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ABSTRACT

Measurements show that after facets form on frozen water droplets, those

facets grow laterally across the crystal surface leading to an increase in vol-

ume and surface area with only a small increase in maximum dimension. This

lateral growth of the facets is distinctly different from that predicted by the

capacitance model and by the theory of faceted growth. In this paper we de-

velop two approximate theories of lateral growth, one that is empirical and

one that uses explicit growth mechanisms. We show that both theories can

reproduce the overall features of lateral growth on a frozen, supercooled wa-

ter droplet. Both theories predict that the area-average deposition coefficient

should decrease in time as the particle grows, and this result may help explain

the divergence of some prior measurements of the deposition coefficient. The

theories may also explain the approximately constant mass growth rates that

have recently been found in some measurements. We also show that the em-

pirical theory can reproduce the lateral growth that occurs when a previously

sublimated crystal is regrown, as may happen during the recycling of crystals

in cold clouds.
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1. Introduction25

Vapor depositional growth is largely responsible for the variety of shapes (or habits) of ice26

crystals found in atmospheric cold clouds. The crystal sizes, shapes, and surface properties that27

result from vapor growth can have strong impacts on numerical cloud model simulations of ice-28

containing clouds (Gierens et al. 2003; Woods et al. 2007; Avramov and Harrington 2010), on29

the optical properties of cloud systems (Mitchell et al. 1996; Järvinen et al. 2018; van Dieden-30

hoven and Cairns 2020), and on the interpretation of laboratory measurements (Magee et al. 2006;31

Skrotzki et al. 2013; Pokrifka et al. 2020). However, quantifying the vapor growth rate of ice32

crystals is challenging because it is governed by two interconnected processes, namely the vol-33

ume diffusion of water vapor through the background gas and the various surface processes (often34

called surface kinetics) that control the incorporation of adsorbed water molecules (ad-molecules)35

into the crystalline lattice. It is the combined volume diffusion and surface kinetic processes that36

ultimately determine the overall mass and the dimensional growth rates of crystals.37

Classical growth theories treat only a single type of surface, those that are either entirely faceted38

or entirely rough. The classical theory of faceted growth accounts for both gas-phase diffusion39

and surface kinetic effects. In this theory, facets grow through the propagation of steps on their40

surfaces: Ad-molecules migrate across the surface as they seek suitable attachment sites such as a41

surface vacancy, a kink in a surface step, and so forth. Ad-molecules will incorporate into a step,42

and contribute to growth propagating the step forward, as long as the surface steps are sufficiently43

close so that a step is encountered before the ad-molecule desorbs from the surface. Classical44

crystal growth theory (e.g. Burton et al. 1951; Lewis 1974) employs surface models for crys-45

tals growing by steps formed through either permanent dislocations in the crystal structure or the46

nucleation of ”islands” on the crystal surface (step-nucleation). Most of the surface parameters re-47
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quired by these theories have not been measured, and so surface processes are usually treated with48

deposition coefficients (α) that depend strongly on ice supersaturation (hereafter supersaturation)49

and less-strongly on the temperature. The deposition coefficients account, in aggregate, for all of50

the surface processes that ultimately control the incorporation of ad-molecules into the bulk crys-51

talline lattice. The deposition coefficients act as “growth efficiencies” taking on values between52

zero and unity. Though the use of deposition coefficients is relatively successful at describing the53

growth of faceted ice at both low and high supersaturations (Lamb and Scott 1974; Nelson and54

Baker 1996; Wood et al. 2001; Harrington et al. 2019), there are many processes that complicate55

the actual growth of crystals such as the existence of partially disordered (quasi-liquid) surface56

layers (Neshyba et al. 2016), the adsorption of foreign gases (Anderson et al. 1969; Knepp et al.57

2009; Libbrecht and Ball 2010), phase separation that will occur upon the freezing of solution58

drops (Bogdan and Molina 2017), and the influence of nucleation (Pokrifka et al. 2020).59

In the theory of faceted growth, the crystal dimension perpendicular to a given facet increases at60

a rate that depends on the vapor attachment to that facet. For instance, molecular attachment on the61

basal (hexagonal) face of a crystal causes the crystal dimension that is perpendicular (or normal)62

to that face to increase in time (see Figs. 1 and 2). We will refer to this kind of growth as normal63

growth, since molecular attachment onto the basal and prism facets causes the dimension that is64

perpendicular (normal) to the face to increase in time. We will also refer to the dimensions normal65

to the facet as the normal dimensions (an and cn for the prism and basal facets, respectively, see66

Fig. 2). Most studies of crystal growth focus on normal growth, which is not surprising: Different67

molecular attachment rates for the basal and prism faces gives rise to the temperature variation in68

the primary (planar or columnar) habits of ice crystals (Lamb and Scott 1974).69

Entirely rough surfaces are almost universally treated with the capacitance model, which by70

definition is not appropriate for faceted ice. The capacitance model explicitly assumes that the71

4



surface is a perfect sink for water vapor molecules (α = 1), meaning that all surface processes are72

ignored. The vapor density is constant across the surface in the capacitance model. Consequently73

facets cannot remain flat (Saito 1996, pp.120-122) and the aspect ratio cannot evolve (Ham 1959).74

In contrast to normal growth and rough growth, much less attention has been paid to growth that75

occurs laterally when facets spread across the crystal surface. This growth is distinctly different76

from normal growth in that the facet areas increase but often with very little increase in the normal77

dimensions (Fig. 1). We will refer to this kind of growth as lateral growth, and it can occur78

during ice crystal growth from the vapor (Gonda and Yamazaki 1978) and has been observed79

on CCl4 crystals grown from the melt (Mayurama et al. 2000; Wettlaufer 2001). For instance,80

measurements show that after a supercooled droplet freezes, facets emerge on the crystal surface81

(see Fig. 1 of Nelson and Swanson 2019, for examples). Generally, the prism planes will appear82

first followed by basal planes and “rougher” conical regions in between the facets. These rougher83

regions develop into higher index (pyramidal) facets when the saturation state is near that of liquid,84

leading to a 20 faced crystal know as a “droxtal”, or at lower saturation the regions may be rounded85

(see Gonda and Yamazaki 1978, their Fig 4.). These pyramidal regions must have high deposition86

coefficients (α ∼ 1) because, at higher temperatures, they grow more rapidly than the basal and87

prism facets (Gonda and Yamazaki 1984). Consequently, the rougher regions grow themselves88

out of existence leading to an increase in facet area, but with only a small increase in the normal89

dimensions (Gonda and Yamazaki 1984). At lower temperatures (below -25◦C), the pyramidal90

facets may not disappear at all (Pfalzgraff et al. 2011). In fact, pyramidal facets may arise from91

spicules that form during droplet freezing thus producing single bullets (Magono et al. 1976). Ice92

crystals can, therefore, undergo growth that is influenced by two interfaces, faceted and rough,93

though current theories are not capable of accounting for both surface types.94
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Lateral growth may be important for more than the initial growth forms that develop after ice95

nucleation. The recent measurements of Nelson and Swanson (2019) indicate that lateral growth96

can lead to the production of protrusions and trapped air pockets. Their results suggest that the97

lateral spreading of facet protrusions is caused by adjoining surface transport, whereby molecules98

on the basal and prism faces migrate over facet edges and onto the protrusions. Though adjoining99

surface transport is theoretically unlikely (Saito 1996, pgs. 58-61), indirect evidence suggests that100

it occurs for thin layers (Asakawa et al. 2014). Lateral growth is also important for the growth101

of crystals that have previously sublimated. Sublimation causes the rounding of crystal edges102

leading to ellipsoidal shapes for simple planar crystals (Nelson 1998). During re-growth, facets103

spread across the crystal surface leading to growth rates that cannot be explained by normal growth104

(Nelson and Swanson 2019, their Fig. 6). Lateral growth has also been suggested as an explanation105

for the bending of facets that occurs during the growth of scrolls, trigonal crystals, and stacks of106

sheaths among other types (Nelson and Swanson 2019).107

Lateral growth may also help interpret past laboratory measurements of the vapor growth of108

newly nucleated ice crystals. Most prior laboratory studies have used the capacitance model to109

interpret the measured growth rates. While the capacitance model can be made consistent with110

faceted growth theory (MacKenzie and Haynes 1992; Zhang and Harrington 2014), most labo-111

ratory studies include surface processes in the capacitance model with a constant deposition co-112

efficient (e.g. Magee et al. 2006). Unfortunately, interpretations of measured growth rates using113

constant α lead to inconsistent results, with α values that are scattered as a function of temper-114

ature (Skrotzki et al. 2013). Pokrifka et al. (2020) suggest that these scattered results for α may115

be due neglected surface processes: If crystals develop facets, the deposition coefficient then de-116

pends on the supersaturation, temperature, and the crystal size. The measurements and analysis117

of Pokrifka et al. (2020) show that some of the scatter in the data appears to be due to variations118
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in α predicted by the theory of faceted growth. However, Pokrifka et al. (2020) also show that119

a substantial number of measurements require α to decline rapidly in time, a result that cannot120

be explained by the theory of faceted growth. Pokrifka et al. (2020) hypothesized that the de-121

velopment of facets on a crystal surface could cause a rapid decline in the deposition coefficient,122

as rough regions are replaced by facets. Thus, a theory of lateral growth may explain laboratory123

growth rate measurements, and may also explain some of the scatter in prior deposition coefficient124

measurements.125

In this paper we describe two approximate theories of lateral growth. The models treat two126

surface types are based on a combination of the theory of faceted growth and the theory of rough127

growth. We show that the models can reproduce the general features of the few available measure-128

ments on lateral spreading. We show that the time-scale for the disappearance of rough regions129

can be long enough to have important consequences for the interpretation of prior laboratory mea-130

surements.131

2. Faceted (Normal) Growth Model132

Models of faceted growth (what we call normal growth) must simultaneously account for the gas133

phase diffusion of water vapor and the surface kinetic processes that ultimately control the incor-134

poration of water molecules into the crystalline lattice. Gas-phase diffusion depends on the shape135

of the crystal, and models of normal growth relevant for atmospheric ice assume either a cylinder136

(Nelson and Baker 1996) or a hexagonal prism (Wood et al. 2001) shape. These models quantify137

the effects of crystal shape, facet edges, and surface kinetics on the growth rate, but they require138

complex numerical solutions. Simplified models that account for the effects of faceted growth have139

also been developed using spherical (MacKenzie and Haynes 1992; Libbrecht 2003) or spheroidal140

(Zhang and Harrington 2014) approximations. An attractive feature of the spheroidal solution is141
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that the theory is analytical, and the mass and dimension evolution compare well to available mea-142

surements for single crystals and to solutions from models of faceted growth (Harrington et al.143

2019). It is for these reasons that we use the spheroidal model of Zhang and Harrington (2014).144

In all of the models cited above, surface kinetic processes are approximated using deposition145

coefficients (α). Though theoretical models of α exist the parametric model of Nelson and Baker146

(1996) is preferable because it can, in principle, treat various surface growth modes,147

α = αs

(
ssur f

schar

)M

tanh
(

schar

ssur f

)M

. (1)148

In the above equation ssur f is the supersaturation immediately above the crystal surface, schar(T )149

is a temperature-dependent “characteristic” supersaturation determined from laboratory measure-150

ments (see Harrington et al. 2019), M is an empirical parameter that describes the surface growth151

mode, and αs is the adsorption efficiency that is a measure of the probability that a water vapor152

molecule will “stick” to the surface and is assumed to be unity (Nelson 2001). In this model, α153

rises commensurately with ssur f : As the surface supersaturation increases, the density of surface154

steps also rises thus leading to more efficient incorporation of ad-molecules into the crystal. The155

increase in α with ssur f is controlled by both schar and M (see Fig. 3). The characteristic super-156

saturation controls the transition from inefficient (α ∼ 0) to efficient (α ∼ 1) growth whereas the157

steepness of the increase in α with ssur f is controlled by the parameter M. A value of M = 1 in158

Eq. 1 is consistent with growth by permanent spiral dislocations, as originally derived by Burton159

et al. (1951). Though the form given above, with M = 1, is given by Lamb and Scott (1974).160

Dislocations provide a permanent source of surface steps, and produce efficient growth even at161

relatively low values of ssur f . Spiral dislocation theory presumes that the ad-molecule density162

on the ice surface is sparse, which is not necessarily true for atmospheric ice that may contain a163

very thin, partially disordered layer of surface molecules (Constantin et al. 2018). Despite this164
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limitation, the theory appears to represent the growth of crystals by dislocations (Nelson 2005;165

Harrington et al. 2019). A value of M ≥ 10 in Eq. 1 produces growth that is consistent with step166

nucleation (Nelson and Baker 1996). Step nucleation requires the formation of two-dimensional167

islands on the crystal surface and, therefore, produces a rapid onset of growth once ssur f is near168

schar. These steps are generally thought to form near crystal edges where supersaturations are169

high and are likely responsible for the formation of very thin and symmetric crystals (Frank 1982;170

Wood et al. 2001).171

The spheroidal solution of Zhang and Harrington (2014) assumes that the gas-phase diffusion172

of water vapor can be modeled with capacitance theory and that surface kinetics can be modeled173

with deposition coefficients, αa and αc, for the a and c semi-dimensions using Eq. 1. The a and c174

semi-dimensions are respectively referenced to half the basal facet width and half the prism height175

of single crystalline ice. The mass growth rate of the crystals can be computed using Eqs. 14 and176

15 in Zhang and Harrington (2014), however, the Hertz-Knudsen fluxes (their Eq. 7) are more177

germane to the work presented here,178

Fas = αa
1
4

vv [ρsur f ,a−ρeq(Ti)] = αa
1
4

vv ρeq(Ti) ssur f ,a179

Fcs = αc
1
4

vv [ρsur f ,c−ρeq(Ti)] = αc
1
4

vv ρeq(Ti) ssur f ,c, (2)180

where vv is the average vapor molecule speed, ρeq(Ti) is the equilibrium water vapor density at181

the crystal temperature, Ti, and ρsur f ,a, ρsur f ,c, ssur f ,a, and ssur f ,c are the surface vapor densities182

and supersaturations for the subscripted axis. The vapor fluxes, Fas and Fcs, are the fluxes onto the183

prism and basal facets, respectively, and they are subscripted with the axis that is normal to the184

facet, a and c respectively. These fluxes cause the increase in the normal dimensions (an and cn),185

and we therefore call them normal fluxes (Fig. 2).186
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The surface vapor density excess, which is the bracketed term in Eq. 2, can be written in terms187

of the ambient vapor density (ρ∞) as (Eq. 9, Zhang and Harrington 2014),188

ρsur f ,a−ρeq(Ti) = [ρ∞−ρeq(Ti)]

(
1+

αavv

4Dv

ac
C∆

)−1

189

ρsur f ,c−ρeq(Ti) = [ρ∞−ρeq(Ti)]

(
1+

αcvv

4Dv

a2

C∆

)−1

(3)190

where Dv is the vapor diffusivity in air, and C∆ is the capacitance for a spheroid of dimensions191

a+∆ and c+∆, and ∆ is the vapor jump length at the crystal surface. The above equations for the192

surface vapor density and the deposition coefficients are combined with thermal diffusion and are193

solved iteratively (for details see Zhang and Harrington 2014) to find the fluxes Fas and Fcs.194

The mass growth rate can now be found by multiplying the areas by the normal fluxes,195

dm
dt

= AbsFcs +ApsFas (4)196

where Abs = 4/3πa2 and Aps = 8/3πac are the “effective” area of the spheroidal basal and prism197

facets, respectively (similar to Eq. 5 of Zhang and Harrington 2014). The equations for the mass198

growth rate and fluxes given above are for spheroidal particles, which is our proxy for faceted ice.199

However, the theory we develop below approximates the crystal facet areas with cylinders, and200

we therefore need to ensure that the growth rate computed with cylindrical areas is consistent with201

that of the spheroidal model. If the basal and prism cylindrical areas are denoted as Ab = 2πa2 and202

Ap = 4πac, respectively, then the above mass growth rate equation becomes,203

dm
dt

= Ab

(
Abs

Ab
Fcs

)
+Ap

(
Aps

Ap
Fas

)
= Ab

2
3

Fcs +Ap
2
3

Fas = AbFc +ApFa, (5)204

where Fa and Fc are the respective normal fluxes for the a and c axes: In order to be consistent205

with the spheroidal model, the use of cylindrical areas requires multiplication by a factor of 2/3.206
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3. Lateral Growth: Empirical Theory207

The equations described above are valid for the normal growth of crystal faces, but they do not208

describe the spreading of facets shown in Fig. 1. Nelson and Swanson (2019) developed a theoret-209

ical model for lateral growth based on the migration of surface-mobile water molecules over and210

onto the lateral edge of the facet, thus enhancing lateral growth at the expense of normal growth.211

Growth measurements support this view in that the crystal normal dimensions change slowly dur-212

ing facet spreading (Gonda and Yamazaki 1984; Nelson and Swanson 2019). The approximate213

theories we develop here do not explicitly model the lateral fluxes, but use approximations that214

work in the correct physical manner: Lateral growth occurs at the expense of normal growth,215

leading to small changes in the normal dimensions.216

Since no approximate theories of lateral growth exist, we begin with an idealized problem, that217

of an isometric crystal formed from a frozen droplet (see Fig. 2). We assume that basal and prism218

facets immediately begin spreading across the crystal surface, though in reality it does take time219

for crystal facets to emerge. This time-scale is known to depend on the supersaturation (∼ 1 to220

4 min. Gliki and Eliseev 1962), however, very few measurements of this time-scale exist. We221

therefore caution that our model will underestimate the time-scale for facet development. We222

assume that the facets are well approximated by circular cylinders, which simplifies the geometry223

considerably, and given that our theory is approximate more advanced geometry is not warranted.224

We assume that the pyramidal or rough regions remain as spherical sections, which is similar to225

observations at saturations below that of liquid (Magono et al. 1976; Gonda and Yamazaki 1978).226

For simplicity, we will refer to these regions as pyramidal.227

Our development of an empirical theory for lateral growth is rooted in the measurements of228

Gonda and Yamazaki (1984), which are reproduced in Fig. 4. They measured the growth of basal,229
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prism, and pyramidal facets for frozen droplets at -15◦C and a supersaturation of about 1.5%. The230

basal and prism facet areas depend on the lateral a and c dimensions, defined as al and cl in Fig. 2.231

Recall that the overall crystal dimensions are defined by the normal dimensions, an and cn, which232

the areas and growth rates are plotted against in Fig. 4. As the figure shows, the pyramidal areas233

disappear as the basal and prism facet areas increase by spreading across the surface. The growth234

velocity of the pyramidal facets (dr/dt) increases rapidly as the area declines, however the normal235

growth velocities of the basal (dcn/dt) and prism (dan/dt) facets remain approximately constant236

with a slight decline as the crystal grows larger. Once the pyramidal regions are gone, a faceted237

hexagonal crystal remains, with the facets increasing in size by normal growth.238

The growth velocities for the facet and pyramidal regions appear to be relatively independent of239

one another, and this suggests that an approximate theory can be constructed that treats the growth240

regions separately: The basal and prism faceted regions are treated with normal growth (i.e. Eq. 2),241

and a pyramidal region that has a rising growth velocity with declining area that suggests growth242

is dominated by gas-phase diffusion. In order to understand this latter point, consider a crystal243

that is growing by lateral growth only. In this case the normal dimensions (an and cn) are constant244

(though the volume does increase) and so the diffusion mass flow rate to the particle will remain245

about the same as facets spread laterally. In order to maintain the same mass flow rate as the246

pyramidal area declines requires that the vapor flux to those areas (Fr) must rise, behavior that is247

consistent with gas-phase diffusion alone (assuming that α = 1),248

Fr =
Dv[ρ∞−ρsur f ]

rr
=

Dvρeqsi

rr
, (6)249

where si is the ambient supersaturation and rr is an effective radial length-scale for the pyramidal250

area, Ar. Equation 6 is exact for a spherical particle with a radius of rr, which suggests approximat-251

ing the length scale as rr = [Ar/(4π)]1/2. This equation has the correct physical behavior in that252
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a decline in the pyramidal area will lead to an increasing vapor flux, and therefore an increasing253

growth velocity since dr/dt = Fr/ρi where ρi is the ice mass density. The combined mass growth254

rate for lateral and normal growth then becomes,255

dm
dt

= ArFr +AbFc +ApFa. (7)256

Clearly, the above equations are approximate and based on a plausible physical argument. It is257

worth noting that Eq. 7 may overestimate the growth rate since the flux to the pyramidal region is258

based on the total mass flow to the particle. This assumption is relaxed in the next section (§4).259

The mass growth rate given above can now be time-stepped, however that mass must be dis-260

tributed both laterally and normally. Growing the normal dimensions of the crystal is straightfor-261

ward since the vapor fluxes determine the growth rates,262

dan

dt
=

Fa

ρi
,

dcn

dt
=

Fc

ρi
. (8)263

Lateral growth is treated empirically by relating changes in the total facet surface area (A f ) and264

pyramidal area (Ar) to changes in crystal volume: Imagine that a crystal begins growing with an265

initial surface area and volume of A◦ and V◦, respectively. As facets spread across the crystal, the266

volume and surface area will increase in time. Lateral growth will cease when the crystal volume267

and surface area reach that of a cylinder, or Vcyl = 2πa2
ncn and Acyl = 2πa2

n+4πancn. We therefore268

know the areas and volume of the crystal when lateral growth begins and ends, and can therefore269

approximate the evolution of the facet and pyramidal areas as a weighted volume fraction (w f ),270

A f (t) = Acyl w f = Acyl

V (t)2/3−V 2/3
◦

V 2/3
cyl −V 2/3

◦

n

271

Ar(t) = A◦(1−w f ), (9)272

where V (t) is the crystal volume at time, t. The form of w f originates from approximating the273

change in surface area to volumetric changes based on a sphere, namely that dA ∝ dV 2/3. We274

include an empirical power of n since the particle grows into a cylinder, and so we should not275
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expect the spherical relationship to hold exactly (see below). Note that this fraction works in the276

correct manner in that w f = 0 when the particle is entirely rough (V (t) = V◦), and w f = 1 when277

the pyramidal regions are gone (V (t) =Vcyl).278

The lateral dimensions of the crystal can now be calculated (see Fig. 2) assuming that the basal279

facets are tops of two circular cylinders (Ab = 2πa2
l ) and that the prism facets are given by the280

curved cylinder area (Ap = 4πancl),281

A f (t) = 2πa2
l +4πancl = 2πa2

l +4πanalφl (10)282

where φl = cl/al is the lateral aspect ratio which is kept constant over a time-step. The above283

equation is quadratic for al and so the solution is,284

al(t) =−an(t)φl +
1

4π

√
(4πan(t)φl)2 +8πA f (t) cl(t) = al(t)φl. (11)285

The lateral a- and c-axis dimensions can now be determined at any time.286

a. Results from Empirical Theory287

The above equations were use to calculate lateral growth on a newly frozen water droplet for288

the data of Gonda and Yamazaki (1984) shown in Fig. 4. The equations were solved using both a289

small time step (∆t = 0.1 s) and using the equivalent volume sphere approach advocated by Chen290

(1992). In the latter approach, the growth equation is solved analytically over a time-step assuming291

an equivalent volume sphere of radius req. The method is accurate, even for highly anisotropic292

particles, as long as the time-step is less than about 20 seconds (Harrington et al. 2013). Both293

methods produce indistinguishable results, and so we present the short time-step solutions. The294

initial diameter of the particle is taken from the data (23.8 µm), and since no information on295

particle aspect ratio is available we assume that cn/an and cl/al are both unity. The characteristic296

supersaturations (schar) for the basal and prism facets at -15◦C are taken from the fits of Harrington297
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et al. (2019) to the measurements of Nelson and Knight (1998). Given that the growth occurred at298

low supersaturation (1.5%), it is reasonable to assume that dislocations were responsible (M = 1299

in Eq. 1).300

Overall, the empirical model captures the main effects of lateral and normal growth as compared301

to the measurements (Fig. 4). Evolution of the facet areas and the pyramidal growth velocity302

depend on n (Eq. 9), and though values between 2 and 3 match the data reasonably well, a value303

of 2.5 appears to provide the best overall match. The decline in the pyramidal area with increasing304

size has nearly the same functional dependence as shown by the data. Once the pyramidal area305

has disappeared, lateral growth ceases and the evolution of the particle is controlled by normal306

growth. The basal and prism areas are predicted relatively accurately during the period over which307

facet spreading is occurring, but both facet areas are overestimated once normal growth dominates308

(2an > 26.5 µm). The pyramidal growth velocity increases rapidly as the diameter of the crystal309

rises and the pyramidal area declines, and with a similar functional dependence as expressed by310

the measurements. It is not surprising that the pyramidal growth velocity is most sensitive to the311

choice of n in Eq. 9, since the vapor flux is proportional to the inverse of the pyramidal area. The312

normal growth velocities of the basal and prism facets also reasonably match the measurements:313

The growth velocities for both facets decrease slightly as the particle diameter increases, and this314

is due primarily to the relatively slow decline in α of the basal and prism facets with size (Fig. 5).315

Since the normal growth velocities are most strongly dependent on the growth mode (M) and316

schar through α (Eq. 1), the match of the theory with measurements provides evidence that normal317

growth was controlled by dislocations. This match also provides corroborating evidence for the318

schar measured by Nelson and Knight (1998), which is important since few tests of measured schar319

have been done at low supersaturation.320
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Lateral growth has a non-trivial impact on the overall mass growth rate of the crystal (Fig. 6a).321

The growth rate initially rises commensurately with the crystal diameter, and this is due to the322

increase in total surface area. However, as the pyramidal area decreases and approaches zero (near323

2an ∼ 26.5 µm), the mass growth rate begins to flatten. This result is due to the declining mass324

uptake of the pyramidal regions as their area shrinks to zero. The disappearance of the pyramidal325

regions takes about 3 minutes (Fig. 6b), which occurs when the lateral facet a-axis dimension (al)326

approaches the normal a-axis dimension (an). This time-scale is similar to the measured range of327

2 to 4 minutes (Gonda and Yamazaki 1984). The loss of the pyramidal regions causes the total328

mass growth rate to asymptotically approach the normal growth rate, as expected.329

In order to provide context for the total mass growth rate, calculations using rough growth and330

using the spherical capacitance model are also shown. Rough growth provides the maximum rate331

and it was computed diagnostically: As the crystal evolved, the rough growth rate was calculated332

assuming that α = 1 for the entire crystal, but this growth rate did not influence the particle evo-333

lution. The rough growth rate initially follows, but then climbs away from, the total growth rate.334

This difference with the total growth rate occurs because the average α declines as the particle335

becomes faceted (Fig. 5), causing the total mass growth rate to fall.336

The capacitance model calculations followed the standard approach of treating the crystal as a337

sphere with α = 1. Treating the crystal in this manner leads to mass growth rates that are initially338

lower than the total growth rate (Fig. 6), a result that is due to spherical particles having too small339

of a surface area for a given volume. The measured crystals grow by filling out volume and340

increasing area while the normal dimension changes slowly. Once lateral growth ceases, a fully341

faceted crystal remains with an area-average α value below unity (Fig. 5). In contrast, the larger342

capacitance growth rate causes the size to increase more rapidly than that of the faceted crystal343

(Fig. 6b), and this in turn increases the growth rate. As discussed in the introduction, it is common344
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practice to adjust the capacitance model using a constant α in order to match the mass growth345

measured in laboratory experiments. If that approach were applied to a crystal undergoing lateral346

growth, such as the case considered above, an α of approximately 0.05 (Fig. 6a) would be needed347

to match the mass growth. This value is too low in comparison to the time-series of α , which is348

generally above 0.1, and mis-represents the actual growth process.349

4. Lateral Growth: Mechanistic Theory350

The empirical theory above is relatively successful at reproducing the measured growth rates of a351

combination of basal and prism facets and pyramidal regions. However, the theory is based on the352

assumption that the vapor flux to the pyramidal regions can be treated classically, and that the facet353

areas increase commensurately with the volume. In this section we develop a mechanistic model354

that links these two assumptions to surface kinetic effects. Doing so entails some key assumptions,355

though the results are not overly sensitive to those assumptions.356

a. Attachment kinetics with basal, prism, and pyramidal regions357

As discussed in the introduction, we use deposition coefficients to model all surface kinetic358

processes. Given the generally larger growth velocity of the pyramidal regions due to lateral359

growth, we represent this growth with a higher deposition coefficient (αr) than the basal (αc)360

and prism (αa) facets. This representation of αr is supported by molecular dynamics simulations361

(Pfalzgraff et al. 2011) that show higher α for the pyramidal facets. Calculating αr using Eq. 1362

requires an schar for the pyramidal region; since the growth of this region is highly efficient we363

represent it with an schar,r that is a factor fchar lower than the smallest value among the basal and364

prism facets,365

schar,r = fchar ·min(schar,a,schar,c) where fchar < 1 (12)366
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The adjustable parameter fchar is used to mimic the combine effects of direct and adjoining surface367

fluxes on lateral growth (Fig. 2).368

The mass growth equation (Eq. 7) remains the same, except that the vapor flux to the pyramidal369

region is now treated similarly to the vapor flux to the basal and prism faces of the crystal (Eq. 2),370

however with an important modification. Instead of treating the surface vapor density with distinct371

values for each facet, we assume that growth is driven by a single value of ρsur f . This is an372

oversimplification, but as a first approximation it may be justified: If lateral growth dominates373

the vapor uptake, then the pyramidal regions will reduce ssur f keeping its value low and nearly374

the same at the edge of both the basal and prism facets (as indicated in Fig. 2). Consequently, the375

basal and prism normal growth rates will be reduced with the result that mass will be preferentially376

deposited in the pyramidal regions, thus causing facet spreading. Using the assumption that ρsur f377

is the same for each crystal facet in Eq. 2, the mass growth rate (Eq. 7) can be written as,378

dm
dt

= ArFr +AbFc +ApFa = At α
1
4

vv [ρsur f −ρeq(Ti)] (13)379

where At = Ar+Ab+Ap is the total surface area, and α =
Ap
At

αa+
Ab
At

αc+
Ar
At

αr is the area averaged380

deposition coefficient.381

The above surface kinetic equation must now be coupled with the ambient gas-phase diffusion of382

water vapor to the crystal, and we use capacitance theory following Zhang and Harrington (2014),383

dm
dt

= 4πC∆Dv[ρ∞−ρsur f ], (14)384

where the above symbols were previously defined. The vapor transport rate from the far field385

(Eq. 14) must match the transport at the surface (Eq. 13), allowing us to solve for ρsur f −ρeq,386

ρsur f −ρeq(Ti) = [ρ∞−ρeq(Ti)]

(
1+

α vv

4Dv

At

4πC∆

)−1

=
[ρ∞−ρeq(Ti)]

1+Rk
. (15)387

This equation has the same form as that for normal growth (Eq. 3), except that the axis-dependent388

α are replaced with the area-average. The denominator of the right-hand-side of the equation can389
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be interpreted as a “surface resistance”, Rk: As the α declines, the surface resistance to growth390

increases causing a rise in the surface vapor density and supersaturation. We expect this physical391

behavior to occur during lateral growth, when the more efficiently growing pyramidal regions392

are replaced with slower growing facets. Combining Eqs. 14 and 15 gives the equation for mass393

growth in terms of the ambient and equilibrium vapor densities,394

dm
dt

= 4πCD∗v [ρ∞−ρeq(Ti)] where D∗v =
Dv

C
C∆

+Rk
. (16)395

Mass growth including surface kinetics are often cast in a similar form (see Lamb and Verlinde396

2011, pg. 337). Thermal diffusion is treated following Zhang and Harrington (2014) and, for397

brevity, will not be repeated here.398

b. Mass and axis length prediction399

Using the mass growth rate above requires specific geometrical details. For instance, Fig. 2400

shows that the normal fluxes to the basal and prism facets cause the outward growth of the normal401

dimensions (an and cn), as shown by the blue rectangles in Fig. 7. The combination of direct402

fluxes and adjoining surface fluxes to the pyramidal regions will cause the pyramidal axis (pn)403

and the lateral facet axes (al and cl) to increase in time. It is possible to attack this problem404

by calculating the height of the facets above the pyramidal regions and then growing the facets405

laterally using explicit fluxes (the approach of Nelson and Swanson 2019). We have developed a406

model of this growth, however it is complex and requires a number of additional assumptions. A407

more rudimentary approach is taken here that produces qualitatively similar results. If we assume408

that there is no height to the basal and prism facets, then the round regions directly intersect the409

facets (Fig. 7). Since α of the pyramidal regions is always greater than that of the basal and prism410

facets, the outward growth of the pyramidal region is always sufficient for the edges to intersect.411
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However, requiring the intersection of the round and facet regions means that the pyramidal region412

grows at a faster rate than is measured (see below).413

Requiring the intersection of the facets and the round regions makes it possible to analytically414

calculate the changes in the normal axis lengths (an, cn, and pn) and the lateral facet dimensions (al415

and cl) if we know the area and volume. The total surface area of the basal, prism, and pyramidal416

regions can be computed directly from the lateral and normal dimensions using the geometry in417

Fig. 7,418

Ab = 2πa2
l ,419

Ap = 4πancl,420

Ar = 2
∫ 2π

0

∫
φc

φa

p2
n sinφ dφ dθ = 4π p2

n [cosφa− cosφc] = 4π pn [cn−al], (17)421

where the last equation uses cos(φa) = cn/pn and cos(φc) = al/pn, and it assumes spherical sec-422

tions that therefore restricts this model to isometric crystals (an = cn and al = cl).423

The total volume can also be calculated analytically based on the geometry of Fig. 7. One can424

integrate from φ = 0 to φ = φa over the flat basal region which gives the volume of a cone (Vb),425

then over the circular region from φ = φa to φ = φc which gives the volume of a spherical section426

(Vr), and finally from φ = φc to φ = π/2 over the flat prism region (Vp) resulting in,427

Vb =
2
3

πa2
l cn,428

Vr =
4
3

π p3
n [cosφa− cosφc] =

4
3

π(c2
n +a2

l ) [cn−al],429

Vp =
4
3

πa2
ncl,430

Vt = Vr +Vb +Vp =
4
3

π

[
(c2

n +a2
l )(cn−al)+

1
2

a2
l cn +a2

ncl

]
, (18)431

where the last equation is the total volume of the crystal and p2
n = c2

n + a2
l has been used. Note432

that Vt has the correct limiting behavior for an isometric crystal (an = cn). Initially the crystal is433

spherical without any facets, and so al = cl = 0, and the total volume reduces to that of a sphere.434
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If the crystal remains isometric and the pyramidal regions grow themselves out of existence, then435

an = cn = al = cl and the volume becomes that of a cylinder (2πa2
ncn).436

It is now possible to calculate the change in the mass and volume of the crystal, and hence the437

normal and lateral dimensions. As in §3 the total mass, m(t +∆t), and total volume, Vt(t +∆t) =438

m(t +∆t)/ρi, at the end of a short time-step (∆t = 0.1s) can be computed directly from the mass439

growth equation (Eq. 16) with thermal diffusion included. Similarly, the normal dimensons at the440

end of a time-step, an(t +∆t) and cn(t +∆t), can be computed directly from Eq. 8. To keep the441

particle isometric we use the average of the an and cn growth velocities during lateral growth only.442

The lateral dimensions cannot be determined in a similar fashion. However, since the total volume443

and the normal dimensions are known at the end of the time-step, the new lateral dimensions can444

be found diagnostically. Equation 18 can be rearranged as,445

Vt(t +∆t) =
4
3

π

[
−a3

l +
3
2

cna2
l +(a2

nφl− c2
n)al− c3

n

]
t+∆t

, (19)446

where every term on the right-hand-side is at the end of the time-step (t +∆t). This is a cubic447

equation for the lateral dimension, al , which is the only unknown. Standard cubic solutions can448

be used to find al and this closes the equation set.449

c. Results from Mechanistic Theory450

The mechanistic theory was used evolve the frozen droplet described §3, however the deposition451

coefficient (αr) for the pyramidal region is needed and this requires specifying fchar (Eq. 12). We452

used a wide range of fchar in our simulations, from 1/3 to 1/10, but found that the main features453

of lateral growth remained the same, and that a value of fchar = 1/5 produces the best match to454

the data. The evolution of the areas and growth velocities (Fig. 8) is similar to that produced455

by the empirical model, in that a rapid increase in the basal and prism areas occurs, along with456

a commensurate decline in the pyramidal area. Once lateral growth ceases, and the pyramidal457
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area is gone (near 2 an = 26 µm), the basal and prism facets grow more slowly at their normal458

growth rates. The pyramidal area disappears faster in the mechanistic theory, a result that is likely459

due to the requirement that the round and facet regions intersect. Unlike the empirical model,460

the mechanistic model more accurately captures the evolution of the facet areas. What is most461

remarkable about the mechanistic theory calculations is that the prism area matches the data with462

high precision even during the period of lateral growth. Both basal and prism facet areas are463

exceedingly well predicted after lateral growth ceases, a result that strongly suggests the facets464

grew with dislocations at the measured schar of Nelson and Knight (1998).465

The growth velocities of the pyramidal region and a-axis match the measurements, though the466

c-axis growth rate is under-predicted. Note that all of the growth velocities increase during facet467

spreading, which qualitatively agrees with the measurements. The physical cause of this increase468

is the competition for vapor among the surface regions. When the basal and prism facets are469

small, the pyramidal region keeps the surface supersaturation low (Fig. 9) due to that region’s470

higher αr thus starving the facets of vapor. This result is expected based on the work of Nelson471

and Swanson (2019), though in their theory explicit adjoining surface fluxes rob the facets of vapor472

at the expense of lateral growth. No surface process is explicitly modeled in the theory presented473

here, and instead αr for the pyramidal region acts in an aggregate fashion to mimic the reduction474

of the basal and prism facets normal growth. As the basal and prism facets spread laterally, and475

the pyramidal area declines, the surface supersaturation rises causing an increase in αa, αc, and476

αr (Fig. 9). Even though the individual α increases, the area-averaged value (α) decreases due477

to the declining pyramidal area: The pyramidal region is being replaced by slower-growing basal478

and prism facets with lower α . Once the pyramidal region is gone, ssur f declines as the particle479

increases more rapidly in size and grows by normal growth alone. The link between ssur f and480

αr is the primary reason for the sensitivity of the areas and growth velocities to our choice of481
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fchar (shown as the shaded regions on the figures). Nevertheless, the qualitative features of lateral482

growth are not strongly dependent on the choice of fchar. Indeed, the cessation of facet spreading,483

which occurs when al equals the normal axis length an, occurs after 2 minutes with a spread of 30484

seconds due to our selected range of fchar (Fig. 10b).485

The evolution of the growth velocities is reflected in the total mass growth rate of the crystal486

(Fig. 10a). Mass growth is initially dominated by lateral growth, which declines rapidly with487

crystal diameter. As the basal and prism facet areas increase, thus replacing the pyramidal regions,488

the normal growth rate rises until it dominates the total growth rate. Unlike the empirical model,489

the mechanistic theory does not produce a maximum in the total growth rate during facet spreading490

(Fig. 10) because ssur f rises smoothly in time. Furthermore, the evolution of ssur f is responsible for491

the greater growth rate produced by the mechanistic model once lateral growth ceases. The use of492

a single ssur f leads to a larger αa and a smaller αc (Figs. 5 and 9), more rapid a-axis growth and, in493

turn, a higher mass growth rate than the empirical model. If we followed the common procedure494

of adjusting the capacitance model with a constant α in order to match the actual growth rate,495

a value of 0.075 would be needed. Again, this procedure is often used to interpret laboratory496

measurements of mass growth. If lateral growth is occurring on the measured crystals the value497

of α determined from the measurements could be too low and it would mis-represent the actual498

growth process.499

5. Implications of Lateral Growth500

The results from sections 3 and 4 indicate that lateral growth may depend on initial size. Facets501

must spread laterally over a greater area on a crystal that has a larger initial size. Consequently,502

the time-scale over which lateral growth occurs (τl), and over which the normal dimension is503

approximately constant, should increase with the initial size of the crystal. Figure 11 shows that504
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this is indeed the case for two crystals grown at a supersaturation of 10%, a temperature of -40◦C,505

and a pressure of 1000 hPa. Smaller crystals with diameters typical of most cloud droplets (20506

µm) have lateral growth time-scales on the order of a few minutes, whereas for larger crystals507

(diameter 40 µm) the time-scale can be 10s of minutes. Simulations conducted over a range of508

supersaturations and initial particle sizes indicate that τl is generally on the order of 1 to 10 minutes509

for most crystals with initial diameters in the range of 20 to 60 µm. These time-scales are long510

enough that ice-containing clouds could be impacted by lateral growth, and these results may bear511

on prior laboratory studies of crystal growth, which we turn to next.512

The experiments of Pokrifka et al. (2020) showed that a number of the small (radius ∼ 10513

µm), homogeneously-frozen crystals grown in their electrodynamic diffusion chamber could not514

be modeled with constant α or with normal growth. Those growth data could only be explained if515

α decreased in time, which is similar to the behavior predicted by lateral growth (Figs. 5 and 9).516

Pokrifka et al. (2020) suggested facet spreading as one possible way to explain the data, and they517

provided an ad hoc method to model the measurements. Detailed fits to their data are beyond the518

scope of this work, though it is worthwhile to ask whether the theory developed here produces519

results that are comparable to those measurements. A useful measure of the overall mass growth520

invoked by Pokrifka et al. (2020), and used in other studies (Swanson et al. 1999; Harrison et al.521

2016), is that of a power-law,522

dm
dt

= AtFvapor ∝ rp, (20)523

where At is the total particle area, Fvapor is the vapor flux to the crystal, and r is the radius assum-524

ing the crystal is isometric. That the growth rate is proportional to rp can be seen if two limits are525

considered. Under diffusion-limited growth (capacitance model) p = 1 because the surface pro-526

vides no resistance to growth (α = 1), and the vapor flux is proportional to the inverse of the radius527

(Eq. 6). Under kinetics-limited growth the surface resistance is large causing the gas-phase vapor528
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gradient and the size-dependence of the vapor flux to disappear (as in Eq. 2) leading to p = 2.529

Normal growth has power law exponents that range between 1 and 2, and some of the data of530

Pokrifka et al. (2020) follow this growth (their Fig. 12 and our Fig. 12). However, approximately531

half of the measured crystals grew slowly, produced p < 1, and required α that decline in time in532

order to fit the data. We did representative calculations using lateral growth theory with typical533

frozen droplet radii (10 and 20 µm), temperature (-40◦C), pressure (970 hPa), and supersaturation534

(10%) of the experiments. The value of p was calculated from the slope of the mass derivative and535

the mass in log-log space, following Pokrifka et al. (2020), their Eq. 14. Note that both the empir-536

ical and mechanistic models produce p < 1 along with curve shapes that resemble those derived537

from the data (Fig. 12). The empirical model produces a lower value of p, and this is due to the538

longer period of time over which the growth rate remains relatively constant. The initial size also539

produces a lower value of p (shaded range in Fig. 12) since larger particles have longer periods of540

lateral growth (Fig. 11). These results provide some additional evidence that lateral growth may541

have been captured in the experiments of Pokrifka et al. (2020), though their mechanism assumed542

a transition to step nucleation growth whereas the model developed here suggests dislocations can543

also explain the data.544

These experiments also provide some tantalizing evidence for an initial size dependence to545

growth. If the average values of p from the experiments (Fig. 13 of Pokrifka et al. 2020) are546

plotted against the initial particle size, a slight size dependence emerges (Fig. 13). While there547

is not enough data to draw definitive conclusions, the data suggest that p may be lower for crys-548

tals formed from initially larger frozen droplets. The average p-values derived from the empirical549

model produces curves with a roughly similar initial size dependence to the data, using a similar550

temperature and pressure from of those experiments (-40◦C and 970 hPa, respectively). The max-551

imum and minimum range of p determined from the simulations (grey shade) are also on the order552
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of those derived from the measurements (error bars), and supersaturation plays only a modest role553

in determining the curve shape. While the empirical model indicates an intriguing initial size de-554

pendence to p, such a dependence does not appear in the mechanistic model. The reason for this555

difference is due to the manner in which the mass growth rate evolves during facet spreading. The556

empirical model produces a small maximum with a constant rate thereafter until lateral growth557

ceases, whereas the mechanistic model produces a rise in the growth rate throughout the period of558

lateral growth (Fig. 10). With so little data it is not possible to draw specific conclusions and more559

measurements of lateral growth are needed.560

Lateral growth is also known to occur on previously sublimated crystals, and this growth may561

be important for crystals cycled in cold clouds. Nelson and Swanson (2019) measured the lateral562

growth of the basal facet on a previously sublimated crystal at T = -30◦C, a supersaturation of563

about 1%, and at atmospheric pressure (Fig. 14). Their results showed that the ratio of the lateral564

to the normal basal radius (φa = al/an) increased rapidly initially, but slowed down as the facet565

spread across the surface. Normal growth cannot explain the data and a lateral growth model566

is required (Nelson and Swanson 2019, their Fig. 6). While the mechanistic model developed567

here is only valid for isometric crystals, the empirical model is capable of modeling non-isometric568

growth since it was developed based on the spheroidal model of Zhang and Harrington (2014).569

The measured crystal had a basal axis radius of about an = 186 µm, and we assumed an initial570

crystal thickness of 60 µm which is similar to the measured crystals. The schar for normal growth571

were taken from the data set of Harrington et al. (2019), and the empirical model results are shown572

in Fig. 14 for three different supersaturations (1, 2 and 3%). Clearly, the empirical model captures573

the increase in the axis length ratio in time, including the more rapid initial spreading of the facets574

and the later slow-down in the growth. While the measured supersaturation was 1%, our model575

requires higher values of 2 to 3% for a better match with the data. In addition, the data indicate that576
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the normal a-dimension (an) increased by 1 µm, whereas the empirical model produces a nearly577

6 µm increase in an. Never-the-less, the qualitative match with the data is encouraging especially578

if one bears in mind the simplistic nature of the empirical theory. The slow-down in growth is579

also reflected in the mass growth rate (Fig. 14b), which shows an initial rise followed by a plateau580

and a minor decrease towards the end of the simulation. It is worth noting that mass derivatives581

with this shape have been measured (Pokrifka et al. 2020, their Fig. 11b). If we treated the crystal582

with normal growth only, the growth rate would be too low by about 30% (Fig. 14b). On the other583

hand, treating the crystal as if it were entirely rough (α = 1, capacitance model) would produce584

mass growth that rapidly diverges from the actual growth rate and becomes too large.585

6. Concluding Remarks586

Growth that spreads laterally across crystal surfaces has not often been measured, but it may587

have important consequences for ice-containing clouds and laboratory measurements of ice crystal588

growth. If our simple theory is approximately correct, then lateral growth produces rates that are589

initially higher, but then become generally lower than that predicted by capacitance theory and590

this is due to two factors: Efficiently growing regions are replaced by facets that grow with lower591

efficiency, leading to a declining area-averaged deposition coefficient (α) in time and a lower592

growth rate. But this decrease in α is also conflated with the changing particle geometry. The593

particle is growing, essentially, by filling out volume and increasing surface area while the particle594

normal dimension increases slowly in time until lateral growth ceases. These process will also595

be modulated by the time-scale for initial facet formation, for which few studies exist. Lateral596

growth may therefore complicate interpretations of laboratory-grown ice crystals, especially those597

that include nucleation. For instance, many studies of surface kinetics at low temperatures (below598

-30◦C) have used small ice crystals and the spherical capacitance model with a constant α (Magee599
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et al. 2006; Skrotzki et al. 2013; Harrison et al. 2016). However, the assumption of a constant α600

for ice is only approximately true if the surface structure is static in time, which is not the case for601

actively growing ice (Nelson 2005). If both lateral and normal growth are occurring on the growing602

crystals the estimated α could then be either too low or too high depending upon the initial size603

of the crystal, the length of the measurement, and the supersaturation. Longer growth experiments604

at low to moderate supersaturations on cloud-droplet sized crystals could lead to anomalously low605

estimates of α (as indicated in Figs. 6 and 10). On the other hand, short-duration experiments606

could lead to anomalously high values of α if an active period of lateral and normal growth is607

sampled since the growing crystals are not changing much in size, but instead are growing by608

filling out surface area and volume.609

Crystals that are cycled through periods of growth and sublimation may also be influenced by610

lateral growth, and this could help explain some perplexing results from laboratory studies. The611

levitation cloud chamber studies of Magee et al. (2006) required low α to explain their results.612

Their crystals were cycled between growth and sublimation, so it could be that lateral growth613

occurred frequently in their studies, which would then affect the deposition coefficients determined614

by those studies. A recent study by Voigtländer et al. (2018) showed increasing optical complexity615

likely associated with mesoscopic and other larger surface features as crystals were cycled through616

growth and sublimation regimes. The growth of the crystals seemed to become suppressed by such617

cycling, and this could be an indication of contributions from lateral growth.618

Lateral growth may also have consequences for the microphysics of cold clouds. If facet spread-619

ing dominates the early growth of crystals it could influence the nucleation of ice in some types of620

cirrus clouds. The concentration of crystals in cirrus depend on the manner in which ice is nucle-621

ated, and the homogeneous freezing of solution droplets can produce high concentrations of ice622

crystals. However, homogeneous freezing is sensitive to the ambient supersaturation; the growth623
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of pre-existing crystals and newly frozen solution droplets are a sink of water vapor, which can624

cause a reduction in the rate of homogeneous freezing (e.g. DeMott et al. 1997). Active lateral625

growth on newly frozen solution droplets could initially enhance vapor growth (through increased626

surface area), leading to further suppression of homogeneous freezing. The dynamic recycling of627

crystals through clouds could also be influenced by lateral growth. Larger crystals that sublimate628

below cloud base and are recycled by stronger updrafts could see relatively long periods of lateral629

growth. Such periods of lateral growth may produce relatively constant growth rates, along with630

maximum dimensions that change slowly in time thus affecting crystal fall speeds. Finally, Nel-631

son and Swanson (2019) suggest that many of the complex ice features at low temperature (below632

-30◦C) are influenced by lateral growth, and this may indicate that theories of ice vapor growth for633

very cold clouds need to be revised.634
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Fig. 8. (a) Area of single basal, prism, and pyramidal (rough) facets, and (b) their respective growth797

velocities (axis growth rates) as a function of the a-axis diameter (2an). The measurements798

of Gonda and Yamazaki (1984) are given by the symbols. The solid lines are predictions799

using the mechanistic growth theory with the pyramidal schar that is a factor fschar = 1/5 the800

value for the prism facet. The shaded ranges show the variability in the solution due to fschar.801

The upper and lower bound of each range is given by fschar = 1/10 and 1/3, respectively. . . . 45802

Fig. 9. (a) Deposition coefficients as a function of the a-axis diameter (2an) for the basal facet803

(black), prism facet (red), the pyramidal region (blue), and the area-weighted total (violet804

and violet shade). (b) The surface supersaturation for growth of basal, prism, and pyramidal805

facets (black and black shade). The solid lines assume a pyramidal schar that is a factor fschar806

= 1/5 the value for the prism facet, and the shaded ranges show the solution for fschar ranging807

from 1/3 to 1/10. . . . . . . . . . . . . . . . . . . . . . 46808

Fig. 10. (a) Mass growth rates as a function of the a-axis diameter (2an) for the total growth rate (red809

solid) and its components: normal growth (red dashed) and lateral growth (black dashed).810

The solid red line assumes a pyramidal schar that is a factor fschar = 1/5 the value for the811

prism facet, and the red shade shows the range fchar = 1/3 to 1/10. For comparison, the812

total growth rate from empirical theory (Fig. 6) is shown with the green line and shade.813

Capacitance theory solution using an equivalent volume sphere and a constant α of 0.075814

(blue long-dashed) is also shown, and the blue shaded region shows α ranging from 0.05 to815

0.1. (b) Crystal diameters as a function of time for the lateral (black) and normal a (black)816

and c (red) diameters. The black shade indicates the range fchar = 1/3 to 1/10. . . . . . 47817

Fig. 11. Evolution of the normal (solid lines) and lateral (dashed lines) a-axis diameters in time at818

T = -40◦C, P = 1000 hPa, and si = 10%. The thin and thick lines indicate an initial frozen819

spherical diameter of 20 and 40 µm, respectively. Solutions using the empirical model are820

given by the black lines whereas the mechanistic model solution is given by the red lines.821

The time-period for lateral growth τl is defined when the lateral diameter is 99% of the822

normal diameter, the range of τl given by the empirical and mechanistic models is given by823

the vertical solid lines. This time-scale depends strongly on the initial size. . . . . . . 48824

Fig. 12. Power-law exponent of the mass growth equation (dm/dt ∝ rp) as a function of the mass825

ratio (mass divided by initial mass) for vapor-grown crystals. Solid, isometric crystals un-826

dergoing normal faceted growth have values of p that range between 1 (diffusion-limited827

growth) and 2 (kinetics-limited growth). The solid blue (consistent with normal growth) and828

red (inconsistent with normal growth) curves are derived from measurements of Pokrifka829

et al. (2020). Solutions using the empirical and mechanistic models are indicated by the830

purple and black shades, respectively. The upper and lower edge of the shaded region is831

given by the initial particle size of r◦ = 10 and 20 µm, respectively. . . . . . . . . 49832

Fig. 13. Power-law exponent of the mass growth equation (dm/dt ∝ rp) as a function of the initial833

particle radius as derived from the measurements of Pokrifka et al. (2020), data points, and834

as calculated with the empirical (black lines) and mechanistic (blue line) models. The filled835

circles and lines are the average value of p, whereas the error bars and the grey shade indicate836

the maximum and minimum value of p attained during particle growth. The blue data points837

indicate growth data that could be fit with normal faceted growth, whereas purple points838

required a model of faceting transitions. The black solid and dashed curves indicate the839

model solution supersaturation dependence (10 and 25%, respectively), and this range was840

chosen based on the measurement range. . . . . . . . . . . . . . . . 50841

Fig. 14. (a) Ratio of the lateral and normal a-axis lengths as a function of time. The blue data points842

are from Fig. 6 of Nelson and Swanson (2019) who measured the lateral basal facet spread-843
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ing of a planar crystal with an a-axis radius of about 165 µm at T = -30◦C and at a supersat-844

uration of 1%. Empirical model solutions for an initially spheroidal crystal with no facets,845

a thickness of 60 µm, and supersaturations of 1, 2 and 3% are shown by the solid lines. (b)846

The total mass growth rate (normal and lateral, solid line) as a function of the normal a-axis847

radius. The growth rate computed as if the particle were rough (α = 1, dot-dashed line) or848

undergoing only normal faceted growth (dashed line) are also shown. . . . . . . . . 51849
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FIG. 1. Following nucleation, facets begin to develop on frozen droplets. Basal and elliptical faces appear,

along with round regions or pyramidal faces. The faces grow both normally (outward) and laterally (along the

surface). Over time, the elliptical regions become distinct prism, basal and pyramidal facets shown at the end.

The pyramidal facets can grow themselves out of existence resulting in a hexagonal prism (not shown).
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facets. The normal fluxes (Fa and Fc) are shown along with fluxes that drive lateral growth (direct and adjoining

surface, Fr), and both depend on the surface supersaturation over the facet edges, (ssur f ). The fluxes depend on

the deposition coefficients for each region, as indicated on the figure. The facets are defined in terms of their

lateral dimensions, al for the basal facets and cl for the prism facets. The overall crystal dimensions are given in

terms of the normal dimensions, an and cn, so named because they are perpendicular to the facet.
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FIG. 4. (a) Area of single basal, prism, and pyramidal regions, and (b) their respective growth velocities

(axis growth rates) as a function of the a-axis diameter (2an) of the crystal. The measurements of Gonda and

Yamazaki (1984) are given by the symbols. The solid lines are predictions using the empirical growth model

with rough area (Ar) parameterized as a ratio of the fractional volume change to the power, n with n = 2.5. The

largest variability in the growth is due to this parameterization, with the spread indicated by the shaded regions.

The upper and lower bound of each range is given by n = 3 and 2, respectively.
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(mass divided by initial mass) for vapor-grown crystals. Solid, isometric crystals undergoing normal faceted

growth have values of p that range between 1 (diffusion-limited growth) and 2 (kinetics-limited growth). The

solid blue (consistent with normal growth) and red (inconsistent with normal growth) curves are derived from

measurements of Pokrifka et al. (2020). Solutions using the empirical and mechanistic models are indicated by

the purple and black shades, respectively. The upper and lower edge of the shaded region is given by the initial

particle size of r◦ = 10 and 20 µm, respectively.
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FIG. 13. Power-law exponent of the mass growth equation (dm/dt ∝ rp) as a function of the initial particle

radius as derived from the measurements of Pokrifka et al. (2020), data points, and as calculated with the

empirical (black lines) and mechanistic (blue line) models. The filled circles and lines are the average value of p,

whereas the error bars and the grey shade indicate the maximum and minimum value of p attained during particle

growth. The blue data points indicate growth data that could be fit with normal faceted growth, whereas purple

points required a model of faceting transitions. The black solid and dashed curves indicate the model solution

supersaturation dependence (10 and 25%, respectively), and this range was chosen based on the measurement

range.
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FIG. 14. (a) Ratio of the lateral and normal a-axis lengths as a function of time. The blue data points are from

Fig. 6 of Nelson and Swanson (2019) who measured the lateral basal facet spreading of a planar crystal with an

a-axis radius of about 165 µm at T = -30◦C and at a supersaturation of 1%. Empirical model solutions for an

initially spheroidal crystal with no facets, a thickness of 60 µm, and supersaturations of 1, 2 and 3% are shown

by the solid lines. (b) The total mass growth rate (normal and lateral, solid line) as a function of the normal

a-axis radius. The growth rate computed as if the particle were rough (α = 1, dot-dashed line) or undergoing

only normal faceted growth (dashed line) are also shown.
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