconi et al., 2012;
Do�gan and Akay, 2010; Ershad, 2011; Ferreira and Giraldi,
2017; G€okay and Gundogdu, 2008; Kurmyshev et al., 2003;
Lepist€o et al., 2005; Perez et al., 2015; Ran et al., 2019;
Topalova and Tzokev, 2010). However, few studies attempted
to quantitatively link such features to chemical composition
(Kemp, 2014). We performed indoor experiments on 59 rock
samples for which bulk chemical compositions were analyzed
by XRF. These rocks are from the Bernasconi Hills pluton in
the northern Peninsular Ranges Batholith in California, USA
(Farner et al, 2014, 2018). Thirty-five of these samples are
felsic granitoids and the remaining are mafic enclaves. Only
the fresh faces of rock samples were used here since weath-
ering can cause discoloration of mineral surfaces. We followed
our indoor protocols outlined above. Rock samples were
placed under two LED lamps along with a color checker for
color calibration. All 59 experiments were carried out under N
light condition and light intensity level of 4.

Both the chromatic features and textural features were
considered for predicting the chemical composition of rocks.
To extract the chromatic features of rock images, we converted
the original RGB color space to HSI color space, which pro-
vides a more intuitive way to describe the color. Another
advantage of HSI color space is that it separates the chromatic
information from the luminance information. HSI color space
consists of three components: hue (H), saturation (S) and in-
tensity (I). Hue (H) represents color and saturation (S) is the
dominance of hue in color. These two are the chromatic
components. Intensity (I) is the luminance component that
represents the brightness or darkness of the color, similar to
gray level intensity. The conversion to HSI color space from
RGB color space is given below:

H¼

8>>><
>>>:

cos�1

� ðR�GÞ þ ðR�BÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�GÞ2 þ ðR�BÞðG�BÞ

q �
; if B� G

2p� cos�1

� ðR�GÞ þ ðR�BÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�GÞ2 þ ðR�BÞðG�BÞ

q �
; if B>G
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S¼ 1� 3*minðR;G;BÞ
RþGþB

I¼RþGþB

3
ð3Þ

In this study, the average and standard deviation of hue and
saturation of rock images are referred to as chromatic features.
The average and standard deviation of gray level (or intensity)
are luminance features. Textural analysis is based on a gray
level co-occurrence matrix (Arvis et al., 2004; Haralick et al.,
1973; Partio et al., 2002), which is a classical second-order
statistical method that measures how often different pairs of
two pixels co-occur in a gray level image. Every element
pði; jÞ in this matrix represents the frequency of two neigh-
boring pixels, one having gray level i and the other one having
gray level j, occurring in the image at a given offset. The co-
occurrence matrix depends on the offset, and in general, hor-
izontal, vertical and diagonal offsets are favored. In this study,
we considered all of them and followed eight directions: {0�,
45�; 90�, 135�; 180�; 225�; 270�; 315�g The grayscale of rock
images is 0e255, so the size of the co-occurrence matrix in
this study is 256*256.

Four popular textural features were extracted from the co-
occurrence matrix: contrast (C), correlation (Corr), energy
(E) and homogeneity (Hom).

C¼
X
i; j

ði� jÞ2*pði; jÞ

Corr¼
X
i; j

ði� miÞ*
�
j� mj

�
*pði; jÞ

si*sj

E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

pði; jÞ2
s

Hom¼
X
i;j

pði; jÞ
1þ ði� jÞ2 ð4Þ

where contrast measures the amount of local variance; corre-
lation measures linear dependency of gray levels of two
neighboring pixels over the whole image, mi is horizontal
mean and si is horizontal variance of the co-occurrence matrix
while mj and sj are vertical mean and vertical variance,
respectively; energy refers to the extent of textural uniformity;
homogeneity quantifies the local homogeneity and reaches its
maximum when all the pixels in the image have the same gray
level. All the texture features are normalized to [0,1] in this
study.

The preliminary exploration shows that the average gray
levels of calibrated histograms correlate well with some
chemical components (Fig. 8aec). The average gray level
correlates negatively with FeO and CaO, and positively with
SiO2. We attribute this to the fact that the most abundant
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dark mineral in these samples is hornblende, which is rich in
Fe and Ca. For FeO, correlation coefficients R2 with average
gray level are up to 0.90 (Fig. 8a), and for SiO2 and CaO are
0.83 and 0.77, respectively (Fig. 8b and c). We also tested
the CIs of these images with StraboTools and it returns an
R2 of 0.86, 0.85 and 0.81 for FeO, SiO2 and CaO, respec-
tively (Fig. 8def). The performance of the average grey
level and CI are similar, which is not surprising. This is
because both of these indices represent the bulk darkness or
lightness of an image. Textural features also correlate with
chemical compositions. Among all the texture indices, the
best correlation results come from homogeneity, which has
an R2 of 0.82, 0.70 and 0.62 for FeO, SiO2 and CaO,
respectively (Fig. 8gei). Other texture features of energy,
contrast and correlation have R2 of 0.79, 0.65 and 0.57,
respectively for FeO. No correlations were observed be-
tween chromatic features (hue and saturation) and chemical
compositions.

In Fig. 8, we show the correlations between major oxides
and two individual indices, average gray level and homoge-
neity, extracted from an image. The textural feature has four
indices: contrast, correlation, energy and homogeneity. The
gray level feature has two indices: mean and standard devia-
tion of gray levels. The chromatic feature has four indices:
means and standard deviations of hue and saturation. We
explore the use of all these indices in a given feature as well as
Fig. 8. Correlations between average gray level, CI and homogeneity of calibrat

correlates negatively with whole-rock (a) FeO and (c) CaO, and positively with (b)

with (e) SiO2 (wt. %). Homogeneity correlates negatively with (g) FeO and (i) Ca
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combining two or more features to predict the chemical
compositions of rocks with multivariate linear regression

Y¼bþ a1x1 þ a2x2 þ…þ anxn ð5Þ
where Y is the predicted value, xi represents the features, and
ai and b are parameters. The parameters can be determined by
minimizing the total discrepancy between predicted values and
real values. The performances of multivariate linear regression
in this study were evaluated based on the 5-fold cross-
validation method. In each run, 80% of the data were
assigned as a training set and the remaining 20% as the test
set. Mean absolute percentage error (MAPE) was used to
evaluate model performance:

MAPE ¼ 1

n

Xn

i

����Ai � Yi

Ai

���� ð6Þ

where Ai is the real value and Yi is the model-predicted value.
MAPE is a measure of relative error and a lower value cor-
responds to a better model performance.

The results in Table 3 show that the average gray level
alone can predict the major oxides of rocks well, which is
consistent with our results in Fig. 8. Combining gray level
features with chromatic and textural features, however, de-
creases model performance slightly (Table 3). The robustness
of gray level features in predicting composition is not
ed histograms and major element contents from 59 rock samples. Grayscale

SiO2 (wt. %). CI correlates positively with (d) FeO and (f) CaO, and negatively

O, and positively with (h) SiO2 (wt. %).



Table 3

Performances (MAPEs) of multivariate linear regression with different fea-

tures. A lower MAPE means better performance.

Major oxides Features Multivariate Linear

regression

SiO2 Gray level 0.031

Chromate 0.054

Texture 0.049

Gray level þ chromate 0.033

Gray level þ chromate þ texture 0.036

CaO Gray level 0.132

Chromate 0.201

Texture 0.172

Gray levelþ chromate 0.140

Gray level þ chromate þ texture 0.150

FeO Gray level 0.149

Chromate 0.272

Texture 0.181

Gray level þ chromate 0.145

Gray level þ chromate þ texture 0.157
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surprising because granitoid mainly consists of dark (horn-
blende and biotite) and light minerals (quartz and feldspars),
and variations in the proportions of dark to light minerals
generally follow bulk chemical compositions. However,
weathering effects, which may change the color of minerals
(oxidation can generate reddish iron oxide coatings), compli-
cates the use of color, explaining why the use of chromatic
features slightly degrades model performance. Chromatic
features will no doubt be more useful in rocks with a wider
array of colorful minerals, but our work shows that care must
be taken to avoid artifacts introduced by weathering or
alteration.

Lower model performance when textural features are
included is not surprising because textures are not directly
controlled by the composition and instead relate to the phys-
ical processes by which minerals crystallize or deform.
Nevertheless, in our case study of the mafic enclaves and felsic
hosts, our results indicate that textural features, for example
homogeneity, correlate slightly with composition (Fig. 8gei).
Homogeneity, as used here, accounts for the contrast in gray
level between neighboring pixels and the frequency of
neighboring pixels that have contrasting gray levels in a given
area. Thus, for the same field of view, a fine-grained rock
composed of mafic and felsic minerals of contrasting gray-
scale will be characterized by low homogeneity whereas a
coarse-grained rock will be characterized by high homoge-
neity. Fig. 8gei shows that homogeneity correlates positively
with SiO2 and negatively with FeO and CaO, indicating that
the mafic samples (low SiO2 and high FeO and CaO) exhibit
lower homogeneity than the felsic samples. This result is
consistent with the qualitative observation that the mafic en-
claves are finer-grained than the felsic hosts. Our results,
however, provide a rapid means of quantifying this textural
feature. Clearly, textural features should not be used to directly
predict bulk rock chemical composition given the superior
performance of grayscale in predicting chemical composition.
However, our models demonstrate the possibility of rapidly
detecting and quantifying any correlations between texture and
22
chemistry, which may have powerful implications for the
physico-chemical origin of rocks.

5. Conclusions

In this paper, we proposed a simple but accurate method for
imaging and color calibration of rocks using a digital camera
on an iPhone 7 Plus. This simple color calibration method,
assisted with a color checker as a standard, can greatly
improve the consistency of gray level histograms of the rock
sample under different light conditions. We also showed that
average gray levels of calibrated histograms strongly correlate
with the chemical composition of 59 co-genetic plutonic
rocks. Our study shows the potential of using image analysis
as a rapid means of compositional mapping of plutons. There
are no doubt additional challenges associated with uncon-
trolled field conditions that must be surmounted.
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Appendix.

We first checked the RGB measurements of the color
checker to see how light intensity biases color. Fig. A1 shows
measured versus actual color for the color checker under CW,
W, N, Y and WY light conditions with intensity levels of 1, 5
and 7. Every data point in Fig. A1 represents red (green or
blue) measurements corresponding to the 24 calibration stan-
dards. Deviations from the 1:1 line indicate measurement bias.
All experiments show some level of bias. For Y and WY light
conditions, the degree of bias appears to be independent of
intensity level (Fig. A1j-o). This is because the iPhone auto
exposure program adequately changes exposure time and ISO
to compensate for different light intensity. The bias remains
constant for CW, W, and N light conditions when intensity
increases from level 1 to level 5 (Fig. A1a, b, d, e, g, h), but



Fig. A1. Measurement of color-checker standards under different indoor light conditions and intensities. The X-axis represents standard values and Y-axis

represents the measured RGB values. Color (red, green and blue) of each data point refers to the RGB tristimulus value of a particular color patch on the color

checker. (a)e(c) CW light, (d)e(f) W light, (g)e(i) N light (j)e(l) Y light, and (m)e(o) WY light. Light intensity was fixed to level 1, 5 and 7 (columns).

J. Zhang, C.-T.A. Lee and M. Farner Solid Earth Sciences 6 (2021) 12e26
when intensity increases to level 7, there is an increase in the
negative deviation of measured values compared to standard
values (Fig. A1c, f, i).
Of particular interest is how the degree of bias varies between
different light conditions, which would indicate that the
spectrum of light influences color perception. For an intensity
23
level of 5 (Fig. A1b, e, h, k, n), measurements under CW, W
and N mostly fall close to the 1:1 line (Fig. A1b, e, h), with the
exception of measurements lower than 100, which fall below
the 1:1 line. We also note that the blue data are systematically
higher than the green and red data. When Y light is used, some
blue data go to zero, indicating underexposure (Fig. A1k).
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Unlike CW, W and N light conditions, the red data under Y
light conditions are systematically higher than the green and
blue data. For WY light, red, green and blue data all show
significant bias from the standard (Fig. A1n) although the data
parallel the 1:1 line. The color biases observed for the different
light conditions are undoubtedly due to differences in the
spectrum of the 5 light conditions. CW and W light have more
short-wavelength light (blue) but less long-wavelength light
(red), so the reflected light of the color checker will have more
blue than red light (Fig. A1b, e). In contrast, Y and WY light
have more long-wavelength light than short-wavelength light,
and as a consequence, the reflected light has more red than
blue light (Fig. A1k, n).The above experiments were also used
to explore the effects of light intensity and light condition
(spectrum) on gray level histograms (Fig. A2, A3). Uncali-
brated histograms regardless of light condition are consistent
Fig. A2. Gray level histograms of the rock sample under constant indoor lig

histograms under CW light condition with different light intensity levels. Uncalibra

intensity levels.
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between light intensities of level 1e5 (Fig. A2a, c-f), but shift
darker at intensity level of 6 and 7 for CW, W and N light
conditions (Fig. A2a, c, d). However, after calibration, histo-
grams converge and are consistent across all light intensities
(Fig. A2b). The calibrated histograms become slightly com-
pressed compared to the uncalibrated histograms (Fig. A2a, b).

The effects of light condition on gray level histograms were
also explored. Fig. A3a, c, e show the comparisons of uncal-
ibrated gray level histograms for different light conditions
under the same light intensity level (1, 4 and 7). The varying
light condition caused the centroid of dark and light minerals
to migrate. In particular, the light mineral mode in WY light
becomes compressed and shifts darker compared to other light
conditions, although this effect diminishes when light intensity
ht conditions but different intensities. (a) Uncalibrated and (b) calibrated

ted histograms under (c) W, (d) N, (e) Y, and (f) WY light with different light



Fig. A3. Gray level histograms of the rock sample under constant indoor light intensity but different light conditions. (a) Uncalibrated and (b) calibrated

histograms under different light conditions with light intensity fixed to level 1. (c) Uncalibrated and (d) calibrated histograms under different light conditions with

light intensity fixed to level 4. (e) Uncalibrated and (f) calibrated histograms under different light conditions with light intensity fixed to level 7.

J. Zhang, C.-T.A. Lee and M. Farner Solid Earth Sciences 6 (2021) 12e26
increases to 7 (Fig. A3e). After calibration, histograms in WY
light converge to that of other light conditions (Fig. A3 b, d, f).
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.sesci.2020.12.003.
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