

1 **Approximate Models for Lateral Growth on Ice Crystal Surfaces during**
2 **Vapor Depositional Growth**

3 Jerry Y. Harrington* and Gwenore F. Pokrifka

4 *Department of Meteorology and Atmospheric Science, The Pennsylvania State University,*
5 *University Park, PA*

6 *Corresponding author address: Department of Meteorology and Atmospheric Science, The Penn-
7 sylvania State University, University Park, PA 16802.

8 E-mail: jyh10@psu.edu

ABSTRACT

9 Measurements show that after facets form on frozen water droplets, those
10 facets grow laterally across the crystal surface leading to an increase in vol-
11 ume and surface area with only a small increase in maximum dimension. This
12 lateral growth of the facets is distinctly different from that predicted by the
13 capacitance model and by the theory of faceted growth. In this paper we de-
14 velop two approximate theories of lateral growth, one that is empirical and
15 one that uses explicit growth mechanisms. We show that both theories can
16 reproduce the overall features of lateral growth on a frozen, supercooled wa-
17 ter droplet. Both theories predict that the area-average deposition coefficient
18 should decrease in time as the particle grows, and this result may help explain
19 the divergence of some prior measurements of the deposition coefficient. The
20 theories may also explain the approximately constant mass growth rates that
21 have recently been found in some measurements. We also show that the em-
22 pirical theory can reproduce the lateral growth that occurs when a previously
23 sublimated crystal is regrown, as may happen during the recycling of crystals
24 in cold clouds.

25 **1. Introduction**

26 Vapor depositional growth is largely responsible for the variety of shapes (or habits) of ice
27 crystals found in atmospheric cold clouds. The crystal sizes, shapes, and surface properties that
28 result from vapor growth can have strong impacts on numerical cloud model simulations of ice-
29 containing clouds (Gierens et al. 2003; Woods et al. 2007; Avramov and Harrington 2010), on
30 the optical properties of cloud systems (Mitchell et al. 1996; Järvinen et al. 2018; van Dieden-
31 hoven and Cairns 2020), and on the interpretation of laboratory measurements (Magee et al. 2006;
32 Skrotzki et al. 2013; Pokrifka et al. 2020). However, quantifying the vapor growth rate of ice
33 crystals is challenging because it is governed by two interconnected processes, namely the vol-
34 ume diffusion of water vapor through the background gas and the various surface processes (often
35 called *surface kinetics*) that control the incorporation of adsorbed water molecules (ad-molecules)
36 into the crystalline lattice. It is the combined volume diffusion and surface kinetic processes that
37 ultimately determine the overall mass and the dimensional growth rates of crystals.

38 Classical growth theories treat only a single type of surface, those that are either entirely faceted
39 or entirely rough. The classical theory of faceted growth accounts for both gas-phase diffusion
40 and surface kinetic effects. In this theory, facets grow through the propagation of steps on their
41 surfaces: Ad-molecules migrate across the surface as they seek suitable attachment sites such as a
42 surface vacancy, a kink in a surface step, and so forth. Ad-molecules will incorporate into a step,
43 and contribute to growth propagating the step forward, as long as the surface steps are sufficiently
44 close so that a step is encountered before the ad-molecule desorbs from the surface. Classical
45 crystal growth theory (e.g. Burton et al. 1951; Lewis 1974) employs surface models for crys-
46 tals growing by steps formed through either permanent dislocations in the crystal structure or the
47 nucleation of "islands" on the crystal surface (step-nucleation). Most of the surface parameters re-

48 quired by these theories have not been measured, and so surface processes are usually treated with
49 deposition coefficients (α) that depend strongly on ice supersaturation (hereafter supersaturation)
50 and less-strongly on the temperature. The deposition coefficients account, in aggregate, for all of
51 the surface processes that ultimately control the incorporation of ad-molecules into the bulk crys-
52 talline lattice. The deposition coefficients act as “growth efficiencies” taking on values between
53 zero and unity. Though the use of deposition coefficients is relatively successful at describing the
54 growth of faceted ice at both low and high supersaturations (Lamb and Scott 1974; Nelson and
55 Baker 1996; Wood et al. 2001; Harrington et al. 2019), there are many processes that complicate
56 the actual growth of crystals such as the existence of partially disordered (quasi-liquid) surface
57 layers (Neshyba et al. 2016), the adsorption of foreign gases (Anderson et al. 1969; Knepp et al.
58 2009; Libbrecht and Ball 2010), phase separation that will occur upon the freezing of solution
59 drops (Bogdan and Molina 2017), and the influence of nucleation (Pokrifka et al. 2020).

60 In the theory of faceted growth, the crystal dimension perpendicular to a given facet increases at
61 a rate that depends on the vapor attachment to that facet. For instance, molecular attachment on the
62 basal (hexagonal) face of a crystal causes the crystal dimension that is perpendicular (or normal)
63 to that face to increase in time (see Figs. 1 and 2). We will refer to this kind of growth as *normal*
64 *growth*, since molecular attachment onto the basal and prism facets causes the dimension that is
65 perpendicular (normal) to the face to increase in time. We will also refer to the dimensions normal
66 to the facet as the *normal dimensions* (a_n and c_n for the prism and basal facets, respectively, see
67 Fig. 2). Most studies of crystal growth focus on normal growth, which is not surprising: Different
68 molecular attachment rates for the basal and prism faces gives rise to the temperature variation in
69 the primary (planar or columnar) habits of ice crystals (Lamb and Scott 1974).

70 Entirely rough surfaces are almost universally treated with the capacitance model, which by
71 definition is not appropriate for faceted ice. The capacitance model explicitly assumes that the

72 surface is a perfect sink for water vapor molecules ($\alpha = 1$), meaning that all surface processes are
73 ignored. The vapor density is constant across the surface in the capacitance model. Consequently
74 facets cannot remain flat (Saito 1996, pp.120-122) and the aspect ratio cannot evolve (Ham 1959).

75 In contrast to normal growth and rough growth, much less attention has been paid to growth that
76 occurs laterally when facets spread across the crystal surface. This growth is distinctly different
77 from normal growth in that the facet areas increase but often with very little increase in the normal
78 dimensions (Fig. 1). We will refer to this kind of growth as *lateral growth*, and it can occur
79 during ice crystal growth from the vapor (Gonda and Yamazaki 1978) and has been observed
80 on CCl_4 crystals grown from the melt (Mayurama et al. 2000; Wettlaufer 2001). For instance,
81 measurements show that after a supercooled droplet freezes, facets emerge on the crystal surface
82 (see Fig. 1 of Nelson and Swanson 2019, for examples). Generally, the prism planes will appear
83 first followed by basal planes and “rougher” conical regions in between the facets. These rougher
84 regions develop into higher index (pyramidal) facets when the saturation state is near that of liquid,
85 leading to a 20 faced crystal known as a “droxtal”, or at lower saturation the regions may be rounded
86 (see Gonda and Yamazaki 1978, their Fig 4.). These pyramidal regions must have high deposition
87 coefficients ($\alpha \sim 1$) because, at higher temperatures, they grow more rapidly than the basal and
88 prism facets (Gonda and Yamazaki 1984). Consequently, the rougher regions grow themselves
89 out of existence leading to an increase in facet area, but with only a small increase in the normal
90 dimensions (Gonda and Yamazaki 1984). At lower temperatures (below -25°C), the pyramidal
91 facets may not disappear at all (Pfalzgraff et al. 2011). In fact, pyramidal facets may arise from
92 spicules that form during droplet freezing thus producing single bullets (Magano et al. 1976). Ice
93 crystals can, therefore, undergo growth that is influenced by two interfaces, faceted and rough,
94 though current theories are not capable of accounting for both surface types.

95 Lateral growth may be important for more than the initial growth forms that develop after ice
96 nucleation. The recent measurements of Nelson and Swanson (2019) indicate that lateral growth
97 can lead to the production of protrusions and trapped air pockets. Their results suggest that the
98 lateral spreading of facet protrusions is caused by adjoining surface transport, whereby molecules
99 on the basal and prism faces migrate over facet edges and onto the protrusions. Though adjoining
100 surface transport is theoretically unlikely (Saito 1996, pgs. 58-61), indirect evidence suggests that
101 it occurs for thin layers (Asakawa et al. 2014). Lateral growth is also important for the growth
102 of crystals that have previously sublimated. Sublimation causes the rounding of crystal edges
103 leading to ellipsoidal shapes for simple planar crystals (Nelson 1998). During re-growth, facets
104 spread across the crystal surface leading to growth rates that cannot be explained by normal growth
105 (Nelson and Swanson 2019, their Fig. 6). Lateral growth has also been suggested as an explanation
106 for the bending of facets that occurs during the growth of scrolls, trigonal crystals, and stacks of
107 sheaths among other types (Nelson and Swanson 2019).

108 Lateral growth may also help interpret past laboratory measurements of the vapor growth of
109 newly nucleated ice crystals. Most prior laboratory studies have used the capacitance model to
110 interpret the measured growth rates. While the capacitance model can be made consistent with
111 faceted growth theory (MacKenzie and Haynes 1992; Zhang and Harrington 2014), most labo-
112 ratory studies include surface processes in the capacitance model with a constant deposition co-
113 efficient (e.g. Magee et al. 2006). Unfortunately, interpretations of measured growth rates using
114 constant α lead to inconsistent results, with α values that are scattered as a function of temper-
115 ature (Skrotzki et al. 2013). Pokrifka et al. (2020) suggest that these scattered results for α may
116 be due neglected surface processes: If crystals develop facets, the deposition coefficient then de-
117 pends on the supersaturation, temperature, and the crystal size. The measurements and analysis
118 of Pokrifka et al. (2020) show that some of the scatter in the data appears to be due to variations

119 in α predicted by the theory of faceted growth. However, Pokrifka et al. (2020) also show that
120 a substantial number of measurements require α to decline rapidly in time, a result that cannot
121 be explained by the theory of faceted growth. Pokrifka et al. (2020) hypothesized that the de-
122 velopment of facets on a crystal surface could cause a rapid decline in the deposition coefficient,
123 as rough regions are replaced by facets. Thus, a theory of lateral growth may explain laboratory
124 growth rate measurements, and may also explain some of the scatter in prior deposition coefficient
125 measurements.

126 In this paper we describe two approximate theories of lateral growth. The models treat two
127 surface types are based on a combination of the theory of faceted growth and the theory of rough
128 growth. We show that the models can reproduce the general features of the few available measure-
129 ments on lateral spreading. We show that the time-scale for the disappearance of rough regions
130 can be long enough to have important consequences for the interpretation of prior laboratory mea-
131 surements.

132 **2. Faceted (Normal) Growth Model**

133 Models of faceted growth (what we call normal growth) must simultaneously account for the gas
134 phase diffusion of water vapor and the surface kinetic processes that ultimately control the incor-
135 poration of water molecules into the crystalline lattice. Gas-phase diffusion depends on the shape
136 of the crystal, and models of normal growth relevant for atmospheric ice assume either a cylinder
137 (Nelson and Baker 1996) or a hexagonal prism (Wood et al. 2001) shape. These models quantify
138 the effects of crystal shape, facet edges, and surface kinetics on the growth rate, but they require
139 complex numerical solutions. Simplified models that account for the effects of faceted growth have
140 also been developed using spherical (MacKenzie and Haynes 1992; Libbrecht 2003) or spheroidal
141 (Zhang and Harrington 2014) approximations. An attractive feature of the spheroidal solution is

142 that the theory is analytical, and the mass and dimension evolution compare well to available mea-
143 surements for single crystals and to solutions from models of faceted growth (Harrington et al.
144 2019). It is for these reasons that we use the spheroidal model of Zhang and Harrington (2014).

145 In all of the models cited above, surface kinetic processes are approximated using deposition
146 coefficients (α). Though theoretical models of α exist the parametric model of Nelson and Baker
147 (1996) is preferable because it can, in principle, treat various surface growth modes,

$$148 \quad \alpha = \alpha_s \left(\frac{s_{surf}}{s_{char}} \right)^M \tanh \left(\frac{s_{char}}{s_{surf}} \right)^M. \quad (1)$$

149 In the above equation s_{surf} is the supersaturation immediately above the crystal surface, $s_{char}(T)$
150 is a temperature-dependent “characteristic” supersaturation determined from laboratory measure-
151 ments (see Harrington et al. 2019), M is an empirical parameter that describes the surface growth
152 mode, and α_s is the adsorption efficiency that is a measure of the probability that a water vapor
153 molecule will “stick” to the surface and is assumed to be unity (Nelson 2001). In this model, α
154 rises commensurately with s_{surf} : As the surface supersaturation increases, the density of surface
155 steps also rises thus leading to more efficient incorporation of ad-molecules into the crystal. The
156 increase in α with s_{surf} is controlled by both s_{char} and M (see Fig. 3). The characteristic super-
157 saturation controls the transition from inefficient ($\alpha \sim 0$) to efficient ($\alpha \sim 1$) growth whereas the
158 steepness of the increase in α with s_{surf} is controlled by the parameter M . A value of $M = 1$ in
159 Eq. 1 is consistent with growth by permanent spiral dislocations, as originally derived by Burton
160 et al. (1951). Though the form given above, with $M = 1$, is given by Lamb and Scott (1974).
161 Dislocations provide a permanent source of surface steps, and produce efficient growth even at
162 relatively low values of s_{surf} . Spiral dislocation theory presumes that the ad-molecule density
163 on the ice surface is sparse, which is not necessarily true for atmospheric ice that may contain a
164 very thin, partially disordered layer of surface molecules (Constantin et al. 2018). Despite this

165 limitation, the theory appears to represent the growth of crystals by dislocations (Nelson 2005;
 166 Harrington et al. 2019). A value of $M \geq 10$ in Eq. 1 produces growth that is consistent with step
 167 nucleation (Nelson and Baker 1996). Step nucleation requires the formation of two-dimensional
 168 islands on the crystal surface and, therefore, produces a rapid onset of growth once s_{surf} is near
 169 s_{char} . These steps are generally thought to form near crystal edges where supersaturations are
 170 high and are likely responsible for the formation of very thin and symmetric crystals (Frank 1982;
 171 Wood et al. 2001).

172 The spheroidal solution of Zhang and Harrington (2014) assumes that the gas-phase diffusion
 173 of water vapor can be modeled with capacitance theory and that surface kinetics can be modeled
 174 with deposition coefficients, α_a and α_c , for the a and c semi-dimensions using Eq. 1. The a and c
 175 semi-dimensions are respectively referenced to half the basal facet width and half the prism height
 176 of single crystalline ice. The mass growth rate of the crystals can be computed using Eqs. 14 and
 177 15 in Zhang and Harrington (2014), however, the Hertz-Knudsen fluxes (their Eq. 7) are more
 178 germane to the work presented here,

$$\begin{aligned}
 F_{as} &= \alpha_a \frac{1}{4} \bar{v}_v [\rho_{surf,a} - \rho_{eq}(T_i)] = \alpha_a \frac{1}{4} \bar{v}_v \rho_{eq}(T_i) s_{surf,a} \\
 F_{cs} &= \alpha_c \frac{1}{4} \bar{v}_v [\rho_{surf,c} - \rho_{eq}(T_i)] = \alpha_c \frac{1}{4} \bar{v}_v \rho_{eq}(T_i) s_{surf,c},
 \end{aligned} \tag{2}$$

181 where \bar{v}_v is the average vapor molecule speed, $\rho_{eq}(T_i)$ is the equilibrium water vapor density at
 182 the crystal temperature, T_i , and $\rho_{surf,a}$, $\rho_{surf,c}$, $s_{surf,a}$, and $s_{surf,c}$ are the surface vapor densities
 183 and supersaturations for the subscripted axis. The vapor fluxes, F_{as} and F_{cs} , are the fluxes onto the
 184 prism and basal facets, respectively, and they are subscripted with the axis that is normal to the
 185 facet, a and c respectively. These fluxes cause the increase in the normal dimensions (a_n and c_n),
 186 and we therefore call them *normal fluxes* (Fig. 2).

187 The surface vapor density excess, which is the bracketed term in Eq. 2, can be written in terms
 188 of the ambient vapor density (ρ_∞) as (Eq. 9, Zhang and Harrington 2014),

$$189 \rho_{surf,a} - \rho_{eq}(T_i) = [\rho_\infty - \rho_{eq}(T_i)] \left(1 + \frac{\alpha_a \bar{v}_v}{4D_v} \frac{ac}{C_\Delta} \right)^{-1}$$

$$190 \rho_{surf,c} - \rho_{eq}(T_i) = [\rho_\infty - \rho_{eq}(T_i)] \left(1 + \frac{\alpha_c \bar{v}_v}{4D_v} \frac{a^2}{C_\Delta} \right)^{-1} \quad (3)$$

191 where D_v is the vapor diffusivity in air, and C_Δ is the capacitance for a spheroid of dimensions
 192 $a + \Delta$ and $c + \Delta$, and Δ is the vapor jump length at the crystal surface. The above equations for the
 193 surface vapor density and the deposition coefficients are combined with thermal diffusion and are
 194 solved iteratively (for details see Zhang and Harrington 2014) to find the fluxes F_{as} and F_{cs} .

195 The mass growth rate can now be found by multiplying the areas by the normal fluxes,

$$196 \frac{dm}{dt} = A_{bs}F_{cs} + A_{ps}F_{as} \quad (4)$$

197 where $A_{bs} = 4/3\pi a^2$ and $A_{ps} = 8/3\pi ac$ are the “effective” area of the spheroidal basal and prism
 198 facets, respectively (similar to Eq. 5 of Zhang and Harrington 2014). The equations for the mass
 199 growth rate and fluxes given above are for spheroidal particles, which is our proxy for faceted ice.

200 However, the theory we develop below approximates the crystal facet areas with cylinders, and
 201 we therefore need to ensure that the growth rate computed with cylindrical areas is consistent with
 202 that of the spheroidal model. If the basal and prism cylindrical areas are denoted as $A_b = 2\pi a^2$ and
 203 $A_p = 4\pi ac$, respectively, then the above mass growth rate equation becomes,

$$204 \frac{dm}{dt} = A_b \left(\frac{A_{bs}}{A_b} F_{cs} \right) + A_p \left(\frac{A_{ps}}{A_p} F_{as} \right) = A_b \frac{2}{3} F_{cs} + A_p \frac{2}{3} F_{as} = A_b F_c + A_p F_a, \quad (5)$$

205 where F_a and F_c are the respective normal fluxes for the a and c axes: In order to be consistent
 206 with the spheroidal model, the use of cylindrical areas requires multiplication by a factor of 2/3.

207 **3. Lateral Growth: Empirical Theory**

208 The equations described above are valid for the normal growth of crystal faces, but they do not
209 describe the spreading of facets shown in Fig. 1. Nelson and Swanson (2019) developed a theoreti-
210 cal model for lateral growth based on the migration of surface-mobile water molecules over and
211 onto the lateral edge of the facet, thus enhancing lateral growth at the expense of normal growth.
212 Growth measurements support this view in that the crystal normal dimensions change slowly dur-
213 ing facet spreading (Gonda and Yamazaki 1984; Nelson and Swanson 2019). The approximate
214 theories we develop here do not explicitly model the lateral fluxes, but use approximations that
215 work in the correct physical manner: Lateral growth occurs at the expense of normal growth,
216 leading to small changes in the normal dimensions.

217 Since no approximate theories of lateral growth exist, we begin with an idealized problem, that
218 of an isometric crystal formed from a frozen droplet (see Fig. 2). We assume that basal and prism
219 facets immediately begin spreading across the crystal surface, though in reality it does take time
220 for crystal facets to emerge. This time-scale is known to depend on the supersaturation (~ 1 to
221 4 min. Gliki and Eliseev 1962), however, very few measurements of this time-scale exist. We
222 therefore caution that our model will underestimate the time-scale for facet development. We
223 assume that the facets are well approximated by circular cylinders, which simplifies the geometry
224 considerably, and given that our theory is approximate more advanced geometry is not warranted.
225 We assume that the pyramidal or rough regions remain as spherical sections, which is similar to
226 observations at saturations below that of liquid (Magono et al. 1976; Gonda and Yamazaki 1978).
227 For simplicity, we will refer to these regions as *pyramidal*.

228 Our development of an empirical theory for lateral growth is rooted in the measurements of
229 Gonda and Yamazaki (1984), which are reproduced in Fig. 4. They measured the growth of basal,

230 prism, and pyramidal facets for frozen droplets at -15°C and a supersaturation of about 1.5%. The
 231 basal and prism facet areas depend on the *lateral* a and c dimensions, defined as a_l and c_l in Fig. 2.
 232 Recall that the *overall* crystal dimensions are defined by the *normal* dimensions, a_n and c_n , which
 233 the areas and growth rates are plotted against in Fig. 4. As the figure shows, the pyramidal areas
 234 disappear as the basal and prism facet areas increase by spreading across the surface. The growth
 235 velocity of the pyramidal facets (dr/dt) increases rapidly as the area declines, however the normal
 236 growth velocities of the basal (dc_n/dt) and prism (da_n/dt) facets remain approximately constant
 237 with a slight decline as the crystal grows larger. Once the pyramidal regions are gone, a faceted
 238 hexagonal crystal remains, with the facets increasing in size by normal growth.

239 The growth velocities for the facet and pyramidal regions appear to be relatively independent of
 240 one another, and this suggests that an approximate theory can be constructed that treats the growth
 241 regions separately: The basal and prism faceted regions are treated with normal growth (i.e. Eq. 2),
 242 and a pyramidal region that has a rising growth velocity with declining area that suggests growth
 243 is dominated by gas-phase diffusion. In order to understand this latter point, consider a crystal
 244 that is growing by lateral growth only. In this case the normal dimensions (a_n and c_n) are constant
 245 (though the volume does increase) and so the diffusion mass flow rate to the particle will remain
 246 about the same as facets spread laterally. In order to maintain the same mass flow rate as the
 247 pyramidal area declines requires that the vapor flux to those areas (F_r) must rise, behavior that is
 248 consistent with gas-phase diffusion alone (assuming that $\alpha = 1$),

$$249 F_r = \frac{D_v[\rho_\infty - \rho_{surf}]}{r_r} = \frac{D_v \rho_{eq} s_i}{r_r}, \quad (6)$$

250 where s_i is the ambient supersaturation and r_r is an effective radial length-scale for the pyramidal
 251 area, A_r . Equation 6 is exact for a spherical particle with a radius of r_r , which suggests approximat-
 252 ing the length scale as $r_r = [A_r/(4\pi)]^{1/2}$. This equation has the correct physical behavior in that

253 a decline in the pyramidal area will lead to an increasing vapor flux, and therefore an increasing
 254 growth velocity since $dr/dt = F_r/\rho_i$ where ρ_i is the ice mass density. The combined mass growth
 255 rate for lateral and normal growth then becomes,

$$256 \quad \frac{dm}{dt} = A_r F_r + A_b F_c + A_p F_a. \quad (7)$$

257 Clearly, the above equations are approximate and based on a plausible physical argument. It is
 258 worth noting that Eq. 7 may overestimate the growth rate since the flux to the pyramidal region is
 259 based on the total mass flow to the particle. This assumption is relaxed in the next section (§4).

260 The mass growth rate given above can now be time-stepped, however that mass must be dis-
 261 tributed both laterally and normally. Growing the normal dimensions of the crystal is straightfor-
 262 ward since the vapor fluxes determine the growth rates,

$$263 \quad \frac{da_n}{dt} = \frac{F_a}{\rho_i}, \quad \frac{dc_n}{dt} = \frac{F_c}{\rho_i}. \quad (8)$$

264 Lateral growth is treated empirically by relating changes in the total facet surface area (A_f) and
 265 pyramidal area (A_r) to changes in crystal volume: Imagine that a crystal begins growing with an
 266 initial surface area and volume of A_\circ and V_\circ , respectively. As facets spread across the crystal, the
 267 volume and surface area will increase in time. Lateral growth will cease when the crystal volume
 268 and surface area reach that of a cylinder, or $V_{cyl} = 2\pi a_n^2 c_n$ and $A_{cyl} = 2\pi a_n^2 + 4\pi a_n c_n$. We therefore
 269 know the areas and volume of the crystal when lateral growth begins and ends, and can therefore
 270 approximate the evolution of the facet and pyramidal areas as a weighted volume fraction (w_f),

$$271 \quad A_f(t) = A_{cyl} w_f = A_{cyl} \left[\frac{V(t)^{2/3} - V_\circ^{2/3}}{V_{cyl}^{2/3} - V_\circ^{2/3}} \right]^n$$

$$272 \quad A_r(t) = A_\circ(1 - w_f), \quad (9)$$

273 where $V(t)$ is the crystal volume at time, t. The form of w_f originates from approximating the
 274 change in surface area to volumetric changes based on a sphere, namely that $dA \propto dV^{2/3}$. We
 275 include an empirical power of n since the particle grows into a cylinder, and so we should not

276 expect the spherical relationship to hold exactly (see below). Note that this fraction works in the
 277 correct manner in that $w_f = 0$ when the particle is entirely rough ($V(t) = V_\circ$), and $w_f = 1$ when
 278 the pyramidal regions are gone ($V(t) = V_{cyl}$).

279 The lateral dimensions of the crystal can now be calculated (see Fig. 2) assuming that the basal
 280 facets are tops of two circular cylinders ($A_b = 2\pi a_l^2$) and that the prism facets are given by the
 281 curved cylinder area ($A_p = 4\pi a_n c_l$),

$$282 \quad A_f(t) = 2\pi a_l^2 + 4\pi a_n c_l = 2\pi a_l^2 + 4\pi a_n a_l \phi_l \quad (10)$$

283 where $\phi_l = c_l/a_l$ is the lateral aspect ratio which is kept constant over a time-step. The above
 284 equation is quadratic for a_l and so the solution is,

$$285 \quad a_l(t) = -a_n(t)\phi_l + \frac{1}{4\pi} \sqrt{(4\pi a_n(t)\phi_l)^2 + 8\pi A_f(t)} \quad c_l(t) = a_l(t)\phi_l. \quad (11)$$

286 The lateral a - and c -axis dimensions can now be determined at any time.

287 *a. Results from Empirical Theory*

288 The above equations were used to calculate lateral growth on a newly frozen water droplet for
 289 the data of Gonda and Yamazaki (1984) shown in Fig. 4. The equations were solved using both a
 290 small time step ($\Delta t = 0.1$ s) and using the equivalent volume sphere approach advocated by Chen
 291 (1992). In the latter approach, the growth equation is solved analytically over a time-step assuming
 292 an equivalent volume sphere of radius r_{eq} . The method is accurate, even for highly anisotropic
 293 particles, as long as the time-step is less than about 20 seconds (Harrington et al. 2013). Both
 294 methods produce indistinguishable results, and so we present the short time-step solutions. The
 295 initial diameter of the particle is taken from the data (23.8 μm), and since no information on
 296 particle aspect ratio is available we assume that c_n/a_n and c_l/a_l are both unity. The characteristic
 297 supersaturations (s_{char}) for the basal and prism facets at -15°C are taken from the fits of Harrington

298 et al. (2019) to the measurements of Nelson and Knight (1998). Given that the growth occurred at
299 low supersaturation (1.5%), it is reasonable to assume that dislocations were responsible ($M = 1$
300 in Eq. 1).

301 Overall, the empirical model captures the main effects of lateral and normal growth as compared
302 to the measurements (Fig. 4). Evolution of the facet areas and the pyramidal growth velocity
303 depend on n (Eq. 9), and though values between 2 and 3 match the data reasonably well, a value
304 of 2.5 appears to provide the best overall match. The decline in the pyramidal area with increasing
305 size has nearly the same functional dependence as shown by the data. Once the pyramidal area
306 has disappeared, lateral growth ceases and the evolution of the particle is controlled by normal
307 growth. The basal and prism areas are predicted relatively accurately during the period over which
308 facet spreading is occurring, but both facet areas are overestimated once normal growth dominates
309 ($2a_n > 26.5 \mu\text{m}$). The pyramidal growth velocity increases rapidly as the diameter of the crystal
310 rises and the pyramidal area declines, and with a similar functional dependence as expressed by
311 the measurements. It is not surprising that the pyramidal growth velocity is most sensitive to the
312 choice of n in Eq. 9, since the vapor flux is proportional to the inverse of the pyramidal area. The
313 normal growth velocities of the basal and prism facets also reasonably match the measurements:
314 The growth velocities for both facets decrease slightly as the particle diameter increases, and this
315 is due primarily to the relatively slow decline in α of the basal and prism facets with size (Fig. 5).
316 Since the normal growth velocities are most strongly dependent on the growth mode (M) and
317 s_{char} through α (Eq. 1), the match of the theory with measurements provides evidence that normal
318 growth was controlled by dislocations. This match also provides corroborating evidence for the
319 s_{char} measured by Nelson and Knight (1998), which is important since few tests of measured s_{char}
320 have been done at low supersaturation.

321 Lateral growth has a non-trivial impact on the overall mass growth rate of the crystal (Fig. 6a).
322 The growth rate initially rises commensurately with the crystal diameter, and this is due to the
323 increase in total surface area. However, as the pyramidal area decreases and approaches zero (near
324 $2a_n \sim 26.5 \mu\text{m}$), the mass growth rate begins to flatten. This result is due to the declining mass
325 uptake of the pyramidal regions as their area shrinks to zero. The disappearance of the pyramidal
326 regions takes about 3 minutes (Fig. 6b), which occurs when the lateral facet a-axis dimension (a_l)
327 approaches the normal a-axis dimension (a_n). This time-scale is similar to the measured range of
328 2 to 4 minutes (Gonda and Yamazaki 1984). The loss of the pyramidal regions causes the total
329 mass growth rate to asymptotically approach the normal growth rate, as expected.

330 In order to provide context for the total mass growth rate, calculations using rough growth and
331 using the spherical capacitance model are also shown. Rough growth provides the maximum rate
332 and it was computed diagnostically: As the crystal evolved, the rough growth rate was calculated
333 assuming that $\alpha = 1$ for the entire crystal, but this growth rate did not influence the particle evo-
334 lution. The rough growth rate initially follows, but then climbs away from, the total growth rate.
335 This difference with the total growth rate occurs because the average α declines as the particle
336 becomes faceted (Fig. 5), causing the total mass growth rate to fall.

337 The capacitance model calculations followed the standard approach of treating the crystal as a
338 sphere with $\alpha = 1$. Treating the crystal in this manner leads to mass growth rates that are initially
339 lower than the total growth rate (Fig. 6), a result that is due to spherical particles having too small
340 of a surface area for a given volume. The measured crystals grow by filling out volume and
341 increasing area while the normal dimension changes slowly. Once lateral growth ceases, a fully
342 faceted crystal remains with an area-average α value below unity (Fig. 5). In contrast, the larger
343 capacitance growth rate causes the size to increase more rapidly than that of the faceted crystal
344 (Fig. 6b), and this in turn increases the growth rate. As discussed in the introduction, it is common

345 practice to adjust the capacitance model using a constant α in order to match the mass growth
346 measured in laboratory experiments. If that approach were applied to a crystal undergoing lateral
347 growth, such as the case considered above, an α of approximately 0.05 (Fig. 6a) would be needed
348 to match the mass growth. This value is too low in comparison to the time-series of α , which is
349 generally above 0.1, and mis-represents the actual growth process.

350 4. Lateral Growth: Mechanistic Theory

351 The empirical theory above is relatively successful at reproducing the measured growth rates of a
352 combination of basal and prism facets and pyramidal regions. However, the theory is based on the
353 assumption that the vapor flux to the pyramidal regions can be treated classically, and that the facet
354 areas increase commensurately with the volume. In this section we develop a mechanistic model
355 that links these two assumptions to surface kinetic effects. Doing so entails some key assumptions,
356 though the results are not overly sensitive to those assumptions.

357 a. Attachment kinetics with basal, prism, and pyramidal regions

358 As discussed in the introduction, we use deposition coefficients to model all surface kinetic
359 processes. Given the generally larger growth velocity of the pyramidal regions due to lateral
360 growth, we represent this growth with a higher deposition coefficient (α_r) than the basal (α_c)
361 and prism (α_a) facets. This representation of α_r is supported by molecular dynamics simulations
362 (Pfalzgraff et al. 2011) that show higher α for the pyramidal facets. Calculating α_r using Eq. 1
363 requires an s_{char} for the pyramidal region; since the growth of this region is highly efficient we
364 represent it with an $s_{char,r}$ that is a factor f_{char} lower than the smallest value among the basal and
365 prism facets,

366
$$s_{char,r} = f_{char} \cdot \min(s_{char,a}, s_{char,c}) \quad \text{where} \quad f_{char} < 1 \quad (12)$$

367 The adjustable parameter f_{char} is used to mimic the combine effects of direct and adjoining surface
 368 fluxes on lateral growth (Fig. 2).

369 The mass growth equation (Eq. 7) remains the same, except that the vapor flux to the pyramidal
 370 region is now treated similarly to the vapor flux to the basal and prism faces of the crystal (Eq. 2),
 371 however with an important modification. Instead of treating the surface vapor density with distinct
 372 values for each facet, we assume that growth is driven by a single value of ρ_{surf} . This is an
 373 oversimplification, but as a first approximation it may be justified: If lateral growth dominates
 374 the vapor uptake, then the pyramidal regions will reduce s_{surf} keeping its value low and nearly
 375 the same at the edge of both the basal and prism facets (as indicated in Fig. 2). Consequently, the
 376 basal and prism normal growth rates will be reduced with the result that mass will be preferentially
 377 deposited in the pyramidal regions, thus causing facet spreading. Using the assumption that ρ_{surf}
 378 is the same for each crystal facet in Eq. 2, the mass growth rate (Eq. 7) can be written as,

$$379 \frac{dm}{dt} = A_r F_r + A_b F_c + A_p F_a = A_t \bar{\alpha} \frac{1}{4} \bar{v}_v [\rho_{surf} - \rho_{eq}(T_i)] \quad (13)$$

380 where $A_t = A_r + A_b + A_p$ is the total surface area, and $\bar{\alpha} = \frac{A_p}{A_t} \alpha_a + \frac{A_b}{A_t} \alpha_c + \frac{A_r}{A_t} \alpha_r$ is the area averaged
 381 deposition coefficient.

382 The above surface kinetic equation must now be coupled with the ambient gas-phase diffusion of
 383 water vapor to the crystal, and we use capacitance theory following Zhang and Harrington (2014),

$$384 \frac{dm}{dt} = 4\pi C_\Delta D_v [\rho_\infty - \rho_{surf}], \quad (14)$$

385 where the above symbols were previously defined. The vapor transport rate from the far field
 386 (Eq. 14) must match the transport at the surface (Eq. 13), allowing us to solve for $\rho_{surf} - \rho_{eq}$,

$$387 \rho_{surf} - \rho_{eq}(T_i) = [\rho_\infty - \rho_{eq}(T_i)] \left(1 + \frac{\bar{\alpha} \bar{v}_v}{4D_v} \frac{A_t}{4\pi C_\Delta} \right)^{-1} = \frac{[\rho_\infty - \rho_{eq}(T_i)]}{1 + R_k}. \quad (15)$$

388 This equation has the same form as that for normal growth (Eq. 3), except that the axis-dependent
 389 α are replaced with the area-average. The denominator of the right-hand-side of the equation can

390 be interpreted as a “surface resistance”, R_k : As the $\bar{\alpha}$ declines, the surface resistance to growth
 391 increases causing a rise in the surface vapor density and supersaturation. We expect this physical
 392 behavior to occur during lateral growth, when the more efficiently growing pyramidal regions
 393 are replaced with slower growing facets. Combining Eqs. 14 and 15 gives the equation for mass
 394 growth in terms of the ambient and equilibrium vapor densities,

$$395 \quad \frac{dm}{dt} = 4\pi CD_v^* [\rho_\infty - \rho_{eq}(T_i)] \quad \text{where} \quad D_v^* = \frac{D_v}{\frac{C}{C_\Delta} + R_k}. \quad (16)$$

396 Mass growth including surface kinetics are often cast in a similar form (see Lamb and Verlinde
 397 2011, pg. 337). Thermal diffusion is treated following Zhang and Harrington (2014) and, for
 398 brevity, will not be repeated here.

399 *b. Mass and axis length prediction*

400 Using the mass growth rate above requires specific geometrical details. For instance, Fig. 2
 401 shows that the normal fluxes to the basal and prism facets cause the outward growth of the normal
 402 dimensions (a_n and c_n), as shown by the blue rectangles in Fig. 7. The combination of direct
 403 fluxes and adjoining surface fluxes to the pyramidal regions will cause the pyramidal axis (p_n)
 404 and the lateral facet axes (a_l and c_l) to increase in time. It is possible to attack this problem
 405 by calculating the height of the facets above the pyramidal regions and then growing the facets
 406 laterally using explicit fluxes (the approach of Nelson and Swanson 2019). We have developed a
 407 model of this growth, however it is complex and requires a number of additional assumptions. A
 408 more rudimentary approach is taken here that produces qualitatively similar results. If we assume
 409 that there is no height to the basal and prism facets, then the round regions directly intersect the
 410 facets (Fig. 7). Since α of the pyramidal regions is always greater than that of the basal and prism
 411 facets, the outward growth of the pyramidal region is always sufficient for the edges to intersect.

412 However, requiring the intersection of the round and facet regions means that the pyramidal region
 413 grows at a faster rate than is measured (see below).

414 Requiring the intersection of the facets and the round regions makes it possible to analytically
 415 calculate the changes in the normal axis lengths (a_n , c_n , and p_n) and the lateral facet dimensions (a_l
 416 and c_l) if we know the area and volume. The total surface area of the basal, prism, and pyramidal
 417 regions can be computed directly from the lateral and normal dimensions using the geometry in
 418 Fig. 7,

$$419 \quad A_b = 2\pi a_l^2,$$

$$420 \quad A_p = 4\pi a_n c_l,$$

$$421 \quad A_r = 2 \int_0^{2\pi} \int_{\phi_a}^{\phi_c} p_n^2 \sin\phi \, d\phi \, d\theta = 4\pi p_n^2 [\cos\phi_a - \cos\phi_c] = 4\pi p_n [c_n - a_l], \quad (17)$$

422 where the last equation uses $\cos(\phi_a) = c_n/p_n$ and $\cos(\phi_c) = a_l/p_n$, and it assumes spherical sec-
 423 tions that therefore restricts this model to isometric crystals ($a_n = c_n$ and $a_l = c_l$).

424 The total volume can also be calculated analytically based on the geometry of Fig. 7. One can
 425 integrate from $\phi = 0$ to $\phi = \phi_a$ over the flat basal region which gives the volume of a cone (V_b),
 426 then over the circular region from $\phi = \phi_a$ to $\phi = \phi_c$ which gives the volume of a spherical section
 427 (V_r), and finally from $\phi = \phi_c$ to $\phi = \pi/2$ over the flat prism region (V_p) resulting in,

$$428 \quad V_b = \frac{2}{3}\pi a_l^2 c_n,$$

$$429 \quad V_r = \frac{4}{3}\pi p_n^3 [\cos\phi_a - \cos\phi_c] = \frac{4}{3}\pi (c_n^2 + a_l^2) [c_n - a_l],$$

$$430 \quad V_p = \frac{4}{3}\pi a_n^2 c_l,$$

$$431 \quad V_t = V_r + V_b + V_p = \frac{4}{3}\pi \left[(c_n^2 + a_l^2)(c_n - a_l) + \frac{1}{2}a_l^2 c_n + a_n^2 c_l \right], \quad (18)$$

432 where the last equation is the total volume of the crystal and $p_n^2 = c_n^2 + a_l^2$ has been used. Note
 433 that V_t has the correct limiting behavior for an isometric crystal ($a_n = c_n$). Initially the crystal is
 434 spherical without any facets, and so $a_l = c_l = 0$, and the total volume reduces to that of a sphere.

435 If the crystal remains isometric and the pyramidal regions grow themselves out of existence, then
436 $a_n = c_n = a_l = c_l$ and the volume becomes that of a cylinder ($2\pi a_n^2 c_n$).

437 It is now possible to calculate the change in the mass and volume of the crystal, and hence the
438 normal and lateral dimensions. As in §3 the total mass, $m(t + \Delta t)$, and total volume, $V_t(t + \Delta t) =$
439 $m(t + \Delta t)/\rho_i$, at the end of a short time-step ($\Delta t = 0.1s$) can be computed directly from the mass
440 growth equation (Eq. 16) with thermal diffusion included. Similarly, the normal dimensions at the
441 end of a time-step, $a_n(t + \Delta t)$ and $c_n(t + \Delta t)$, can be computed directly from Eq. 8. To keep the
442 particle isometric we use the average of the a_n and c_n growth velocities during lateral growth only.
443 The lateral dimensions cannot be determined in a similar fashion. However, since the total volume
444 and the normal dimensions are known at the end of the time-step, the new lateral dimensions can
445 be found diagnostically. Equation 18 can be rearranged as,

$$446 V_t(t + \Delta t) = \frac{4}{3}\pi \left[-a_l^3 + \frac{3}{2}c_n a_l^2 + (a_n^2 \phi_l - c_n^2)a_l - c_n^3 \right]_{t+\Delta t}, \quad (19)$$

447 where every term on the right-hand-side is at the end of the time-step ($t + \Delta t$). This is a cubic
448 equation for the lateral dimension, a_l , which is the only unknown. Standard cubic solutions can
449 be used to find a_l and this closes the equation set.

450 *c. Results from Mechanistic Theory*

451 The mechanistic theory was used to evolve the frozen droplet described §3, however the deposition
452 coefficient (α_r) for the pyramidal region is needed and this requires specifying f_{char} (Eq. 12). We
453 used a wide range of f_{char} in our simulations, from 1/3 to 1/10, but found that the main features
454 of lateral growth remained the same, and that a value of $f_{char} = 1/5$ produces the best match to
455 the data. The evolution of the areas and growth velocities (Fig. 8) is similar to that produced
456 by the empirical model, in that a rapid increase in the basal and prism areas occurs, along with
457 a commensurate decline in the pyramidal area. Once lateral growth ceases, and the pyramidal

area is gone (near $2 a_n = 26 \mu\text{m}$), the basal and prism facets grow more slowly at their normal growth rates. The pyramidal area disappears faster in the mechanistic theory, a result that is likely due to the requirement that the round and facet regions intersect. Unlike the empirical model, the mechanistic model more accurately captures the evolution of the facet areas. What is most remarkable about the mechanistic theory calculations is that the prism area matches the data with high precision even during the period of lateral growth. Both basal and prism facet areas are exceedingly well predicted after lateral growth ceases, a result that strongly suggests the facets grew with dislocations at the measured s_{char} of Nelson and Knight (1998).

The growth velocities of the pyramidal region and a-axis match the measurements, though the c-axis growth rate is under-predicted. Note that all of the growth velocities increase during facet spreading, which qualitatively agrees with the measurements. The physical cause of this increase is the competition for vapor among the surface regions. When the basal and prism facets are small, the pyramidal region keeps the surface supersaturation low (Fig. 9) due to that region's higher α_r thus starving the facets of vapor. This result is expected based on the work of Nelson and Swanson (2019), though in their theory explicit adjoining surface fluxes rob the facets of vapor at the expense of lateral growth. No surface process is explicitly modeled in the theory presented here, and instead α_r for the pyramidal region acts in an aggregate fashion to mimic the reduction of the basal and prism facets normal growth. As the basal and prism facets spread laterally, and the pyramidal area declines, the surface supersaturation rises causing an increase in α_a , α_c , and α_r (Fig. 9). Even though the individual α increases, the area-averaged value ($\bar{\alpha}$) decreases due to the declining pyramidal area: The pyramidal region is being replaced by slower-growing basal and prism facets with lower α . Once the pyramidal region is gone, s_{surf} declines as the particle increases more rapidly in size and grows by normal growth alone. The link between s_{surf} and α_r is the primary reason for the sensitivity of the areas and growth velocities to our choice of

482 f_{char} (shown as the shaded regions on the figures). Nevertheless, the qualitative features of lateral
483 growth are not strongly dependent on the choice of f_{char} . Indeed, the cessation of facet spreading,
484 which occurs when a_l equals the normal axis length a_n , occurs after 2 minutes with a spread of 30
485 seconds due to our selected range of f_{char} (Fig. 10b).

486 The evolution of the growth velocities is reflected in the total mass growth rate of the crystal
487 (Fig. 10a). Mass growth is initially dominated by lateral growth, which declines rapidly with
488 crystal diameter. As the basal and prism facet areas increase, thus replacing the pyramidal regions,
489 the normal growth rate rises until it dominates the total growth rate. Unlike the empirical model,
490 the mechanistic theory does not produce a maximum in the total growth rate during facet spreading
491 (Fig. 10) because s_{surf} rises smoothly in time. Furthermore, the evolution of s_{surf} is responsible for
492 the greater growth rate produced by the mechanistic model once lateral growth ceases. The use of
493 a single s_{surf} leads to a larger α_a and a smaller α_c (Figs. 5 and 9), more rapid a-axis growth and, in
494 turn, a higher mass growth rate than the empirical model. If we followed the common procedure
495 of adjusting the capacitance model with a constant α in order to match the actual growth rate,
496 a value of 0.075 would be needed. Again, this procedure is often used to interpret laboratory
497 measurements of mass growth. If lateral growth is occurring on the measured crystals the value
498 of α determined from the measurements could be too low and it would mis-represent the actual
499 growth process.

500 5. Implications of Lateral Growth

501 The results from sections 3 and 4 indicate that lateral growth may depend on initial size. Facets
502 must spread laterally over a greater area on a crystal that has a larger initial size. Consequently,
503 the time-scale over which lateral growth occurs (τ_l), and over which the normal dimension is
504 approximately constant, should increase with the initial size of the crystal. Figure 11 shows that

505 this is indeed the case for two crystals grown at a supersaturation of 10%, a temperature of -40°C,
 506 and a pressure of 1000 hPa. Smaller crystals with diameters typical of most cloud droplets (20
 507 μm) have lateral growth time-scales on the order of a few minutes, whereas for larger crystals
 508 (diameter 40 μm) the time-scale can be 10s of minutes. Simulations conducted over a range of
 509 supersaturations and initial particle sizes indicate that τ_l is generally on the order of 1 to 10 minutes
 510 for most crystals with initial diameters in the range of 20 to 60 μm . These time-scales are long
 511 enough that ice-containing clouds could be impacted by lateral growth, and these results may bear
 512 on prior laboratory studies of crystal growth, which we turn to next.

513 The experiments of Pokrifka et al. (2020) showed that a number of the small (radius ~ 10
 514 μm), homogeneously-frozen crystals grown in their electrodynamic diffusion chamber could not
 515 be modeled with constant α or with normal growth. Those growth data could only be explained if
 516 α decreased in time, which is similar to the behavior predicted by lateral growth (Figs. 5 and 9).
 517 Pokrifka et al. (2020) suggested facet spreading as one possible way to explain the data, and they
 518 provided an *ad hoc* method to model the measurements. Detailed fits to their data are beyond the
 519 scope of this work, though it is worthwhile to ask whether the theory developed here produces
 520 results that are comparable to those measurements. A useful measure of the overall mass growth
 521 invoked by Pokrifka et al. (2020), and used in other studies (Swanson et al. 1999; Harrison et al.
 522 2016), is that of a power-law,

$$523 \quad \frac{dm}{dt} = A_t F_{vapor} \propto r^p, \quad (20)$$

524 where A_t is the total particle area, F_{vapor} is the vapor flux to the crystal, and r is the radius assum-
 525 ing the crystal is isometric. That the growth rate is proportional to r^p can be seen if two limits are
 526 considered. Under diffusion-limited growth (capacitance model) $p = 1$ because the surface pro-
 527 vides no resistance to growth ($\alpha = 1$), and the vapor flux is proportional to the inverse of the radius
 528 (Eq. 6). Under kinetics-limited growth the surface resistance is large causing the gas-phase vapor

gradient and the size-dependence of the vapor flux to disappear (as in Eq. 2) leading to $p = 2$.
Normal growth has power law exponents that range between 1 and 2, and some of the data of
Pokrifka et al. (2020) follow this growth (their Fig. 12 and our Fig. 12). However, approximately
half of the measured crystals grew slowly, produced $p < 1$, and required α that decline in time in
order to fit the data. We did representative calculations using lateral growth theory with typical
frozen droplet radii (10 and 20 μm), temperature (-40°C), pressure (970 hPa), and supersaturation
(10%) of the experiments. The value of p was calculated from the slope of the mass derivative and
the mass in log-log space, following Pokrifka et al. (2020), their Eq. 14. Note that both the empir-
ical and mechanistic models produce $p < 1$ along with curve shapes that resemble those derived
from the data (Fig. 12). The empirical model produces a lower value of p , and this is due to the
longer period of time over which the growth rate remains relatively constant. The initial size also
produces a lower value of p (shaded range in Fig. 12) since larger particles have longer periods of
lateral growth (Fig. 11). These results provide some additional evidence that lateral growth may
have been captured in the experiments of Pokrifka et al. (2020), though their mechanism assumed
a transition to step nucleation growth whereas the model developed here suggests dislocations can
also explain the data.

These experiments also provide some tantalizing evidence for an initial size dependence to
growth. If the average values of p from the experiments (Fig. 13 of Pokrifka et al. 2020) are
plotted against the initial particle size, a slight size dependence emerges (Fig. 13). While there
is not enough data to draw definitive conclusions, the data suggest that p may be lower for crys-
tals formed from initially larger frozen droplets. The average p -values derived from the empirical
model produces curves with a roughly similar initial size dependence to the data, using a similar
temperature and pressure from of those experiments (-40°C and 970 hPa, respectively). The max-
imum and minimum range of p determined from the simulations (grey shade) are also on the order

553 of those derived from the measurements (error bars), and supersaturation plays only a modest role
554 in determining the curve shape. While the empirical model indicates an intriguing initial size de-
555 pendence to p , such a dependence does not appear in the mechanistic model. The reason for this
556 difference is due to the manner in which the mass growth rate evolves during facet spreading. The
557 empirical model produces a small maximum with a constant rate thereafter until lateral growth
558 ceases, whereas the mechanistic model produces a rise in the growth rate throughout the period of
559 lateral growth (Fig. 10). With so little data it is not possible to draw specific conclusions and more
560 measurements of lateral growth are needed.

561 Lateral growth is also known to occur on previously sublimated crystals, and this growth may
562 be important for crystals cycled in cold clouds. Nelson and Swanson (2019) measured the lateral
563 growth of the basal facet on a previously sublimated crystal at $T = -30^{\circ}\text{C}$, a supersaturation of
564 about 1%, and at atmospheric pressure (Fig. 14). Their results showed that the ratio of the lateral
565 to the normal basal radius ($\phi_a = a_l/a_n$) increased rapidly initially, but slowed down as the facet
566 spread across the surface. Normal growth cannot explain the data and a lateral growth model
567 is required (Nelson and Swanson 2019, their Fig. 6). While the mechanistic model developed
568 here is only valid for isometric crystals, the empirical model is capable of modeling non-isometric
569 growth since it was developed based on the spheroidal model of Zhang and Harrington (2014).
570 The measured crystal had a basal axis radius of about $a_n = 186 \mu\text{m}$, and we assumed an initial
571 crystal thickness of $60 \mu\text{m}$ which is similar to the measured crystals. The s_{char} for normal growth
572 were taken from the data set of Harrington et al. (2019), and the empirical model results are shown
573 in Fig. 14 for three different supersaturations (1, 2 and 3%). Clearly, the empirical model captures
574 the increase in the axis length ratio in time, including the more rapid initial spreading of the facets
575 and the later slow-down in the growth. While the measured supersaturation was 1%, our model
576 requires higher values of 2 to 3% for a better match with the data. In addition, the data indicate that

577 the normal a-dimension (a_n) increased by 1 μm , whereas the empirical model produces a nearly
578 6 μm increase in a_n . Never-the-less, the qualitative match with the data is encouraging especially
579 if one bears in mind the simplistic nature of the empirical theory. The slow-down in growth is
580 also reflected in the mass growth rate (Fig. 14b), which shows an initial rise followed by a plateau
581 and a minor decrease towards the end of the simulation. It is worth noting that mass derivatives
582 with this shape have been measured (Pokrifka et al. 2020, their Fig. 11b). If we treated the crystal
583 with normal growth only, the growth rate would be too low by about 30% (Fig. 14b). On the other
584 hand, treating the crystal as if it were entirely rough ($\alpha = 1$, capacitance model) would produce
585 mass growth that rapidly diverges from the actual growth rate and becomes too large.

586 6. Concluding Remarks

587 Growth that spreads laterally across crystal surfaces has not often been measured, but it may
588 have important consequences for ice-containing clouds and laboratory measurements of ice crystal
589 growth. If our simple theory is approximately correct, then lateral growth produces rates that are
590 initially higher, but then become generally lower than that predicted by capacitance theory and
591 this is due to two factors: Efficiently growing regions are replaced by facets that grow with lower
592 efficiency, leading to a declining area-averaged deposition coefficient ($\bar{\alpha}$) in time and a lower
593 growth rate. But this decrease in $\bar{\alpha}$ is also conflated with the changing particle geometry. The
594 particle is growing, essentially, by filling out volume and increasing surface area while the particle
595 normal dimension increases slowly in time until lateral growth ceases. These process will also
596 be modulated by the time-scale for initial facet formation, for which few studies exist. Lateral
597 growth may therefore complicate interpretations of laboratory-grown ice crystals, especially those
598 that include nucleation. For instance, many studies of surface kinetics at low temperatures (below
599 -30°C) have used small ice crystals and the spherical capacitance model with a constant $\bar{\alpha}$ (Magee

600 et al. 2006; Skrotzki et al. 2013; Harrison et al. 2016). However, the assumption of a constant α
601 for ice is only approximately true if the surface structure is static in time, which is not the case for
602 actively growing ice (Nelson 2005). If both lateral and normal growth are occurring on the growing
603 crystals the estimated $\bar{\alpha}$ could then be either too low or too high depending upon the initial size
604 of the crystal, the length of the measurement, and the supersaturation. Longer growth experiments
605 at low to moderate supersaturations on cloud-droplet sized crystals could lead to anomalously low
606 estimates of $\bar{\alpha}$ (as indicated in Figs. 6 and 10). On the other hand, short-duration experiments
607 could lead to anomalously high values of $\bar{\alpha}$ if an active period of lateral and normal growth is
608 sampled since the growing crystals are not changing much in size, but instead are growing by
609 filling out surface area and volume.

610 Crystals that are cycled through periods of growth and sublimation may also be influenced by
611 lateral growth, and this could help explain some perplexing results from laboratory studies. The
612 levitation cloud chamber studies of Magee et al. (2006) required low α to explain their results.
613 Their crystals were cycled between growth and sublimation, so it could be that lateral growth
614 occurred frequently in their studies, which would then affect the deposition coefficients determined
615 by those studies. A recent study by Voigtlander et al. (2018) showed increasing optical complexity
616 likely associated with mesoscopic and other larger surface features as crystals were cycled through
617 growth and sublimation regimes. The growth of the crystals seemed to become suppressed by such
618 cycling, and this could be an indication of contributions from lateral growth.

619 Lateral growth may also have consequences for the microphysics of cold clouds. If facet spread-
620 ing dominates the early growth of crystals it could influence the nucleation of ice in some types of
621 cirrus clouds. The concentration of crystals in cirrus depend on the manner in which ice is nucle-
622 ated, and the homogeneous freezing of solution droplets can produce high concentrations of ice
623 crystals. However, homogeneous freezing is sensitive to the ambient supersaturation; the growth

624 of pre-existing crystals and newly frozen solution droplets are a sink of water vapor, which can
625 cause a reduction in the rate of homogeneous freezing (e.g. DeMott et al. 1997). Active lateral
626 growth on newly frozen solution droplets could initially enhance vapor growth (through increased
627 surface area), leading to further suppression of homogeneous freezing. The dynamic recycling of
628 crystals through clouds could also be influenced by lateral growth. Larger crystals that sublimate
629 below cloud base and are recycled by stronger updrafts could see relatively long periods of lateral
630 growth. Such periods of lateral growth may produce relatively constant growth rates, along with
631 maximum dimensions that change slowly in time thus affecting crystal fall speeds. Finally, Nel-
632 son and Swanson (2019) suggest that many of the complex ice features at low temperature (below
633 -30°C) are influenced by lateral growth, and this may indicate that theories of ice vapor growth for
634 very cold clouds need to be revised.

635 *Acknowledgments.* The authors are grateful for support from the National Science Foundation
636 under Grant #AGS-1824243. The authors benefited from conversations with Drs. Alexei Ko-
637 rolev, Alfred Moyle, and Jon Nelson. Three anomalous reviewers are thanked for comments that
638 improved this article.

639 *Data Statement:* Raw growth data used to produce the Figs. 12 and 13 are available from
640 Data Commons, The Pennsylvania State University (Pokrifka et al. 2018). The crystal growth
641 data used in Fig. 13 were kindly provided by Dr. Jon Nelson. The data from Gonda
642 and Yamazaki (1984) were extracted from their figures using the software, Engauge Digitizer.
643 Simulation output and data used to produce the figures are available from Data Commons at
644 <https://doi.org/10.26208/4a9x-p796>

645 **References**

646 Anderson, B., J. Sutkoff, and J. Hallett, 1969: Influence of methyl 2-cyanoacrylate monomer on
647 the habit of ice crystals grown from the vapor. *J. Atmos. Sci.*, **26**, 673–674.

648 Asakawa, H., G. Sasaki, E. Yokoyama, K. Ngashima, and S. Nakatsubo, 2014: Roles of sur-
649 face/volume diffusion in the growth kinetics of elementary spiral steps on ice basal faces grown
650 from water vapor. *Cryst. Growth Des.*, **14**, 3210–3220.

651 Avramov, A., and J. Harrington, 2010: The influence of parameterized ice habit on simulated
652 mixed-phase arctic clouds. *J. Geophys. Res.*, **115**, D03 205.

653 Bogdan, A., and M. Molina, 2017: Physical chemistry of the freezing process of atmospheric
654 aqueous drops. *J. Phys. Chem.*, **121**, 3109 – 3116.

655 Burton, W. K., N. Cabrera, and F. C. Frank, 1951: The growth of crystals and the equilibrium
656 structure of their surfaces. *Philosophical Transactions of the Royal Society of London. Series A,*
657 *Mathematical and Physical Sciences*, **243 (866)**, 299–358.

658 Chen, J.-P., 1992: Numerical Simulation of the Redistribution of Atmospheric Trace Chemicals
659 Through Cloud Processes. Ph.D. thesis, The Pennsylvania State University, University Park, PA,
660 16802, 342pp.

661 Constantin, J., M. Gianetti, M. Longinotti, and H. Corti, 2018: The quasi-liquid layer of ice
662 revisited: The role of temperature gradients and tip chemistry in AFM studies. *Atmos. Chem.*
663 *Phys.*, **18**, 14 965–14 978.

664 DeMott, P., D. Rogers, and S. Kreidenweis, 1997: The susceptibility of ice formation in upper
665 tropospheric clouds to insoluble aerosol components. *J. Geophys. Res.*, **102**, 19 575–19 584.

666 Frank, F. C., 1982: Snow crystals. *Contemporary Physics*, **23** (1), 3–22, doi:10.1080/
667 00107518208231565.

668 Gierens, K., M. Monier, and J.-F. Gayet, 2003: The deposition coefficient and its role for cirrus. *J.*
669 *Geophys. Res.*, **108**(D2), 4069.

670 Glikl, N., and A. Eliseev, 1962: Effects of supersaturation and temperature on the development
671 kinetics of the initial growth forms on a sphere of ice. *Kristallografiya*, **7**, 802–804.

672 Gonda, T., and T. Yamazaki, 1978: Morphology of ice droxtals grown from supercooled water
673 droplets. *J. Cryst. Growth*, **45**, 66–69.

674 Gonda, T., and T. Yamazaki, 1984: Initial growth forms of snow crystals growing from frozen
675 cloud droplets. *J. Meteorol. Soc. Japan*, **62**, 190–192.

676 Ham, F., 1959: Shape-preserving solutions of the time-dependent diffusion equation. *Quarterly of*
677 *Applied Mathematics*, **17** (137-145).

678 Harrington, J., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk
679 microphysical models. Part I: Theoretical development. *J. Atmos. Sci.*, **70**, 349–364, doi:10.
680 1175/JAS-D-12-040.1.

681 Harrington, J. Y., A. Moyle, L. E. Hanson, and H. Morrison, 2019: On calculating deposition co-
682 efficients and aspect-ratio evolution in approximate models of ice crystal vapor growth. *Journal*
683 *of the Atmospheric Sciences*, **76** (6), 1609–1625, doi:10.1175/JAS-D-18-0319.1.

684 Harrison, A., A. Moyle, M. Hanson, and J. Harrington, 2016: Levitation diffusion chamber mea-
685 surements of the mass growth of small ice crystals from vapor. *J. Atmos. Sci.*, **73**, 2743–2758.

686 Järvinen, E., and Coauthors, 2018: Additional gobal climate cooling by clouds due to ice crystal
687 complexity. *Atmos. Chem. Phys.*, **18**, 15 767–15 781.

688 Knepp, T., T. Renkens, and P. Shepson, 2009: Gas phase acetic acid and its qualitative effects on
689 snow crystal morphology and the quasi-liquid layer. *Atmos. Chem. Phys.*, **9**, 7679–7690.

690 Lamb, D., and W. Scott, 1974: The mechanism of ice crystal growth and habit formation. *J. Atmos.*
691 *Sci.*, **31**, 570–580.

692 Lamb, D., and J. Verlinde, 2011: *Physics and Chemistry of Clouds*. Cambridge University Press,
693 New York, 584 pp.

694 Lewis, B., 1974: The growth of crystals of low supersaturation. I. Theory. *J. Cryst. Growth*, **21**,
695 29–39.

696 Libbrecht, K., 2003: Growth rates of the principal facets of ice between -10°C and -40°C. *J.*
697 *Crystal Growth*, **247**, 530–540.

698 Libbrecht, K., and R. Ball, 2010: Chemical influences on ice crystal growth from vapor. *arXiv*
699 *Materials Science*, arXiv:1101.0127.

700 MacKenzie, A., and P. Haynes, 1992: The influence of surface kinetics on the growth of strato-
701 spheric ice crystals. *J. Geophys. Res.*, **97**, 8057–8064.

702 Magee, N., A. Moyle, and D. Lamb, 2006: Experimental determination of the deposition coeffi-
703 cient of small cirrus-like crystals near -50 °C. *Geophys. Res. Lett.*, L17813.

704 Magono, C., S.-I. Fujita, and T. Taniguchi, 1976: Shapes of single crystals originated from frozen
705 cloud droplets. *International Conference on Cloud Physics*, 26 - 30 July, Boulder Colorado,
706 103-106.

707 Mayurama, M., N. Kurabayashi, K. Kawabata, and J. Wettlaufer, 2000: Shocks and curvature
708 dynamics: A test of global kinetic faceting in crystals. *Phys. Rev. Lett.*, **85**, 2545–2548.

709 Mitchell, D. L., A. Macke, and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative
710 properties. *J. Atmos. Sci.*, **53**, 2967–2988.

711 Nelson, J., 1998: Sublimation of ice crystals. *J. Atmos. Sci.*, **55**, 910–919.

712 Nelson, J., 2001: Growth mechanisms to explain the primary and secondary habits of snow crys-
713 tals. *Philos. Mag. A.*, **81**, 2337–2373.

714 Nelson, J., 2005: Interactive comment on “supersaturation dehydration, and dentrification in arctic
715 cirrus”. *Atmos. Chem. Phys. Discuss.*, **5**, S257–S260.

716 Nelson, J., and M. Baker, 1996: New theoretical framework for studies of vapor growth and
717 sublimation of small ice crystals in the atmosphere. *J. Geophys. Res.*, **101**, 7033–7047.

718 Nelson, J., and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. *J.*
719 *Atmos. Sci.*, **55**, 1452–1465.

720 Nelson, J., and B. Swanson, 2019: Lateral facet growth of ice and snow – Part 1: Observations
721 and applications to secondary habits. *Atmospheric Chemistry and Physics*, **19**, 15 285–15 320.

722 Neshyba, S., J. Adams, K. Reed, P. M. Rowe, and I. Gladich, 2016: A quasi-liquid mediated
723 continuum model of faceted ice dynamics. *Journal of Geophysical Research: Atmospheres*,
724 **121** (23), 14,035–14,055, doi:10.1002/2016JD025458.

725 Pfalzgraff, W., S. Neshyba, and M. Reselova, 2011: Comparative molecular dynamics study of
726 vapor-exposed basal, prismatic, and pyramidal surfaces of ice. *J. Phys. Chem.*, **115**, 6184–6193.

727 Pokrifka, G., A. Moyle, L. Hanson, and J. Harrington, 2020: Estimating surface attachment kinetic
728 and growth transition influences on vapor-grown ice crystals. *J. Atmos. Sci.*, **77**, 2393–2410.

729 Pokrifka, G., A. Moyle, and J. Y. Harrington, 2018: Electrodynamic levitation diffusion chamber
730 measurements of the mass growth of homogeneously-nucleated ice crystals grown from the
731 vapor. Penn State Data Commons <https://doi.org/10.26208/z7bf-nq20>.

732 Saito, Y., 1996: *Statistics Physics of Crystal Growth*. World Scientific, 179pp.

733 Skrotzki, J., and Coauthors, 2013: The accommodation coefficient of water molecules on ice -
734 cirrus cloud studies at the AIDA simulation chamber. *Atmos. Chem. Phys.*, **13**, 4451–4466.

735 Swanson, B. D., N. Bacon, E. J. Davis, and M. B. Baker, 1999: Electrodynamic trapping and
736 manipulation of ice crystals. *Quart. J. Roy. Meteor. Soc.*, **125**, 1039–1058.

737 van Diedenhoven, B., and B. Cairns, 2020: A flexible parameterization for shortwave and long-
738 wave optical properties of ice crystals and derived bulk optical properties for climate models. *J.*
739 *Atmos. Sci.*, **77**, 1245–1260.

740 Voigtlander, J., and Coauthors, 2018: Surface roughness during depositional growth and sublima-
741 tion of ice crystals. *Atmos. Chem. Phys.*, **18**, 13 687–13 702.

742 Wettlaufer, J., 2001: Dynamics of ice surfaces. *Interfacial Science*, **9**, 117–129.

743 Wood, S., M. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice
744 crystals in the atmosphere. *J. Geophys. Res.*, **106**, 4845–4870.

745 Woods, C., M. Stoelinga, and J. Locatelli, 2007: The IMPROVE-1 storm of 1-2 February 2001.
746 Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle
747 types and testing of a bulk microphysical scheme with snow habit prediction. *J. Atmos. Sci.*, **64**,
748 3927–3948.

749 Zhang, C., and J. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor
750 diffusion. *J. Atmos. Sci.*, **71**, 372–390.

LIST OF FIGURES

752 **Fig. 1.** Following nucleation, facets begin to develop on frozen droplets. Basal and elliptical faces
 753 appear, along with round regions or pyramidal faces. The faces grow both normally (out-
 754 ward) and laterally (along the surface). Over time, the elliptical regions become distinct
 755 prism, basal and pyramidal facets shown at the end. The pyramidal facets can grow them-
 756 selves out of existence resulting in a hexagonal prism (not shown).

757 **Fig. 2.** Approximate model of normal and lateral growth assuming circular cylinders for the basal
 758 and prism facets. The normal fluxes (F_a and F_c) are shown along with fluxes that drive lateral
 759 growth (direct and adjoining surface, F_r), and both depend on the surface supersaturation
 760 over the facet edges, (s_{surf}). The fluxes depend on the deposition coefficients for each region,
 761 as indicated on the figure. The facets are defined in terms of their lateral dimensions, a_l for
 762 the basal facets and c_l for the prism facets. The overall crystal dimensions are given in terms
 763 of the *normal* dimensions, a_n and c_n , so named because they are perpendicular to the facet.

764 **Fig. 3.** Deposition coefficient as a function of the ratio of the surface to the characteristic supersat-
 765 uration (s_{surf}/s_{char}) for different values of M . A value of $M = 1$ corresponds to growth by
 766 spiral dislocations whereas values of $M \geq 10$ are generally used to represent step nucleation
 767 (Nelson and Baker 1996). Spiral dislocations allow for crystal growth at low s_{surf} , unlike
 768 step nucleation which produces almost no (inefficient) growth until s_{surf} reaches s_{char} and
 769 growth rapidly becomes efficient.

770 **Fig. 4.** (a) Area of single basal, prism, and pyramidal regions, and (b) their respective growth ve-
 771 locities (axis growth rates) as a function of the a-axis diameter ($2a_n$) of the crystal. The
 772 measurements of Gonda and Yamazaki (1984) are given by the symbols. The solid lines are
 773 predictions using the empirical growth model with rough area (A_r) parameterized as a ratio
 774 of the fractional volume change to the power, n with $n = 2.5$. The largest variability in the
 775 growth is due to this parameterization, with the spread indicated by the shaded regions. The
 776 upper and lower bound of each range is given by $n = 3$ and 2 , respectively.

777 **Fig. 5.** Deposition coefficients as a function of the a-axis diameter ($2a_n$) for the basal facet (black),
 778 prism facet (red), and the area-weighted total (blue and blue shade). Since the total depo-
 779 sition coefficient is an area-weighted average, it depends on the facet and pyramidal area
 780 approximation. The blue solid line assumes $n = 2.5$ and the shaded region gives the spread
 781 in the solution for n between 2 and 3.

782 **Fig. 6.** (a) Mass growth rates as a function of the a-axis diameter ($2a_n$) for the total growth rate (red
 783 solid, shaded), normal growth only (red dashed), and rough growth with $\alpha = 1$ for all facets
 784 (blue solid). The solid lines use the pyramidal area (A_r) approximation with $n = 2.5$; the red
 785 shaded region shows the range of variability due to n between 2 and 3. Capacitance theory
 786 using a sphere with $\alpha = 1$ (blue short-dashed) and $\alpha = 0.05$ (blue long-dashed) is also
 787 shown, and the blue shaded region shows α ranging from 0.03 to 0.1. (b) Crystal diameters
 788 as a function of time for the lateral (black dashed) and normal (black solid) diameters along
 789 with the diameter predicted by the capacitance model ($\alpha = 1$, blue).

790 **Fig. 7.** Geometry for mass distribution during growth; cross-section view of Fig. 1 with the basal
 791 and prism facets flush with the round regions (no facets edges are assumed). Normal growth
 792 adds mass directly to the basal and prism facets increasing the normal lengths by Δa_n and
 793 Δc_n , indicated by the blue rectangles. Growth of the pyramidal regions (solid red outline)
 794 causes both an increase in the pyramidal length (p_n) by Δp_n , but it also causes the lateral
 795 growth of the basal and prism facets by Δa_l and Δc_l . The angles ϕ_a and ϕ_c define the location
 796 of the basal and prism intersection with the pyramidal region.

797 **Fig. 8.** (a) Area of single basal, prism, and pyramidal (rough) facets, and (b) their respective growth
 798 velocities (axis growth rates) as a function of the a-axis diameter ($2a_n$). The measurements
 799 of Gonda and Yamazaki (1984) are given by the symbols. The solid lines are predictions
 800 using the mechanistic growth theory with the pyramidal s_{char} that is a factor $f_{schar} = 1/5$ the
 801 value for the prism facet. The shaded ranges show the variability in the solution due to f_{schar} .
 802 The upper and lower bound of each range is given by $f_{schar} = 1/10$ and $1/3$, respectively. 45

803 **Fig. 9.** (a) Deposition coefficients as a function of the a-axis diameter ($2a_n$) for the basal facet
 804 (black), prism facet (red), the pyramidal region (blue), and the area-weighted total (violet
 805 and violet shade). (b) The surface supersaturation for growth of basal, prism, and pyramidal
 806 facets (black and black shade). The solid lines assume a pyramidal s_{char} that is a factor f_{schar}
 807 = $1/5$ the value for the prism facet, and the shaded ranges show the solution for f_{schar} ranging
 808 from $1/3$ to $1/10$ 46

809 **Fig. 10.** (a) Mass growth rates as a function of the a-axis diameter ($2a_n$) for the total growth rate (red
 810 solid) and its components: normal growth (red dashed) and lateral growth (black dashed).
 811 The solid red line assumes a pyramidal s_{char} that is a factor $f_{schar} = 1/5$ the value for the
 812 prism facet, and the red shade shows the range $f_{char} = 1/3$ to $1/10$. For comparison, the
 813 total growth rate from empirical theory (Fig. 6) is shown with the green line and shade.
 814 Capacitance theory solution using an equivalent volume sphere and a constant α of 0.075
 815 (blue long-dashed) is also shown, and the blue shaded region shows α ranging from 0.05 to
 816 0.1. (b) Crystal diameters as a function of time for the lateral (black) and normal a (black)
 817 and c (red) diameters. The black shade indicates the range $f_{char} = 1/3$ to $1/10$ 47

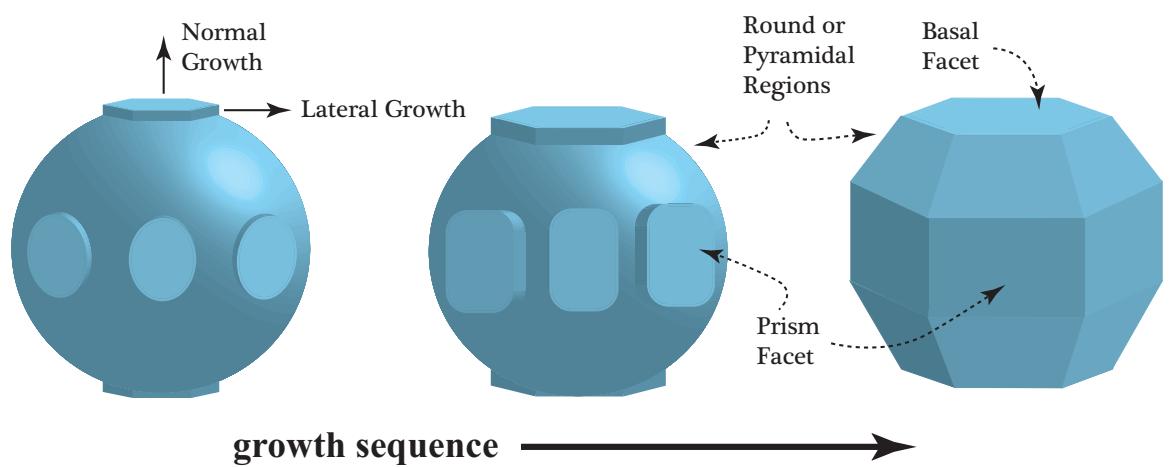
818 **Fig. 11.** Evolution of the normal (solid lines) and lateral (dashed lines) a-axis diameters in time at
 819 $T = -40^\circ\text{C}$, $P = 1000$ hPa, and $s_i = 10\%$. The thin and thick lines indicate an initial frozen
 820 spherical diameter of 20 and 40 μm , respectively. Solutions using the empirical model are
 821 given by the black lines whereas the mechanistic model solution is given by the red lines.
 822 The time-period for lateral growth τ_l is defined when the lateral diameter is 99% of the
 823 normal diameter, the range of τ_l given by the empirical and mechanistic models is given by
 824 the vertical solid lines. This time-scale depends strongly on the initial size. 48

825 **Fig. 12.** Power-law exponent of the mass growth equation ($dm/dt \propto r^p$) as a function of the mass
 826 ratio (mass divided by initial mass) for vapor-grown crystals. Solid, isometric crystals un-
 827 dergoing normal faceted growth have values of p that range between 1 (diffusion-limited
 828 growth) and 2 (kinetics-limited growth). The solid blue (consistent with normal growth) and
 829 red (inconsistent with normal growth) curves are derived from measurements of Pokrifka
 830 et al. (2020). Solutions using the empirical and mechanistic models are indicated by the
 831 purple and black shades, respectively. The upper and lower edge of the shaded region is
 832 given by the initial particle size of $r_o = 10$ and $20 \mu\text{m}$, respectively. 49

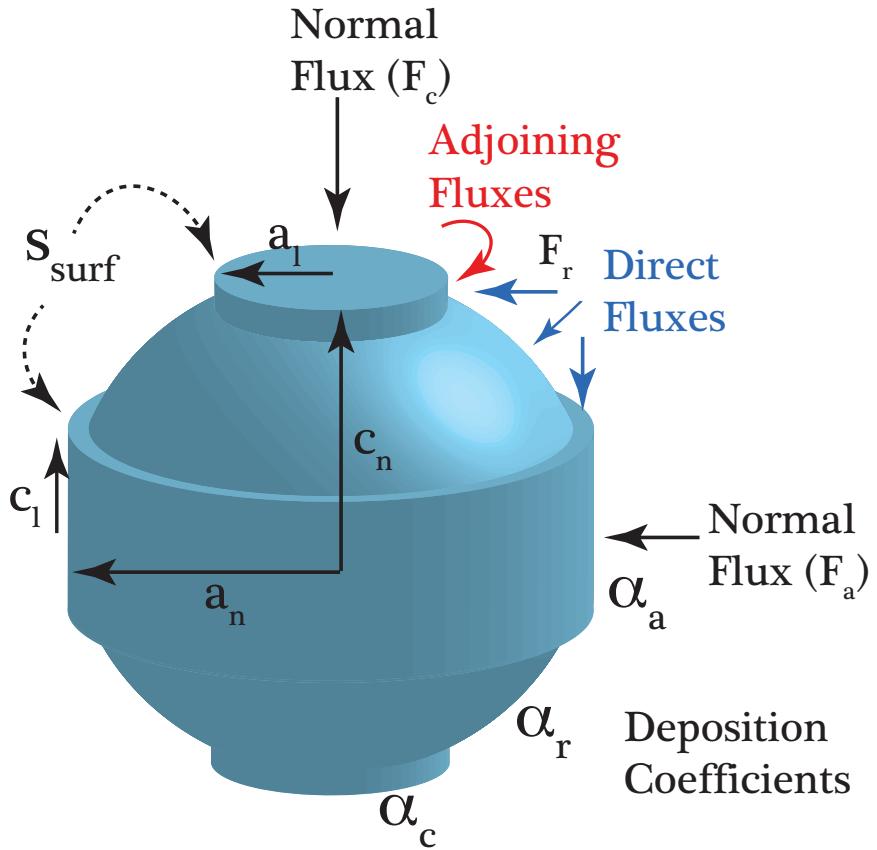
833 **Fig. 13.** Power-law exponent of the mass growth equation ($dm/dt \propto r^p$) as a function of the initial
 834 particle radius as derived from the measurements of Pokrifka et al. (2020), data points, and
 835 as calculated with the empirical (black lines) and mechanistic (blue line) models. The filled
 836 circles and lines are the average value of p , whereas the error bars and the grey shade indicate
 837 the maximum and minimum value of p attained during particle growth. The blue data points
 838 indicate growth data that could be fit with normal faceted growth, whereas purple points
 839 required a model of faceting transitions. The black solid and dashed curves indicate the
 840 model solution supersaturation dependence (10 and 25%, respectively), and this range was
 841 chosen based on the measurement range. 50

842 **Fig. 14.** (a) Ratio of the lateral and normal a-axis lengths as a function of time. The blue data points
 843 are from Fig. 6 of Nelson and Swanson (2019) who measured the lateral basal facet spread-

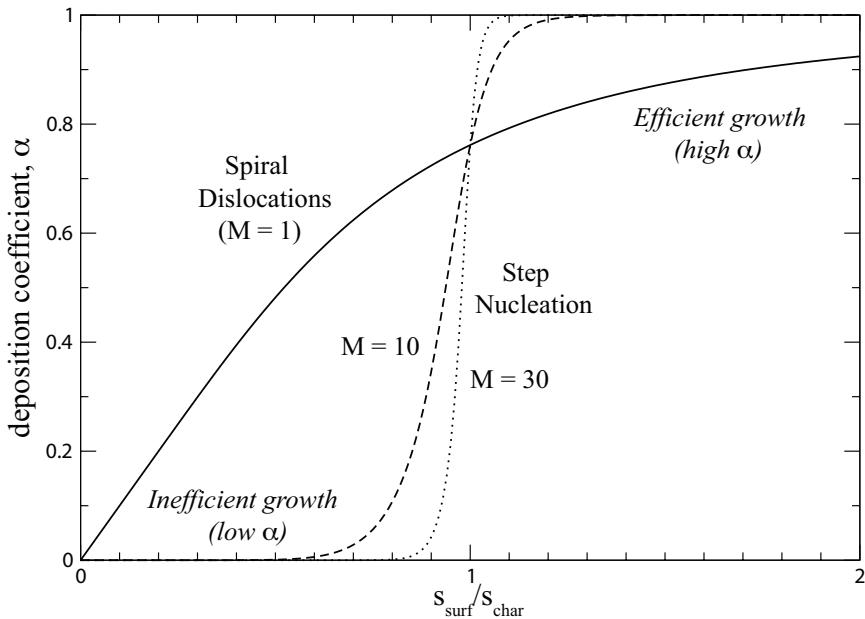
844 ing of a planar crystal with an a-axis radius of about 165 μm at $T = -30^\circ\text{C}$ and at a supersaturation of 1%. Empirical model solutions for an initially spheroidal crystal with no facets, 845 a thickness of 60 μm , and supersaturations of 1, 2 and 3% are shown by the solid lines. (b) 846 The total mass growth rate (normal and lateral, solid line) as a function of the normal a-axis 847 radius. The growth rate computed as if the particle were rough ($\alpha = 1$, dot-dashed line) or 848 undergoing only normal faceted growth (dashed line) are also shown. 51



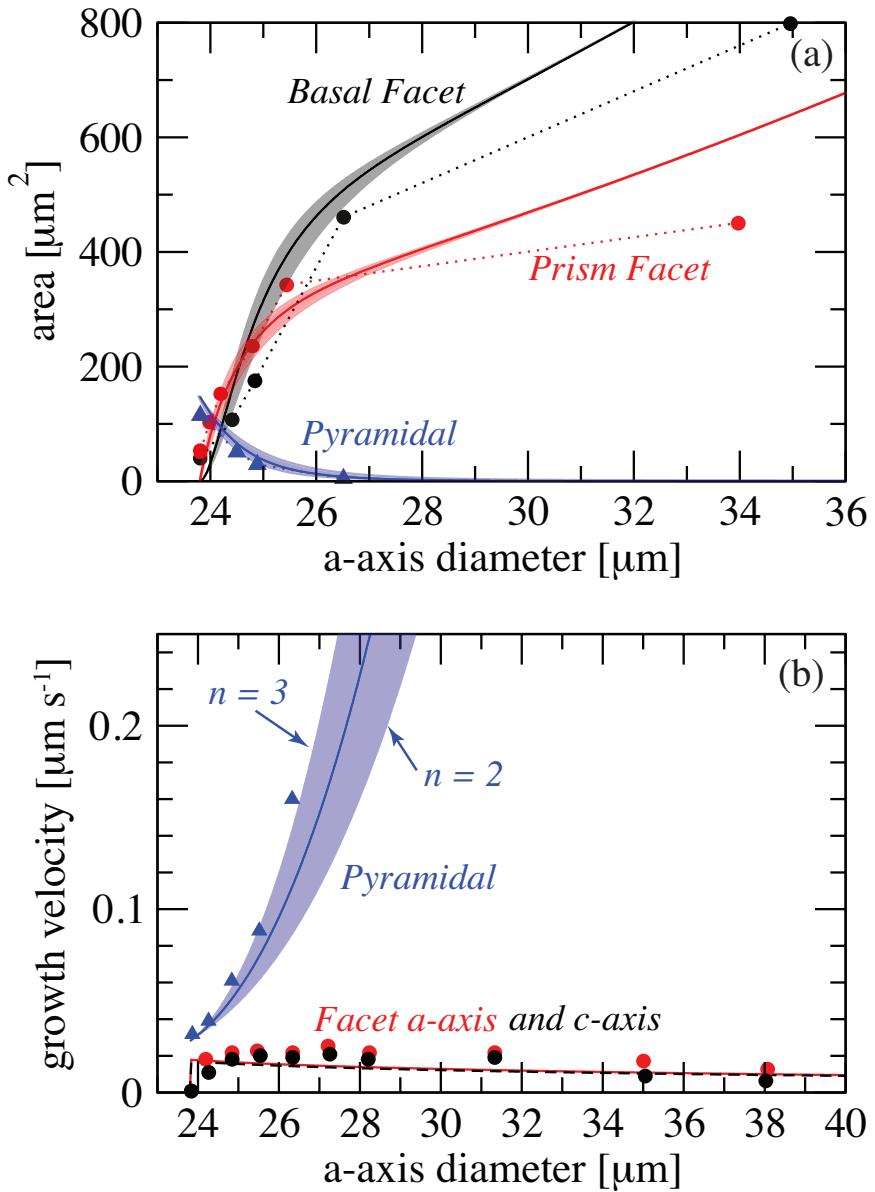
850 FIG. 1. Following nucleation, facets begin to develop on frozen droplets. Basal and elliptical faces appear,
 851 along with round regions or pyramidal faces. The faces grow both normally (outward) and laterally (along the
 852 surface). Over time, the elliptical regions become distinct prism, basal and pyramidal facets shown at the end.
 853 The pyramidal facets can grow themselves out of existence resulting in a hexagonal prism (not shown).



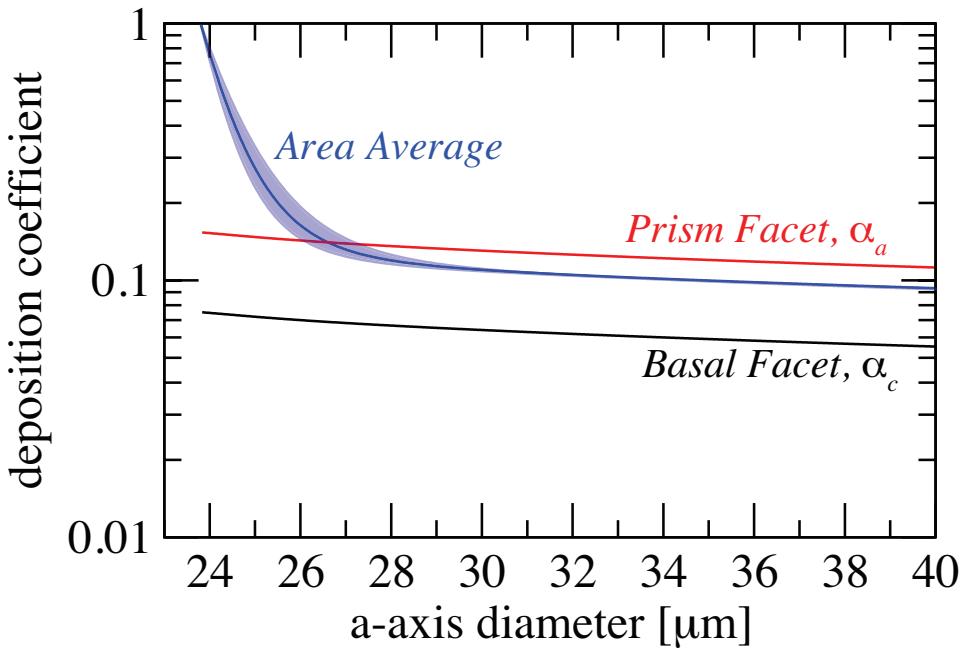
854 FIG. 2. Approximate model of normal and lateral growth assuming circular cylinders for the basal and prism
 855 facets. The normal fluxes (F_a and F_c) are shown along with fluxes that drive lateral growth (direct and adjoining
 856 surface, F_r), and both depend on the surface supersaturation over the facet edges, (s_{surf}). The fluxes depend on
 857 the deposition coefficients for each region, as indicated on the figure. The facets are defined in terms of their
 858 lateral dimensions, a_l for the basal facets and c_l for the prism facets. The overall crystal dimensions are given in
 859 terms of the *normal* dimensions, a_n and c_n , so named because they are perpendicular to the facet.



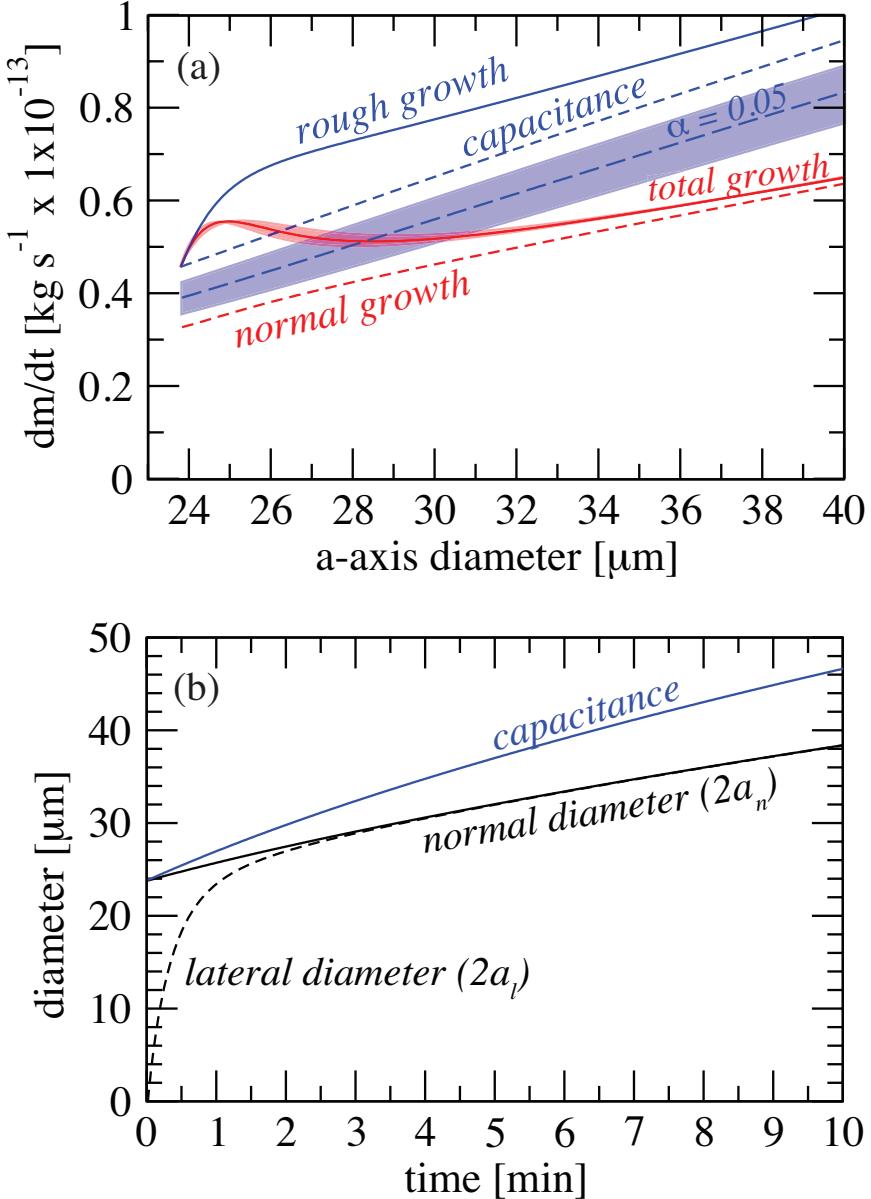
860 FIG. 3. Deposition coefficient as a function of the ratio of the surface to the characteristic supersaturation
 861 (s_{surf}/s_{char}) for different values of M . A value of $M = 1$ corresponds to growth by spiral dislocations whereas
 862 values of $M \geq 10$ are generally used to represent step nucleation (Nelson and Baker 1996). Spiral dislocations
 863 allow for crystal growth at low s_{surf} , unlike step nucleation which produces almost no (inefficient) growth until
 864 s_{surf} reaches s_{char} and growth rapidly becomes efficient.



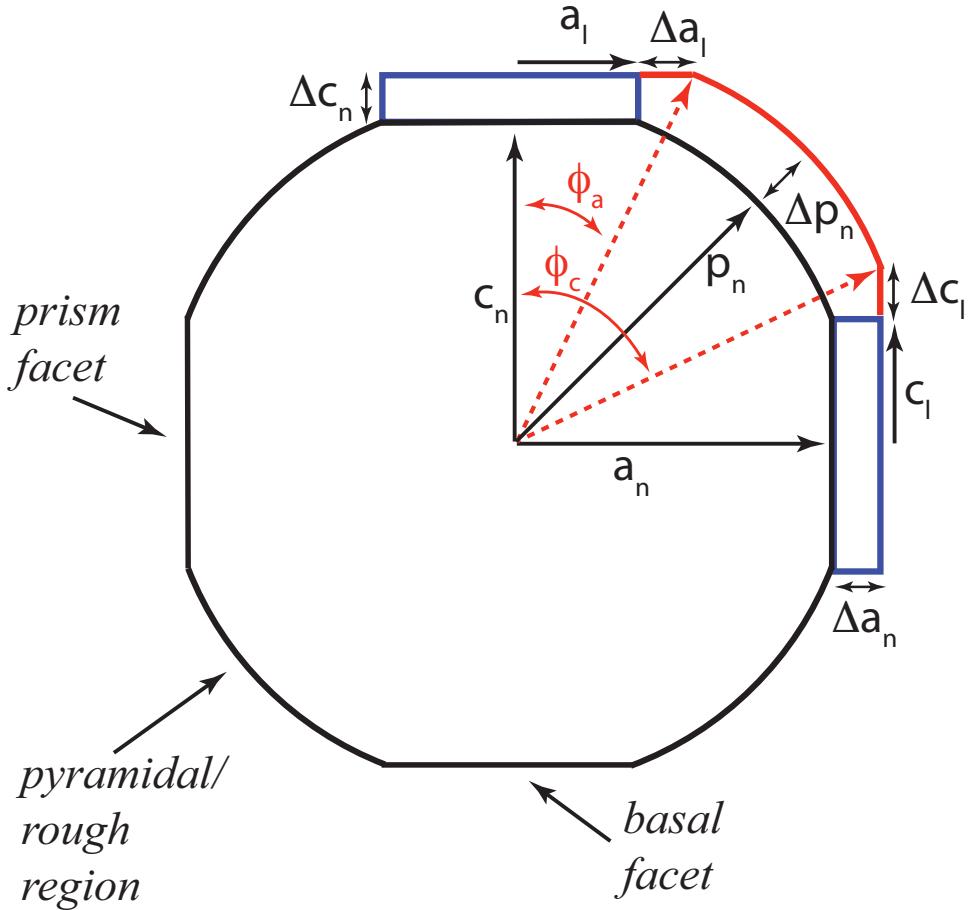
865 FIG. 4. (a) Area of single basal, prism, and pyramidal regions, and (b) their respective growth velocities
 866 (axis growth rates) as a function of the a-axis diameter ($2a_n$) of the crystal. The measurements of Gonda and
 867 Yamazaki (1984) are given by the symbols. The solid lines are predictions using the empirical growth model
 868 with rough area (A_r) parameterized as a ratio of the fractional volume change to the power, n with $n = 2.5$. The
 869 largest variability in the growth is due to this parameterization, with the spread indicated by the shaded regions.
 870 The upper and lower bound of each range is given by $n = 3$ and 2 , respectively.



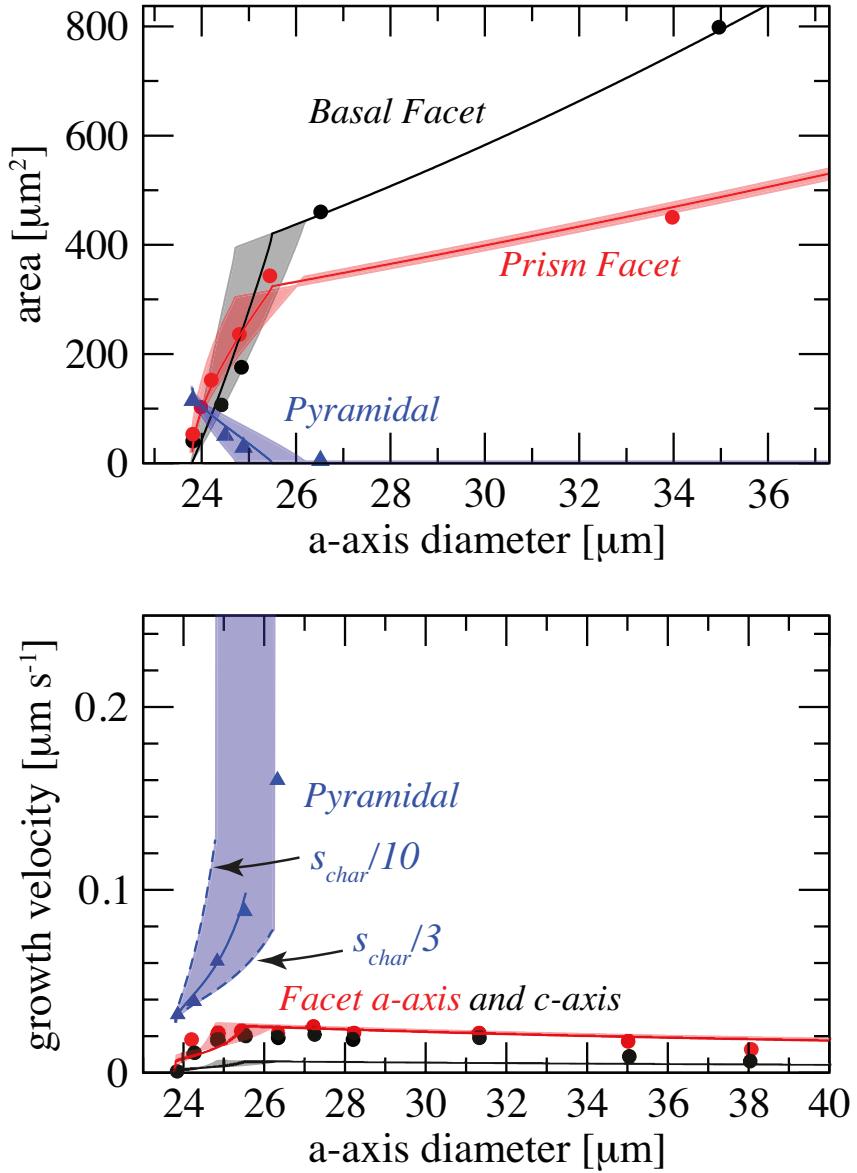
871 FIG. 5. Deposition coefficients as a function of the a-axis diameter ($2a_n$) for the basal facet (black), prism
 872 facet (red), and the area-weighted total (blue and blue shade). Since the total deposition coefficient is an area-
 873 weighted average, it depends on the facet and pyramidal area approximation. The blue solid line assumes $n =$
 874 2.5 and the shaded region gives the spread in the solution for n between 2 and 3.



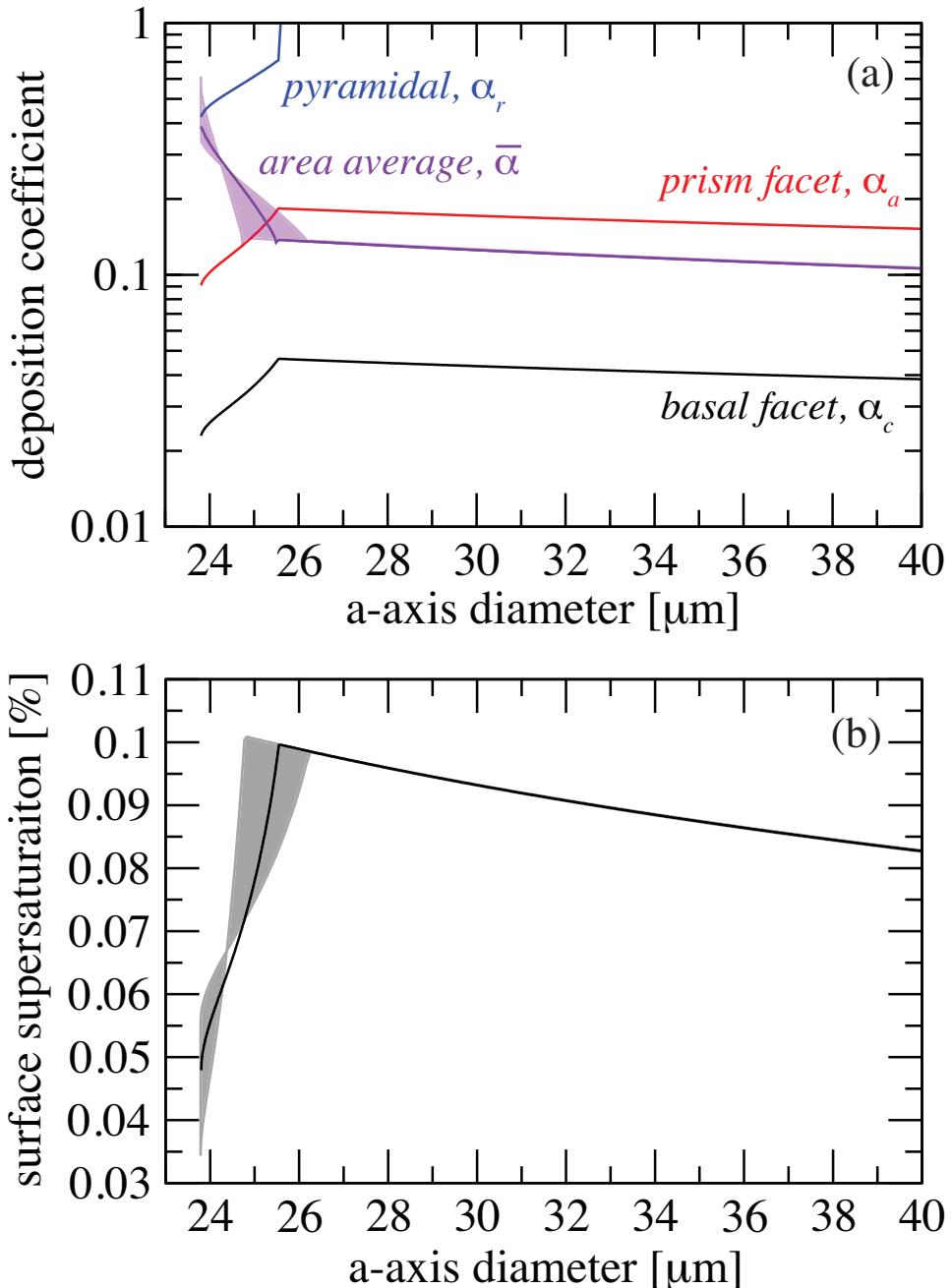
875 FIG. 6. (a) Mass growth rates as a function of the a-axis diameter ($2a_n$) for the total growth rate (red solid,
 876 shaded), normal growth only (red dashed), and rough growth with $\alpha = 1$ for all facets (blue solid). The solid
 877 lines use the pyramidal area (A_r) approximation with $n = 2.5$; the red shaded region shows the range of variability
 878 due to n between 2 and 3. Capacitance theory using a sphere with $\alpha = 1$ (blue short-dashed) and $\alpha = 0.05$ (blue
 879 long-dashed) is also shown, and the blue shaded region shows α ranging from 0.03 to 0.1. (b) Crystal diameters
 880 as a function of time for the lateral (black dashed) and normal (black solid) diameters along with the diameter
 881 predicted by the capacitance model ($\alpha = 1$, blue).



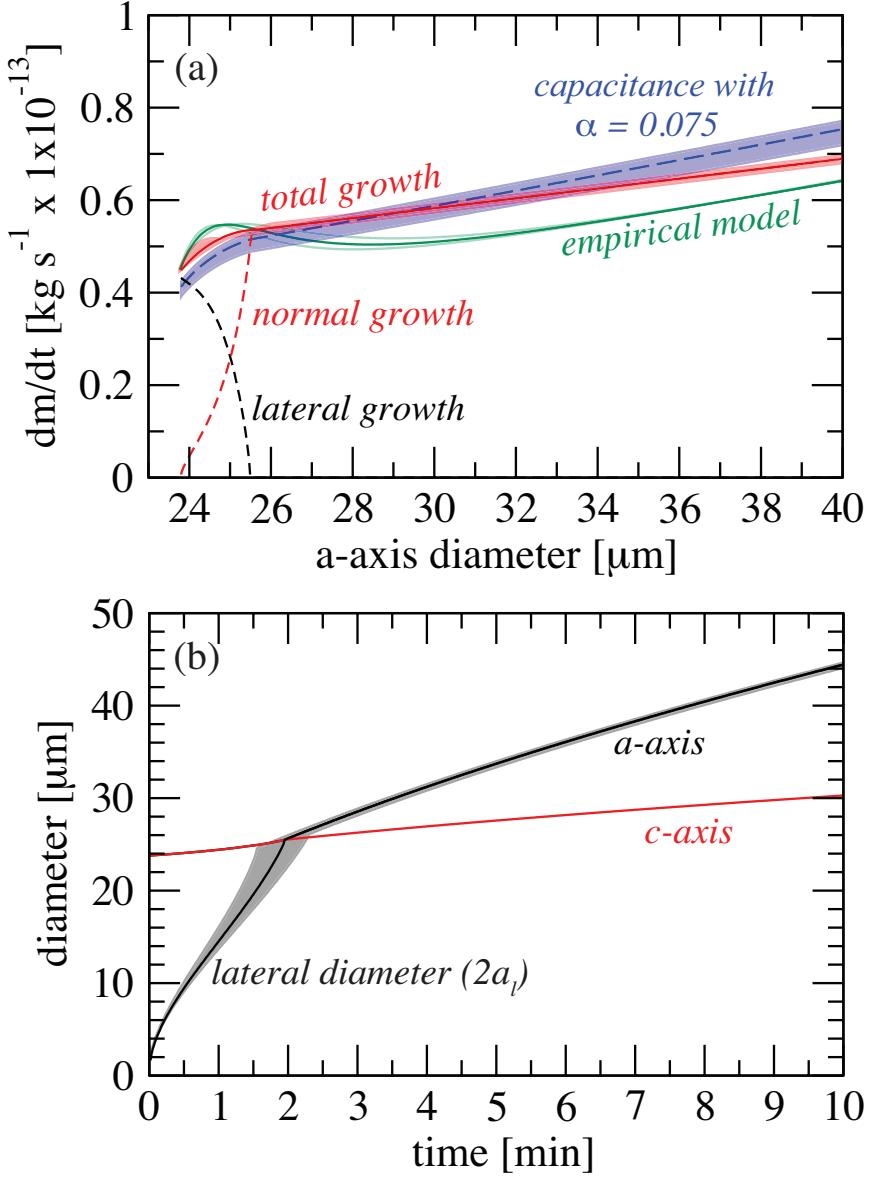
882 FIG. 7. Geometry for mass distribution during growth; cross-section view of Fig. 1 with the basal and prism
 883 facets flush with the round regions (no facets edges are assumed). Normal growth adds mass directly to the basal
 884 and prism facets increasing the normal lengths by Δa_n and Δc_n , indicated by the blue rectangles. Growth of the
 885 pyramidal regions (solid red outline) causes both an increase in the pyramidal length (p_n) by Δp_n , but it also
 886 causes the lateral growth of the basal and prism facets by Δa_l and Δc_l . The angles ϕ_a and ϕ_c define the location
 887 of the basal and prism intersection with the pyramidal region.



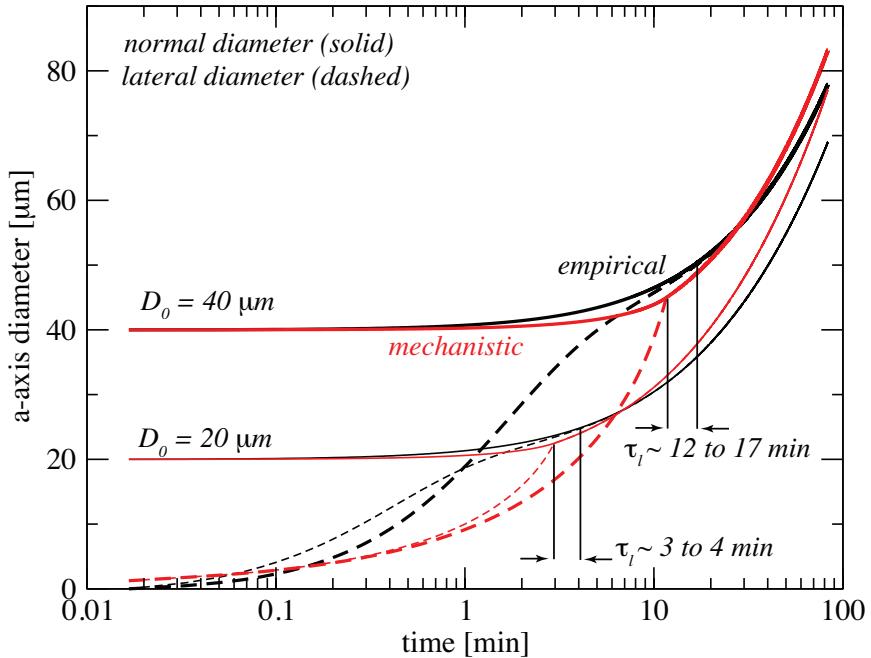
888 FIG. 8. (a) Area of single basal, prism, and pyramidal (rough) facets, and (b) their respective growth velocities
889 (axis growth rates) as a function of the a-axis diameter ($2a_n$). The measurements of Gonda and Yamazaki (1984)
890 are given by the symbols. The solid lines are predictions using the mechanistic growth theory with the pyramidal
891 s_{char} that is a factor $f_{schar} = 1/5$ the value for the prism facet. The shaded ranges show the variability in the
892 solution due to f_{schar} . The upper and lower bound of each range is given by $f_{schar} = 1/10$ and $1/3$, respectively.



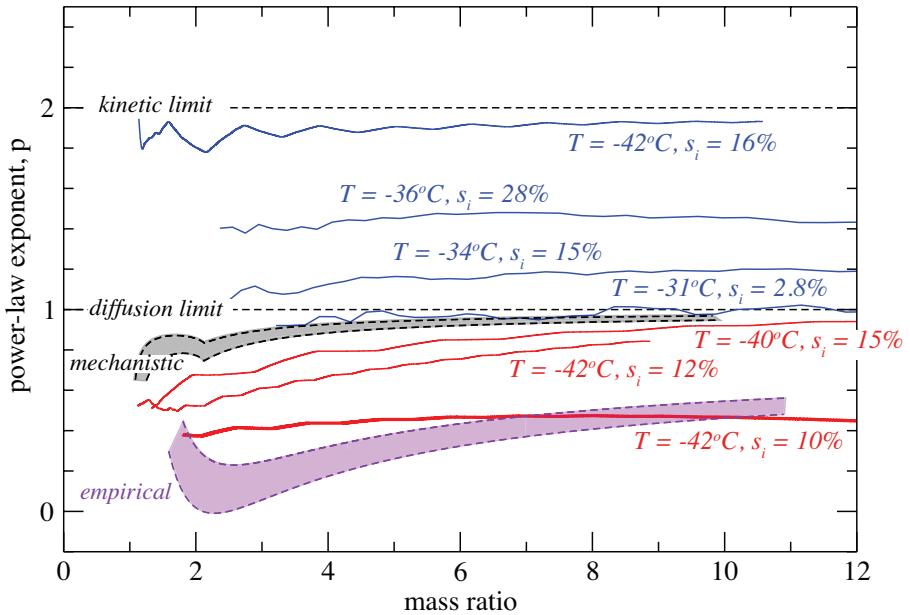
893 FIG. 9. (a) Deposition coefficients as a function of the a-axis diameter ($2a_n$) for the basal facet (black), prism
 894 facet (red), the pyramidal region (blue), and the area-weighted total (violet and violet shade). (b) The surface
 895 supersaturation for growth of basal, prism, and pyramidal facets (black and black shade). The solid lines assume
 896 a pyramidal s_{char} that is a factor $f_{\text{schar}} = 1/5$ the value for the prism facet, and the shaded ranges show the solution
 897 for f_{schar} ranging from 1/3 to 1/10.



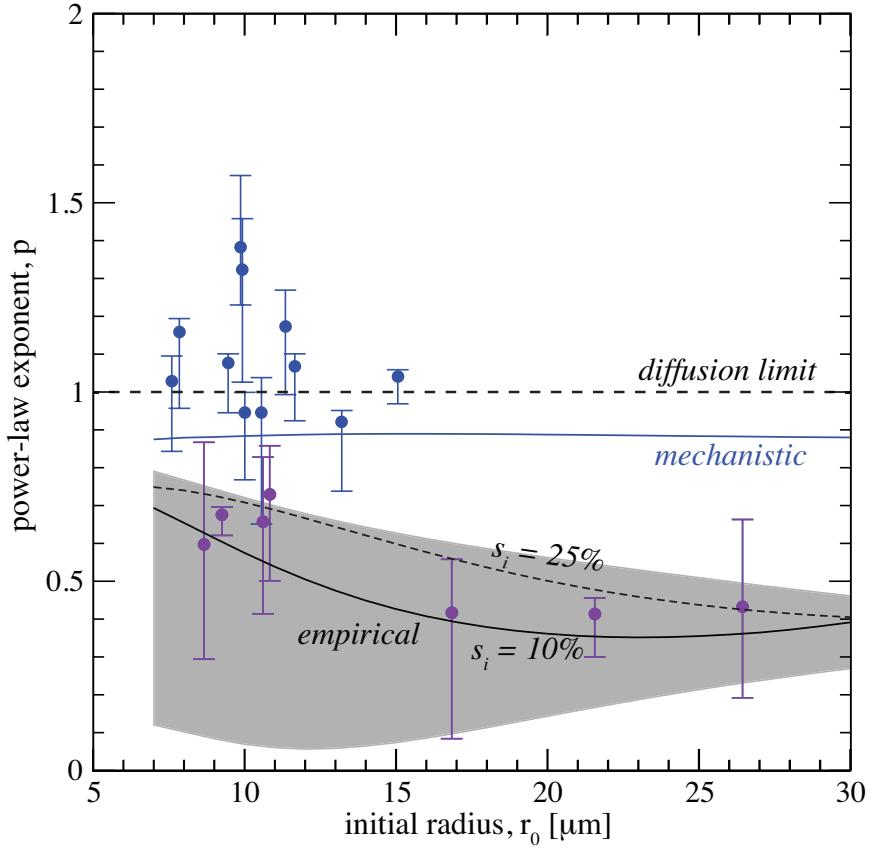
898 FIG. 10. (a) Mass growth rates as a function of the a-axis diameter ($2a_n$) for the total growth rate (red solid)
 899 and its components: normal growth (red dashed) and lateral growth (black dashed). The solid red line assumes
 900 a pyramidal s_{char} that is a factor $f_{char} = 1/5$ the value for the prism facet, and the red shade shows the range
 901 $f_{char} = 1/3$ to $1/10$. For comparison, the total growth rate from empirical theory (Fig. 6) is shown with the green
 902 line and shade. Capacitance theory solution using an equivalent volume sphere and a constant α of 0.075 (blue
 903 long-dashed) is also shown, and the blue shaded region shows α ranging from 0.05 to 0.1. (b) Crystal diameters
 904 as a function of time for the lateral (black) and normal a (black) and c (red) diameters. The black shade indicates
 905 the range $f_{char} = 1/3$ to $1/10$.



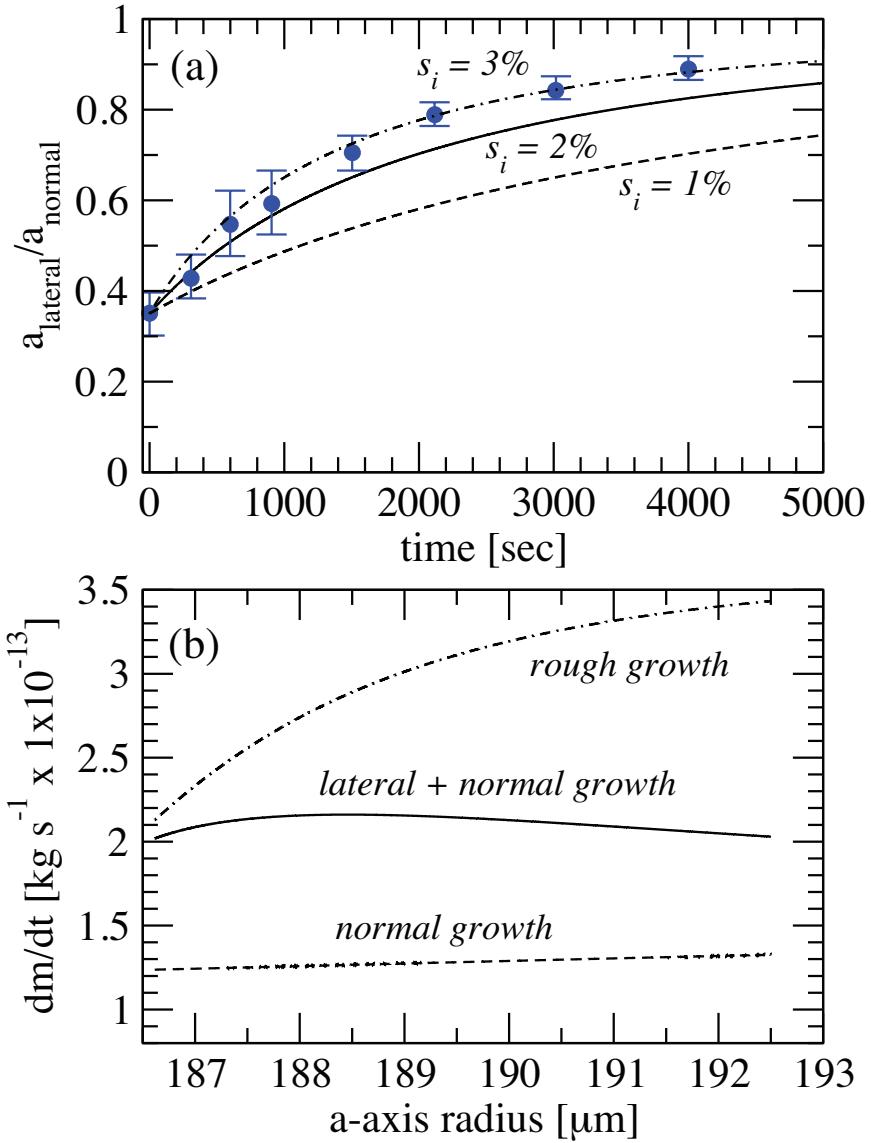
906 FIG. 11. Evolution of the normal (solid lines) and lateral (dashed lines) a-axis diameters in time at $T = -40^\circ\text{C}$,
 907 $P = 1000 \text{ hPa}$, and $s_i = 10\%$. The thin and thick lines indicate an initial frozen spherical diameter of 20 and
 908 $40 \mu\text{m}$, respectively. Solutions using the empirical model are given by the black lines whereas the mechanistic
 909 model solution is given by the red lines. The time-period for lateral growth τ_l is defined when the lateral diameter
 910 is 99% of the normal diameter, the range of τ_l given by the empirical and mechanistic models is given by the
 911 vertical solid lines. This time-scale depends strongly on the initial size.



912 FIG. 12. Power-law exponent of the mass growth equation ($dm/dt \propto r^p$) as a function of the mass ratio
 913 (mass divided by initial mass) for vapor-grown crystals. Solid, isometric crystals undergoing normal faceted
 914 growth have values of p that range between 1 (diffusion-limited growth) and 2 (kinetics-limited growth). The
 915 solid blue (consistent with normal growth) and red (inconsistent with normal growth) curves are derived from
 916 measurements of Pokrifka et al. (2020). Solutions using the empirical and mechanistic models are indicated by
 917 the purple and black shades, respectively. The upper and lower edge of the shaded region is given by the initial
 918 particle size of $r_o = 10$ and $20 \mu\text{m}$, respectively.



919 FIG. 13. Power-law exponent of the mass growth equation ($dm/dt \propto r^p$) as a function of the initial particle
 920 radius as derived from the measurements of Pokrifka et al. (2020), data points, and as calculated with the
 921 empirical (black lines) and mechanistic (blue line) models. The filled circles and lines are the average value of p ,
 922 whereas the error bars and the grey shade indicate the maximum and minimum value of p attained during particle
 923 growth. The blue data points indicate growth data that could be fit with normal faceted growth, whereas purple
 924 points required a model of faceting transitions. The black solid and dashed curves indicate the model solution
 925 supersaturation dependence (10 and 25%, respectively), and this range was chosen based on the measurement
 926 range.



927 FIG. 14. (a) Ratio of the lateral and normal a-axis lengths as a function of time. The blue data points are from
928 Fig. 6 of Nelson and Swanson (2019) who measured the lateral basal facet spreading of a planar crystal with an
929 a-axis radius of about $165 \mu\text{m}$ at $T = -30^\circ\text{C}$ and at a supersaturation of 1%. Empirical model solutions for an
930 initially spheroidal crystal with no facets, a thickness of $60 \mu\text{m}$, and supersaturations of 1, 2 and 3% are shown
931 by the solid lines. (b) The total mass growth rate (normal and lateral, solid line) as a function of the normal
932 a-axis radius. The growth rate computed as if the particle were rough ($\alpha = 1$, dot-dashed line) or undergoing
933 only normal faceted growth (dashed line) are also shown.