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ABSTRACT: Several recent publications have pointed out a potentially severe
drawback in some widely used diabatization methods based on the electronic properties
of molecules. In a diabatic representation defined by a property-based method, artificial
singularities may arise due to the defining equation of the adiabatic-to-diabatic (AtD)
transformation. Such diabolical singular points (DSPs) may seriously affect nuclear
dynamics if they lie in the relevant configuration space. Their impact is demonstrated
here using the A-band photodissociation of ammonia as an example. To this end,
quantum dynamics calculations are performed based on a diabatic potential energy
matrix (DPEM) constructed using the generalized Mulliken—Hush method, which is
based on dipoles. These property-based results are compared with the results obtained
with a DPEM determined using derivative coupling explicitly. A DSP seam is found Adiabatic

near the Franck—Condon region, which results in a complete failure to reproduce the Diabatic

absorption spectrum. A modification of the generalized Mulliken—Hush method is

proposed to remove the DSPs while preserving the conical intersection, which leads to an accurate reproduction of the absorption
spectrum and the NH,(A)/NH,(X) product branching ratio.

I. INTRODUCTION A preferred alternative in dynamical calculations is the
diabatic representation,'”*” which is rigorously defined as one
in which the derivative coupling is zero. In a two-state system,
the two representations can be interconverted by a unitary
transformation characterized by a rotational angle (®). In such

The introduction of the Born—Oppenheimer (BO) adiabatic
approximation' greatly simplified the quantum mechanical
treatment of molecular systems, as it separates the electronic
and nuclear motions based on their mass disparity. Indeed,

modern quantum chemistry is exclusively based on the BO a representation, the potential operator is represented by a
approximation, which allows the solution of the electronic matrix with diagonal and off-diagonal elements, and the
Schrodinger equation at fixed nuclear configurations. While diagonalization of this diabatic potential energy matrix
this approximation is often valid for dynamics on the ground (DPEM) gives the adiabatic PESs as its eigenvalues. In this
electronic state, there is now increasing evidence that it breaks diabatic representation, all singularities are removed and the
down due to electronic degeneracies.””'® A commonly geometric phase is implicitly included. Furthermore, all
encountered type of degeneracy is a conical intersection elements of a DPEM are smooth functions of the nuclear
(C1),"""" which forms a N-2 dimensional cone-shaped coordinates and thus amenable to analytic representation.

crossing seam between two (sometimes more) potential Unfortunately, rigorous diabatization is unattainable for
energy surfaces (PESs), where N is the number of internal molecules consisting of more than two atoms, as it would
coordinates. Near a CI seam, the system may hop between require the inclusion of all electronic states.”"”*” Consequently,
different electronic states leading to nonadiabatic transitions. a diabatic representation is often qualified by the word “quasi”
Such Anonadiabatic processes are quite Prevalent in photo- because the derivative coupling is not completely removed. For
chemlstryz,3 5\/\1}71?)1'16:) electronic dege.nera.aes become. rather this reason, the determination of the quasi-diabatic representa-
common.”>” """ Although the adiabatic representation can tion is not unique, and there are many different ways to make

in principle be used to treat nonadiabatic dynamics, it is
difficult to implement in practice. This is because the derivative
coupling that couples different adiabatic states is singular at the
Cl, and the adiabatic PESs have cusps that cannot be
represented by analytical functions.'* Furthermore, one
might have to deal with the geometric phase effects if the
reaction paths involve the encirclement of a CI, which could :
introduce interference in the adiabatic dynamics.>~"*
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the adiabatic-to-diabatic (AtD) transformation.”® These
diabatizations can be crudely divided into several categories,
depending on how they are constructed, including config-
uration uniformity,”*~*° block-diagonalization,””** property-
based approaches,” ™" diabatization by ansatz,’>*’ and
approaches based on an explicit calculation of derivative
couplings.””**** Despite the enormity of the effort, construct-
ing accurate DPEMs, particularly for global representations,
remains a challenge in both numerical costs and operational
complexity.*

The ab initio calculation of derivative couplings is
numerically expensive, but it allows, in principle, the definition
of the most accurate quasi-diabatic states, whose quality can be
quantified and controlled through residual derivative couplings.
In recent years, this approach has been used by several groups
to construct accurate global DPEMs.”’~** In particular,
Yarkony and co-workers have proposed a simultaneous fitting
and diabatization approach® ~** and applied it to several
challenging reactive systems, including NH,,***® CH,0H,""**
CH;NH,, ? CGHSOH,SO_SZ and OH + H, systems.53 Quantum
dynamical calculations based on some of these DPEMs have
successfully reproduced experimental observations and pro-
vided a more in-depth understanding of nonadiabatic
dynamics.”*~%*

On the other hand, property-based diabatization methods
are intuitive and provide an alternative way of diabatization at a
relatively lower cost. This is because properties are much more
easily calculated than derivative couplings. Taking the Boys
localization (BL) diabatization described by Subotnik et al.*’
as an example, the AtD angle (@) is given by a tangent form:
tan40(R) = n(R)/d(R), where the numerator n(R) and
denominator d(R) are analytic functions of the molecular
property operator matrix elements, which are in turn smooth
functions of the nuclear coordinates R, in the diabatic
representation. In BL, the property operator is taken as the
electric dipole, of which its matrix elements can be readily
calculated using a quantum chemistry code. However, in a
series of recent papers,””~® the Yarkony group has pointed out
a potentially serious issue in property-based diabatization
methods, namely the presence of artifactual singularities in the
derivative couplings which are unrelated to true CIs. These so-
called diabolical singular points (DSPs) have similar properties
to a real CI and could cause a catastrophic failure of
diabatization and lead to unphysical dynamics. In BL, for
example, both n(R) and d(R) may vanish in some
configurations, giving rise to such singularities.

Examples of DSPs were first shown by Zhu and Yarkony in a
classic system,’ namely the photodissociation of ammonia in
its first absorption band: NH;(1'A) + hv — NH,(A)/NH,(X)
+ H. An algorithm for searching DSPs was proposed, which
requires derivatives of the ab initio property used for
diabatization. Using this algorithm, Wang et al. reported
recently the global topography of a DSP seam in this system,’”
based on global dipole moment surfaces (DMSs) fitted with
neural networks (NNs) by Guan et al.*” Interestingly, the DSP
seam was found to be located near the Franck—Condon
region, and may have a severe consequence on the dissociation
dynamics. However, there has so far been no investigation of
the impact of DSPs on nuclear dynamics, which is the main
objective of this work.

Specifically, we examine here the DSPs in the generalized
Mulliken—Hush (GMH) diabatization framework,”””® which
is similar to BL and based on electric and transition dipoles

and originally designed for studying electron transfer. Taking
advantage of the NN DMSs of Guan et al,,®” we construct the
GMH DPEM and show that a DSP seam exists near the
Franck—Condon region of the NH,(1'A) + hv — NH,(A)/
NH,(X) + H system. Full-dimensional quantum dynamics
based on the GHM DPEM reveals a complete failure of this
DPEM in reproducing the absorption spectrum, due to the
DSPs. This issue is expected to be present in other property-
based diabatization scheme such as BL, so quite general. To
mitigate the problem, a modified GMH scheme is proposed,
which eliminates the DSP, but preserves the CI crossing. This
new diabatization scheme is shown to correctly reproduce the
absorption spectrum as well as the branching ratio between the
NH,(X) + H and NH,(A) + H channels caused by
nonadiabatic dynamics via a planar CI. This work is organized
as follows. Section II briefly reviews the original GMH method
and the associated DSPs, introduces the modified GMH
method, and outlines the quantum dynamical method. The
results and discussions are given in Section III. The conclusion
is given in Section IV.

Il. THEORY
ILI. Transformation between Adiabatic and Diabatic

States. In a common two-state model, the transformation
between the adiabatic states ¥ (R;q) (a = 1,2) and diabatic
states ¥ (R;q) (I = 1,2) is given by a unitary transformation,
namely a rotation in the Hilbert space

cos ®(R) sin O(R) ‘PE“)(r; R)

—sin O(R) cos O(R)

P R)|

¥ (r; R) Y5 R)| (1)
where r and R are electronic and nuclear coordinates,
respectively, and ®(R) is the adiabatic-to-diabatic (AtD)
rotational angle, which itself is a function of the nuclear
coordinates. Note that the superscript (a)/(d) denotes the
adiabatic/diabatic representation (the same goes for other
definitions below). The adiabatic derivative coupling, f%(R)
= (P(5R)IV,P(5;R)) ,, can be evaluated by the
derivative of the AtD angle ®(R) and the diabatic derivative
coupling £{9(R)

f9(R) = RO(R) + FI(R) @)

In a rigorous diabatic representation, £9(R) is zero, but in a
quasi-diabatic representation, it cannot be completely elimi-
nated. In such a case, we have

f9(R) = O(R) 3)

In the diabatic representation, the potential operator is
expressed as DPEM, which is related to the adiabatic energies
via the same unitary transformation

ViP®R) vO(R)
VOR) V(R
cos ®(R) sin O(R) J(EW(R) 0
—sin O(R) cos O(R)

0 E;"(R)
{cos O(R) —sin @(R)]
X

sin ®(R) cos O(R) (4)
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J. Chem. Theory Comput. 2020, 16, 6776—6784


pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00811?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Below, the superscripts in the potentials will be dropped as
they are self-evident.

ILIl. Generalized Mulliken—Hush Diabatization. In the
generalized Mulliken—Hush (GMH) theory of Cave and
Newton,”””° the diabatization is based on the dipole operator
it = (0",i?,0%). The diabatic elements of the dipole matrix are
defined as

P (R) = <P, @7, 77)PR)>, )
Their relationship with the adiabatic matrix elements, 7i{)(R),
which can be defined analogously, is given as follows in a two-
state model””

ﬁl(ld) = sin 2@/71(2“) + (cos® @,L_il(f) + sin® @/72(;)) (6a)
/72(;) = —sin 2@/,71(2‘1) + (sin* @ﬁl(f) + cos® @;,72(;)) (6b)
ﬁl(zd) = cos 2@/71(2“) — 1/2sin 2@([[1(1“) - /72(;')) (6¢)

The GMH diabatization was originally designed for electron
transfer, which involves the migration of a charge from a donor
to an acceptor.””’ This charge transfer is directional and can
be conveniently defined in such a system by the unit vector v =
(@ — 89 /1i@ — h91. The diabatization is thus based on
the projection of the dipoles along this direction. In the two-
state GMH theory, the projection is given as ,u%)"’ =y (p=
a, d, and the superscript v denotes the direction 7), and eq 6¢
becomes

(a)v
12

(a)

= cos 20u u

(@) L. = = (a)
My — Esm 20lu, 7 — iyl @)

As u{D" = 0 defines the diabatic representation in GMH

theory,””" the rotation angle can be obtained from eq 7
tan 20(R) = n(R)/d(R) (8a)
with the numerator and denominator given as
n(R) = 243" (8b)
d(R) = i — iy (80)

We can rewrite the derivative coupling in eq 3 in terms of n(R)

and d(R) as

B d(R)Vgn(R) — n(R)Vzd(R)

%OR) = n(R) + d(R)’

)
Equations 8a and 9 are singular when n(R) = d(R) = 0. Such
singular gpoints are referred as diabolical singular points
(DSPs).> As shown by Subotnik et al, GMH is a special
case of BL.*® Hence, the discussion here also applies to BL
diabatization. As discussed below, the existence of these DSPs
can have a dramatic impact on diabatization and nonadiabatic
dynamics.

ILIIl. Modified Generalized Mulliken—Hush (mGMH)
Diabatization. As has been suggested in ref 66 and
implemented successfully in ref 71, these DSPs can be
removed by introducing a simple energy-dependent factor
(E, — E,)’w’ in the denominator d(R), which can prevent
n(R) and d(R) from simultaneously vanishing when E; # E,.
Addition of this term is equivalent to adding a fourth
component wH, to the dipole operator. Here, @ is an
adjustable parameter and Hy is the electronic Hamiltonian. A
similar parameter has recently been introduced to optimize
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diabatic states.”” At the real CI seam where E, = E,, this term
vanishes and has thus no effect. Based on this idea, we present
below a modified GMH (mGMH) method for diabatization.

As suggested earlier,’ a new four-component vector
operator in mGMH can be defined as Q = (Q(l), QA OB
and Q®), with its elements in the diabatic representation as

Q" = <PORIQIO®R)s, (10)
Following the GMH diabatization, Q=123 — ﬁ(x' %) are the
three components of dipole, but the fourth component here is
defined as

A (4 N

oY = wm, (11)
Its adiabatic matrix elements are given as

QE‘;)’G) = wE,, Q(zaz)'(4) = wE,, QE;)’G) -0 (12)

In this current mGMH method, the new direction for
projection can be defined as

V' = /Iyl with vy = (052, o2, o8, oY), and v

= cAQW" - Qi) (13)

where C{!™3) are prefactors chosen to make the diabatization
go smoothly and Y =1. Projecting the dipoles eq 6a—6c¢ into
the new direction 2/, we can arrive at an expression for the AtD
angle analogous to that defined in the original GMH method

21/-953)

tan 20 = n(R)/d(R) = ————12
V(@ - Q)

(14)

Here, the dot product involves all four components. Making
full use of eq 12 and defining the normalization factor 1/I7 as
7, we can express eq 14 explicitly in terms of dipole
components and energies
4 i a),i a),i a),i
22,-=17C1(2)(Q§1) - Q(zz) )ng)
XL el - gy
3 i i i i
_ 2 Zi:l ycl(l)(lul(la)l - ”Z(;) )'ul(Za)l
3 i a),i a),i
Zi=17cl(2)(/41(1) - /’lz(z) )2 + (El - EZ)ZwZ}/
(13)

tan 20 =

which can be given in a more compact way

27 ﬁl(;)

tan 20 = @ )
/’tzz ) + (EI_EZ) 'y

l—;,(ﬁl(la) _

(16)

where the dot product runs only over the three components of
dipoles. Importantly, the inclusion of the (E; — E,)’w’y term
in the denominator removes the DSP. Note that this term has
no impact on the CI, where it vanishes because of E, = E,.
When C) = "% = 1 and @ = 0, eq 16 recovers eq 8a—8c,
namely the original GMH.

In practice, to obtain the correct AtD angle © from eq 16,
one has to deal with the geometric phase produced by the
CL."*™'® When moving along a closed path encircling the CI,
the AtD angle © will change by 7, resulting in a significant
change in the electronic wave function (e” = —-1).%°
Consequently, the most general solution to eq 8a is required,
which is”*

https://dx.doi.org/10.1021/acs.jctc.0c00811
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a tan 2[n(R), d(R)] + kx
2

0= (17)
where a tan2[n(R),d(R)] is the two-argument inverse tangent
function and k is a manually adjustable integer being 0 or +1
to account for all possible values of ®. Its treatment in practice
is discussed in more detail below.

It should be mentioned that in this work the parameters
chosen for the mGMH DPEM are @ = 8, C(()i) =123 -10, 1, and
1. Other choices may also work, but this set of parameters is
sufficient for our purpose. We used a neural network (NN)
with two hidden layers and 20 neurons in each hidden layer to
fit the global AtD angle, more importantly, to determine the
value of k based on continuity (vide infra). For a discussion of
NN fitting of ab initio data, the reader is referred to the recent
review.*

ILIV. Quantum Dynamics. The photodissociation dynam-
ics of ammonia (NH;) in its first absorption band is
characterized in this work by a wave packet method'® with a
diabatic nuclear Hamiltonian (J = 0) defined in the Jacobi—
Radau coordinates (ry,7,,R,0,,0,,¢), as shown in Figure 1. The

10 4
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2.0 4
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3 151 —— Denominator »=8
£
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=
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2 3 4 5 6
R/Bohr

Figure 1. Upper panel: Cuts of the adiabatic PESs (E, and E,) as a
function of R within the planar geometry with the rest of the
coordinates fixed at the ground-state geometry. Lower panel: The
numerator and denominator of the tangent function of the AtD angle
as the function of R for w = 0 and w = 8, where the other coordinates
are fixed as r; = 1.94 Bohr, r, = 2.09 Bohr, 6, = 129.06°, 6, = 109.15°,
and ¢ = 180°. Note that the numerator in both cases is equal to zero
by symmetric requirement.

initial wave packet in the excited A state is defined by the wave
function of the lowest vibrational states in the X state with
even parity, and odd parity the tunneling doublet is not
included as it behaves similarly. The six-dimensional excited-
state wave packet was propagated using the Chebyshev
propagator’” on the specifitd DPEM. The absorption
spectrum was obtained by Fourier transfer of the Chebyshev
autocorrelation function, and the branching ratio was
determined by a flux method. For details of the discretization,
propagation, and calculations of the observables, the reader is
referred to our previous publications.”*>*
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lll. RESULTS AND DISCUSSION

lILI. Effects of DSPs on Potential Energy Surfaces and
Couplings. The construction of the GMH and mGMH
DPEMs requires the adiabatic energies of the two states, as
well as the AtD transformation matrix. The former was taken
from Zhu—Yarkony (ZY) 2 X 2 DPEM for ammonia,***° with
the eigenvalues yielding the two adiabatic energies. The latter
is determined by the AtD mixing angle, which is, in turn,
obtained from dipole functions in GMH, augmented with
adiabatic energies in mGMH, as shown in eqs 8a—8c and 17,
respectively. The dipoles as a function of the nuclear
coordinates are obtained from the recent work of Guan et
al,*” in which the components of both the permanent and
transition dipoles were fit in a diabatic representation. This
way, we avoid explicit quantum chemical calculations of both
energies and dipoles.

DSPs in the GMH DPEM are found in the regions of
nuclear coordinate space distinct from those found in the BL
diabatization, as they are determined by distinct defining
equations. However, prominent DSPs in the GMH DPEM are
located at planar geometries, similar to the well-established
DSPs found in the BL diabatization as reported in a recent
work.”” Importantly, these DSPs are due to the symmetry of
the system, which provides one of the two constraints that
define the N-2 dimensional seam of DSPs. Specifically, the
numerator n(R) = 248" = Al — @)/ — Ayl
vanishes at planar geometries, where p17"* = p35”* = 0 and p15"”
= {9 = 0. Here, the planar molecule is placed in x — 8/ plane.
Within planarity, the denominator d(R) = IﬁE"R —_—_ may
accidentally equal to zero. Indeed, such a DSP has been found
near the Franck—Condon region. This is shown in Figure 1, in
which both the numerator and denominator are plotted as a
function of H—NH, distance R as the molecule is constrained
within the planar geometry (¢ = 180°) and the remaining
coordinates are r; = 1.94 Bohr, r, = 2.09 Bohr, 6, = 129.06°,
and 0, = 109.15°. In the same figure, cuts of the adiabatic PES
are also shown, and it is clear that the DSP is near the Franck—
Condon region.

Figure 2 displays the diagonal (V}; and V,,) and off-diagonal
(V},) elements of the GMH (@ = 0) DPEM and mGMH (@ =
8) DPEMs. These figures are plotted in the R and ¢ (out-of-
plane angle). The discontinuities can be clearly seen at R = 2.2
Bohr, ¢ = 180°, which corresponds to the DSP mentioned
above. It is also clear that the elements of the DPEM are all
strongly affected by this DSP in its vicinity.

In the mGMH DPEM with @ = 8, this DSP is removed,
yielding a smooth DPEM without singularities, as shown by
the corresponding DPEM elements in Figure 2. The
comparison between @ = 0 and 8 can be more clearly seen
from the AtD angle in Figure 3. The AtD angle in the GMH
(@ = 0) diabatization exhibits two peaks pointing to opposite
directions near the DSP, which gives rise to a sudden change in
the AtD angle. However, the angle is smooth for the mGMH
(w = 8) diabatization in the same region, although there are
still some fluctuations in the AtD angle, but no singularity. It
should be noted that the (E; — E,)’w’ factor not only
precludes a zero denominator at R = 2.2 Bohr, but also makes
it much larger than the numerator in regions where the energy
difference (E, — E,) is large. As a result, a tan2[n(R),d(R)] is
very small, and the AtD angle varies near ® = 0, +90°, which
makes the diabatic states coincide with the adiabatic states
when the adiabatic states are well separated. However, the

https://dx.doi.org/10.1021/acs.jctc.0c00811
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panel, nGMH) DPEMs.

DPEM elements in mGMH might differ significantly from that
of a DPEM determined by explicit minimizing the derivative
coupling, but they all give the same adiabatic PESs. This
underscores the nonuniqueness of diabatization.

lILIl. Determination of @: Continuity and the Geo-
metric Phase. As discussed above, the determination of the
AtD angle ® near the CI seam requires some special treatment.
Figure 4 illustrates how the parameter k should be chosen.
First, the AtD angle © needs to be continuous. In Figure 4a,b,
¢ = 174°, and 186°, respectively, while the rest of the
coordinates are fixed at r; = 1.87 Bohr, r, = 1.87 Bohr, 6, =
107°, and 6, = 107°. It is clear that the angle computed directly
from the inverse tangent function atan2[n(R),d(R)] (dashed
blue line) is discontinuous near R = 4.5 Bohr. To maintain
continuity, according to eq 17, kz/2 should be added. Adding
—n/2 after R = 4.5 Bohr in Figure 4a and #/2 in Figure 4b
leads to a smooth and continuous curve for ®. Second, the
AtD angle ® must satisfy a constraint imposed by the
geometry phase that encirclement of the CI results in a change
by 7. As there is a portion of CI seam located at planar
geometries, corresponding to ¢ = 7 in this defined coordinate
system, © has to be antisymmetric with respect to ¢ = . This
is illustrated in Figure 4c, where the dependence of ® on R and
¢ near the CI is shown. The curves in Figure 4ab are
highlighted by the red lines. For ¢ < 7, © varies from 0 to —z/
2 as R increases, while for ¢ > 7, it changes from 0 to 7/2.
Importantly, the fitting only covers the half region for ¢ < 7 to
avoid the double valued ® at ¢ = 7 outside the CI, and its
values in the other half of the angular range are obtained by
antisymmetrization.

It is also acceptable for ® to vary from 7/2 (—7/2) to O for
¢ < 7 (¢ > m) as R passing through the CI, which means
adding /2 (—x/2) before R = 4.5 Bohr in Figure 4a (Figure
4b). The resultant diagonal terms of DPEM V;; and V5, would
in this case resemble the adiabatic excited-state E, and ground-
state E;, respectively, the small R region, and switch to E; and
E, in the large R region. However, this option was not chosen
as V, and V,, are conventionally referred to as the ground and
excited states in the Franck—Condon region.

We note here in passing that the current approach
guarantees the exact reproduction of the adiabatic energies.
An alternative approach is to fit directly the elements of the
DPEM, as done recently by many investigators,”*~"® which will
not give the exact adiabatic energies due to fitting errors, but it
avoids the double-valuedness of the AtD angle.

lILIIl. Effects of DSPs on the Absorption Spectrum.
Figure S displays the absorption spectrum calculated using the
GMH (@ = 0) DPEM, which is compared with the result from
the ZY DPEM. The peaks on the GMH DPEM are broad and
shifted, with no resemblance to the narrow and regularly
spaced peaks obtained from the ZY DPEM, which are known
to agree with the experiment quite well.** It is well established
that the sharp peaks stem from the pyramidal-to-planar
excitation, which places the wave packet in a pyramidal
geometry on the excited-state PES, which has a planar
equilibrium geometry. The subsequent dynamics is thus
dominated by oscillation along the umbrella (v,) coordinate.
However, as shown in Figure 2, the excited-state PES in the
GMH DPEM is strongly affected by the DSP, leading to
completely wrong dynamics. This example highlights the
detrimental impact of DSPs on excited-state dynamics.
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Figure 3. Comparison of the AtD angle for the @ = 0 (upper panel,
GMH) and @ = 8 (lower panel, nGMH) DPEMs near the DSP.

lILIV. Absorption Spectrum and Branching Ratio
from mGMH DPEM. The removal of the DSP by the
mGMH diabatization demonstrated in Figure 5 is expected to
remedy the problem discussed in the above section. Indeed, it
can be seen from Figure 6 that the calculated absorption
spectrum using the mGMH (@ = 8) DPEM yields an excellent
agreement with that calculated using the ZY DPEM. This

pubs.acs.org/JCTC
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Figure S. Comparison of the absorption spectrum calculated with the

GMH (@ = 0) and ZY DPEMs. Note that only the energy peaks of
even parity peaks are shown here.

indicates that the dynamics in the Franck—Condon region is
correctly described by the mGMH DPEM. As discussed above,
however, the excited-state PES in this region is sufficiently
separated from the ground-state PES, far away from the CI
seam where nonadiabatic transitions take place.

In the photodissociation of ammonia, the wave packet
exiting the Franck—Condon region will encounter a CI, as
shown in Figure 1. Nonadiabatic transitions near the CI lead to
the production of both the NH,(A) + H and NH,(X) + H
products. To further examine the accuracy of the mGMH
DPEM in describing the nonadiabatic dynamics near the CI
seam, the NH,(A)/NH,(X) product branching ratio was
calculated and is compared with that calculated from the ZY
DPEM in Figure 6. The overall agreement between the two is
excellent, although there are still some quantitative differences.
This general agreement underscores the correct description of
the nonadiabatic coupling of the mGMH DPEM near the CI
seam, where nonadiabatic transitions take place. The small
differences are most likely due to the fitting errors in both the
dipole and the mixing angle. Given the fact that the branching
ratio is very sensitive to the DPEM, this level of agreement
demonstrates the reliability of the proposed mGMH method in
diabatization and in the construction of the DPEM.
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Figure 4. (A) Comparison of the mGMH (@ = 8) AtD angle O (red line) obtained from inversed tangent function a tan2[#, d] (blue dashed line)
and a tan2[n, d] — /2 (black dashed line) as functions of R with the rest of the coordinates fixed at ; = 1.87 Bohr, r, = 1.87 Bohr, 8, = 107°, 6, =
107°, and ¢ = 174°. (B) The same as A but ¢ = 186° and a tan2[n, d] + 7/2 (black dashed line). (C) the mGMH (@ = 8) AtD angle © in the two-
dimensional space of R and ¢. The red lines highlight the ® shown in the left and middle panels.
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Figure 6. Comparison of the absorption spectrum (the left panel) and product branching ratio (the right panel) calculated with the mGMH (w =
8) DPEM and ZY DPEM. Note that only even parity peaks are shown here.

IV. CONCLUSIONS

In this work, we have demonstrated the deleterious dynamical
consequences that emerge when DSPs go undetected in a
property-based diabatization, including BL or GMH ap-
proaches. In the case of ammonia, such singular points form
a N-2 dimensional seam lying in the Franck—Condon region
due to symmetry reasons. The detrimental effects on the
dynamics are striking. A simple remedy is proposed to remove
this singularity, and at the same time, preserve the CI seam and
its geometric phase effect. The mGMH diabatization is shown
to reproduce both the absorption spectrum, which is
dominated by the excited-state dynamics in the Franck—
Condon region, and the product branching ratio, which is
controlled by nonadiabatic dynamics near the CI seam. This
strategy can be applied to other property-based diabatization
schemes affected by DSPs. As a result, this less expensive
diabatization can be used to diabatize and to construct DPEMs
for nonadiabatic dynamics.

H AUTHOR INFORMATION

Corresponding Authors

David R. Yarkony — Department of Chemistry, Johns Hopkins

University, Baltimore, Maryland 21218, United States;
orcid.org/0000-0002-5446-1350; Email: yarkony@

jhu.edu

Hua Guo — Department of Chemistry and Chemical Biology,
University of New Mexico, Albuquerque, New Mexico 87131,
United States; ® orcid.org/0000-0001-9901-053X;
Email: hguo@unm.edu

Authors

Shanyu Han — Department of Chemistry and Chemical Biology,
University of New Mexico, Albuquerque, New Mexico 87131,
United States

Yucheng Wang — Department of Chemistry, Johns Hopkins
University, Baltimore, Maryland 21218, United States

Yafu Guan — Department of Chemistry, Johns Hopkins
University, Baltimore, Maryland 21218, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c00811

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work was supported by the Department of Energy (DE-
SC0015997 to H.G. and National Science Foundation grant

6782

CHE 1954723 to D.R.Y.). The main calculations were
performed at the Center for Advanced Research Computing
(CARC) at UNM and at the National Energy Research
Scientific Computing (NERSC) Center.

B REFERENCES

(1) Born, M.; Huang, K. Dynamical Theory of Crystal Lattices;
Clarendon: Oxford, 1954.

(2) Bernardi, F.; Olivucci, M.; Robb, M. A. Potential energy surface
crossings in organic photochemistry. Chem. Soc. Rev. 1996, 25, 321—
328.

(3) Worth, G. A; Cederbaum, L. S. Beyond Born-Oppenheimer:
Molecular dynamics through a conical intersection. Annu. Rev. Phys.
Chem. 2004, 55, 127—158.

(4) Jasper, A. W,; Nangia, S.; Zhu, C.; Truhlar, D. G. Non-Born—
Oppenheimer molecular dynamics. Acc. Chem. Res. 2006, 39, 101—
108.

(5) Levine, B. G; Martinez, T. J. Isomerization through conical
intersections. Annu. Rev. Phys. Chem. 2007, 58, 613—634.

(6) Matsika, S.; Krause, P. Nonadiabatic events and conical
intersections. Annu. Rev. Phys. Chem. 2011, 62, 621—643.

(7) Yarkony, D. R. Nonadiabatic quantum chemistry—past, present
and future. Chem. Rev. 2011, 112, 481—498.

(8) Tully, J. C. Perspective: Nonadiabatic dynamics theory. J. Chem.
Phys. 2012, 137, No. 22A301.

(9) Domcke, W.; Yarkony, D. R. Role of conical intersections in
molecular spectroscopy and photoinduced chemical dynamics. Annu.
Rev. Phys. Chem. 2012, 63, 325—352.

(10) Guo, H.; Yarkony, D. R. Accurate nonadiabatic dynamics. Phys.
Chem. Chem. Phys. 2016, 18, 26335—26352.

(11) Kouppel, H; Domcke, W.; Cederbaum, L. S. Multimode
molecular dynamics beyond the Born-Oppenheimer approximation.
Adv. Chem. Phys. 1984, 57, 59—246.

(12) Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys.
1996, 68, 985—1013.

(13) Domcke, W.; Yarkony, D. R.; Koppel, H. Conical Intersections:
Electronic Structure, Dynamics and Spectroscopy; World Scientific:
Singapore, 2004.

(14) Yarkony, D. R; Xie, C.; Zhu, X.; Wang, Y.; Malbon, C. L.; Guo,
H. Diabatic and adiabatic representations: Electronic structure
caveats. Comput. Theor. Chem. 2019, 1152, 41—52.

(15) Mead, C. A. The geometric phase in molecular systems. Rev.
Mod. Phys. 1992, 64, 51—85.

(16) Kendrick, B. K. Geometric phase effects in chemical reaction
dynamics and molecular spectra. J. Phys. Chem. A 2003, 107, 6739—
6756.

(17) Ryabinkin, I. G.; Joubert-Doriol, L.; Izmaylov, A. F. Geometric
phase effects in nonadiabatic dynamics near conical intersections. Acc.
Chem. Res. 2017, 50, 1785—1793.

https://dx.doi.org/10.1021/acs.jctc.0c00811
J. Chem. Theory Comput. 2020, 16, 6776—6784


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+R.+Yarkony"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5446-1350
http://orcid.org/0000-0002-5446-1350
mailto:yarkony@jhu.edu
mailto:yarkony@jhu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hua+Guo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-9901-053X
mailto:hguo@unm.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shanyu+Han"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yucheng+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yafu+Guan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00811?ref=pdf
https://dx.doi.org/10.1039/cs9962500321
https://dx.doi.org/10.1039/cs9962500321
https://dx.doi.org/10.1146/annurev.physchem.55.091602.094335
https://dx.doi.org/10.1146/annurev.physchem.55.091602.094335
https://dx.doi.org/10.1021/ar040206v
https://dx.doi.org/10.1021/ar040206v
https://dx.doi.org/10.1146/annurev.physchem.57.032905.104612
https://dx.doi.org/10.1146/annurev.physchem.57.032905.104612
https://dx.doi.org/10.1146/annurev-physchem-032210-103450
https://dx.doi.org/10.1146/annurev-physchem-032210-103450
https://dx.doi.org/10.1021/cr2001299
https://dx.doi.org/10.1021/cr2001299
https://dx.doi.org/10.1063/1.4757762
https://dx.doi.org/10.1146/annurev-physchem-032210-103522
https://dx.doi.org/10.1146/annurev-physchem-032210-103522
https://dx.doi.org/10.1039/C6CP05553B
https://dx.doi.org/10.1103/RevModPhys.68.985
https://dx.doi.org/10.1016/j.comptc.2019.01.020
https://dx.doi.org/10.1016/j.comptc.2019.01.020
https://dx.doi.org/10.1103/RevModPhys.64.51
https://dx.doi.org/10.1021/jp021865x
https://dx.doi.org/10.1021/jp021865x
https://dx.doi.org/10.1021/acs.accounts.7b00220
https://dx.doi.org/10.1021/acs.accounts.7b00220
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00811?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00811?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00811?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00811?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00811?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(18) Xie, C.; Malbon, C. L.; Guo, H.; Yarkony, D. R. Up to a sign.
The insidious effects of energetically inaccessible conical intersections
on unimolecular reactions. Acc. Chem. Res. 2019, 52, 501—509.

(19) Smith, F. T. Diabatic and adiabatic representations for atomic
collision problems. Phys. Rev. 1969, 179, 111—123.

(20) Baer, M. Beyond Born-Oppenheimer: Electronic Nonadiabatic
Coupling Terms and Conical Intersections; Wiley: New Jersey, 2006.

(21) Mead, C. A,; Truhlar, D. G. Conditions for the definition of a
strictly diabatic electronic basis for molecular systems. J. Chem. Phys.
1982, 77, 6090—6098.

(22) Baer, M. Adiabatic and diabatic representations for atom-
diatom collisions: Treatment of the three-dimensional case. Chem.
Phys. 1976, 15, 49—-57.

(23) Koppel, H. Diabatic Representation Methods for the
Construction of Diabatic Electronic States. In Conical Intersections:
Electronic Structure, Dynamics and Spectroscopy; Domcke, W.; Yarkony,
D. R,; Képpel, H., Eds.; World Scientific: Singapore, 2004.

(24) Atchity, G. J.; Ruedenberg, K. Determination of diabatic states
through enforcement of configurational uniformity. Theor. Chem. Acc.
1997, 97, 47—S8.

(25) Nakamura, H.; Truhlar, D. G. Direct diabatization of electronic
states by the fourfold way. II. Dynamical correlation and rearrange-
ment processes. J. Chem. Phys. 2002, 117, 5576—5593.

(26) Nakamura, H.; Truhlar, D. G. Extension of the fourfold way for
calculation of global diabatic potential energy surfaces of complex,
multiarrangement, non-Born—Oppenheimer systems:Application to
HNCO(S;,S,). J. Chem. Phys. 2003, 118, 6816—6829.

(27) Pacher, T.; Cederbaum, L. S.; Koppel, H. Approximately
diabatic states from block diagonalization of the electronic
Hamiltonian. J. Chem. Phys. 1988, 89, 7367—7381.

(28) Pacher, T.; Cederbaum, L. S.; Koppel, H. Adiabatic and
quasidiabatic states in a gauge theoretical framework. Adv. Chem. Phys.
1993, 84, 293—391.

(29) Cave, R. J.; Newton, M. D. Calculation of electronic coupling
matrix elements for ground and excited state electron transfer
reactions: Comparison of the generalized Mulliken—Hush and block
diagonalization methods. J. Chem. Phys. 1997, 106, 9213—9226.

(30) Subotnik, J. E; Yeganeh, S.; Cave, R. J; Ratner, M. A.
Constructing diabatic states from adiabatic states: Extending
generalized Mulliken—Hush to multiple charge centers with Boys
localization. J. Chem. Phys. 2008, 129, No. 244101.

(31) Hoyer, C. E.; Parker, K; Gagliardi, L.; Truhlar, D. G. The DQ_
and DQ® electronic structure diabatization methods: Validation for
general applications. J. Chem. Phys. 2016, 144, No. 194101.

(32) Lenzen, T.; Manthe, U. Neural network based coupled diabatic
potential energy surfaces for reactive scattering. J. Chem. Phys. 2017,
147, No. 084105.

(33) Williams, D. M. G.; Eisfeld, W. Neural network diabatization: A
new ansatz for accurate high-dimensional coupled potential energy
surfaces. J. Chem. Phys. 2018, 149, No. 204106.

(34) Baer, M. Adiabatic and diabatic representations for atom-
molecule collisions: Treatment of the collinear arrangement. Chem.
Phys. Lett. 1975, 35, 112—118.

(35) Top, Z. H.; Baer, M. Incorporation of electronically
nonadiabatic effects into bimolecular reactive systems. I. Theory. J.
Chem. Phys. 1977, 66, 1363—1371.

(36) Jiang, B.; Li, J.; Guo, H. High-fidelity potential energy surfaces
for gas phase and gas-surface scattering processes from machine
learning. J. Phys. Chem. Lett. 2020, 11, 5120—5131.

(37) Evenhuis, C. R; Collins, M. A. Interpolation of diabatic
potential energy surfaces. J. Chem. Phys. 2004, 121, 2515—-2527.

(38) Godsi, O.; Evenhuis, C. R.; Collins, M. A. Interpolation of
multidimensional diabatic potential energy matrices. J. Chem. Phys.
2006, 125, No. 10410S.

(39) Ghosh, S.; Mukherjee, S.; Mukherjee, B.; Mandal, S.; Sharma,
R.; Chaudhury, P.; Adhikari, S. Beyond Born-Oppenheimer theory for
ab initio constructed diabatic potential energy surfaces of singlet H;*
to study reaction dynamics using coupled 3D time-dependent wave-
packet approach. J. Chem. Phys. 2017, 147, No. 07410S.

6783

(40) Yuan, D.; Guan, Y.; Chen, W.; Zhao, H.; Yu, S;; Luo, C.; Tan,
Y.; Xie, T.; Wang, X; Sun, Z.; et al. Observation of the geometric
phase effect in the H + HD — H, + D reaction. Science 2018, 362,
1289—-1293.

(41) Zhu, X; Yarkony, D. R. Toward eliminating the electronic
structure bottleneck in nonadiabatic dynamics on the fly: An
algorithm to fit nonlocal, quasidiabatic, coupled electronic state
Hamiltonians based on ab initio electronic structure data. J. Chem.
Phys. 2010, 132, No. 104101.

(42) Zhu, X; Yarkony, D. R. On the representation of coupled
adiabatic potential energy surfaces using quasi-diabatic Hamiltonians:
A distributed origins expansion approach. J. Chem. Phys. 2012, 136,
No. 174110.

(43) Guan, Y.; Guo, H.; Yarkony, D. R. Neural network based quasi-
diabatic Hamiltonians with symmetry adaptation and a correct
description of conical intersections. J. Chem. Phys. 2019, 150,
No. 214101.

(44) Guan, Y; Zhang, D. H; Guo, H.; Yarkony, D. R.
Representation of coupled adiabatic potential energy surfaces using
neural network based quasi-diabatic Hamiltonians: 1,2 *A’ states of
LiFH. Phys. Chem. Chem. Phys. 2019, 21, 14205—14213.

(45) Zhu, X; Ma, J; Yarkony, D. R; Guo, H. Computational
determination of the A state absorption spectrum of NH; and of ND;
using a new quasi-diabatic representation of the X and A states and
full six-dimensional quantum dynamics. J. Chem. Phys. 2012, 136,
No. 234301.

(46) Zhu, X; Yarkony, D. R. Quasi-diabatic representations of
adiabatic potential energy surfaces coupled by conical intersections
including bond breaking: A more general construction procedure and
an analysis of the diabatic representation. J. Chem. Phys. 2012, 137,
No. 22AS511.

(47) Malbon, C. L.; Yarkony, D. R. On the nonadiabatic
photodissociation of the hydroxymethyl radical from the 2*A State.
Surface hopping simulations based on a full nine dimensional
representation of the 1,2,3%A potential energy surfaces coupled by
conical intersections. J. Phys. Chem. A 2015, 119, 7498—7509.

(48) Malbon, C. L.; Yarkony, D. R. Multistate, multichannel coupled
diabatic state representations of adiabatic states coupled by conical
intersections. CH,OH photodissociation. J. Chem. Phys. 2017, 146,
No. 134302.

(49) Wang, Y; Xie, C.; Guo, H.; Yarkony, D. R. A quasi-diabatic
representation of the 1,2'A states of methylamine. J. Phys. Chem. A
2019, 123, 5231—5241.

(50) Zhu, X; Yarkony, D. R. Fitting coupled potential energy
surfaces for large systems: Method and construction of a 3-state
representation for phenol photodissociation in the full 33 internal
degrees of freedom using multireference configuration interaction
determined data. J. Chem. Phys. 2014, 140, No. 024112.

(51) Zhu, X.; Malbon, C. L.; Yarkony, D. R. An improved quasi-
diabatic representation of the 1, 2, 3'A coupled adiabatic potential
energy surfaces of phenol in the full 33 internal coordinates. J. Chem.
Phys. 2016, 144, No. 124312.

(52) Zhu, X; Yarkony, D. R. On the elimination of the electronic
structure bottleneck in on the fly nonadiabatic dynamics for small to
moderate sized (10-15 atom) molecules using fit diabatic
representations based solely on ab initio electronic structure data:
The photodissociation of phenol. ]. Chem. Phys. 2016, 144,
No. 02410S.

(53) Malbon, C. L.; Zhao, B.; Guo, H.; Yarkony, D. R. On the
nonadiabatic collisional quenching of OH(A) by H,: a four coupled
quasi-diabatic state description. Phys. Chem. Chem. Phys. 2020, 22,
13516—13527.

(54) Ma, J; Zhu, X; Guo, H.; Yarkony, D. R. First principles
determination of the NH,/ND,(A/X) branching ratios for photo-
dissociation of NH;/ND; via full-dimensional quantum dynamics
based on a new quasi-diabatic representation of coupled ab initio
potential energy surface. J. Chem. Phys. 2012, 137, No. 22A541.

(55) Ma, J.; Xie, C.; Zhu, X.; Yarkony, D. R;; Xie, D.; Guo, H. Full-
dimensional quantum dynamics of vibrationally mediated photo-

https://dx.doi.org/10.1021/acs.jctc.0c00811
J. Chem. Theory Comput. 2020, 16, 6776—6784


https://dx.doi.org/10.1021/acs.accounts.8b00571
https://dx.doi.org/10.1021/acs.accounts.8b00571
https://dx.doi.org/10.1021/acs.accounts.8b00571
https://dx.doi.org/10.1103/PhysRev.179.111
https://dx.doi.org/10.1103/PhysRev.179.111
https://dx.doi.org/10.1063/1.443853
https://dx.doi.org/10.1063/1.443853
https://dx.doi.org/10.1016/0301-0104(76)89006-4
https://dx.doi.org/10.1016/0301-0104(76)89006-4
https://dx.doi.org/10.1007/s002140050236
https://dx.doi.org/10.1007/s002140050236
https://dx.doi.org/10.1063/1.1500734
https://dx.doi.org/10.1063/1.1500734
https://dx.doi.org/10.1063/1.1500734
https://dx.doi.org/10.1063/1.1540622
https://dx.doi.org/10.1063/1.1540622
https://dx.doi.org/10.1063/1.1540622
https://dx.doi.org/10.1063/1.1540622
https://dx.doi.org/10.1063/1.455268
https://dx.doi.org/10.1063/1.455268
https://dx.doi.org/10.1063/1.455268
https://dx.doi.org/10.1063/1.474023
https://dx.doi.org/10.1063/1.474023
https://dx.doi.org/10.1063/1.474023
https://dx.doi.org/10.1063/1.474023
https://dx.doi.org/10.1063/1.3042233
https://dx.doi.org/10.1063/1.3042233
https://dx.doi.org/10.1063/1.3042233
https://dx.doi.org/10.1063/1.4948728
https://dx.doi.org/10.1063/1.4948728
https://dx.doi.org/10.1063/1.4948728
https://dx.doi.org/10.1063/1.4997995
https://dx.doi.org/10.1063/1.4997995
https://dx.doi.org/10.1063/1.5053664
https://dx.doi.org/10.1063/1.5053664
https://dx.doi.org/10.1063/1.5053664
https://dx.doi.org/10.1016/0009-2614(75)85599-0
https://dx.doi.org/10.1016/0009-2614(75)85599-0
https://dx.doi.org/10.1063/1.434032
https://dx.doi.org/10.1063/1.434032
https://dx.doi.org/10.1021/acs.jpclett.0c00989
https://dx.doi.org/10.1021/acs.jpclett.0c00989
https://dx.doi.org/10.1021/acs.jpclett.0c00989
https://dx.doi.org/10.1063/1.1770756
https://dx.doi.org/10.1063/1.1770756
https://dx.doi.org/10.1063/1.2338912
https://dx.doi.org/10.1063/1.2338912
https://dx.doi.org/10.1063/1.4998406
https://dx.doi.org/10.1063/1.4998406
https://dx.doi.org/10.1063/1.4998406
https://dx.doi.org/10.1063/1.4998406
https://dx.doi.org/10.1126/science.aav1356
https://dx.doi.org/10.1126/science.aav1356
https://dx.doi.org/10.1063/1.3324982
https://dx.doi.org/10.1063/1.3324982
https://dx.doi.org/10.1063/1.3324982
https://dx.doi.org/10.1063/1.3324982
https://dx.doi.org/10.1063/1.4704789
https://dx.doi.org/10.1063/1.4704789
https://dx.doi.org/10.1063/1.4704789
https://dx.doi.org/10.1063/1.5099106
https://dx.doi.org/10.1063/1.5099106
https://dx.doi.org/10.1063/1.5099106
https://dx.doi.org/10.1039/C8CP06598E
https://dx.doi.org/10.1039/C8CP06598E
https://dx.doi.org/10.1039/C8CP06598E
https://dx.doi.org/10.1063/1.4725496
https://dx.doi.org/10.1063/1.4725496
https://dx.doi.org/10.1063/1.4725496
https://dx.doi.org/10.1063/1.4725496
https://dx.doi.org/10.1063/1.4734315
https://dx.doi.org/10.1063/1.4734315
https://dx.doi.org/10.1063/1.4734315
https://dx.doi.org/10.1063/1.4734315
https://dx.doi.org/10.1021/acs.jpca.5b00758
https://dx.doi.org/10.1021/acs.jpca.5b00758
https://dx.doi.org/10.1021/acs.jpca.5b00758
https://dx.doi.org/10.1021/acs.jpca.5b00758
https://dx.doi.org/10.1021/acs.jpca.5b00758
https://dx.doi.org/10.1063/1.4978708
https://dx.doi.org/10.1063/1.4978708
https://dx.doi.org/10.1063/1.4978708
https://dx.doi.org/10.1021/acs.jpca.9b03801
https://dx.doi.org/10.1021/acs.jpca.9b03801
https://dx.doi.org/10.1063/1.4857335
https://dx.doi.org/10.1063/1.4857335
https://dx.doi.org/10.1063/1.4857335
https://dx.doi.org/10.1063/1.4857335
https://dx.doi.org/10.1063/1.4857335
https://dx.doi.org/10.1063/1.4944091
https://dx.doi.org/10.1063/1.4944091
https://dx.doi.org/10.1063/1.4944091
https://dx.doi.org/10.1063/1.4954824
https://dx.doi.org/10.1063/1.4954824
https://dx.doi.org/10.1063/1.4954824
https://dx.doi.org/10.1063/1.4954824
https://dx.doi.org/10.1063/1.4954824
https://dx.doi.org/10.1039/D0CP01754J
https://dx.doi.org/10.1039/D0CP01754J
https://dx.doi.org/10.1039/D0CP01754J
https://dx.doi.org/10.1063/1.4753425
https://dx.doi.org/10.1063/1.4753425
https://dx.doi.org/10.1063/1.4753425
https://dx.doi.org/10.1063/1.4753425
https://dx.doi.org/10.1063/1.4753425
https://dx.doi.org/10.1021/jp5057122
https://dx.doi.org/10.1021/jp5057122
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00811?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

dissociation of NH; and ND; on coupled ab initio potential energy
surfaces: Absorption spectra and NH,(A%A,)/NH,(X?B,) branching
ratios. J. Phys. Chem. A 2014, 118, 11926—11934.

(56) Xie, C.; Ma, J.; Zhu, X.; Zhang, D. H.; Yarkony, D. R;; Xie, D.;
Guo, H. Full-dimensional quantum state-to-state non-adiabatic
dynamics for photodissociation of ammonia in its A-band. J. Phys.
Chem. Lett. 2014, 5, 1055—1060.

(57) Xie, C; Zhu, X;; Ma, J.; Yarkony, D. R; Xie, D.; Guo, H.
Communication: On the competition between adiabatic and
nonadiabatic dynamics in vibrationally mediated ammonia photo-
dissociation in its A band. J. Chem. Phys. 2015, 142, No. 091101.

(58) Xie, C; Ma, J; Zhu, X,; Yarkony, D. R; Xie, D.; Guo, H.
Nonadiabatic tunneling in photodissociation of phenol. J. Am. Chem.
Soc. 2016, 138, 7828—7831.

(59) Xie, C.; Kendrick, B. K.; Yarkony, D. R;; Guo, H. Constructive
and destructive Interference in nonadiabatic tunneling via conical
intersections. J. Chem. Theory Comput. 2017, 13, 1902—1910.

(60) Xie, C.; Malbon, C.; Yarkony, D. R;; Guo, H. Nonadiabatic
photodissociation dynamics of the hydroxymethyl radical via the
22A(3s) Rydberg state: A four-dimensional quantum study. J. Chem.
Phys. 2017, 146, No. 224306.

(61) Xie, C.; Malbon, C. L.; Yarkony, D. R,; Guo, H. Dynamic
mapping of conical intersection seams: A general method for
incorporating the geometric phase in adiabatic dynamics in
polyatomic systems. J. Chem. Phys. 2017, 147, No. 044109.

(62) Xie, C; Malbon, C. L.; Yarkony, D. R; Xie, D.; Guo, H.
Signatures of a conical intersection in adiabatic dissociation on the
ground electronic state. J. Am. Chem. Soc. 2018, 140, 1986—1989.

(63) Xie, C; Malbon, C. L.; Xie, D.; Yarkony, D. R; Guo, H.
Nonadiabatic dynamics in photodissociation of hydroxymethyl in the
3*A(3p,) Rydberg state: A nine-dimensional quantum study. J. Phys.
Chem. A 2019, 123, 1937—1944.

(64) Xie, C.; Zhao, B.; Malbon, C. L.; Yarkony, D. R;; Xie, D.; Guo,
H. Insights into the mechanism of nonadiabatic photodissociation
from product vibrational distributions. The remarkable case of phenol.
J. Phys. Chem. Lett. 2020, 11, 191—198.

(65) Zhu, X; Yarkony, D. R. On the construction of property based
diabatizations: Diabolical singular points. J. Phys. Chem. A 20185, 119,
12383—12391.

(66) Zhu, X.; Yarkony, D. R. Constructing diabatic representations
using adiabatic and approximate diabatic data—Coping with
diabolical singularities. ]. Chem. Phys. 2016, 144, No. 044104.

(67) Wang, Y,; Guan, Y.; Yarkony, D. R. On the impact of
singularities in the two-state adiabatic to diabatic state transformation:
A global treatment. J. Phys. Chem. A 2019, 123, 9874—9880.

(68) Wang, Y.; Yarkony, D. R. Determining whether diabolical
singularities limit the accuracy of molecular property based diabatic
representations: The 1,21A states of methylamine. J. Chem. Phys.
2018, 149, No. 154108.

(69) Guan, Y.; Guo, H.; Yarkony, D. R. Extending the representation
of multistate coupled potential energy surfaces to include properties
operators using neural networks: Application to the 1,2'A states of
ammonia. J. Chem. Theory Comput. 2020, 16, 302—313.

(70) Cave, R. J; Newton, M. D. Generalization of the Mulliken-
Hush treatment for the calculation of electron transfer matrix
elements. Chem. Phys. Lett. 1996, 249, 15—19.

(71) Guan, Y.; Yarkony, D. R. Accurate neural network
representation of the ab initio determined spin—orbit Interaction in
the diabatic representation including the effects of conical
intersections. J. Phys. Chem. Lett. 2020, 11, 1848—1858.

(72) Alguire, E.; Subotnik, J. E. Optimal diabatic states based on
solvation parameters. J. Chem. Phys. 2012, 137, No. 194108.

(73) Guo, H. A time-independent theory of photodissociation based
on polynomial propagation. J. Chem. Phys. 1998, 108, 2466—2472.

(74) Yang, K. R; Xu, X; Zheng, J. J; Truhlar, D. G. Full-
dimensional potentials and state couplings and multidimensional
tunneling calculations for the photodissociation of phenol. Chem. Sci.
2014, 5, 4661—4580.

6784

(75) Guan, Y.; Fu, B.; Zhang, D. H. Construction of diabatic energy
surfaces for LiFH with artificial neural networks. J. Chem. Phys. 2017,
147, No. 224307.

(76) Xie, C.; Zhu, X.; Yarkony, D. R.; Guo, H. Permutation invariant
polynomial neural network approach to fitting potential energy
surfaces. IV. Coupled diabatic potential energy matrices. J. Chem.
Phys. 2018, 149, No. 144107.

https://dx.doi.org/10.1021/acs.jctc.0c00811
J. Chem. Theory Comput. 2020, 16, 6776—6784


https://dx.doi.org/10.1021/jp5057122
https://dx.doi.org/10.1021/jp5057122
https://dx.doi.org/10.1021/jp5057122
https://dx.doi.org/10.1021/jz500227d
https://dx.doi.org/10.1021/jz500227d
https://dx.doi.org/10.1063/1.4913633
https://dx.doi.org/10.1063/1.4913633
https://dx.doi.org/10.1063/1.4913633
https://dx.doi.org/10.1021/jacs.6b03288
https://dx.doi.org/10.1021/acs.jctc.7b00124
https://dx.doi.org/10.1021/acs.jctc.7b00124
https://dx.doi.org/10.1021/acs.jctc.7b00124
https://dx.doi.org/10.1063/1.4985147
https://dx.doi.org/10.1063/1.4985147
https://dx.doi.org/10.1063/1.4985147
https://dx.doi.org/10.1063/1.4990002
https://dx.doi.org/10.1063/1.4990002
https://dx.doi.org/10.1063/1.4990002
https://dx.doi.org/10.1063/1.4990002
https://dx.doi.org/10.1021/jacs.7b11489
https://dx.doi.org/10.1021/jacs.7b11489
https://dx.doi.org/10.1021/acs.jpca.8b12184
https://dx.doi.org/10.1021/acs.jpca.8b12184
https://dx.doi.org/10.1021/acs.jpclett.9b03407
https://dx.doi.org/10.1021/acs.jpclett.9b03407
https://dx.doi.org/10.1021/acs.jpca.5b07705
https://dx.doi.org/10.1021/acs.jpca.5b07705
https://dx.doi.org/10.1063/1.4939765
https://dx.doi.org/10.1063/1.4939765
https://dx.doi.org/10.1063/1.4939765
https://dx.doi.org/10.1021/acs.jpca.9b08519
https://dx.doi.org/10.1021/acs.jpca.9b08519
https://dx.doi.org/10.1021/acs.jpca.9b08519
https://dx.doi.org/10.1063/1.5048312
https://dx.doi.org/10.1063/1.5048312
https://dx.doi.org/10.1063/1.5048312
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1016/0009-2614(95)01310-5
https://dx.doi.org/10.1016/0009-2614(95)01310-5
https://dx.doi.org/10.1016/0009-2614(95)01310-5
https://dx.doi.org/10.1021/acs.jpclett.0c00074
https://dx.doi.org/10.1021/acs.jpclett.0c00074
https://dx.doi.org/10.1021/acs.jpclett.0c00074
https://dx.doi.org/10.1021/acs.jpclett.0c00074
https://dx.doi.org/10.1063/1.4766463
https://dx.doi.org/10.1063/1.4766463
https://dx.doi.org/10.1063/1.475629
https://dx.doi.org/10.1063/1.475629
https://dx.doi.org/10.1039/C4SC01967A
https://dx.doi.org/10.1039/C4SC01967A
https://dx.doi.org/10.1039/C4SC01967A
https://dx.doi.org/10.1063/1.5007031
https://dx.doi.org/10.1063/1.5007031
https://dx.doi.org/10.1063/1.5054310
https://dx.doi.org/10.1063/1.5054310
https://dx.doi.org/10.1063/1.5054310
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00811?ref=pdf

