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Thermoelectric current in a graphene Cooper pair
splitter

Z. B. Tan'2, A. Laitinen® !, N. S. Kirsanov® 34>, A. Galda®’, V. M. Vinokur>’, M. Haque 1 A. Savin® |,
D. S. Golubev8, G. B. Lesovik®* & P. J. Hakonen® 8%

Generation of electric voltage in a conductor by applying a temperature gradient is a fun-
damental phenomenon called the Seebeck effect. This effect and its inverse is widely
exploited in diverse applications ranging from thermoelectric power generators to tem-
perature sensing. Recently, a possibility of thermoelectricity arising from the interplay of the
non-local Cooper pair splitting and the elastic co-tunneling in the hybrid normal metal-
superconductor-normal metal structures was predicted. Here, we report the observation of
the non-local Seebeck effect in a graphene-based Cooper pair splitting device comprising two
quantum dots connected to an aluminum superconductor and present a theoretical
description of this phenomenon. The observed non-local Seebeck effect offers an efficient
tool for producing entangled electrons.
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esoscopic thermoelectric effects have been investigated
M in a variety of condensed matter systems that, besides

fundamental normal metal-superconductor-normal
metal (NSN) systems!~>, also include quantum dots®~19, atomic
point contacts!!-13, Andreev interferometers!4!>, super-
conducting rings'® and nanowire heat engines!”. Thermoelectric
effects in the superconducting systems!'8-22, in particular those
dealing  with  non-local  thermoelectric  currents in
superconductor—ferromagnet devices?>2° and in bulk non-
magnetic hybrid NSN structures?0-28 have attracted special
attention. The connection between thermoelectric effects and the
Cooper pair splitting (CPS)}2, proposed in ref. 2%, established a
mechanism for the coherent non-local thermoelectric effect in
hybrid superconducting systems. This connection was further
studied and explicitly described for a ballistic NSN structure?. It
was revealed analytically in ref. 4 that the electric transport in the
NSN structures depends on the elastic co-tunneling (EC) process
on par with the CPS. Contrary to intuitive expectations, together
these two processes may enable the transfer of heat through the
superconductor3=>. The EC and CPS probabilities can in turn be
made energy dependent by placing quantum dots between each
normal lead and the superconducting region!2.

Here we present the experimental observation of the non-local
thermoelectric current generated by imposing thermal gradient
across a quantum dot-superconductor-quantum dot (QD-S-QD)
splitter. We find that both CPS and EC processes contribute to
the non-local thermoelectric current and that their relative con-
tributions can be tuned by the gate potentials. The ability to tune
between the CPS and EC allows for testing of fundamental the-
oretical concepts relating entanglement and heat transport in the
graphene CPS systems.

Results

Theoretical considerations. Let us consider an QD-S-QD device
within the Landauer formalism. Taking that the non-local
transport is primarily coherent and that the electron energies
are smaller than the superconducting gap, |E| <A, we find, see
Supplementary Note 4, that the EC, 1pc(E), and CPS, 7cps(E),
probabilities are given by the expressions

Tre = T1(E)7sTR(E), Teps = 71, (E)Ts7R(—E). (1)

Here 1yx)(E) is the transmission probability of the left (right)
quantum dot renormalized by Coulomb interaction, which
depends on the energy of an electron and on the side gate
potentials applied to the dots Vg1 (ry (Tr(r)(E) is given by the sum
of Lorentzian peaks or Fano resonances associated with discrete
energy levels, see Supplementary Note 4, and 75 is the effective
transmission probability of the superconducting lead. The latter
corresponds to the probability for an electron coming out of one
dot so that, instead of escaping into the bulk of the super-
conducting electrode, it reaches the other dot. It becomes inde-
pendent on the electron energy E if the dots are separated by a
distance shorter than the superconducting coherence length.
This condition is reasonably well fulfilled in our experiment. The
non-local thermoelectric currents in the dots can, in turn, be
expressed in terms of the EC and CPS contributions, AIM =
(Aye + Alcps) /2, AT = (—Alye + Alcps)/2, where
2e

Mg = 5 [ 4B wic(B)FL(E) - FulE),
96 (2)
Megs = 5 [ 4E rers(B)F(B) ~ FulE),

and fyg)(E) =1/(1+ ef/kTuw) s the distribution function in
the left (right) electrode having the temperature Ty .

Experiment. Now, we turn to experimental realization of CPS and
EC. Several material platforms have been employed in the experi-
ments39-37, and particularly promising results have been obtained
in carbon nanotube, graphene, and nanowire settings, where the
splitting efficiencies approaching 90% have been observed. Our
present device, depicted in Fig. 1, consists of an Al superconducting
injector in contact with two graphene quantum dots. Two side gate
electrodes allow us to tune the resonance levels of the dots inde-
pendently. In order to perform thermoelectric measurements, our
device additionally contains two thermometers and a resistive
heater, fabricated from a graphene monolayer. The thermometers
are superconductor-graphene—superconductor (SGS) Josephson
junctions that reveal local temperature through the temperature
dependence of the switching current, I,,(T)8. The resistive heater
comprises the graphene nanoribbon and two attached aluminum
leads. The heater is distinctly apart and electrically isolated from the
rest of the device, the heat to the Cooper pair splitter being trans-
mitted through the substrate.

The temperature difference AT = Ty, — Ty between the leads of the
two-terminal device induces the thermoelectric current I = aGAT,
where G is the conductance of the device and « is the Seebeck
coefficient®®. For typical metals, such as aluminum or copper, the
Seebeck coefficient is quite small, « ~3—7 uV/K. For graphene, « is
inversely proportional to the square root of charge density, and it can
reach much higher values close to the charge neutrality point%41. In
quantum dots with energy-dependent electron transmission prob-
ability*2, and in superconductor-ferromagnet tunnel junctions?
large « up to a few kp/e~100puV/K can be achieved. In our
experiment, we observe similar values of the Seebeck coefficient in
graphene quantum dots. We operate the graphene heater at
frequency f=2.1Hz and record thermoelectric currents through
both quantum dots at the double frequency 2f (see “Methods”).
Thermal gradient induced by the heater is measured by SGS
thermometers, which were calibrated separately as discussed in
Supplementary Note 2.

heater

Fig. 1 False color SEM image of the device. Green indicates graphene, blue
corresponds to metallic Al/Ti sandwich leads, and the silicon substrate with
280-nm-thick silicon dioxide on top is colored in gray. The Joule heated
region is indicated by red color. The superconducting graphene junctions
are located between the leads marked by SGS, and SGSg. The left and right
graphene quantum dots QD and QDg, respectively, have an area 200 x
150 nm?, foremost located under the Al injector and thus invisible in the
image. Side gates with voltages Vg and Vg are also carved out of
graphene. The inset at lower left corner illustrates the graphene quantum
dots before overlaying the metallic Cooper pair injector. In the
thermoelectric measurements, the quantum dot currents are tracked by
current preamplifiers connected to leads 1 and 3 (virtual ground 20 Q),
while the Cooper pair injector, lead 2, is grounded.
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Fig. 2 Local and non-local contributions to the thermoelectric current. a Thermally generated current at 2f in the left and right dot measured as a function
of Vg and Vg r; the data include both local and non-local thermoelectric contributions. b, € Zero bias conductance of the right quantum dot vs. Vg in
two intervals: =135V < Vg g < =115V, and —0.95V < V4, r < —0.6 V; green arrow in the b points to the minor peak in the vicinity of the main conductance
peak, and the red curve is the fit by the Fano resonance model with the parameters I'y =20 peV, yg = 252 peV, &g — eg = 120 peV, tg =55 peV; the
additional Fano peak in the fit is intentionally made stronger than the experimentally observed one in order to better reproduce the behavior of the non-
local thermoelectric current in Fig. 3d. d Zero bias conductance of the left quantum dot in the interval -5V <V, <—4.6 V. e, f Experimental non-local
contribution to the thermal current in the left quantum dot, AI", in two selected regions of (Vsgr: Vsg 1) plane. g Zero bias conductance of the left quantum
dot; data as in d, but the red curve displays the fit of one of the peaks with the Fano resonance model with the parameters I' = 6 peV, y =98 peV,
g —¢ = 24peV, and ty =10 peV. h, i Theoretically predicted non-local contribution AIE' in the same regions as in e, f.

The thermoelectric current induced by the heater in the left
(right) quantum dot is given by the sum of dominating local
(I}?(CR)) and small non-local contributions (AIIL‘1<R)), Iwy =
IILO(CR>(VSg‘L<R)) + AIEI(R)(ng,La ng‘R), see Supplementary Note 4.
To infer the non-local contribution from the measured current I,

(r)> We subtract off its slowly varying average local background,
(ILw)) (see “Methods”):

AIEI(R) = IL(R) - <IL(R)>' (3)

We thus obtain non-local currents Alfi, which have a
magnitude of order of 5-10% of the total thermoelectric currents.
Figure 2 displays the maps of the non-local thermoelectric
current in left dot AIEI(ng,La V) measured in the vicinity of
the two conductance peaks of the right dot for the heating
voltage V;,=5mV. In Fig. 2b-d, g gir)=hGrw)/e® is the
dimensionless conductance of the left (right) quantum dot. We
find that AIM is symmetric with respect to the centers of the
conductance peaks of the right dot, but it changes sign at the
maxima of conductance peaks of the left dot. Thus the non-local

current AI® approximately follows the same pattern as the
PrOdUCt [dgL(ng,L)/stg,L]gR(ng,R)~

Before proceeding to our main result, note that some
conductance peaks are split into two closely located peaks (see
Fig. 2b, ¢). The splitting is explained by the Fano resonant effect, see
Supplementary Note 4. Namely, we introduce the coupling rates T,
and y;,, (here j = L, R enumerates the dots) between the nth energy
level of the dot (with energy ¢;,) and, respectively, normal and
superconducting leads; we also assume that the nth level is coupled
to a dark energy level, having the energy 5]/‘,n> via the hopping matrix

element ;,,. This results in the transmission probabilities of the dots
2

T = Zn))]nrj,n/[(E —&n |t],n|2/(E - s},n)) + (Yj,n + rj,n)2/4]’

see Supplementary Note 4. The conductances g;(V,;)

4773(0, V) /2 — 7;(0, VSgJ)]Z, as predicted by the theory of

Andreev reflection®?, exhibit splitted peaks for f,=0. In our

model, we ignore Coulomb interaction because the charging
energies of the dots are relatively small, Ec; S yj, + T

Non-local thermoelectricity. Figure 3 displays the main result of
our study. There we plot the non-local thermal currents for both
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Fig. 3 Interplay of non-local thermoelectric currents in the left and right dots. Non-local contributions to the thermal currents of the right and left dots
(a-d) and the corresponding CPS and EC currents (e-h). The left column (graphs a, ¢, e, g) shows the experiment and the right one (graphs b, d, f, h)—
theory. Horizontal dotted lines in the plots indicate the positions of the conductance peak maxima of the left dot.

quantum dots together with the theory predictions based on Egs.
(1) and (2). The involved model parameters are chosen in such a
way that, besides accounting well for the non-local current, they can
also reasonably fit the conductance peaks (see the caption of Fig. 2).
In the experiment, the non-local current AI% changes its sign three
times in the vicinity of the conductance peak of the right dot located
at Vigr = —1.24 V. Although in order to reproduce this behavior
we had to take hopping amplitude, f, larger than required by the
perfect fit to the conductance peak (see Fig. 2b), this offers a fair
cross-check for our description. One sees that not only the mag-
nitudes of the currents AI™ and AI% are in good agreement with
the theory, but their symmetric and anti-symmetric combinations
Alcpg = AIM + AR and Al = AIM — AIR exhibit the expected

gate voltage dependence, although the comparison for Ipc is
hampered by large noise as the EC current is a difference between
two small non-local signals. The observed general agreement in
Fig. 3 provides strong support of the non-local coherent thermo-
electric effect in our device.

Local thermoelectricity. Since, as noted, the non-local currents are
relatively small, one can treat the measured currents foremost as
local, Iy gy ~ IIL"("'R). The measured thermoelectric current of the left
quantum dot is shown in Fig. 4a. The lowest curve in this panel
shows the dimensionless conductance of the left quantum dot g =
hGy/e? as a function of the side gate voltage V1. Thermoelectric
current I, depicted by the upper curves of Fig. 4a, varies with the
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Fig. 4 Drive dependence of thermoelectric current. a Upper curves:
thermoelectric current in the left quantum dot /ey, Vvs. gate voltage Vg
measured at heating voltages V}, =[5, 9, 19, 25, 291 mV, where V, =5mV
is the blue curve and 29 mV is the red curve. We estimate the induced
temperature difference between the left and right quantum dots to be T, —
Tr=17 mK for V,=5mV, and T, — Tr~59 mK for V}, =29 mV. Middle
curves: theory predictions based on the coherent model (see
Supplementary Note 4) for the thermoelectric current I theory plotted in the
same manner as the upper curves for V,, =[5, 10, 20, 25, 30] mV. The gap
of Al/Ti leads is set to Ag =150 peV at T= 0 while the BCS gap formula A
(Ts) with Ts = (T, + Tr)/2 defines the T dependence. Lowest curve:
experimental conductance of the left quantum dot. b Incoherent modeling
for the low temperature regime: theoretical fits (dashed) to the measured
thermoelectric currents /. and conductance g, (solid) at V,,=7 and 11 mV,
blue and red curves, respectively. The model is based on the assumption
that the system may be split into the coherent subsystems, which, in turn,
are joined incoherently into a circuit. Details of the model and fitting
parameters are given in Supplementary Note 5.

same period as the conductance. Its magnitude grows with the

increasing heating power P as I"™ oc P'/3, which is consistent with
Gy o T3 for the thermal conductance between electrons in gra-
phene and phonons in the substrate. The maximum thermal power
of the left quantum dot reaches a value of «,, =
max{I; /G (T, — Ts)} =~ 250 uV/K, which is close to the values
reported in ref. 2. Since we cannot reliably measure the tempera-
ture of the superconductor Ts, we set Ts = (11 + Tr)/2 in evalu-
ating o, and in our theory modeling. In Fig. 4a, we also show the
local thermoelectric current predicted by the theory of Andreev
reflection with energy-dependent transmission probability*%; the
same theory was earlier employed in deriving the non-local con-
tributions using Eq. (2). In the local case, only those quasiparticles

with energies above the superconducting gap, |E| > A, contribute.
The zero temperature value of the gap A, is set by the transition
temperature T, =1.0K of the Al/Ti leads, and the transmission
probability of the dot 7;(E, Vi, ) is inferred from the experimentally
measured conductance gi(V,1), as explained in Supplementary
Note 5. We find rather good agreement between theory and
experiment except for the lowest values of the heating voltage. This
agreement provides further confirmation for our model.

In the low temperature regime, the coherent model predicts very
small current due to lack of quasiparticles, while the experimental
thermoelectric current remains significant and exhibits additional
sign changes in the vicinity of some of the conductance peaks.
These features can originate from non-zero, thermally induced
voltages across the dots. To capture these effects, we propose that
electrons may undergo quick inelastic relaxation, see Supplementary
Note 5. This introduces incoherent effects that facilitate description
of quantum dots and NS interfaces as independent conductor
elements connected in series. The results of such an inelastic model
are shown in Fig. 4b. The incoherent description accurately predicts
the character of the local thermoelectricity at small temperatures.
Incidentally, although at odds with the effect of local thermoelec-
tricity, the non-local currents are dominantly determined by
coherent electrical transport.

Alternatively, the additional peak in the local thermoelectricity
could originate from Coulomb blockade®° as the non-local
thermoelectric effect is shown to develop from single peak to
double peak structure when temperature is lowered. The
calculated double peak structure is similar to our local thermo-
electric signal observed at low temperatures. However, the
resonance energy dependence of the non-local signal with
Coulomb blockade agrees poorly with the experimental results
in Fig. 3a in comparison with our coherent transport model.

Discussion

This work has demonstrated the use of thermal gradient as pri-
mus motor for generating entangled electrons in graphene
Cooper pair splitter. As the quantum dots in the device can be
tuned individually, we are able to tune the device operation
between EC and CPS regimes, thereby accomplishing direct
control of two streams of entangled electrons. This type of
scheme is useful not only for enabling devices where electrical
drive is neither possible nor desired but also as a platform for
realizing quantum thermodynamical experiments.

Methods

Samples and fabrication. Our graphene films were manufactured using mechanical
exfoliation of graphite (Graphenium, NGS Naturgraphit GmbH) and placed on a
highly p™ doped silicon wafer, coated by 280-nm-thick thermal silicon dioxide. The
conducting substrate was employed as a backgate for coarse tuning of the graphene
quantum dots, while fine tuning was performed by adjusting the side gates. Electron
beam lithography (EBL) on PMMA resist was used to pattern a mask for plasma
etching of the graphene structures. A second EBL step was carried out to expose the
pattern for electrode structures, followed by deposition of Ti/Al (5/50 nm, super-
conducting T. = 1.0K) leads using an e-beam evaporator. Normal contacts to the
graphene quantum dots were made using etched graphene nanoribbons with a small
number of conductance channels at the operating point*°.

The strong p*+ doping and the interfacial scattering at the Si/SiO, interface
reduce the phonon mean free path in the substrate to one micron range, which
facilitates the use of the heat diffusion equation for estimating thermal gradients
along the substrate near the graphene ribbon heater and the splitter. Heat transport
analysis was done separately for each component involved in the operation of the
CPS, as well as a COMSOL simulation, see Supplementary Note 1.

Measurement scheme. Our conductance and thermoelectric current measurements
employed regular lock-in techniques at low frequencies. In the thermoelectric
experiments, we had one DL1211 current preamplifier connected to each quantum
dot, while the superconductor was grounded on top of the cryostat. The current gain
of DL1211 amplifier was set to 10 V/A, which provides a virtual ground of 20 Q. The
lead resistance including filters was approximately 100 2, which is much less than the
quantum dot resistance ~h/e?, the quantum resistance. The galvanically separated
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heater was driven at f= 2.1 Hz, with an ac voltage amplitude ranging between 1 and
40 mV (for data without galvanic separation, see Supplementary Note 3). Because the
resistance R of the graphene ribbon heater was independent of temperature in its
regime of operation, the heating power P = V3 /R was fully governed by the voltage
Vi The heating power oscillated at frequency 2f = 4.2 Hz, which resulted in ther-
moelectric currents at 4.2 Hz, recorded using a lock-in time constant of 1s. The
thermal response time of our device appears to be well below 1 ms, i.e., much less than
a measurement period, so that the thermal response is not suppressed. The use of
such a low frequency for the experiments was dictated by the need to eliminate the
capacitive coupling between the wires in the measurements.

The local temperature was monitored using two SGS junctions. At low
temperature, because of the proximity effect, graphene becomes superconducting,
with a supercurrent exponentially proportional to temperature: ~exp(—T/Eyy, ).
Here Epy, = hD/L% stands for the Thouless energy given by the length of the SGS
section Lggs and the diffusion constant D ~ %VFA, where the Fermi velocity vg =
8 x 10°m/s and A is the charge carrier mean free path of graphene. Using A ~ 20
nm for graphene on SiO, and Lsgs = 200 nm, we estimate Ey, ~ 130 peV for our
SGS thermometers. This kind of SGS junctions in the intermediate length regime
(ETh =~ A) were experimentally found to provide good thermometers over the
relevant range of temperatures in our work.

We have used the amplitude of the differential resistance peak R** vs. T to
infer the effective local temperature within the graphene sample. The SGS
temperature under the voltage bias V}, in the graphene ribbon heater was obtained
by direct comparison between R§** and the heating power to the value of RF**
recorded when varying the cryostat temperature. As detailed in Supplementary
Note 2, we obtain the relation Tggs; = 9.1x Vp7® + 90 mK between the SGS;,
temperature and the heating voltage (V}, in Volts). For the SGSg thermometer, we
obtained an estimate Tgggp =~ 8.4x VP70 + 90 mK.

Background subtraction. The direct experimental measurement allows to obtain
the total electric current through the left (right) dot, Iy ), constituting the sum of
local, IﬁCR), and non-local, AI?l<R>, contributions. Note that, in theory, while the
non-local contribution depends on both gate voltages, the local one is determined
only by the gate voltage on the corresponding dot. This suggests that the local
current through the left (right) dot I}?(CR) is nothing but the total current I,

averaged over the gate voltage on the opposite dot; AIEI(R) can be thus obtained by

subtracting off this average background from Ij(ry. On practice, however, the gate
electrodes may be subject to cross-talk, which the described simple processing does
not account for. For the most part, the cross-talk was eliminated by a small rotation
of the data array. Bearing in mind the remaining residual cross-talk, we construct a
slowly varying background (I; ) (V1 V) in the following manner (for
clarity, let us consider the case of the left dot): for any fixed V,; = Vfg.L,
(IL(VngL, Vgr)) is the linear fit of IL(VSFg_L, Ver) as function of Vigr. The non-
local contribution is then obtained using the formula

AIEI (ng,U ng.R) =1 (ng.h ng,R) - <IL (ng,Lv ng,R) > (4)

Linear fits in the background construction were found sufficient for compensating
the remaining residual tilt of the current maps on the {Vy,1, Vizr} plane.

Theoretical modeling. Our theoretical calculations are based on both coherent
and incoherent modeling of transport. In coherent modeling, we employ the
Landauer approach with Andreev reflection*>4¢ for calculating the local thermo-
electric current; Lorentzian resonance line shapes are employed for transport in the
quantum dots?>#44748 For the non-local current, we employ a standard crossed
Andreev reflection formalism?4°->1. In our incoherent theory, based on scattering
matrix formalism!#>2, we also include the influence of internal thermally gener-
ated current sources and their back-action effect owing to the environmental
impedance caused by graphene ribbons. The inclusion of the back-action-induced
voltage sources makes the incoherent calculation self-consistent. For details of the
calculations, we refer to Supplementary Notes 4 and 5.

Data availability

All data needed to evaluate the conclusions in the paper are covered by the paper and its
Supplementary Information. Additional data related to this work are available from
authors upon reasonable request.
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