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Manifold Gradient Descent Solves Multi-Channel
Sparse Blind Deconvolution
Provably and Efficiently

Laixi Shi*™, Graduate Student Member, IEEE, and Yuejie Chi*™, Senior Member, IEEE

Abstract— Multi-channel sparse blind deconvolution, or con-
volutional sparse coding, refers to the problem of learning
an unknown filter by observing its circulant convolutions with
multiple input signals that are sparse. This problem finds
numerous applications in signal processing, computer vision,
and inverse problems. However, it is challenging to learn the
filter efficiently due to the bilinear structure of the observations
with respect to the unknown filter and inputs, as well as the
sparsity constraint. In this paper, we propose a novel approach
based on nonconvex optimization over the sphere manifold by
minimizing a smooth surrogate of the sparsity-promoting loss
function. It is demonstrated that manifold gradient descent with
random initializations will probably recover the filter, up to
scaling and shift ambiguity, as soon as the number of observations
is sufficiently large under an appropriate random data model.
Numerical experiments are provided to illustrate the performance
of the proposed method with comparisons to existing ones.

Index Terms—Nonconvex optimization, multi-channel sparse
blind deconvolution, manifold gradient descent.

I. INTRODUCTION

N VARIOUS fields of signal processing, computer vision,

and inverse problems, it is of interest to identify the location
of sources from traces of responses collected from sensors.
For example, neural or seismic recordings can be modeled as
the convolution of a pulse shape (i.e. a filter), corresponding
to characteristics of neuron or earth wave propagation, with
a spike train modeling time of activations (i.e. a sparse
input) [1]-[3]. Thanks to the advances of sensing technolo-
gies, in many applications, one can make multiple obser-
vations that share the same filter, but actuated by diverse
sparse inputs, either spatially or temporally. Examples include
underwater communications [4], [5], neuroscience [6], seismic
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imaging [7], [8], image deblurring [9], [10], and so on.
The goal of this paper is to identify the filter as well as
the sparse inputs by leveraging multiple observations in an
efficient manner, a problem termed as multi-channel sparse
blind deconvolution (MSBD).

Mathematically, we model each observation y; € R™ as
a convolution, between a filter g € R"”, and a sparse input,
x; € R™:

1=1,...,p, (1)

where the total number of observations is given as p. Here,
we consider circulant convolution, denoted as ®, whose oper-
ation is expressed equivalently via pre-multiplying a circulant
matrix C(g) to the input, defined as

Yyi =g ®x; =C(g)x;,

g1 gn g2
g2 0 93

Clg) =|. A )
gn Gn-1 g1

In practice, the circulant convolution is used in situations
when the filter g satisfies periodic boundary conditions [11],
[12], or as an approximation of the linear convolution when
the filter has compact support or decays fast [13], [14].
It is particularly attractive in large-scale problems to accel-
erate computation by taking advantage of the fast Fourier
transform [11], [12].

A. Nonconvex Optimization on the Sphere

Our goal is to recover both the filter g and sparse inputs
{z;}¥_, from the observations {y;}?_,. The problem is chal-
lenging due to the bilinear form of the observations with
respect to the unknowns, as well as the sparsity constraint.
A direct observation tells that the unknowns are not uniquely
identifiable, since for any circulant shift Si(-) by k entries
(defined in Section I-C) and a non-zero scalar 3 # 0, we have

yi = (BSk(9)) ® (8718 k(x:)) (3)

for k =1,...,n — 1. Hence, we can only hope to recover g
and {x;}_, accurately up to certain circulant shift and scaling
factor.

In this paper, we focus on the case that C(g) is invertible,
which is equivalent to requiring all Fourier coefficients of g are
nonzero. This condition plays a critical role in guarantee-
ing the identifiability of the model as long as p is large
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Fig. 1. An illustration of the landscape of the empirical loss function f,(h) or f(h) with or without the pre-conditioning matrix R in R3, where the sparse
inputs are generated according to a Bernoulli-Gaussian model with p = 30 observations and activation probability 6 = 0.3. (a) orthogonal filter C(g) = I,
no pre-conditioning is applied; (b) a general filter, no pre-conditioning is applied; (c) the same general filter as (b) with pre-conditioning.

enough [15]. Under this assumption, there exists a unique
inverse filter, g;,y € R™, such that

C(ginv)c(g) = C(g)c(ginv) =L 4)

This allows us to convert the bilinear form (1) into a linear
form, by multiplying C(giny) on both sides:

= C(glnv)c(g)mz = &y,
Consequently, we can equivalently aim to recover gi,, Vvia
exploiting the sparsity of the inputs {x;}!_;. An immediate

thought is to seek a vector h that minimizes the cardinality
of C(h)y; = C(y:)h:

C(ginv)Yi 1=1,...,p.

min
heR?L

12
- C(yi)hl, ,
p;ll (yi)hll

where ||-||o is the pseudo-£y norm that counts the cardinality of
the nonzero entries of the input vector. However, this simple
formulation is problematic for two obvious reasons:

1) first, due to scaling ambiguity, a trivial solution is h = 0;
2) second, the cardinality minimization is computationally

intractable.

The first issue can be addressed by adding a spherical con-
straint ||h||2 = 1 to avoid scaling ambiguity. The second issue
can be addressed by relaxing to a convex smooth surrogate
that promotes sparsity. In this paper, we consider the function

Yu(2) = plogcosh(z/p), )

which serves as a convex surrogate of |||, where u > 0
controls the smoothness of the surrogate. With slight abuse
of notation, we assume ¢, (z) = > .—; 1,(z;) is applied in
an entry-wise manner, where z = [2;]1<i<,. Putting them
together, we arrive at the following optimization problem:

min
heR™

folh) ::%Zw«:(yi)h) st. Al =1, (©
=1

which is a nonconvex optimization problem due to the
sphere constraint. As we shall see later, while this approach
works well when C(g) is an orthogonal matrix, further
care needs to be taken when it is a general invertible
matrix in order to guarantee a benign optimization geometry.

Following [14], [16], we introduce the following pre-
conditioned optimization problem:

. ¢
min f(h) == vu(C(y:)RR) st [k, =1, (D
helr pPi3

where R is a pre-conditioning matrix depending only on
the observations {y;}?_, that we will formally introduce
in Section II.

B. Optimization Geometry and Manifold Gradient Descent

Encouragingly, despite nonconvexity, under a suitable ran-
dom model of the sparse inputs, the empirical loss functions
exhibits benign geometric curvatures as long as the sample
size p is sufficiently large. As an illustration, Fig. 1 shows
the landscape of f,(h) and f(h) when n = 3 and p = 30,
and the sparse inputs {@;}?_, follow the standard Bernoulli-
Gaussian model (with an activation probability 6 = 0.3, see
Definition 1). When the filter is orthogonal, e.g. C(g) = I,
it can be seen from Fig. 1 (a) that the function f,(h)
in (6) has benign geometry without pre-conditioning, where
the local minimizers are approximately all shift and sign-
flipped variants of the ground truth (i.e, the basis vectors),
and are symmetrically distributed across the sphere. On the
other end, for filters that are not orthogonal, the geometry
of f,(h) in (6) is less well-posed without pre-conditioning,
as illustrated in Fig. 1 (b). By introducing pre-conditioning,
which intuitively stretches the loss surface to mirror the
orthogonal case, the pre-conditioned loss function f(h) given
in (7) for the same non-orthogonal filter used in Fig. 1 (b) is
much easier to optimize over, as illustrated in Fig. 1 (c).

Motivated by this benign geometry, it is therefore natural to
optimize h over the sphere. One simple and low-complexity
approach is to minimize f(h) over the sphere via (projected)
manifold gradient descent (MGD), i.e. for k = 0,1, ...

R+ . ") — naf(h(k))
MR —nof(RM)]]27

where 7 is the step size, df(h) is the Riemannian manifold
gradient with respect to h (defined in Sec. II-C). Surprisingly,
this simple approach works remarkably well even with ran-
dom initializations for appropriately chosen step sizes. As an

)
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Fig. 2. The normalized reconstruction error of MGD with respect to the
number of iterations for the problem instance in Fig. 1 (c).

illustration, Fig. 2 depicts that MGD converges within a few
number of iterations for the problem instance in Fig. 1 (c).
Based on such empirical success, our goal is to address the
following question: can we establish theoretical guarantees of
MGD to recover the filter for MSBD?

In this paper, we formally establish the benign geometry
of the empirical loss function over the sphere, and prove
that MGD, with a small number of random initializations,
is guaranteed to recover the filter with high probability in
polynomial time. Our result is stated informally below.

Theorem 1 (Informal): Assume the sparse inputs are gen-
erated using a Bernoulli-Gaussian model, where the activation
probability § € (0,1/3). As long as the sample size is
sufficiently large, i.e. p = O(poly(n)), manifold gradient
descent, initialized from at most O(logn) independently and
uniformly selected points on the sphere, recovers the filter
accurately with high probability, for properly chosen p, and
step size ;.

Our theorem provides justifications to the empirical success
of MGD with random initializations. This result is achieved
through an integrated analysis of geometry and optimization.
Namely, we identify a union of subsets, corresponding to
neighborhoods of equivalent global minimizers, and show that
this region has large gradients pointing towards the direction
of minimizers. Consequently, if the iterates of MGD lie in this
region, and never jump out of it during its execution, we can
guarantee that MGD converges to the global minimizers.
Luckily, this region is also large enough, so that the probability
of a random initialization selected uniformly over the sphere
has at least a constant probability falling into the region.
By independently initializing a few times, it is guaranteed with
high probability at least one of the initializations successfully
land into the region of interest and return a faithful estimate
of the filter.

C. Paper Organization and Notation

The rest of this paper is organized as follows. Section II
presents the problem formulation and main results, with com-
parisons to existing approaches. Section III outlines the analy-
sis framework and sketches the proof. Section IV provides
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numerical experiments on both synthetic and real data with
comparisons to existing algorithms. Section V further dis-
cusses the related literature and we conclude in Section VI
with future directions.

Throughout the paper, we use boldface letters to represent
vectors and matrices. Let T, " denote the transpose and
conjugate transpose of x, respectively. Let [n] denote the index
set {1,2,---,n}. For a vector x € R", let x; denote its
jth element. Let p, D C [n]| denote the length-|D| vector
composed of the elements in the index set D of x, and let
x\p denote the vector obtained by removing the elements
of & in the index set D. For example, x1.; denotes the
length-j vector composed of the first j entries of x, i.e., the
vector [x1, g, , ;] ", and @\ (; denotes the length-(n—1)
vector composed of all entries of @ except the ith one,
i.e. the vector ®j;_1it1:n. If an index j ¢ [n] for an
n-dimensional vector, then the actual index is computed
as in the modulo n sense. S; denotes a circular shift by
J positions, ie., [Sj(@)]x = xp—; for j,k € [n]. Let |-,
p € [1,00] represent the ¢, norm of a vector, and |||,
|||l denote the operator norm and the Frobenius norm of a
matrix, respectively. Let o;(A) be the ith largest eigenvalue of
a matrix A. Let ® denote the Hadamard product for two vector
x,y € R” of the same dimension. Let I denote an identity
matrix, and e; € R",4 € [n] be the ith standard basis vector.
If A < B, then B — A is positive semidefinite. Last, we use
c1,c2,C, ... to denote universal constants whose values may
change from line to line.

II. MAIN RESULTS

To begin, we state a few key assumptions. In this paper,
we assume that the sparse inputs are generated according to
the well-known Bernoulli-Gaussian model, defined below.

Definition 1 (Bernoulli-Gaussian Model [17]): The inputs
x;, © = 1,---,p, are said to satisfy the Bernoulli-Gaussian
model with parameter 6 € (0, 1), i.e. &; ~;;q BG(0), if x; =
Q,©z;, where 2; is an i.i.d. Bernoulli vector with parameter 6,
and z; is a random vector with i.i.d. random Gaussian variables
drawn from N(0,1).

Furthermore, the geometry of the loss function f(h) turns
out to be highly related to the condition number of the
matrix C(g), which is defined below.

Definition 2 (Condition Number): Let r be the condition
number of C(g), i.e. kK = 01(C(g))/0n(C(g)).

When C(g) is orthogonal, we have x = 1. Let the discrete
Fourier transform (DFT) of g be g = Fg, then x is equivalent
to the ratio of the largest and the smallest absolute values
of g, i.e. k£ := |G|max/|g|min. Therefore, x measures the
flatness of the spectrum g, which plays a similar role as the
coherence introduced in early works of blind deconvolution
with a single snapshot [18], [19]. In addition, since g;,, can
only be identified up to scaling and shift ambiguities, without
loss of generality, we assume ||giny||2 = 1.

A. Geometry of the Empirical Loss in the Orthogonal Case

We start by describing the geometry of f,(h) when C(g) is
an orthonormal matrix, where pre-conditioning is not needed.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 17,2021 at 12:35:45 UTC from IEEE Xplore. Restrictions apply.



SHI AND CHI: MANIFOLD GRADIENT DESCENT SOLVES MSBD PROVABLY AND EFFICIENTLY

Without loss of generality, we can assume C(g) = L! which
corresponds to the ground truth gin, = e; and y; = x;.
Therefore, the loss function f,(h) in (6) can be equivalently
reformulated as

Z P (C s.t.

Our geometric theorem characterizes benign properties of the
curvatures in the local neighborhood of {+e;}!" ,, shifted and
sign-flipped copies of the ground truth. Inspired by [20], [21],
we introduce 2n subsets,

- 2
Sf(zﬂ:): {h:hizo,% >
1Py

min f,(h

Ikl =1 ©)

1+§}, i €[n], (10)

where £ € [0,00). Clearly, e; € SE(H) and —e; € SE(%),
for all i € [n]. The quantity £ captures the size of the local
neighborhood — the smaller £ is, the larger the size of Sg(zi).
Due to symmetry, we focus on describing the geometry of
fo(h) in one of such subsets, say SE(”JF). For convenience,
we introduce a reparametrization trick [16]. Define w =
hi.,—1 € B"!, corresponding to the first (n — 1) entries
of h, where B"~! := {w € R"7! : ||w|s < 1} is the unit
ball in R”~!. Given w, the vector h can be written as
h(w) = (w 1— ||w||§) . YweB™ (11
Therefore, w = 0 is equivalent to h(0) = e,, which is the
shifted ground truth within Sg("ﬂ. The loss function f,(h)
can be rewritten with respect to w as

12
Go(w) = fo(h(w)) = =3 _vu(Cl@)hw).  (12)
i=1
In addition, a short calculation reveals that,?
-1
w2 < Z—+§ whenever h(w) € Sg(n+). (13)

The theorem below states the geometry of ¢,(w) in the
neighborhood h(w) € SE(:JF) for & € (0,1). In particular,
we split the region of interest into two subregions:

n—1
0, = {w:||w||2s4iﬁ}.

Theorem 2 (Geometry in the Orthogonal Case): Without
loss of generality, suppose C(g) = I. For any & € (0,1),

(14)

'Denote h = C(g)h, we have ||h|2 = ||C(g)h|, = 1 due to the
orthonormality of C(g). Rewriting the loss function with respect to h confirms
this assertion. This does not change the geometry of the objective function
that is of primary interest.

*When h(w) € SV, we have h2 > (1 + &)l iy |12, which

IRIZ < B2+ (n = Dl ll% < (14251 2 =

(14 558) (1 = Jwli3).

leads to 1 =

4787

0 e (0

, %), there exist constants ¢y, ¢s, 3, ¢4, ¢5, C' such that
. 1
when 1 < ¢ mln{@,fo/ﬁn

—3/4% and

Cn? <n3 log p)
> ——1lognlo , (15)
R T
the following holds with probability at least 1 — c3 p~" —
exp (—cq4 n) for h(w) € Sé:+):
(large directional gradient:)
T
W Vo) L ed, ifwe i, (16w
[wl[,
(strong convexity:)
0
V3¢, (w) = 2T, ifwe Qo (16b)

Furthermore, the function ¢,(w) has exactly one unique local
minimizer w}, near 0, such that

N log” p
[w) —0ll, < o :
P

A7)

Theorem 2 has the following implications when h(w) €
S(:Jr), as long as the sample size p is sufficiently large and
satisfies (15):

o The function ¢,(w) either has a large gradient when
|lw]||2 is large (cf. (16a)), or is strongly convex when
|lwl|2 is small (cf. (16b)), indicating the geometry is
rather benign and suitable for optimization using first-
order methods such as MGD;

o There are no spurious local minima, and the unique local
optimizer is close to the ground truth according to (17)
with an error decays at the rate O (%1/%) as the

sample size p increases.

Theorem 2 also suggests that a larger sample size is neces-
sary to guarantee a benign geometry when the subset Sg(gi)
gets larger — with the decrease of ;. By a simple union
bound, we can ensure a similar geometry applies to all
2n subsets Sézi) defined in (10).

B. Geometry of the Empirical Loss in the General Case

To extend the geometry in Theorem 2 to the general case
when C(g) is invertible, we adopt the trick in [14], [16] and
introduce the pre-conditioning matrix R:

1 P

i=1

—1/2
C(yi)TC(yi)] . (18)

The main purpose of the pre-conditioning is to convert the
loss function to one similar to the orthogonal case studied

LiC@)TC@)| = 1

asymptotically as p increases.

Onp

(clg)Tclg)?

above. Recognizing that ]E{

we have R ~

Plugging C(y;) = C(x;)C(g) and R ~ (C(g)TC(g))fl/2 into
the loss function of (7), we have
12
f(h) = =3 u(C(@)Uh) (19)
i=1
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where U is a circulant orthonormal matrix given by

1

U :=C(g)(C(g)"Clg) *.
By the rotation invariance of the loss function over the sphere
with respect to the orthonormal transform by U, (19) is
equivalent to the one studied in the orthogonal case, thus
justifying our choice of the pre-conditioning matrix. Returning
to the original loss function without approximating R by
its population counterpart, we can repeat the same argument
performed in (9) and rewrite a rotationed version of (7) as

(20)

heR™

p
min f(h) = > 0Cl@)Clo)RUTR) st [, =1
=1

21

where the shifted and sign-flipped ground truth has been
rotated to almost {+e;}?_,, which is the same as the orthog-
onal case. The theorem below suggests that under the same
reparameterization h = h(w) in (11), a similar geometry as
Theorem 2 can be guaranteed for ¢(w) = f(h(w)).

Theorem 3 (Geometry in the General Case): Suppose
C(g) is invertible with condition number k. For any
& € (0,1), & € (0,3), there exist constants c1, 2, c3, C4,
C such that when < ¢; min{6, £)/°n=3/4} and

x8n3log? plog?n

Oy
the geometry (16) holds for ¢(w) with probability at least
1—c3 p " —exp(—cyn) for h(w) € Sgﬂ. In addition,
the function ¢(w) has exactly one unique local minimizer w*
near 0, such that

lw* — 0], < cort [nlog® plog® n
2 = 02 P

Theorem 3 demonstrates that a benign geometry similar to
that in Theorem 2 can be guaranteed for the general case,
as long as a proper pre-conditioning is applied, and the sample
size is sufficiently large. In particular, the sample size in (22)
increases with the increase of the condition number of C(g).

p=>C

(22)

C. Convergence Guarantees of MGD

Owing to the benign geometry in the subsets of interest
{Sg(éi),i € [n]} a simple MGD algorithm is proposed to
optimize (21), by updating

pk+1) ") — naf(h(k>)
[ —nof (R®)]],

fork=1,...,7—1, where 9f(h) = (I-hh")Vf(h) is the
Riemannian manifold gradient with respect to h, V f(h) is the
Euclidean gradient of f(h), and 7 is the step size. The next
theorem demonstrates that with an initialization in one of the
2n subsets {Sg(zi),i € [n]} the proposed MGD algorithm,

(23)

with a proper step size, will recover +e; in that region in a
polynomial time.

Theorem 4: Let 0 < ¢ < 1 and instate the assumptions of
Theorem 3. If the initialization satisfies h(*) € Ségi for any

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Algorithm 1 Manifold Gradient Descent for MSBD
Input: Observation {y;}._,, step size 7, initialization
h(%) on the sphere, the loss function f(h) in (7);
for k=0toT —1do

p+D) hF) — naf(h(’“)) .
|R®) = naf (R®) ],

Output: Return gi,, = Rh(T), where R is given in
(18).

j hen with ize n < —4%% _ for some suffi-
i € [n], then wit astepszen_rﬂmoso e su
ciently small constant c, the iterates h(¥) k= 1,2, --- stay in

. . 4 3 2 .
Sg(zi) and achieve |h") F e;|> < 5 w%lou +ein

n p 0
TS e T oy 8 (?)
iterations.

With Theorem 4 in place, one still needs to address how to
find an initialization that satisfies h(?) € Sg)i). Fortunately,
setting & = 1/(4logn) allows a sufficiently large basin
of attraction, such that a random initialization can land into
it with a constant probability. A few random initializations
guarantee that the MGD algorithm will succeed with high
probability. This is made precise in the following corollary.

Putting everything together, Alg. 1 summarizes the proposed
MGD algorithm for the original loss function in (7), where
the pre-conditioning matrix is applied back at the end of the
iterations to produce the final estimate g,y of giny. To measure
the success of recovery, we use the following distance metric
that takes into account the ambiguities:

diSt(ginvv ginv) - ]nelbrll] Hginv + S] (/g\inv)H2~ (24)
We have the following corollary.

Corollary 1 (Putting Everything Together): Suppose C(g)
is invertible with condition number x. For § € (0,3),
there exists some constant c¢; such that when p <
c1min{f, (logn)~"/5n=3/4} and the sample complexity
satisfies

x8n3log® nlog” p
P2 912 :

(25)

with O(logn) random initializations selected uniformly over
the sphere, the MGD algorithm in Alg. 1 with a proper step
size is guaranteed to obtain a vector gin, that satisfies

K nlog® plog? n €
dist .ainvvginv f, —+
G- 9m) S o5 e\ n(C())

for any 0 < € < 1, in O(poly(n)) iterations.

Corollary 1 provides theoretical footings to the success
of MGD for solving the highly nonconvex MSBD problem.
In particular, consider the interesting regime when 6 = O(1)
and x = O(1), it is sufficient to set u < (logn)~/6p=3/4,
which leads to a sample size p = O(n*®) up to logarithmic
factors.
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D. Comparisons to Existing Approaches

The identifiability of the MSBD problem is established
in [15] that says under the Bernoulli-Gaussian model
(cf. Definition 1) on the sparse coefficients, the filter is
identifiable with high probability, provided that g is invertible,
0 € (1/n,1/4) and p 2 nlogn. Wang and Chi proposed a
linear program in [22] that succeeds when p 2 nlog* n.
However, the success of the linear program therein imposes
stringent requirements on the conditioning number of the
filter g and the sparsity level 6.

Our approach is most related to the subsequent work of
Li and Bresler [14], which runs perturbed MGD with a random
initialization, over a spherically constrained loss function
based on /4 norm maximization. Li and Bresler showed that,
when the sample complexity is large enough, the landscape
of the loss function does not possess spurious local maxima,
and all saddle points admit directions that strictly increase
the loss function. However, their sample complexity is sig-
nificantly worse. Specifically, to reach a similar accuracy as
ours, [14] requires O(n”) samples, while we only require
O(n*%) samples ignoring logarithmic factors, leading to an
order-of-magnitude improvement. One key observation is that
the large sample complexity required by [14] is partially
due to bounding the global geometry everywhere over the
sphere, through uniform concentration of the gradient and the
Hessian of the empirical loss function around their population
counterparts, which is sufficient but in fact not necessary to
ensure the algorithmic success of MGD. Indeed, motivated
by [20], [21], to optimize the sample complexity, we only
require the uniform concentration of directional gradient over
a large region near the global minimizer, which can be guaran-
teed at a significantly reduced sample complexity. In addition,
this region is large enough so that with a logarithmic number
of random initializations we are guaranteed to land into this
region with high probability and recover the signal of interest
via vanilla MGD. It is worth pointing out that since we
focused on a region without saddle points, no perturbation
is needed to ensure the success of MGD, which is another
salient difference from [14]. As will be seen in Section IV,
the proposed loss function not only theoretically, but also
empirically, outperforms the ¢4 norm used in [14].

At the time of finishing this paper, we became aware of
another concurrent work [23], which optimized a different
smooth surrogate of the ¢; norm over the sphere for the
same problem. Their work [23] requires a sample complexity
on the order of O(n°), which is slightly worse than ours
(i.e. O(n*®)), to guarantee the benign geometry in a similar
region near the global optimizer. In addition, a refinement
procedure is proposed in [23] to allow exact recovery of the
filter. Their path to a better sample complexity than [14] is
similar to ours as described above. We expect that their method
behaves similar to ours in practice.

III. OVERVIEW OF THE ANALYSIS

In this section, we outline the proof of the main results,
while leaving the details to the appendix. We first deal
with the simpler case when C(g) is an orthonormal matrix
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employing the objective function ¢,(w) (i.e, f,(h)) without
pre-conditioning in Section III-A, and then extend the analy-
sis to the general case where the objective function ¢(w)
(i.e, f(h)) is pre-conditioned in Section III-B. Finally, we dis-
cuss the convergence guarantee of MGD in Section III-C.

A. Proof Outline of Theorem 2
The proof of Theorem 2 is divided into several steps.

1) First, we characterize the landscape of the population loss
function E[¢, (w)];

2) Second, we prove the pointwise concentration of the
directional gradient and the Hessian of the empirical loss
¢o(w) around those of the population one E[¢,(w)] in
the region of interest;

3) Third, we extend such concentrations to the uniform
sense, thus the benign geometric properties of E[¢,(w)]
carry over to the empirical version ¢,(w).

To begin, the lemma below describes the geometry

of E[¢,(w)], whose proof is given in Appendix B-A.

Lemma 1 (Geometry of the Population Loss in the

Orthogonal Case): Without loss of generality, suppose
C(g) = L For any & € (0,1), 6 € (0,%), there exists
some constant ¢; such that when p < ¢ min{6, fé/ﬁn*?’/‘l},
we have for h(w) € SE(:JF):

(large directional gradient:)

w ' VE,(w) £of
, weE 9, (26a
|wll, = 480v10~ 1, (262)
(strong convexity:)
V2Ed,(w) = — 2 1, we Q. (26b)

oV 2mp

To extend the benign geometry to the empirical loss with
a finite sample size p, we first need to prove the pointwise
concentration of these quantities around their expectations for
a fixed w, using the Bernstein’s inequality. The next two
propositions demonstrate the pointwise concentration results,
whose proofs are provided in Appendix B-B and B-C.

Proposition 1: For any w satisfies ||w||, < y/Z=2, there
n

exist some universal constants C; and C such that for any
t>0:

P HwTV(j)O(w) B wTVIEQSO('w)‘ > t]
wl[, [[wl],

< 2exp .
<C’1n3 logn+ Co t n310gn>

Proposition 2: For any w satisfies |w||, < 1/2, there exist
some universal constants C; and C5 such that for any ¢ > 0,

P [[|V2¢o(w) — V?E¢o(w)|| > t]

2 42
—pp
< 4nexp < ST > .
C1 n?log” n+ Cyuntlogn

The concentration of the Hessian and directional gradient
between the empirical and population objective functions at a
fixed point suggests that the empirical objective function may
inherit the benign geometry of the population one outlined
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in Lemma 1. However, one needs to carefully extend the
pointwise concentrations in Propositions 1 and 2 through a
covering argument, which requires bounding the Lipschitz
constants of the Hessian and directional gradients. The rest
of the proof of Theorem 2 is provided in Appendix B-D.

B. Proof Outline of Theorem 3

To extend the benign geometry to the general case, we show
that through pre-conditioning, the landscape of ¢(w) is not too
far from that of ¢,(w). Recall that the pre-conditioned loss
function (21) is

o(w) =+ 3" (C(@)C(@)RU hiw)

1< B
D ; Vi (C(wz) I+ (C(g)RU' —1) }h(w)),
A

27)

where A = C(g)RU ' — 1 (U — U U, with
U = C(g)R and U in (20). As was discussed earlier,
as R converges to [C(g)'C(g)] % When p increases, it is
expected that U’ converges to U. Therefore, by bounding the
size of A, we can control the deviation between ¢,(w) and
¢(w). To this end, the rest of the proof is divided into the
following two steps.

First, we show that the spectral norm of A is bounded when
the sample size is sufficiently large in Lemma 2, whose proof
is given in Appendix C-A.

Lemma 2 (Spectral Norm of A): There exist some con-

stants C4,cy, such that when p > w, with
probability at least 1 — 2np~8,
log® nlogp
4 |

Second, we show that the deviation between the directional
gradient and the Hessian of ¢(w) and ¢,(w) can be bounded
by the spectral norm of A, as shown in Lemma 3. The proof
can be found in Appendix C-B.

Lemma 3 (Deviation Between ¢,(w) and ¢p(w)):

There exist some constants cg,cp,Cq, such that when

p > w, with probability at least 1 — 2p~8,
we have
n3/2log(n
[V0(w) ~ Vo), < o, B A e 0,
(29a)
n5/21og%/?(n
[9260()- 90t < 1 "5 A w e 0z
(29b)

To complete the proof of Theorem 3, we need to show
that the perturbations of the Hessian and the gradient between
¢o(w) and ¢(w) are sufficiently small, which hold as long as
the sample size is sufficiently large, in view of Lemma 2.
Consequently, we can propagate the benign geometry of
¢o(w) in Theorem 2 to ¢(w). The complete proof is provided
in Appendix C-C.
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C. Proof Outline of Theorem 4

To capitalize on the benign geometry established in
Theorem 3, one of the key arguments is to ensure that the
iterates of MGD stay in the 2n subsets ng(zi),z' € [n]
implicitly. This requires bounding properties of the directional
gradient of f(h) in (21), supplied in the following lemma
whose proof can be found in Appendix D-A.

Lemma 4 (Uniform Concentration of the Directional
Gradient): Instate the assumptions of Theorem 3. There exist
some constants c,, ¢y, C1, such that with probability at least
1 —3(np)~8 — 2exp (—can),

T(er en cpéot

— ] >

o (- 52) = 257,

for h € Hj, = {h choe SI hy # 0,2 /h3 < 4}, and

hi. hn
[0f(R)ll; <[IVF(R)|ly < Ciny/log(np)
for h € S"~ 1.
The following lemma, proved in Appendix D-B, then shows
that the iterates of MGD will always stay in one of the subsets

(30)

(€19

{Sg(zi),i € [n]} that it initializes in, as long as the sample
complexity p is large enough and the step size is properly
chosen.

Lemma 5 (Implicitly Staying in the Subsets): Instate  the
assumptions of Theorem 3. For the MGD algorithm in Alg. 1,
if the initialization satisfies that h(®) € Sézi) for any i € [n],
and the step size satisfies n < W for some small
enough constant c, then the iterates h(®), k = 1,2,---
stay in Sg(;i).

The proof of Theorem 4 then follows by analyzing the
convergence in two stages, corresponding to when the iterates
lie in the region with large directional gradients, and the region
with strong convexity, respectively. The details are given
in Appendix D-C.

Till this point, the only left ingredient is to make sure
a valid initialization can be obtained efficiently. By setting
&o sufficiently small, it is known from the following lemma
[21, Lemma 3] that the union of {Sg(zi),i € [n]}
enough to ensure a random initialization will land in it with
a constant probability.

Lemma 6 ( [21, Lemma 3]): When &, = ﬁgn, an initial-
ization selected uniformly at random on the sphere lies in
one of these 2n subsets {Sg(zi),i € [n]} with probability at
least 1/2.

Finally, combining Lemma 6 and Theorem 4, by setting
& = 1/(4logn), we can guarantee to recover gi,, accurately
up to global ambiguity with high probability, as long as
Alg. 1 is initialized uniformly at random over the sphere with
O(logn) times. This leads precisely to Corollary 1.

will

is large

IV. NUMERICAL EXPERIMENTS

In this section, we examine the performance of the pro-
posed approach with comparison to [14], which is also
based on MGD but using a different loss function L(h) =
—ﬁ - ||C(yi)Rh||jl1 over the sphere, on both synthetic and
real data.
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Fig. 3.

A. MSBD With Synthetic Data

We first compare the success rates of the proposed approach
and the approach in [14], following a similar simulation setup
as in [14]. In each experiment, the sparse inputs are generated
following BG(6), and C(g) with specific x is synthesized by
generating the DFT g of g which is random with the following
rules: 1) the DFT g is symmetric to ensure that g is real,
ie., gj = g,o_;» Where x denotes the conjugate operation;
2) the gains of g follow a uniform distribution on [1, x], and
the phases of g follow a uniform distribution on [0, 27).

In all experiments, we run MGD (cf. Alg. 1) for no more
than 7" = 200 iterations with a fixed step size of n = 0.1
and apply backtracking line search for both methods for
computational efficiency. For our formulation, we set p
min (10 n=5/4, 0.05). For each parameter setting, we conduct
10 Monte Carlo simulations to compute the success rate.
Recall that the desired estimate gy is a signed shifted version
of Giny, since C(g)ginv = *e; (j € [n]). Therefore, to evaluate
the accuracy of the output gi,y, we compute C(g)giny USINg
the ground truth g, and declare that the recovery is successful
if [|C(g)ginv [loc/[IC(g)Ginv /|2 > 0.99.

Fig. 3 (a) and (d) show the success rates of the proposed
approach and the approach in [14] with respect to n and p,
where # = 0.3 and x = 8 are fixed. It can be seen that
the proposed approach succeeds at a much smaller sample
size, even when p is smaller than n. This indicates room for
improvements of our theory. Fig. 3 (b) and (e) shows the
success rates of the two approaches with respect to € and p,
where n = 64 and x = 8 are fixed. The proposed approach
continues to work well even at a relatively high value of 6 up
to around 0.5. Finally, Fig. 3 (c) and (f) shows the success rate
of the two approaches with respect to x and p, where n = 64
and 0 = 0.3 are fixed. Again, the performance of the proposed

I 0

04 9
(e) [14] (0, p)

1 1
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[oN
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0 0
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Success rates of the proposed approach (first row) and the approach in [14] (second row) under various parameter settings.

approach is quite insensitive to the condition number x as
long as the sample size p is large enough. On the other end,
the approach in [14] performs significantly worse than the
proposed approach under the examined parameter settings.

B. Image Deconvolution and Deblurring

To further evaluate our method, we performance the task
of blind image reconstruction and deblurring, and compare
with [14]. Firstly, suppose multiple circulant convolutions
{y;}?_, (illustrated in Fig. 4 (b)) of an unknown 2D image
(illustrated in the ground truth figure in Fig. 4, the Hamer-
schlag Hall on the campus of CMU) and multiple Bernoulli-
Gaussian (BG) sparse inputs {@; ~;;q BG(0)}'_; (illustrated
in Fig. 4 (a)) are observed. Here, the size of the observations
isn = 128 x 128, # = 0.1, and the number of observations
p = 1000, which is significantly smaller than n.

We apply the proposed reconstruction method to each
channel of the image, i.e. R, G, B, respectively using the
corresponding channel of the observations {y; }”_,, and obtain
the final recovery by summing up the recovered channels.
For each channel, the recovered image is computed as g =

.\ 01 ~
F1 {.7—' (Rh) } , where h denotes the output of the

algorithm, F is the 2D DFT operator, and ®~! is the entry-
wise inverse of a vector x. Fig. 4 (c) and (d) show the
final recovered images by our method and [14] (after aligning
the shift and sign) respectively. It implies that the proposed
approach obtains much better recovery than that in [14] when
the sparse inputs {a;}?_, are with constant sparsity level 6.
We next consider a more realistic setting and examine
the performance of the proposed algorithm when the sparse
coefficients do not obey the Bernoulli-Gaussian model. Using
the same 2D image, we now generate multiple circulant
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(a) BG input

~

(f) observation

(e) blurring input
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(g) recovery via ours (h) recovery via [14]

Fig. 4. Multi-channel sparse blind image deconvolution and deblurring. Top row: the ground truth image. Middle row: (a) the sparse input generated from the
BG model; (b) the observation; (c) and (d): the recovery via our method and [14]. Bottom row: (e) the sparse input modeling motion blur; (f) the observation;

(g) and (h): the recovery via our method and [14].

convolutions {y;}?_, (illustrated in Fig. 4 (f)) using
realistically-generated motion blur kernels® (illustrated
in Fig. 4 (e)). Fig. 4 (g) and (h) show the final recovered
images by our method and [14] (after aligning the shift and
sign) respectively. It can be seen that the proposed approach
still obtains a robust recovery and removes the blurring
effectively, while the recovery using [14] further degenerates
possibly due to the model mismatch.

V. FURTHER RELATED WORK

In this section, we discuss further related literature, empha-
sizing on algorithms with provable guarantees.

A. Provable Blind Deconvolution

The problem of blind deconvolution with a single snapshot
(or equivalently, channel) has been studied recently under dif-
ferent geometric priors such as sparsity and subspace assump-
tions on both the filter and the input, using both convex and
nonconvex optimization formulations [18], [19], [24]-[32].
With the presence of multiple channels, one expects to
identify the filter with fewer prior assumptions. Algorithms for

3The nonlinear blur kernels are randomly produced using the tool in
https://github.com/LeviBorodenko/motionblur.

multi-channel blind deconvolution include sparse spectral
methods [33], linear least squares [34], and nonconvex reg-
ularization [35]. A different model called “sparse-and-short”
deconvolution is studied in [36], [37].

B. Provable Dictionary Learning

Learning a sparsifying invertible transform from data has
been extensively studied, e.g. in [17], [20], [21], [38]-[41].
In addition, provable algorithms for learning overcomplete
dictionaries are also proposed in [42]-[45]. Our problem can
be regarded as learning a convolutional invertible transform,
where the proposed algorithm is inspired by the approach
in [20] that characterizes a local region large enough for the
success of gradient descent with random initializations. How-
ever, the approach in [20] is only applicable to an orthogonal
dictionary, while we deal with a general invertible convolu-
tional kernel. Compared to sample complexities required in
learning complete dictionaries [16], our result demonstrates
the benefit of exploiting convolutional structures in further
reducing the sample complexity.

C. Provable Nonconvex Statistical Estimation

Our work belongs to the recent line of activities of design-
ing provable nonconvex procedures for high-dimensional
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statistical estimation, see [46]-[48] for recent overviews.
Our approach interpolates between two popular approaches,
namely, global analyses of optimization landscape (e.g. [14],
[16], [38], [49]-[54]) that are independent of algorithmic
choices, and local analyses with careful initializations and
local updates (e.g. [26], [55]-[64]).

VI. DISCUSSIONS

This paper proposes a novel nonconvex approach for
multi-channel sparse blind deconvolution based on mani-
fold gradient descent with random initializations. Under a
Bernoulli-Gaussian model for sparse inputs, we demonstrate
that the proposed approach succeeds as long as the sample
complexity satisfies p = O(n*?polylogp), a result signifi-
cantly improving prior art in [14]. We conclude the paper by
some discussions on future directions.

o Improve sample complexity. Our numerical experiments
indicate that there is still room to further improve the
sample complexity of the proposed algorithm, which may
require a more careful analysis of the trajectory of the
gradient descent iterates, as done in [65].

o FEfficient exploitation of negative curvature. We remark
that it is possible to characterize the global geometry
over the sphere, where the remaining region contains
saddle points with negative curvatures. However, a direct
analysis leads to an increase of sample complexity which
is undesirable and therefore not pursued in this paper.
On the other end, it seems random initialization without
restarts also works well in practice, which warrants
further investigation.

o Super-resolution blind deconvolution. The model studied
in this paper assumes the same temporal resolution of the
input and the output, while in practice the sparse activa-
tions of the input can occur at a much higher resolution.
This lead to the consideration of a refined model, where
the observation is given as y = F!  diag(g)F.xp,
where F, «p is the oversampled DFT matrix of size
n x D, D > n. The approach taken in this paper cannot
be applied anymore, and new formulations are needed to
address this problem, see [66] for a related problem.

o Convolutional dictionary learning. Our work can be
regarded as a first step towards developing sample-
efficient algorithms for convolutional dictionary learn-
ing [67] with performance guarantees. An interesting
model for future investigation is when multiple filters
are present, and the observation is modeled as y =
Zé“:lC(gg)a:g, with L the number of filters. The goal
is thus to simultaneously learn multiple filters {g,}%_,
from a number of observations in the form of y.
See [68] for some recent developments.

APPENDIX A
PREREQUISITES

For convenience, let X € R"*P be the inputs X =
[€1, 22, - ,zp|. Denote the first-order derivative of v, (x)
as ¢y, (r) = tanh(z/p) and the second-order derivative as
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Yi(e) = (1 - tanh? (z/1)) /- The gradient of v, (C(x;)h)
with respect to h can be written as

Vit (C(z:)h) = C(x;)" tanh (@) .32

where, with slight abuse of notation, we allow tanh(-) to take
a vector-value in an entry-wise manner.

Recalling the reparameterization h = h(w) =
(w,\/1—||w|§), let Jp(w) be the Jacobian matrix
of h(w), i.e.

w
Jp(w) = I, - ———| e RI"=Dxn 33
) = |1 SR

where hp,(w) = /1 — ||wl|3 is the last entry of h(w). By
the chain rule, the gradient of v, (C(z;)h(w)) with respect
to w is given as

Vb, (C(x)h(w)) = Jp(w)Vr, (C(x;)h)

= Jp(w)C(x;) " tanh (M) . (34)

Moreover, the Hessian of 1, (C(x;)h(w)) is given as
Vi (C(@oh(w)) = Tu(w)C(@)
. {I — diag <taunh2 (M

I
C(ai)h(w)

| ct@)amuw)”

— igS',kl(a:i)T tanh <

hn ) Jh('w)Jh(w)T

(353)

A. Useful Concentration Inequalities

We first introduce some notation and properties of sub-
Gaussian variables. A random variable X is called sub-
Gaussian if its sub-Gaussian norm satisfies || X||,,, < oo [69].
Similarly, we have [z|,, < oo for a sub-Gaussian random
vector x [69, Definition 3.4.1]. For Bernoulli-Gaussian random
variables / vectors, we have the following two facts, which
imply that they are also sub-Gaussian.

Fact 1 ([20, Lemma F.1]): A random variable X € BG(6)
is sub-Gaussian, ie. || X|,, < C, for some constant C,.
Similarly, for a random vector  ~;4 BG(6) and any
deterministic vector v € R™, we have Hvacsz < Cy||vlly
for some constant C},.

Fact 2 ([16, Lemma 21]): Assume x, y € R" satisfy
x ~;iq BG(0) and y ~;;q N(0,I). Then for any deterministic
vector u € R™, we have E(‘uTaz|m) < E(|uTy‘m), and
E(||z]5") <E(|y|5") for all integers m > 1.

The second fact allows us to bound the moments of a
Bernoulli-Gaussian vector via the moments of a Gaussian
vector, which are given below.

Fact 3 ([16, Lemma 35]): Let y € R™ be y ~:q9 N(0,1),
we have for any m > 1, E (||y[|3*) < mIn™/2.

In addition, let us list a few more useful facts about sub-
Gaussian random variables.
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Fact 4 ([69, Lemma 2.6.8]): If X is sub-Gaussian, then
X —EX is also sub-Gaussian with || X — EX||,, < C|[X][,,
for some constant C'.

Fact 5 ([69, Proposition 2.6.1]): If X, Xo,---,X,, are
zero-mean independent sub-Gaussian random varlables then
there exists some constant C' such that ||Y.7 | X; [ v
C i IXlly,

Fact 6 ([69, eq. (2.14) and (2.15)]): If X is sub-Gaussian,
it satisfies the following bounds:

P(X| 2 1) < 2exp (—ct?/ | XI[},) Ve =0,
my1/m
EIX[™)™ < ovm||X]l,, ¥m>1,

where ¢, C' are some universal constants.

Combining standard tail bounds with the union bound,
we have the following facts.

Fact 7: Let {x;}_, € R™ be independent sub-Gaussian
vectors with ||x;||y, < B for some constant B. Then there
exists some universal constant C' such that with probability at
least 1 — p*S, we have

m?)]{ |lxill, < CBy/nlogp.
1€(p

Fact 8: Let X € R"*P be X ~;;q BG(0), where 6 €
(0,1/2). With probability at least 1 — (np)~", we have

= max | Xj;| < 44/log(np).
.7

Finally, let us record the useful Bernstein’s inequality for
random vectors and matrices, which does not require the quan-
tities of interest to be centered. This is a direct consequence
of Fact 4 on centering and [70, Th. 6.2].

Lemma 7 (Moment-Controlled Bernstein’s Inequality): Let
{X; € R™"}’_, be a set of independent random
matrices. Assume there exist o, R such that for all m > 2,
E (| Xx||™) < Z'o? R™ 2 Denote S = 2> h—1 X, then
we have for any ¢ > 0,

Xl

—pt?
— < — ).
P(]|S —ES]| >t)_2nexp(202+2Rt)

Let {x; € R"}}_, be a set of independent random vectors.
Assume there ex1st o, R such that E (||zx|]5") < m'02 R™~2,
Denote s = = k 1 Tk, then we have for any ¢ > 0,

_th
P —E t) < 1 — .
(Is = Bsll, > 1) < 0+ Dexp (5257 )

B. Technical Lemmas

In this section, we provide some technical lemmas that are
used throughout the proof. We start with some useful proper-
ties about the tanh(-) function since it appears frequently in
our derivation.

Lemma 8: Let X ~ N(0,02), Y ~ N(0,07), then we
have

E [tanh(aX)X] = ac2E [1 — tanhz(aX)} ,
E [tanh (a(X +Y)) X] = ao2E [1 — tanh® (a(X +Y))] .
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Proof: Using integration by parts, we have
1 o —-X?2
tanh(a X)X ex dX
\/27’(’0’1/—00 ( ) p< 20-:% )
h(aX —XEN
t
anh(a )exp< 307 > ‘0

—X?
ao? (1 - tanhQ(aX)) exp ( 207 ) dx

E [tanh(aX)X]=

203%
V2o,
1 (o]
+
V2mo, /_oo

=ao’E [1 - tanhQ(aX)] ,

and

E [tanh (a(X +7Y)) X]

1 e8] _ Y2
/ X exp X
210,04 J_ oo 202
o] —Y2
. tanh(a(X +Y
[m anh(a(X +Y))exp ( 202
-1 _X2 ‘OO
= X
2100y P 202 ) -
oS] _Y2
o2 [/ tanh(a(X 4+ Y)) exp (—2 5 ) dY]
o

y
27T0'r oy / /

> dYdX

(1 - tanh®(a(X +Y)))

—Y?
- exp ( 952 )eXp ( 952 ) dYdX

= a02E [1 — tanh®(a(X + Y))} ,

where we used the fact that the first term in the second line
is 0. O
Lemma 9: The functions 1, (z) = tanh(x/u) and ¢, () =
(1 — tanh® (z/p)) /p are Lipschitz continuous with Lipschitz
constants 1/p and 2/p%, respectively.
Proof: Since 1, (x) is continuous and third-order differ-
entiable, we have for any x and 2/,

x/
vio) — e < | [ wia:
x
/ " |.13 — J)/|
< o — a'fmax |y (2)] < 7
2 u
and
W)//(x) o "
w
x/ 2
< / —— tanh (i> (1—tanh2 (i>)‘dz
s | K p [
2z —a|
<——
w
where we use the fact that [tanh(z)| < 1 and 1 — tanh?
(x) <1 forall x € R. O

Lemma 10: Let x ~;;q BG(0) for 6 € (0,
some constants ¢; and co such that

P (|C(x >||>t><2nexp(‘t2),

c1n

1]. There exist

m m! m
EllC(@)|*" < = (e2 nlogn)

for all m > 1.
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Proof:  Since a circulant matrix is diagonalizable by
the DFT matrix, the spectral norm of C(x) is the maxi-
mum magnitude of the DFT coefficients of x, where the
ith coefficient is given as z; = flz, where f;, =
[1,es2mi/n ... ei2min=1)/n]T g the jth column of the DFT
matrix. Since & ~;;q BG(0) is sub-Gaussian, by Fact 1, Z; is
also sub-Gaussian with ||Z; ||, < C| f;|l2 = Cv/n. Therefore,
by the union bound, together with Fact 6, we have

—t2
P (J|C(x)]| 2t):1P(max|a:z| >t) <2nexp( )
i€[n] cn
for some constant c¢;. Equipped with the above bound, we can
bound the moments of [|C(z)]|* by

E||C(z)|[*" = /OOO P(C(2)|*™ > u)du
= /OO P(|C(x)|| > t) - 2mt>™dt,
0

where the second equality follows by a change of variable
t = u/?™ To continue, we break the bound as

EiC(2)|*"

/2\/01 nlogn

< 1-2mt>™1dt

—Jo

oo 42
—|—/ 2n exp (—) 2mt*™tdt
2y/c1 nlogn it n

m ° _t2
< (4¢1 nlogn) —|—/ exp <2
0

c1n

> 2mt>™ Lt

(4e1nlogn)™ + (2¢1 n)™ m!

IN

|
% (CQ nlogn)m )

where the second inequality used the fact exp (Qlezn) >

’1—2) when ¢ > 2y/cinlogn, and the third line
used the definition of the Gamma function. The proof is
completed. OJ

Lemma 11: Let {x;}!_, € R"™ be drawn according to
x; ~iiqg BG(), 6 € (0,1/2). There exists some constant C
such that

2nexp (

LS c@) () — 1

Onp i=1

log2 nlogp

<
<O

holds with probability at least 1 — 2np~5.

Proof: By assumption, it is easy to check

E

1 & Ty
Wp;cm) C(z;)

=E [%C(ml)TC(wl)} =1

The remaining of the proof is to verify the quantities needed
to apply Lemma 7. Specifically, we bound the mth moment
of 7-C(x;)"C(x;) as

" 1
= B (@)

<ﬁ! clogn m’
-2 0

E H %C(mi)TC(a:i)
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2 2
where the last line comes from Lemma 10. Let 02 = < 109% n

R = Clo% in Lemma 7, we have
> t)

]ID <
p 2t2 >
2¢2log® n + 2chtlogn )

1 p
. > Cla) " C(ai) — 1

i=1

(36)

< 2nexp

Setting t = C\/% for some sufficiently large C,
we complete the proof. OJ

APPENDIX B
PROOFS FOR SECTION III-A

A. Proof of Lemma 1

Recall the two regions introduced in (14):

n—1
0= {w: L= <l < 2}
0 = {w:lwl, = {5}

We further divide ()1 into two subregions,

Ro = {u: MJ\ wly < 35z}

n—1
Ri=qw: < ,
1 { 20[‘” [P n+50}

which we will prove the desired bound separately.
Note that

E¢o(w) = n-Ey, (z"h(w)),

since every row of C(x) has the same distribution as
x ~;;q BG(0). Therefore, the strong convexity bound (26b)
in Q, follows directly from the following lemma from
[16, Proposition 8] by a multiplicative factor of n.

Lemma 12 ( [16, Proposition 8]): For any 6 € (0,1/2),
if p < ﬁ, it holds for all w with [[w], < ;£ that
VZEY, (z"h(w)) = #

Similarly, by the followmg lemma from [16, Proposition 7],
we have the desired bound (26a) in Rg.

Lemma 13 ( [16, Proposition 7]): For any 6 € (0,1/3),
if u <9/50, it holds for all w € Rg such that

w'VyuEy, (2" h(w)) 0
> .
[[wll 20V/27

Therefore, the remainder of the proof is to show that (26a)
also applies to R;. To ease presentation, we introduce a few
short-hand notations. For = 2 ® z ~;q BG(0) € R”,
we denote the first n — 1 dimension of &, z and Q as &, z
and Q, respectively. Denote Z as the support of Q and J as
the support of €.

Note that it is easy to confirm the exchangeability of the
expectation and derivatives [16, Lemma 31] as

(37)

w' VB (x h(w) | w! Vet (27 h(w))
[wll - [wll, ’
(38a)
VZEY, (z"h(w)) = EVa, (" h(w)).  (38b)
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Thus, plugging in (34), we rewrite the expectation of the
directional gradient as following:

. w' Vi, (2" h(w))
wll,

T, 2
= o () (e -
[[wl| I hn

1-6 0
= ( )Il + I, (39)
wll, lwll,
where

w'x
I =E;z [tanh (—) 'wTw] ,
I
2
T lwl

T+ h
h—E,. [tanh (w> (w . Zﬂ |
7 han

and the second equality in (39) is expanded over the distribu-
tion of €2, ~ Bernoulli(#). Conditioned on the support of €2,
we have X = w'z|Q ~ N(0, ||wg|\§) Moreover, denote
Y = hnzn ~ N(0, h2). Therefore, invoking Lemma 8, we can
express I; and I respectively as

s (3]
_ %EQ [|w3||§Ex (1 — tanh’ (%))] ’

2
(h () <X : &y))
’ Iz h

_ %EQ [[(||wg|§ ~ llwll3)

o o (E2))]

Plugging the above quantities back into (39),
. 2 -1

wing Jlwgl} = YL el = 1) fwge
S wil{€,; = 0}, we arrive at

w' Vi, (2" h(w)) ]

I =Eg

I =Egq

and

2 f—
5 =

E

[[wll,

n—1
-1 H)Efz [Z wi1{Q; =1}

B H ||w||2 i=1

w\, L& i Fwiz1{Q; =1
E, <1 — tanh? < Mip A { }>>]
1

n—1
LEQ > wil{Q; =0} -E. <1—

plwlly ™ | =

tanh? <w\T{i}5’\{i} +wiz {2 = 1} + hnzn> )1
1

(40)

n—1

1 2
= wiQﬁ
pl|wlf2 2 wiQ

i=1

(41)
where (); is written as

Qi=(1-0)Eq [1{91 =1}
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W ATy +wiz 1{Q; =1
-Ez<1_tanh2< VP {i} iz 1{Q; = 1}

I

— 0Eq [n{m =0} -E. <1—

tanh? <“’\T{i}5’\{i} +wiz {2 = 1} + hnzn> )] |
I

Evaluating Eg, over Q\{i} and ; sequentially, and combining
terms, we can rewrite ); as,

Qi = (1-0)0

E, [ 1 — tanh? w({i}j\{i} T
: 1
w B\ + bz
—E, | 1- tanh? M A n
I

“Eo\ (i}

= (1 = 0)0Eq) ;3 [E=(K3)], (42)
where
T —
K; = tanh? v P+ finn

I

L@\ g0 + wizi

— tanh? <w\{i}w\{z} : l) .

W

Our goal is to lower bound @; for all i € [n — 1]. Without
loss of generality, we denote the index of the largest entry of
w in magnitude as 7, i.e, |w;,| > |w;|, ¥j € [n —1]. We first
claim

Qj > Qi

whose proof is given at the end of this subsection. With
this claim, we only need to lower bound @Q;,. We pro-
ceed to lower bound E;[K;,]. Let X := w\, &\ i) +

= 2

wiozi0|ﬂ ~ N(Ov ||wj\{io_}||2 + wfo) = N(gaag() and
Y= w0\ @ fio) + hnznl@ ~ N, [[wgy oy [l + B7) =
N (0,02 ). By the fundamental theorem of calculus, we have

Y X
K, = tanh? (—) — tanh? (—)
w w
Y|
= g/ tanh (£> . (1 — tanh? (£>) dx
BJ x| 2 2
2 (Ir 2
=)
mJix) L 12
—2x
. [1 — 2exp <—>} dx
I
2 [V —2z
=)
rJix) L 12
oo (57
=2 |exp —
I

Vi€ [n—1], (43)
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where the third line follows from the bounds 2 exp(—2z/u) —
exp(—4z/p) < 1 — tanh? (#/p) and tanh(z/p) < 1 —
exp(—2x/p) in [16, Lemma 29]. To continue, we record the
lemma rephrased from [16, Lemma 32, 40] and obtain the
following lemma by directly repeating integration by parts.

Lemma 14 ( [16, Lemma 32, 40]): Let X ~ N(0,0%).
For any a > 0, we have

1 1 1 " 3 15
V2r \aox adoy  aSo%  aTok
< E[exp(—aX)1{X > 0}]

- 1 1 1 L 3
~ V21 \aox @’k aPo )’
Therefore, K7 can be bounded as
(=)
p | —
I

K, = 2E [exp (%‘X') -
= 4E[exp (%) 1{X > 0}

— exp (%) 1{y > 0}

1 pooopto o 3p® 157
V2r \20x  80%  320% 270%

_ 4 (L o 3 )
V2or \ 20y 80?, 320?,
:LKL_ﬁ) (M_B_M_B)
Vor ox Oy 4O'X 40?,
+(3,u5_3,u5)_15u}
160§( 160?,

6.7 |°
2P0y
we have

>

Similarly,

poop p? p?
Ko < PR 3 3
4\/ 27 oy 160y 160y
n 3u _ 3@5 _ 1547
4405, 4oy

4647,
Plugging the above bounds back into (44), we have

E. [Ki] > Exy [K1 — K]
s 2 [y (e
“ V2r | \ox oy 40% 4oy
N 3p°  3pS 1547
160% 1609 2607
(-2 - W
C 42n oy 1603 1603

N 3’ 3u5 157
4405, 4oy 4657,

1 [Bu 1 1 271 1
Lt (v o) o)
13p° [/ 1 1 154" T5p
(- ) w7
1 [113p° (1 1 15u7  75u7
el () a1
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1 1 3u 27t (1 1 1 ]
+ | — - — —_ = — + =+
ox Oy 4 64 ox Oy OxOy ]
1 w’
V2 207
1 1 3 273 (1 1 1 |
+ | — - — on =R — + =+ ,
ox Oy 4 64 ox Oy OxOy ]

(45)

where the last line follows from the fact ox < oy and

msp® (1 1
el s g§)>0~

- \/ij\{io}Hz"’h%O < 1 and
oy = \/ij\{io}Hz +h2 <1,

To continue, since ox

1 1 O’% — O'g( > O'% — O'g(
ox Oy axay(ax +oy) 2
1 1 &o
2 2
= > —
(h — h; ) 5 [h T h; } o
(46)

where the second inequality uses the fact hfl / hfo > 1+ &,
hp, > 1/y/n and & € (0,1). In addition as |hi,| = max; w;
and ||wl|, > ﬁg’ we have |h;,| > W So we have - <
< 20+/5n, such that

i0

1 1
O'X O'Y OxXO0y

273 1 1 1
K —- +t = + < ﬁ7 (47)
64 ox 0y OxOy 4
provided 1 < en~'/? for a sufficiently small ¢ > 0. Plugging
(46) and (47) back into (45), we have

peo opt 1o

> )
2V2m0% T 16v2mn
conditioned on the support ﬁ\{io}, provided that U% <
P

(20v/5)7
c>0.

Plugging (48) back into (42), then into (41) with the help
of (43), finally, by the assumption ||w|, > ﬁg and (38a),
we have

Ez Kz Z
Ko} 8v2mn

(48)

2and p < cfé/ 61=3/4 for a sufficiently small

w' EV,(w) oY Vi (2" h(w))
[|wll, lwll,
nl\wllz 0(1—0) péo - _ %
- w 16v2mn — 480107

where the final bound follows from the constraint 6 € (0,1/3).

1) Proof of (43): For any j € [n — 1] and j # i,
by evaluating € \ {io} over £\ {io, j} and ; sequentially,
we can rewrite ();, as

Qi, = (1 —0)0*

wTi AN {ig,j} T hn2ntw;2;
B fio.5) Ez<tanh2< \{io.5} P\ Lo g

T _
_ tanh? <w\{io,j}w\{io7j} + Wiy Zip + wﬂj) )]
7!
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+ (1 —6)%0

T _
B a2 [ P\t Lo} T Ainzn
z
o]
T _
— tanh? <w\{ioa}w\{z‘o,j} + TUioZm) ﬂ |
w

Similarly, we can write (); as

Qj=(1-0)6

wTi :i\{z j}+h7zzn+wiozio
']Es‘z\{io7j}l1[‘3z<tanh2< \tio,j} At ’

T _
_ tanh? (w\{io,j}w\{io,y‘} + Wi zip + Wy Zj) )]
I

+(1—6)%0

W\ A®\ (i 5} T Pnn
.Eﬁ\{iod} [Ez <tanh2 < \{io.j} Mo

’ IES_7\{1'071'}

(49)

~ tanh? (“’\T{io,j}w\{m} + wﬂj) ) (50)
I
Combining (49) and (50), we have
Q; — Qi
= (1= 0)0°Eq (59,53 Ls] + (1 = 0)*0Eq (3, ;3 [1a], (51
where

I; =E, [ tanh? w\T{ioJ}j\{iUJ} + hazn + Wi 2
} H
— tanh2 <w\T{¢0,j}w\{z‘oJ} + hnzn + wﬂj) )
/J/ Y

T = .
I,=E, <tanh2 <w\{i07j}w\{i07j} + wmzzo>
n

T r .
ok <w\{io7j}w\{io,j} + wm) )
I

To show that I3 > 0, let X; := w\{m j}w\{m’]} + hpzn +
wmzzom ~ N(0, ||wj\{10,j}||2+h +w? =: 0%, )andY1 =

(i 1)\ Lo g} F nn + w55Q ~ N, (0, [0 [l5 +
h2 + w = 0?,1) Plugging X,Y; into the term I3, we have

X Y;
I;=F, (tanh2 (71) — tanh? (i)) >0 (52)

conditioned on any support £\ {ig, j}, since 0%, > oy, and

the function tanh? (x) is monotonically increasing with respect
to |z|. Similarly, we have I, > 0 as well. In view of I3, I, > 0
and (51), we have (43).

B. Proof of Proposition 1

The directional gradient can be written as a sum of p i.i.d.
random variables as following:

w vw¢0 l

[[wll p-

P
E (2]
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where

In order to apply the Bernstein’s inequality in Lemma 7,
we turn to bound the moments of X,;. Plugging in (34),
we have

w' Jp(w)
[[w]l2
— w !
o |:”sz
<Van|c(@)ll,
where the last inequality follows from [tanh(-)]
llw]] llwll3
| —mms]l, = i+ 5 < viem

since w3 < 2L and b, = /1 Twlf > &

Lemma 10, we have for any m > 2,

Xi = C(a;) " tanh (M)

o]l } C(x:)T tanh (C(sci)h(w)>

" hp(w)

E|X:|™ < (vV2n)"E ||C(z:)|™ < 7 (Cn®logn)™?

(54)

for some constant C. Finally, using (38a), we complete the

proof by setting 02 = Cn3logn, R = /Cn3logn and
applying the Bernstein’s inequality in Lemma 7.

C. Proof of Proposition 2

The Hessian of ¢,(w) can be written as a sum of p i.i.d.
random matrices as following:

V2 ¢, (w) Zx, where, Y; = V24, (C(z;)h(w)).

i=1

Plugging in (35), we divide Y; into two parts as:

Y, =D, - E;,
where
D, = %Jh(w)C(wi)T {I — diag <tanh2 <W)>}
C(xi)Jn(w) ",
B, - h—lnSn_l(sci)Ttanh (M) Tn(w)Jn(w) T

Therefore, we bound the sums of D; and E; respectively,
using the Bernstein’s inequality in Lemma 7.

1) Bound the Concentration of E;: We start by bounding
the moments of E;. Recalling the Jacobian matrix Jp(w) in
(33), we have

wa

h2 7
+ |lw||3/hZ% < 5 since
2. Consequently, by the

Jn(w)Jp(w)T =1+

(w)In(w) || =
for [Jw||2 < 1/2, we have h,(w) > 1
triangle inequality,

\)—‘

IA

1) < -l (222D | o) )|

ll:|2

IA
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We can bound the moments of E; as
EHEiHm < 10mnm/2E”wiH£n

!
< 1Om,nm,/2 . m!nm,/Q < %(2071)2 . (20n)m—2,
where the second line follows from Fact 2 and Fact 3 that
bound the moments of ||x;]|2.
Setting 02 = 400n2, R = 20n, we apply the Bernstein’s
inequality in Lemma 7 and obtain:
1< 1< t
P{- E, —E| - E ||l>-=
< 2nexp (
for some large enough constants c¢; and cs.
2) Bound the Concentration of D;: Using the fact that 1 —
tanh? (-) <1, the spectral norm of D; can be bounded as

(55)

1 5
e e (@) |7 (w) | < " e,

where we have used again ||Jp, (w)|* = (| Tn(w) T (w
5 derived above. Invoking Lemma 10, we obtain

m 5\" m _ m! (Cnlogn\™
BI0" < (2) Bl < 5 (SR

)=

1
(56)
for some constant C. Let 02 = ngzn, R = %,
by the Bernstein’s inequality in Lemma 7, we have:
1< t
P{|- D, - E D; —
_ 2t2
< 2nexp ( - > . (57)
csn?log”n + cquntlogn
for some constants c¢3 and c4.
Recall the Hessian of interest is written as:
) 1 1< 1<
Vadow) ==>"Y; == "D, —=>"E;. (58
P P P

Combining the bounds for D; (cf. (57)) and E; (cf. (55)), and
observing V2 E¢,(w) = EVZ2 ¢,(w) from (38b), we obtain
the final bound as advertised:

P (Hv'?ud)o(w) -

< 4nexp <

V2 E¢,(w)| > t)

—pp’ ¢ >
cs n?log® n + cgunlog(n
D. Proof of Theorem 2
We start by introducing the event
Ao = {1 X« <4v/log(np)},

which holds with probability at least 1 — 6(np)~7 by Fact 8.

4799

1) Proof of (16a): To show that %@’(w) is lower

bounded uniformly in the region Q;, we will apply a standard
covering argument. Let A; be an e-net of Q;, such that for
any w € Qq, there exists wy € Np with |w —wq|, < e.
By standard results [71, Lemma 5.7], the size of Nj is at
most [3/€]”, where the value of e will be determined later.
We have

W' Voo (w)
[[wl[
_ wIva¢o(wl) + [wva¢o(w) wl w(bo('wl)}
llwll [wll, l[willy
i [wfvuﬂéo(wl) . wirva¢o(w1):|
l[w:ll sl
w| EVayoo(wi) ‘wTngi)o(w) W, Vi o(wr)
l[w:ll, l[wll; lwally
I I
‘wl w¢o(w1) . wavwd)o('wl)
w1l [wally

I
In the sequel, we derive bounds for the terms I, II, III
respectively.
e For term I, as w; € N7 C Qp, by Lemma 1, we have

w{ EV.,¢o(w) 0
fwil, = 480vi05
o To bound term II, by the additivity of Li Tpschltz constants
and [16, Proposition 13], we have %ﬁ)o(w) is L1-
Lipschitz with

8v/2n%/2 4n?
L < (fT 802 ) 1 + 2 X

Thergefore, under the event A,
<= log(np) for some constant cy. Setting € =
we obtain that

I=

0 = c10&.

we have L[; <
c10&o0
3L °

o= wvad)o(w) _ wlva¢0(w1)
wl[, [Jwn ],
10
< Ly flw — ], < Lre < 290,

Along the way, we determine the size of Nj is upper
bounded by

V1| < [3/€]™ < exp {nlog (%Zgo(nm) }

o For term III, by setting ¢ = in Proposition 1 and
the union bound, we have the event

c160&o0
3

Ari={¢{ m wl w(bo(wl) _ wIva¢0(w1)
wieN Jw ]l l[willy
< c10&o
-3
holds with probability at least
_th

1—|Ni|-2exp
C1 n3logn + Cy

n3 log(n)t>
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_ 2¢2 3
51— 2exp [ 2P | 1o (2 08 (np)
n3logn wh&o

> 1 2exp (—csn),

provided p > 90222 log nlog (n l‘zgp ) for some suffi-

ciently large C and 7 is sufficiently large.

Combining terms, conditioned on A (1.4, which holds with
probability at least 1 —6(np)~" —2exp (—c5 n), we have that
for all w € Q;, (16a) holds since,

.
M >T—11- 11
wll
c10 c10 c10
> 1350 _ 1350 410 = 1350.

2) Proof of (16b): The proof is similar to the above proof of
(16a) in Appendix B-D1. Let A5 be an e-net of Q, such that
for any w € Q, there exists wy € N with ||w — ws||, <e.
By standard results [71, Lemma 5.7], the size of A5 is at most
[341/(4y/2¢)]™, where the value of ¢ will be determined later.
By the triangle inequality, we have for all w € Q,

Vioo(w) = inf VLE (6, (ws)

H;
— || Visdo(ws) —
H,

- "Vi¢o(w2) -

Vio®o(w)|| I

Vi,E (¢o(w2)) H I

Hj

In the sequel, we derive bounds for the terms Hy, Hy, H3
respectively.

o For H,, by Theorem 1, we have

0 cs nb
H, = inf V2 o(wso)) = i I:= I
1=, ol VwE (Go(w2)) = 5v2mu 7

o To bound Ho, by the additivity of Lipschitz constants and
[16, Proposition 14], we have V2, ¢,(w) is Lo-Lipschitz
with

4n3
Ly < =7 IXI
4n?  82n?/? 2
+ (‘7;"+ L X5 + 8n [ Xl

cg n®
u?

log®?(np) for
we obtain

Under the event Ag, we have Lo <
cs no

some constant cg. Settlng € = ER

H (35 nH

V2,00 (w2) — V2, ¢0(w

cs n@I.
3p

Along the way, we determine the size of N3 is upper
bounded by

2| < [3p/(4v26)]"

91 3/2
. lnlog <%§W)>] |

Hy <
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o To bound H3, by setting ¢t = <2 :9 in Proposition 2 (as

lwll2 < 1/2 for w € Qs when p < 1) and the union
bound, we have H3 < 053591 under the event

cs nb
A= { . V300 (002) - V3B (0l < 2]

holds with probability at least

2
1—|N2|'4nexp< 217# >
C5 n?log” n+ Cyutnlogn
92 2 oe3/2
> 1—dnexp [ BP0 4 pog S l0e T (0)
log”n 0

> 1 — exp(—con),

n log/

provided p > C" log? nlog ( ) for some suffi-
ciently large C and n is sufﬁ01ently large.

Combining terms, conditioned on 4( (.42, which holds
with probability at least 1 — 6(np)~" — exp(—cgn), we have
(16b) holds since,

c5 nb

V2 ¢o(w) = Hy — Hy — Hy = L

3) Proof of (17): The characterized geometry of ¢,(w)
implies that it has at most one local minimum in Q> due
to strong convexity, which is denoted as w}. We are going to
show that w} is close to 0 in Qy. By the optimality of w}

and the mean value theorem, we have for some ¢ € (0, 1):

$0(0) = ¢o(wy)
> 60(0) + (Vado(0), wi) + wl" V26, (twy)w;
0
> 00(0) ~ a3 V() + 5= w1

where the second line follows from (16b) and the Cauchy-
Schwartz inequality. Therefore, we have

2u
* < 2 )
Hwo”Q = Can I de)O(O)HQ

It remains to bound |[|V¢,(0)|,, which we resort to
the Bernstein’s inequality in Lemma 7. As V,,¢,(0) =
% D Vi, (C(z;)h(0)), where it is straightforward to
check EV.,1, (C(x;)h(0)) = 0 due to symmetry. We turn

to bound the moments of ||V, (C(x;)h(0))]], as follows,
[Vawthy, (C(xi)R(0))]],
Jn(0)C(x;) " tanh <%>

o (G200

(59)

< IR (0)[ [IC ()|
<vnlc@)l,

where the last inequality follows from |Jx(0)| =
||[In,1 O]H = 1 and [tanh (-)| < 1. Invoking Lemma 10,
we have for all m > 2,

E [|Vwiy (C(z)h(0))]|5']
< (Va)"Ellc(@)|" <

2

!
% - (Cn? log(n))m/2
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for some constant C. Setting 0> = Cn?log(n), R = T 1
Cn?log(n) in the Bernstein’s inequality in Lemma 7, -(Cg) Cl9) -1
we have .
= |a+a)™ -1, (63)

P(l|vw¢o(0)”2 2 t)

—pt? where A = (C(g)T [ﬁ - C($i)TC(wi)—I:| C(g)) .

2(n+1)exp . 1
2Cn2 log(n) + 21/Cn?log(n)t (C(g)"C(g))

By Lemma 11, we have when p > Cnlog(n),

Lett = @UM, we have 5
< log”nlogp

1>
—ZC(mi)TC(azi)—I < —
n2lognlogp Onp — % p
[Vawo(0)]ly < coy | ————— (60)
p with probability at least 1 — 2np~85, and |A| <

2 .
with probability at least 1 — 4np~7 when p > cionlog(n). CkK?y/ % Then as long as || A| < 1/2, which holds
Under the sample size requirement on p, we have

4log?(n)1
when p > %f")‘)gp for some large enough constant Cs,

coll 1ognlogp u we have
* 6
[ws = 0f, < ==/ ———— < — 1 -1 Al
0 p 10° I+4) -I|<|I+A4) HAllél_iHAHS?HAN
for some constant cg, which ensures w) € Qs. Plugging this back into (62), we have
2
APPENDIX C / 4 [log” nlogp
Uu-u|<cC —_
PROOFS FOR SECTION III-B I = Csm 0% p
A. Proof of Lemma 2
Recalling A = (U’ —U)U™!, we have B. Proof of Lemma 3
(n+)
A = H(U/ ~U) U_1H - U -U, (61) We first record. some u.seful facts. For any h € S,
we have the Jacobian matrix Jj, (w) = [ , —hﬂ} € R(n=1)xn
since U is an orthonormal matrix, i.e., HU‘1 H = L. Therefore,  ¢,iicfieg "

it is sufficient to bound ||U’ — U]| instead. Plugging in the

definiti f U’ and U, h
efinition o an we have [ Jh(w)[| < || Tn(w)||p < \[n = 1+ H ”2 <V2n, (64)
U -U|

HC JR - C(g) (Clg) —1/2H since ||w||, < 1and h, > f In addition, by the union bound
B , and Lemma 10, we have with probability at least 1 — (np)~ 8
—~1/2
< 1@l |R~ (e e) " max [C(w,)| < C/nloglnp), (65
- oo
<c(g)] for some constant C'.
- Crmin ((C(Q)Tc(g))_l/Q) 1) Proof of (29a): Similar to (34), we can write the gradient
_ Vwo(w) as
1
< el (cg) Clg) Il]|clg) clg)R* -1 L
=r?||C(g)"C(g)R* -1, (62) Vus(w) = S Jn(w) 1+ A) Cla)T
where the second inequalit.y. follows. from the fact [72, = C(x:) (I+ A) h(w)
Th. 6.2] that for two positive matrices U,V , we have tanh p
||U_1/2 1/2H < %UQU We continue by plugging . . ) )
in the definition of R, Tmin Recalling the expression of V,,¢,(w) in (34), we write
||C(g)TC(g)R2 _ IH V'w@zso( ) - w¢( ) C( )h( )
Z; w
= - In( Ttanh [ 22—
= ‘ (Clg)'Cl9)) Z n < p >
1 & - Jp(w) I+ A) C(x;
<% > <C<g>TC<wi>TC<wi>C<g>)> = v 2 R &) Cle)
i=1 .
1 & - tanh (C(mz) I+a) h(w))
=1+ (c@’ [— C(x:) " C(w:) —I] C(Q)) a
‘ ( fnp ; =91 — 92,
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where 2) Proo!‘ of (29b): First, under the sample size p >
Cor® nlog*(n)logp o0 [ emma 2, we can ensure A < 1.

; 02

Z I (w [tanh (M) Note that

(C( ;) (I+A)h(w)>] | V2 do(w) — Vi, d(w)||
— tanh , L
H Z 5
=) Vutu(C(zi)h(w))

Therefore, we continue to bound ||g1 |2 and [/gz]|2.

——Zv2 5,(C() L+ A) h(w >>H
o To bound ||g1]|2, we have

lg1ll2 < [|[Jn(w)] - max [C(z;)||
i€[p]

< Z vakuw(sci)h(w))

— Vi, ¥u(C() (T+ A) h(w))||. (69)
1o | tanh (W) vSi;ni(lgr( )t?I (is)),h ( v&;; can  write | the Hessian
2 (Clz) (T+ w)) as
(SR 2 V2,(C(a) (L+ A) h(w))
< L)l maxlc@l AL @0 = ) ) 0T
Here, the second line follows from for any i € [p], : [I — diag (tanh2 (C(w) a :A) hm)))]
tanh (C<wi>h<w>> B Tn(w)" .
. S (@) (T4 A)tanh < () (1 +MA) h(“’))
— tanh (cm) u ZA) h<w>) T (W) I (w) . (70)
2

C(xz;)h C(z;)(I+ A)h Subtracting V2,1, (C(z;)h(w)) in (35) from the above equa-
< H (—) - (—) tion, we have
2 2 2
— L@ anl, V2,0 (Cla:) h(w)) — V2,1,(C(x;) (L+ A) h(w))
lll 1 =Q1—Q2— W3+ Qs+ Qs,
< —|C(@)| Al k], = = [IC(x:) || |A]l, (67
< ~lc@)l AR, = lc@l 1Al 6D
where the second line follows from Lemma 9, and the 1 C(x;) (T+A) h(w
last equality is due to ||h|, = 1. Q1 := —Jn(w)C(z;)" ldiag (tanh2 ( (:) ( ) h( ))
o To bound ||g2||2, we have K K
C(x;)h(w
Ig2ll2 < |9 (w)] - max ()] - tanp? (2R )) ]C@»Jh(w)i
Clx;) T+ A)h 1
o ean (CELEELIREN) | L ja) -y = L wiact)
i€[p] 14 2 1%
< Vit | Jn(w)| - max (@) [A]l, (69 [ g (i (G2 2) )
I
where the second line uses |tanh(:)] < 1, and Clxs) T+ A) Jp(w) ",
Htanh (M) H < . ] .
Qg = —Jh(w)C(wl)
Combining (66) and (68), we have 1
. C(x;)(I+ A)h(w)
2
[Vuwto(w) = Vad(w)l, < llg1]z + gzl [I—dlag (tanh (F
1
< 19t max (o)l A Vi maxlco Clai) Adn(w)"
) J(I+ A)h(w)
3/2] — )T
S Cn Zg(np) HA”; Q4 . n 1 wz [tanh [
for some constant C, where the last line follows from (64) _tanh ( (zi)h(w T (w)Jh (w)
and (65), which holds with probability at least 1 — (np) 5. H 7
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1 T Clzi) (I+ A) h(w)
QS = h—nSn,l(a:z) A tanh ( " )
'Jh('w)Jh(w)T.

We’ll bound these terms respectively in the sequel.

o Q1 can be bounded as
1
1Qu < m [ Th(w)[|* [|C ()|

I <C(wi) I+4) h(w)>

I
— tanh® (7(:(%17(10) >
< % 17 (w) | 1€ ()| [IC () Ah(w))|

2
<z 1T (w) 1 IC (@)1 [l [ A,

where the second line follows from Lemma 9, where the
last line uses ||h|j2 = 1.
e Q> can be bounded as

A

Q2 < % 17 () IC () |1 Al (1 + | A)

A

2
m 17 (w) I [IC ()| [ A,

where we have used 1 — tanh?(-) < 1, |A| < 1
respectively.
o Similar to @2, Q3 can be bounded as

1
1Qsll < [ Tn(w)] 2 [[C ()% |A] -

e @, can be bounded as

1 2
1Qull < 5= llzill; [| T (w)]

tanh (C(w‘i) (I J;A) h(?ﬂ))

- (L2200

2

n
< L2 3w @) el 1A

where the second line follows from (67) and h,, > 1/y/n.
e Q5 can be bounded as

1
1Qs ]l < 57— llzilly |7 (w) |* 1A

(€@ (1 A) hw)
ta h( p )
< n el |9n(w) | A

2

where the second line uses |tanh(-)] < 1 and h,, >
1/y/n.

Combining the above bounds back into (69), we have

| V2,60 (w) — V2,6(w)|

4803

2 2 3 2
< || Tn (W) | A max | = [|C ()| [|:]], + = [IC (2
_” h( )H H H Ze%))]{ </1'2 H (wz)H ” 1“2 M|| (wz)H

n
22 o)l + n ||sci|2>-

Plugging in (64), (65), and Fact 7, where with probability at
least 1 — 2p~8,

m:[a)](HC(a:z)H < C'y/nlog(np), m:[a)](HsczHQ < Cy/nlogp,
1€|p 1€|p

we have

nb/2
[Visbo(w) = Vid(w)|| < Co=r=log™*(np) | A

C. Proof of Theorem 3
To begin, by Lemma 3, we have
W' Vo do(w) B w' Vyo(w)
lwl]
< va¢o(w) -
n?/2 log(np)

Vawd(w)ll,

laj <220 g

<cg

and

n%/2 10g*'2 (np)

[V to(w) = Vi,d(w)|| < cn e Al

; (71b)

as long as the sample size satisfies
b

log? n1
IA] < eprty [ 2ETER < o L
0% p n3/210g®? (np)

for some constant C' in view of Lemma 2. Translating this
into the sample size requirement, it means

w8 n3log? plog® n
TS
Under the assumption of Theorem 2, and in view of (16a)
and (16b), we have

Pz

’wvad)(w) wvad)o(’w)
Jwl|  — [|w]
_ wva¢o(w) _ wva(b(w)
|w]] [|w]

> 62500
- 2 )

Vad(w) = Vi,do(w) — [[Vi,60(w) — Vi,é(w)|| T
. Co nGI
= o .

Now let w* be the local minimizer of ¢(w) in the region
of interest. Similar to the proof in Appendix B-D3, we have

x Ap
<
lw*ll, < 5 1w 0]
4p 4u
< " _
< V6o 0+ [Va00(0) = Vano(0)
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< Cop [ [n?log(n) log(p)
~ nb P

n3/2log(np) o 1og2 (n) log(p)
I 0% p '

where the first term is bounded by (60) and the second
term is bounded by Lemma 3. Under the sample size
requirement, the latter term dominates and therefore we

have
ck* [nlog® plog® n
" — 0], < Ty R
p

APPENDIX D
PROOFS FOR SECTION III-C

We start by stating a useful observation. Notice that
€k €n

h,k h,n

€L €n €L (7%
I-hh' - ) ===
( ) <hk hn) <hk hn) ’
we have the relation

af(h)" (Z—: - Z—:) = [(1-hh")VFR)]" (Z_’; _ Z_n>

- T(& _&n
SO E T
holds for both df(h) and 0f,(h).

is on the tangent space of h, i.e.,

(72)

A. Proof of Lemma 4

We first prove the upper bound of ||0f(h)]|, in (31), which
is simpler. Plugging the bound for max;c[, [|C(2;)| in (65)
and ||A|| < 1 ensured by the sample size requirement and
Lemma 2, for any h on the unit sphere, with probability at
least 1 — (np)~%, the manifold gradient satisfies

10F(R)lly < IV F(R)]l;

1< T C(x;) I+ A) h(w)
}—j;(l—i—A) C(x;)" tanh ( . )

<Vn|I+ A max ()|

2

< 2 Cyny/log(np).

We now move to prove the lower bound of the directional
gradient in (30). We first consider the directional gradient of
fo(h) for the orthogonal case, following the proof procedure
of the Theorem 2 to obtain the empirical geometry of f,(h) in
the region of interest (shown in Lemma 15), which is proved
in Appendix D-D.

Lemma 15 (Uniform Concentration for the Orthogonal
Case): Instate the assumptions of Theorem 2. There exist
some constants cq,cp, such that for h € H, =
{h che SI hy # 0,2 /13 < 4},
least 1 — (np) =% — 2exp (—cqn),

with probability at

(=92 €n

dfo(h)" (h_k -3 ) > col. (73)
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Based on the result, we derive the bound for the direc-
tional gradient of f(h) in the general case by bounding the
deviation between the directional gradient of f,(h) and f(h).
Using (72), we can relate the directional gradient of f(h) to
that of f,(h) as

(0f(h) — 0fo(h))" (Z_: B Z_:)

€k €n

— (V(h) = Vfu(h)" (h—k - E) |

We have

@5t - os,m)” (7~ )

< VF(h) =V o(h)l, Z_Z - Z_Z 2
<Von |V f(h) = Vfo(h)],,

where the last line follows from

1/h2+h2_1/ <Vbn, (74
2

due to the assumption h2/h? < 4 and h, > 1/\/n. There-
fore, it is sufficient to bound ||V f(h) — V f,(h)|,. By (32),
we have

IV fo(h) —

n

VIR,

cees (52

(I+A)T C(z)T tanh <M)

ATC(x;)" tanh (M)

Clx;) " [tanh (M>

i=1 K

. (C(m (1M+ A)h)]

'M@ HM*@

@
I
—

2

"I, 8~ "B

-

s
Il
-

IN

2

_l_

N =
M@

2

tanh <C(wl) (2—# A) h>
+ max ||C(x;)|| - max

tanh (70(%)’1 )
ie[p] i€[p] w

. (C(m (1M+ A) h)

< max ||C(z;)| - max
i€p] i€(p]

Al

2

< maXHC(a}z)H .
i€[p]

1
(\/ﬁ 1Al + L max e ||A||)
W i€lp]

<

nlog(np) PN
1

with probability at least 1 — (np)~8, where the penultimate

inequality follows from (67), and the last inequality follows
from (65). By Lemma 2, there exists some constant C, such
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that under the sample complexity requirement, we have
(9% €n

@f(h) — df.(h)" <h—k - h_>

<0 n3/2log(np) A logQrQLlogp < cb§09.
I 0%p 2

In addition, Lemma 15 guarantees that f,(h) " (Z—’; — Z) >
cp€ob. Putting together, we have

s (£ - 22) 2 o7 (£ - 22)

(75)

T ([ €k €n
-~ [sw-osmy™ (= - 5]
cvéol  cpéol
> —_— p—
> cpéol 5 5
with probability at least 1 — 2(np) =% — 2exp (—can).

B. Proof of Lemma 5

Owing to symmetry, without loss of generality, we will show
that if the current iterate h € 85(:” with & € (0,1), the next
iterate

A T )
Th=naf (R,

stays in SE(:JF) for a sufficiently small step size 1. For any
i € [n — 1], we have

(@)2 _ (=00 (W)]n)* _
nt (hi = n[0f (R)];)?

(1- n[af(h)]n/hn)Q
(hi/hn = n[0f (R)]i/hn)?
(76)

By (31) in Lemma 4, which bounds [0f(h)], <
l0f(h)|l, < Cny/log(np) for some constant C, and h,, >

i < 1
1/4/n, by setting n < TNk we can lower bound

the numerator of (76) as

901 ()| /hn < 5 and (1= 0[0f ()} /) 2

2

3
(77

To continue, we take a similar approach to [20, Lemma D.1],

and divide our discussions of the denominator of (76) for
different coordinates in three subsets:

Jo:={ie[n—1]:h; =0}, (78a)

2

jlzz{ie[n—l]:]}ll—g24,hi7é0}, (78b)
| 2

jg:—{ze[n—l]:h—g<4}. (78¢)

o For any index ¢ € Jj, we have h; = 0, and then by (76)
and (77),

BENY (L= nldf(R)]a/ha)® _ 2/3
(hf> T PSR (/107 ©

o For any index ¢ € J1, we have

(E) (= n0f (W) /hn)
W) " (il — n[0f (W)]i/hn)?

4805
2/3
> >
= Wit 1107 = 2
o For any index i € J», we have
(E) SO (CUCTIE en/hn>)2
ne) T w T T Tl )

Since h € H; as defined in Lemma 4, using (30), we have
Of(h)T(ei/hi—en/hn) > 2L&0 > 0, and consequently,

AN 0f(h)T (ei/hi — en/hn)\
(E) Zh?(”” L= nof ()i hi >
2

hn 2 1+£07

2

> (79)

where the last inequality is due to h € Sgﬂ.

Combining the above, we have that for all i € [n — 1],
(hi/h)" > 1+ &, e, hT € SO,

C. Proof of Theorem 4

First, as the step size requirement satisfies that in Lemma 5,
the iterates never jumps out of Sgﬂ, if initialized in it. Denote
h} as the unnormalized update of h with step size 7 on the
tangent space of h, i.e,

hf =h—-n0f(h)=h—n(I-hh")V,f(h).

and w; the first (n — 1) entries of h;,
written with respect to ¢(w) as
wf=w-n[I 0] (I-hh")Vsf(h)
=w-—n(I-ww') Jp(w)Vyf(h)
=w-—n(I-ww') Vyd(w).

whose update can be

(80)

The normalized updates are respectively h™ = hjf/||R}]],
and wt = w]/||hf|,. By the property that h L
(I—hh") Vi f(h), we have ||h} |2 > ||h[2 > 1.

a) Convergence in the region of Q; N {w : h(w) €
Sg”r)}: By (80), we have
2
w5 = w3 = nhn(w)?w " Vaé(w)
Iy
2
+7° [T - ww") Vuwd(w)|,. @D

Iz

o First, I; can be bounded as
I = hiw Vo(w) > e b [lw]l, &6

for some constant c;, where the last inequality owes to
(26a).
e Second, /> can be bounded as
L<|[T o[- hrhT|[[IVrf(R),
<1-(1+[R]3) Vi f(h), < c2 ny/log(np)
for some constant co, where the last inequality follows

from (31) in Lemma 4, which holds with probability at
least 1 — (np)~5.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 17,2021 at 12:35:45 UTC from IEEE Xplore. Restrictions apply.



4806

Sum up the above results for I; and I, we have with

probability at least 1 — (np)~5,

2
[l < el
< Jlwllz —ner 3 (w) ||wlly néod + con® ny/log(np),

where the first inequality follows from ||h;}]|, > 1. Setting

2
n < cpged < o Palwla®08 o some sufficiently small
n? \/log(np) 2co n\/log(np)
¢, we have

C1

12 (w) [[w], néof
a1
—n— 0.
n5L Jwll, o

[ ||, < w3 -
< |lwl3

Denote the k-th iteration as h(*),
w®) € 9,

s, <
2

we have that as long as

“a <k>H 9
UZnHw 2gO

<], -
2

C1l4
0
8 \/info
Telescoping the above inequality for the first 7} iterations,
we have

2
110 < ] = ™) <1
1 778\/—715 ,
— <2
un&ot

which means it takes at most 7} iterations to enter Qo N {w :
h(w) € S}

Remark 1: Using arguments similar to [21], the itera-
tion complexity in this phase can be improved to 77 <
% (% + log (5%
on &y; we didn’t pursue it here as it only leads to a logarithmic
improvement to the overall complexity due to our choice of
& = 0(1/1logn).

b) Convergence in the region of Q> N {w : h(w) €
Sg”” }: Denoting the unique local minima in Qs N {w :

which only has a logarithmic dependence

h(w) € SE((:L+)} as w*, whose norm is bounded in Theorem 3.
By setting p sufficiently large, we can ensure that the iterates
stay in Qo following a similar argument as (81). To begin,
we note that V., ¢(w) is L- Lipschitz with

Cn?/?log(np)
U

which is proved in Appendix D-C1, and ¢; nf/u-strongly
convex in Qs N {w : h(w) € S(n+)}. For w € Q, we have

L< : (82)

Toao <||1 waH<1+“—2 (83)
2= 32 32’
with p < ¢ min{@,{o/ n~3/4} < 4 sufficiently small.

We now consider two cases based on the size of ||w™ |2,

which is the next iterate with respect to w given in (80).
1) [Jw™T|l2 < ||lw*||2: in this case, we already achieve

Inlog® plog® n
||'w 0||2 < H’w*HQ ~ 92 #
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2) |[w™|l2 > [|w*||2: by the fundamental theorem of calcu-
lus, we have

i —w*|, (84)

= |w —w* —n (I-ww") Vuo(w)],

_ H[I—n(I—wa)/ Vfuqb(w(t))dt} (w — w*)
0 2

1
SH[I—U(I—wa)/ V2 o(w(t
0
cindn N
< (1- 27 o - .

dt} H fw—w,

(85)

where w(t) = w + t(w* — w), t € [0,1], and the
; cpgob + —
step size 7 < — Vi) < 57. Moreover, since w

w/||hT|, =w]/(1+ K) for some K > 0, we have

lwf =

= H(l—i—K)w+ —w*Hi
= Huﬁ — w*Hi + (2K + K?) Hw*Hi —2Kw Twt
> [wt - w*;

+ (2K + K?) |w*|); — 2K [[w™ ||, [lw* |,
> [ —w (56

where the last inequality owes to [|w ™|, > ||w*||,. Com-
bining (85) and (86), we have the update w™ satisfies

o= w ], < (1= 22 oo -l 87)

Therefore, to ensure ||w* — w*||, <, it takes no more

than ) 5
1, < 200 1o < /" >
no 2v/2¢

iterations, since for any w € Qy, we have ||w — w*|[|, <
[wll,

. . 4 3 2
Summing up, to achieve ||w(T) —0]2 < %\/”log:#—i—

€, the total number of iterates is bounded by

K 13
1 g (),
unéod — mbn €
We next translate this bound into bounds of ||h(T) — enH2
and dist(giny, ginv ), Where the latter leads to Corollary 1. For
nlog® plog? n Fe<
p
1 which holds for sufficiently large sample size.* First, observe
that h(T) = h(w™)) satisfies
2
[;)

= | lom+

¢@—ﬁfﬁ)+mg¢ﬁ5

< Ii_;l [nlog® plog®n L.
0 p

|l2 < 1 by the spherical constraint, the bound is vacuous

(88)

T:T1+T2§

notation simplicity, we denote (§ :=

Hh —e,

1—||'w

IN

(89)

4Note that [|w(T)
otherwise
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Since we consider the loss function f (k) in (21) throughout

the proof, the estimate of gi, is given by giny = RU " h(T).
Hence, we have

= dist(RU " h™) C(giny)en)
< Jlet@) | |eto)RUTR® e,

dist (§i11V7 giHV)

<llc@)™| Hc JRUT (hT) — )|
+lc@ | IC@)RUT ~ Den,

< Jlet) ™ 1A+ 1) 2T — e,
+lle@ [ 1Al lleall,

(90)

where we used the definition of A = C(g)RU' — 1
(cf. (27)). Under the sample size requirement, we have || A <

cprt logzzw < 1 with probability at least 1 — 2np~8 by

Lemma 2. Plugging it into (90), we have

2 1
diSt Ainv7 inv < h(T) —€n + A
Giner ) < s | .oy A
4 3 2
< K nlog” plog®n n € ’
620,(C(g)) | p on(C(g))
oD

where the last line follows from (89).
1) Proof of (82): Recalling v, () = tanh(x/pu), for any
w1, wo € Qo, using the expression

Vuwd(w)
- ]13 Z Tn(w) (T+A) T Cla) o), (C(z:) (T+ A) h(w)) ,
e ave
Vwd(wi) = Ved(wz) = g1 + g2,

where

% E_p; [Jn(w1) — Jn(ws)] (T+ A)" Cla;) "

“1y, (C(xi) (T+ A) h(w1))

% zZp;Jh T+ A) Cla)T

[, (Clai) (T+ A) h(w1))
— U, (C(xi) (T+ A) h(wy))].
We bound ||g; ||, and ||g2||, respectively. Under the sample

size requirement, from Lemma 2, we can ensure ||A] < 1.
To bound ||g1 |5, we have

lgilly < [ Th(w1) —
- (C(mi) I+ A)h(w1)>

H 2

<oVt | [0 (i - )]

Jr(w2)[ - [T+ Al - max [|C(;) ||
i€(p]

4807
where the second line follows from [tanh(:)| < 1 and (65),
which holds with probability at least 1 — (np)~%. To continue,

we observe that

H _Ov (h:&iz) - hﬁﬁn))} H
B ‘ wo B w1
hn(wQ) hn(wl) 2
- ‘ wy  w n ‘ w;  w
- hn(’wg) hn(’wg) 2 hn(wQ) hn(wl) 2
® 1 1
< 2wz —wily + fJwilly | (ws) ~ Ton(wr)

(ii)
< 2wz —willy + 8 [[wz — will,
<10 |lwz — wal,

where (i) follows from A, (ws) = /1 — |[w2]|3 > 1/2 when
we used the fact that ||wl|y < u/(4v/2) < v/3/2 in Qy, and
(ii) follows from the Lipschitz smoothness of 1/h,(w) and
hn(w) >1/2:

1 1

hp(wz2)  hy(wy)

)
< |max ——=——= ||w2 —w1||2
(wegz (1—[lw]|3)3/2
< 8l — w1 . (92)
Therefore, we have

g1l < Cv/n?log(np) [ws — wilf,.

To bound ||g2||,, we have

lgall> < ln (w2l [T+ All - maxiC ()]

(L2211 8) b))

- max

i€[p] M

_ tanh <C(wl) (I + A) h(’wg)>

H 2
1
S 17 (w2) | [T+ A* max e ()|
[[R(w1) = h(w2)ll,
Cn?/?1
< S0 o, ],

where the second line follows from a similar argument in (67),
the last line follows from (64) and (65), which holds with

probability at least 1 — (np)~%, and
I R(ws) — h(ws)], < wr — wala + | — :
1 2y < [Jws 2o+ 5w e
< 9wy — wal|2,

following (92). Combining the bounds on ||g:||, and ||g2]|,
achieve the desired result.

D. Proof of Lemma 15

The proof follows a standard covering argument similar to
the proof of Theorem 2 in Appendix B-D. To begin, we need
the following propositions, proved in Appendix D-D1, D-D2,
and D-D3, respectively.
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Proposition 3: For any & € (0,1), 6 € (0,%), k €
[n — 1], there exists some constant ¢; such that when p <

c1 min{@,{é/ﬁn*?’/‘l}, for any h € Hj, we have
€k €n 950
Edf,(h)" (— - —) > :
Foth) G ") = 302
Proposition 4: For any & € (0,1), § € (0,3), k €
[n — 1], there exists some constant ¢; such that when p <
¢1 min{#é, fé/ﬁn*?’/‘l}, for any fixed h € Hj, there exists some
constant C' such that for any ¢ > 0

er e, € €n
P (‘f‘%(h)T (- e) -morm (£ - h—)‘ > 1)
< 2exp < ; —» - ) .
2Cn3 logn 4 2t\/Cn3logn
Proposition 5: For any & € (0,1), 6 € (0,3), k € [n— 1],
Ofo(h)T (£ — £)

is Ls-Lipschitz in the domain Hj, with

i€lp]

s <@ e +4 2 |c<wi>||> |

We now continue to the proof of Lemma 15. In the subset

1
Hp, for any 0 < e < 2 v?+—§0

at most [3/¢]™, where € will be determined later. Under the
event (65) and Proposition 5, we have

we have an e-net N3 of size

3/2

AT tog(np).

Lz <

For all h € Hy, there exists h’ € N3 such that [[h’ — h||, < e
By Proposition 5, we have

T(E _&n) _ NT (Ek _ En
" (5 = ) -on” (57
c160&o
3 )

Clon3/2

< Ls ||k’ —hl||, < log(np)e <

which holds when € < % for some sufficiently small
c. With this choice of ¢, the covering number of N3 satisfies

3/2
N3] < exp (nbg (uog(nm)) ,
1o

Let A3 denote the event

€k €n
OMES-Y

T [ €k €n 61950
—Edfo(h) (h_k - h_n>‘ < T}

c10&o
3

Az = { max

heH}

Setting ¢ = in Proposition 4, by the union bound, A3
holds with probability at least

1— NG| -2 —pt’
J— . eXp
’ 2Cn?logn + 2t\/Cn3logn

_ 242 3/2)
>1—2exp (7631)11])9 S0 +nlog (—Clon og(np)))
n®logn 160

>1—2exp(—cian),
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n / n .
provided p > C’”Zi‘é%” log ( 2 ilgé( p) ) Finally, we have for
all h € Hy,

€L €n
dfo(h)" (h_k - h_n>

e e, , €f €n
or " (-2 ) —anw) (5 - ) ]
aow(ﬂ_e_n>_mow<ﬁ_e_n)]
+ lon)” (5= 5 ) —Eonm) (5 - 7
+EOf,(h)T (3 - e—”)

he  ha
c108o 160
> — — 0&y = .
3 3 + 108 3

1) Proof of Proposition 3: First, recall a few notation
introduced in Appendix B-A. For x = Q ® z ~;;g BG(0) €
R™, we_denote the first n — 1 dimension of , z and 2 as @,
z and €2, respectively. Denote Z as the support of 2 and J
as the support of €. For any k € [n— 1] with hy # 0, by (72)
and (32), we have

Edfo(h)T (Z—" - Z—) = EVfo(h)" (3 - e—)
k n

168

hy ha,
T(ek éen
= n-EVi,(a'h) <h_k_h_n)’
93)

since the rows of C(x) has the same distribution as & ~y;q
BG(0). Further plugging in (34), we rewrite it as:

ThT (€ _en
EV),(xh) (hk hn>

T T
e. e, x'h
Zk_En h{=—=
(hk hn) ran ( H )w]
T T
=K {tanh <_:1: h) ﬁ] —E [tanh (_w h> x—n}

T T
=EqE., [tanh (ﬁ) ﬂ} —EqE. {tanh (:c_h) ﬁ] .
0] hy M I

Iy Iz

=E

(94)

Evaluating Eg over Qy, €,,, and Q\{ k) sequentially, we can
express I;, Iy respectively as:

tanh w\T{k}h\{k} + hkzk Z_k
1% D,

T W\ (ky + ez N
:9(1_9)EQ\{k)Ez [tanh( \{k} \{:} k k) 2k

I = 6Eq, ,,,E-

Ill

T W + hpzp+hyzn )
+6°Eq,, Ex [tanh( \k) AR ; 2k

Ii2

hh = (1— 0Eq . E, | taun [ MM ) 20
2= (1 —-0)Eg ,E |tan R
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ey + Rz ex
\{k} Nk} k<k \ Tn < —k_n C
+0Eq, ,,,E; |tanh < . e <vn I hn . IC ()|
< Vb ||C(x;)],
— g1 H)E— E. |tanh w\{k}w\{k} + hpzn Zn = || ( z)“
- AN 1 hy, where the second inequality follows from |tanh(-)] < 1 and
the third inequality follows from (74). Therefore, for any m >
- I 2, the moments of |Z;| can be controlled by Lemma 10 as
T\ o W\ (k) F ez +haz
2 \{k} P\ {F} k<k nen o\ 2y m ! "
+0°Eq, E. [tanh( r ) E} R < (VE) "Elc@)™ < 5 (Cntlogn) ™.
oo The proof is then completed by setting 0> = Cn®logn,

Introduce the short-hand notation X; = hyzx ~ N(0,h2), R = /Cn?logn and applying the Bernstein’s inequality in

Vi =&/, w + hnZn, Xo = hpzp ~ N(0,h2), Vs = Lemma 7.
: My ’ ( ) Yo 3) Proof of Proposition 5: Using (95), we have for any

7T . .
T\ [ W\ (1} + hpzi. Invoking Lemma 8, the difference of hoh.

the second terms of I; and I is
hz = Iz Ofolh)" (5= %) = 0flB)T (5 =
h' h!
X1 +Y
= Eﬁ\{k} EXl,Yl tanh 1 P

X 1Y p L
B [, (s (222 z) )

C(wi)h’ > T €L €n
1 X Y —tanh<7 Cli) | — — —
MEQ\{k} |:EX1 Yy (1 — tan h2 ( 1+ >:| H ( ) hk hln
p p
1. 2 (X2+ Yo -~ <1 A; + 1 B;
D [ (e () o <25 1S,

N

1% i=1 i=1
Consequently, we have where
e e, T
EVi,(x )" <h—j - h—) =0(1 - 0)(I11 — I21) A = [tanh (M) _ tagh (C@i)h’ﬂ
o(1— 0) : :

7 E E x ep e,
4 =T +h -C(x;) (h_k - )
Q LW 2 :

CEQ ey <1 tanh2< \{k} U\ K} k k))

, p

Clz)h'\ "
T B; = |tanh (7(%) ) C(x;)
I R T\ (1} W\ {k} + hpzn K
0(1-0) & 6o by, R, hk hn ’
> = )
poo 16v2mn 24ny 27 and the inequality follows by the triangle inequality. In the

where the second line follows from Lemma 8, and the last  sequel, we’ll bound A; and B; respectively.

line follows from (48) and 6 € (0,1/3). Finally, we have « To bound A;, we have

€L (29 €L €n . .
EQfo(h)" (— - —) = BV, (@ h)! (— - —) 40 < ||eann (EZRY (SR ey
hy  hnp hy  hn i S 7 m , i
0o
2 . (S €n
2421 h_k - h_n
2) Proof of Proposition 4: We start by writing the direc- N 2
tional gradient as a sum of p i.i.d. random variables: < _n HC(%)HQ |h — h’H2 )
e e (S €n
dfo(h)" (h_: - h_> =Vf.(h)" <h—Z - h_) where the second line follows from (67) and (74).
o nC( h T " e To bound B;, we have
x; €L €n
== tanh | ——— | C(x;) | — — — ), (95 C(x;)h'
> (552 e (7). o9 BisH h(&) (@)l
2
i Z . €k €n
where the first equality is due to (72) and the second equality h’ e
is due to (32). Moreover, k n/ 2
2 2
Clz)h\| | e \/<1 1) (1 1)
Zi| < |[tanh | —— - - = ; <Vn||C(z; - =) ==
| |H an ( m > R hn 2||C(w)|| vaadeall W T
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<4 n2)|C(@) ||\ (e — ) + (b — )P
<4n*?|C(@)|| |h - h],
where the first line follows from |tanh(-)] < 1, and

the second line follows from h,,h!, > 1/\/n and
ha/hi <4, (hy)?/(hg)? < 4.

Combining terms, we have

< max

T €L €n NT €L €n
o (G = ) oy (5= )

Vn f
- le@)IF + 4 jc@) | k=Kl

i€(p]
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