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ABSTRACT

Measurements show that after facets form on frozen water droplets, those
facets grow laterally across the crystal surface leading to an increase in vol-
ume and surface area with only a small increase in maximum dimension. This
lateral growth of the facets is distinctly different from that predicted by the
capacitance model and by the theory of faceted growth. In this paper we de-
velop two approximate theories of lateral growth, one that is empirical and
one that uses explicit growth mechanisms. We show that both theories can
reproduce the overall features of lateral growth on a frozen, supercooled wa-
ter droplet. Both theories predict that the area-average deposition coefficient
should decrease in time as the particle grows, and this result may help explain
the divergence of some prior measurements of the deposition coefficient. The
theories may also explain the approximately constant mass growth rates that
have recently been found in some measurements. We also show that the em-
pirical theory can reproduce the lateral growth that occurs when a previously
sublimated crystal is regrown, as may happen during the recycling of crystals

in cold clouds.
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1. Introduction

Vapor depositional growth is largely responsible for the variety of shapes (or habits) of ice
crystals found in atmospheric cold clouds. The crystal sizes, shapes, and surface properties that
result from vapor growth can have strong impacts on numerical cloud model simulations of ice-
containing clouds (Gierens et al. 2003; Woods et al. 2007; Avramov and Harrington 2010), on
the optical properties of cloud systems (Mitchell et al. 1996; Jarvinen et al. 2018; van Dieden-
hoven and Cairns 2020), and on the interpretation of laboratory measurements (Magee et al. 2006;
Skrotzki et al. 2013; Pokrifka et al. 2020). However, quantifying the vapor growth rate of ice
crystals is challenging because it is governed by two interconnected processes, namely the vol-
ume diffusion of water vapor through the background gas and the various surface processes (often
called surface kinetics) that control the incorporation of adsorbed water molecules (ad-molecules)
into the crystalline lattice. It is the combined volume diffusion and surface kinetic processes that
ultimately determine the overall mass and the dimensional growth rates of crystals.

Classical growth theories treat only a single type of surface, those that are either entirely faceted
or entirely rough. The classical theory of faceted growth accounts for both gas-phase diffusion
and surface kinetic effects. In this theory, facets grow through the propagation of steps on their
surfaces: Ad-molecules migrate across the surface as they seek suitable attachment sites such as a
surface vacancy, a kink in a surface step, and so forth. Ad-molecules will incorporate into a step,
and contribute to growth propagating the step forward, as long as the surface steps are sufficiently
close so that a step is encountered before the ad-molecule desorbs from the surface. Classical
crystal growth theory (e.g. Burton et al. 1951; Lewis 1974) employs surface models for crys-
tals growing by steps formed through either permanent dislocations in the crystal structure or the

nucleation of “’islands” on the crystal surface (step-nucleation). Most of the surface parameters re-
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quired by these theories have not been measured, and so surface processes are usually treated with
deposition coefficients (o) that depend strongly on ice supersaturation (hereafter supersaturation)
and less-strongly on the temperature. The deposition coefficients account, in aggregate, for all of
the surface processes that ultimately control the incorporation of ad-molecules into the bulk crys-
talline lattice. The deposition coefficients act as “growth efficiencies” taking on values between
zero and unity. Though the use of deposition coefficients is relatively successful at describing the
growth of faceted ice at both low and high supersaturations (Lamb and Scott 1974; Nelson and
Baker 1996; Wood et al. 2001; Harrington et al. 2019), there are many processes that complicate
the actual growth of crystals such as the existence of partially disordered (quasi-liquid) surface
layers (Neshyba et al. 2016), the adsorption of foreign gases (Anderson et al. 1969; Knepp et al.
2009; Libbrecht and Ball 2010), phase separation that will occur upon the freezing of solution
drops (Bogdan and Molina 2017), and the influence of nucleation (Pokrifka et al. 2020).

In the theory of faceted growth, the crystal dimension perpendicular to a given facet increases at
a rate that depends on the vapor attachment to that facet. For instance, molecular attachment on the
basal (hexagonal) face of a crystal causes the crystal dimension that is perpendicular (or normal)
to that face to increase in time (see Figs. 1 and 2). We will refer to this kind of growth as normal
growth, since molecular attachment onto the basal and prism facets causes the dimension that is
perpendicular (normal) to the face to increase in time. We will also refer to the dimensions normal
to the facet as the normal dimensions (a, and c, for the prism and basal facets, respectively, see
Fig. 2). Most studies of crystal growth focus on normal growth, which is not surprising: Different
molecular attachment rates for the basal and prism faces gives rise to the temperature variation in
the primary (planar or columnar) habits of ice crystals (Lamb and Scott 1974).

Entirely rough surfaces are almost universally treated with the capacitance model, which by

definition is not appropriate for faceted ice. The capacitance model explicitly assumes that the
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surface is a perfect sink for water vapor molecules (¢ = 1), meaning that all surface processes are
ignored. The vapor density is constant across the surface in the capacitance model. Consequently
facets cannot remain flat (Saito 1996, pp.120-122) and the aspect ratio cannot evolve (Ham 1959).

In contrast to normal growth and rough growth, much less attention has been paid to growth that
occurs laterally when facets spread across the crystal surface. This growth is distinctly different
from normal growth in that the facet areas increase but often with very little increase in the normal
dimensions (Fig. 1). We will refer to this kind of growth as lateral growth, and it can occur
during ice crystal growth from the vapor (Gonda and Yamazaki 1978) and has been observed
on CCly crystals grown from the melt (Mayurama et al. 2000; Wettlaufer 2001). For instance,
measurements show that after a supercooled droplet freezes, facets emerge on the crystal surface
(see Fig. 1 of Nelson and Swanson 2019, for examples). Generally, the prism planes will appear
first followed by basal planes and “rougher” conical regions in between the facets. These rougher
regions develop into higher index (pyramidal) facets when the saturation state is near that of liquid,
leading to a 20 faced crystal know as a “droxtal”, or at lower saturation the regions may be rounded
(see Gonda and Yamazaki 1978, their Fig 4.). These pyramidal regions must have high deposition
coefficients (o ~ 1) because, at higher temperatures, they grow more rapidly than the basal and
prism facets (Gonda and Yamazaki 1984). Consequently, the rougher regions grow themselves
out of existence leading to an increase in facet area, but with only a small increase in the normal
dimensions (Gonda and Yamazaki 1984). At lower temperatures (below -25°C), the pyramidal
facets may not disappear at all (Pfalzgraff et al. 2011). In fact, pyramidal facets may arise from
spicules that form during droplet freezing thus producing single bullets (Magono et al. 1976). Ice
crystals can, therefore, undergo growth that is influenced by two interfaces, faceted and rough,

though current theories are not capable of accounting for both surface types.



95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

17

118

Lateral growth may be important for more than the initial growth forms that develop after ice
nucleation. The recent measurements of Nelson and Swanson (2019) indicate that lateral growth
can lead to the production of protrusions and trapped air pockets. Their results suggest that the
lateral spreading of facet protrusions is caused by adjoining surface transport, whereby molecules
on the basal and prism faces migrate over facet edges and onto the protrusions. Though adjoining
surface transport is theoretically unlikely (Saito 1996, pgs. 58-61), indirect evidence suggests that
it occurs for thin layers (Asakawa et al. 2014). Lateral growth is also important for the growth
of crystals that have previously sublimated. Sublimation causes the rounding of crystal edges
leading to ellipsoidal shapes for simple planar crystals (Nelson 1998). During re-growth, facets
spread across the crystal surface leading to growth rates that cannot be explained by normal growth
(Nelson and Swanson 2019, their Fig. 6). Lateral growth has also been suggested as an explanation
for the bending of facets that occurs during the growth of scrolls, trigonal crystals, and stacks of
sheaths among other types (Nelson and Swanson 2019).

Lateral growth may also help interpret past laboratory measurements of the vapor growth of
newly nucleated ice crystals. Most prior laboratory studies have used the capacitance model to
interpret the measured growth rates. While the capacitance model can be made consistent with
faceted growth theory (MacKenzie and Haynes 1992; Zhang and Harrington 2014), most labo-
ratory studies include surface processes in the capacitance model with a constant deposition co-
efficient (e.g. Magee et al. 2006). Unfortunately, interpretations of measured growth rates using
constant ¢ lead to inconsistent results, with & values that are scattered as a function of temper-
ature (Skrotzki et al. 2013). Pokrifka et al. (2020) suggest that these scattered results for o may
be due neglected surface processes: If crystals develop facets, the deposition coefficient then de-
pends on the supersaturation, temperature, and the crystal size. The measurements and analysis

of Pokrifka et al. (2020) show that some of the scatter in the data appears to be due to variations
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in o predicted by the theory of faceted growth. However, Pokrifka et al. (2020) also show that
a substantial number of measurements require o to decline rapidly in time, a result that cannot
be explained by the theory of faceted growth. Pokrifka et al. (2020) hypothesized that the de-
velopment of facets on a crystal surface could cause a rapid decline in the deposition coefficient,
as rough regions are replaced by facets. Thus, a theory of lateral growth may explain laboratory
growth rate measurements, and may also explain some of the scatter in prior deposition coefficient
measurements.

In this paper we describe two approximate theories of lateral growth. The models treat two
surface types are based on a combination of the theory of faceted growth and the theory of rough
growth. We show that the models can reproduce the general features of the few available measure-
ments on lateral spreading. We show that the time-scale for the disappearance of rough regions
can be long enough to have important consequences for the interpretation of prior laboratory mea-

surements.

2. Faceted (Normal) Growth Model

Models of faceted growth (what we call normal growth) must simultaneously account for the gas
phase diffusion of water vapor and the surface kinetic processes that ultimately control the incor-
poration of water molecules into the crystalline lattice. Gas-phase diffusion depends on the shape
of the crystal, and models of normal growth relevant for atmospheric ice assume either a cylinder
(Nelson and Baker 1996) or a hexagonal prism (Wood et al. 2001) shape. These models quantify
the effects of crystal shape, facet edges, and surface kinetics on the growth rate, but they require
complex numerical solutions. Simplified models that account for the effects of faceted growth have
also been developed using spherical (MacKenzie and Haynes 1992; Libbrecht 2003) or spheroidal

(Zhang and Harrington 2014) approximations. An attractive feature of the spheroidal solution is
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that the theory is analytical, and the mass and dimension evolution compare well to available mea-
surements for single crystals and to solutions from models of faceted growth (Harrington et al.
2019). It is for these reasons that we use the spheroidal model of Zhang and Harrington (2014).
In all of the models cited above, surface kinetic processes are approximated using deposition
coefficients (). Though theoretical models of o exist the parametric model of Nelson and Baker
(1996) is preferable because it can, in principle, treat various surface growth modes,
s M s M
a=a (Lf) tanh( C’“") . (1)
Schar Ssurf

In the above equation sy, is the supersaturation immediately above the crystal surface, scpq(T)

is a temperature-dependent ‘“characteristic” supersaturation determined from laboratory measure-
ments (see Harrington et al. 2019), M is an empirical parameter that describes the surface growth
mode, and ¢ is the adsorption efficiency that is a measure of the probability that a water vapor
molecule will “stick” to the surface and is assumed to be unity (Nelson 2001). In this model,
rises commensurately with sg,,¢: As the surface supersaturation increases, the density of surface
steps also rises thus leading to more efficient incorporation of ad-molecules into the crystal. The
increase in @ with sg,,¢ is controlled by both s.,- and M (see Fig. 3). The characteristic super-
saturation controls the transition from inefficient (& ~ 0) to efficient (o ~ 1) growth whereas the
steepness of the increase in o with sy, is controlled by the parameter M. A value of M =1 in
Eq. 1 is consistent with growth by permanent spiral dislocations, as originally derived by Burton
et al. (1951). Though the form given above, with M = 1, is given by Lamb and Scott (1974).
Dislocations provide a permanent source of surface steps, and produce efficient growth even at
relatively low values of sy, r. Spiral dislocation theory presumes that the ad-molecule density
on the ice surface is sparse, which is not necessarily true for atmospheric ice that may contain a

very thin, partially disordered layer of surface molecules (Constantin et al. 2018). Despite this
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limitation, the theory appears to represent the growth of crystals by dislocations (Nelson 2005;
Harrington et al. 2019). A value of M > 10 in Eq. 1 produces growth that is consistent with step
nucleation (Nelson and Baker 1996). Step nucleation requires the formation of two-dimensional
islands on the crystal surface and, therefore, produces a rapid onset of growth once sy, ¢ is near
Schar- These steps are generally thought to form near crystal edges where supersaturations are
high and are likely responsible for the formation of very thin and symmetric crystals (Frank 1982;
Wood et al. 2001).

The spheroidal solution of Zhang and Harrington (2014) assumes that the gas-phase diffusion
of water vapor can be modeled with capacitance theory and that surface kinetics can be modeled
with deposition coefficients, ¢, and ¢, for the a and ¢ semi-dimensions using Eq. 1. The a and ¢
semi-dimensions are respectively referenced to half the basal facet width and half the prism height
of single crystalline ice. The mass growth rate of the crystals can be computed using Egs. 14 and
15 in Zhang and Harrington (2014), however, the Hertz-Knudsen fluxes (their Eq. 7) are more

germane to the work presented here,

1_ I_
Fos = o Z Vy [psurf.,a _peq(Ti)] = Ogy Z Vy peq(Ti> Ssurf,a
1 1
ch = 0O Z vy [psurf,c - peq(Ti)] = O Z Vy peq(ﬂ') Ssurf,cs (2)

where ¥, is the average vapor molecule speed, p.,(7;) is the equilibrium water vapor density at
the crystal temperature, T;, and Py f.a> Psurf,c> Ssurf,a» and sg,.r - are the surface vapor densities
and supersaturations for the subscripted axis. The vapor fluxes, F,; and Fg, are the fluxes onto the
prism and basal facets, respectively, and they are subscripted with the axis that is normal to the
facet, a and c respectively. These fluxes cause the increase in the normal dimensions (a, and c,),

and we therefore call them normal fluxes (Fig. 2).
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The surface vapor density excess, which is the bracketed term in Eq. 2, can be written in terms

of the ambient vapor density (p) as (Eq. 9, Zhang and Harrington 2014),

— -1
O, Vv, ac
rf.a — Pe T;) = |Poo — Peq(T; 1 ~
Parsa = PeaT) = [po = (1] (1 2 € )
o, a? -
psurﬂc_peq(Ti) - [pw_peq(Ti)] (1+ 4D, FA) 3)

where D, is the vapor diffusivity in air, and Cy is the capacitance for a spheroid of dimensions
a—+ A and c+ A, and A is the vapor jump length at the crystal surface. The above equations for the
surface vapor density and the deposition coefficients are combined with thermal diffusion and are
solved iteratively (for details see Zhang and Harrington 2014) to find the fluxes F,; and F;.

The mass growth rate can now be found by multiplying the areas by the normal fluxes,

dm
E = Abchs +ApsFas (4)

where A, = 4/37a® and A ps = 8/3mac are the “effective” area of the spheroidal basal and prism
facets, respectively (similar to Eq. 5 of Zhang and Harrington 2014). The equations for the mass
growth rate and fluxes given above are for spheroidal particles, which is our proxy for faceted ice.
However, the theory we develop below approximates the crystal facet areas with cylinders, and
we therefore need to ensure that the growth rate computed with cylindrical areas is consistent with
that of the spheroidal model. If the basal and prism cylindrical areas are denoted as Aj, = 27a” and

A, = 4T7ac, respectively, then the above mass growth rate equation becomes,

dm Ap Aps 2 2
E =Ap <A_bchs> +Ap (EFas> = Abchs +Ap§Fas = ApF, +ApFa7 )
where F, and F, are the respective normal fluxes for the a and c axes: In order to be consistent

with the spheroidal model, the use of cylindrical areas requires multiplication by a factor of 2/3.

10
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3. Lateral Growth: Empirical Theory

The equations described above are valid for the normal growth of crystal faces, but they do not
describe the spreading of facets shown in Fig. 1. Nelson and Swanson (2019) developed a theoret-
ical model for lateral growth based on the migration of surface-mobile water molecules over and
onto the lateral edge of the facet, thus enhancing lateral growth at the expense of normal growth.
Growth measurements support this view in that the crystal normal dimensions change slowly dur-
ing facet spreading (Gonda and Yamazaki 1984; Nelson and Swanson 2019). The approximate
theories we develop here do not explicitly model the lateral fluxes, but use approximations that
work in the correct physical manner: Lateral growth occurs at the expense of normal growth,
leading to small changes in the normal dimensions.

Since no approximate theories of lateral growth exist, we begin with an idealized problem, that
of an isometric crystal formed from a frozen droplet (see Fig. 2). We assume that basal and prism
facets immediately begin spreading across the crystal surface, though in reality it does take time
for crystal facets to emerge. This time-scale is known to depend on the supersaturation (~ 1 to
4 min. Gliki and Eliseev 1962), however, very few measurements of this time-scale exist. We
therefore caution that our model will underestimate the time-scale for facet development. We
assume that the facets are well approximated by circular cylinders, which simplifies the geometry
considerably, and given that our theory is approximate more advanced geometry is not warranted.
We assume that the pyramidal or rough regions remain as spherical sections, which is similar to
observations at saturations below that of liquid (Magono et al. 1976; Gonda and Yamazaki 1978).
For simplicity, we will refer to these regions as pyramidal.

Our development of an empirical theory for lateral growth is rooted in the measurements of

Gonda and Yamazaki (1984), which are reproduced in Fig. 4. They measured the growth of basal,
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prism, and pyramidal facets for frozen droplets at -15°C and a supersaturation of about 1.5%. The
basal and prism facet areas depend on the lateral a and c dimensions, defined as a; and ¢; in Fig. 2.
Recall that the overall crystal dimensions are defined by the normal dimensions, a, and c¢,, which
the areas and growth rates are plotted against in Fig. 4. As the figure shows, the pyramidal areas
disappear as the basal and prism facet areas increase by spreading across the surface. The growth
velocity of the pyramidal facets (dr/dt) increases rapidly as the area declines, however the normal
growth velocities of the basal (dc,/dt) and prism (da,/dt) facets remain approximately constant
with a slight decline as the crystal grows larger. Once the pyramidal regions are gone, a faceted
hexagonal crystal remains, with the facets increasing in size by normal growth.

The growth velocities for the facet and pyramidal regions appear to be relatively independent of
one another, and this suggests that an approximate theory can be constructed that treats the growth
regions separately: The basal and prism faceted regions are treated with normal growth (i.e. Eq. 2),
and a pyramidal region that has a rising growth velocity with declining area that suggests growth
is dominated by gas-phase diffusion. In order to understand this latter point, consider a crystal
that is growing by lateral growth only. In this case the normal dimensions (a, and c,) are constant
(though the volume does increase) and so the diffusion mass flow rate to the particle will remain
about the same as facets spread laterally. In order to maintain the same mass flow rate as the
pyramidal area declines requires that the vapor flux to those areas (F;) must rise, behavior that is

consistent with gas-phase diffusion alone (assuming that o = 1),

Dv oo — Psur Dv eqoi
F. = Dol Paurs] _ Dupegsi. ©)

Ty rr

where s; is the ambient supersaturation and r, is an effective radial length-scale for the pyramidal
area, A,. Equation 6 is exact for a spherical particle with a radius of r,, which suggests approximat-

ing the length scale as r, = [A,/(47)]'/2. This equation has the correct physical behavior in that
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a decline in the pyramidal area will lead to an increasing vapor flux, and therefore an increasing
growth velocity since dr/dt = F,/p; where p; is the ice mass density. The combined mass growth

rate for lateral and normal growth then becomes,

dm
A F AE 4 AE,. (7)

Clearly, the above equations are approximate and based on a plausible physical argument. It is
worth noting that Eq. 7 may overestimate the growth rate since the flux to the pyramidal region is
based on the total mass flow to the particle. This assumption is relaxed in the next section (§4).
The mass growth rate given above can now be time-stepped, however that mass must be dis-
tributed both laterally and normally. Growing the normal dimensions of the crystal is straightfor-

ward since the vapor fluxes determine the growth rates,

da, F, dc, F;

i pi’ i pi’ ®)

Lateral growth is treated empirically by relating changes in the total facet surface area (Ay) and
pyramidal area (A,) to changes in crystal volume: Imagine that a crystal begins growing with an
initial surface area and volume of A, and V,, respectively. As facets spread across the crystal, the
volume and surface area will increase in time. Lateral growth will cease when the crystal volume
and surface area reach that of a cylinder, or V., = 27ra%cn and Agy = 27ra% +4may,c,. We therefore
know the areas and volume of the crystal when lateral growth begins and ends, and can therefore

approximate the evolution of the facet and pyramidal areas as a weighted volume fraction (wy),

V(t)2/3 . V02/3 n
2/3_ 2/3
cyl o

A1) = Ao(l—wp), ©)

Af(t) = Acyl Wy :Acyl

where V(¢) is the crystal volume at time, t. The form of w originates from approximating the
change in surface area to volumetric changes based on a sphere, namely that dA o< dv?3. We

include an empirical power of n since the particle grows into a cylinder, and so we should not
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expect the spherical relationship to hold exactly (see below). Note that this fraction works in the
correct manner in that wy = 0 when the particle is entirely rough (V(¢) = V), and wy = 1 when
the pyramidal regions are gone (V (1) = V).

The lateral dimensions of the crystal can now be calculated (see Fig. 2) assuming that the basal
facets are tops of two circular cylinders (A, = 27L'a12) and that the prism facets are given by the

curved cylinder area (A, = 47ma,c)),
Af(t) = 27ra12 +4na,c; = 27ra12 +4rana; @, (10)

where ¢, = ¢;/a; is the lateral aspect ratio which is kept constant over a time-step. The above

equation is quadratic for @; and so the solution is,

al(t) = —an(l‘)(P] + %\/(47[61,1(1‘)@)24—87&4]0(1‘) Cl(l‘) = al(l‘)@. (11)

The lateral a- and c-axis dimensions can now be determined at any time.

a. Results from Empirical Theory

The above equations were use to calculate lateral growth on a newly frozen water droplet for
the data of Gonda and Yamazaki (1984) shown in Fig. 4. The equations were solved using both a
small time step (Ar = 0.1 s) and using the equivalent volume sphere approach advocated by Chen
(1992). In the latter approach, the growth equation is solved analytically over a time-step assuming
an equivalent volume sphere of radius r,,. The method is accurate, even for highly anisotropic
particles, as long as the time-step is less than about 20 seconds (Harrington et al. 2013). Both
methods produce indistinguishable results, and so we present the short time-step solutions. The
initial diameter of the particle is taken from the data (23.8 um), and since no information on
particle aspect ratio is available we assume that ¢, /a, and ¢;/a; are both unity. The characteristic

supersaturations (s¢p,,) for the basal and prism facets at -15°C are taken from the fits of Harrington
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et al. (2019) to the measurements of Nelson and Knight (1998). Given that the growth occurred at
low supersaturation (1.5%), it is reasonable to assume that dislocations were responsible (M = 1
in Eq. 1).

Overall, the empirical model captures the main effects of lateral and normal growth as compared
to the measurements (Fig. 4). Evolution of the facet areas and the pyramidal growth velocity
depend on n (Eq. 9), and though values between 2 and 3 match the data reasonably well, a value
of 2.5 appears to provide the best overall match. The decline in the pyramidal area with increasing
size has nearly the same functional dependence as shown by the data. Once the pyramidal area
has disappeared, lateral growth ceases and the evolution of the particle is controlled by normal
growth. The basal and prism areas are predicted relatively accurately during the period over which
facet spreading is occurring, but both facet areas are overestimated once normal growth dominates
(2a, > 26.5 pum). The pyramidal growth velocity increases rapidly as the diameter of the crystal
rises and the pyramidal area declines, and with a similar functional dependence as expressed by
the measurements. It is not surprising that the pyramidal growth velocity is most sensitive to the
choice of n in Eq. 9, since the vapor flux is proportional to the inverse of the pyramidal area. The
normal growth velocities of the basal and prism facets also reasonably match the measurements:
The growth velocities for both facets decrease slightly as the particle diameter increases, and this
is due primarily to the relatively slow decline in & of the basal and prism facets with size (Fig. 5).
Since the normal growth velocities are most strongly dependent on the growth mode (M) and
Schar through o (Eq. 1), the match of the theory with measurements provides evidence that normal
growth was controlled by dislocations. This match also provides corroborating evidence for the
Schar measured by Nelson and Knight (1998), which is important since few tests of measured s,

have been done at low supersaturation.
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Lateral growth has a non-trivial impact on the overall mass growth rate of the crystal (Fig. 6a).
The growth rate initially rises commensurately with the crystal diameter, and this is due to the
increase in total surface area. However, as the pyramidal area decreases and approaches zero (near
2a, ~ 26.5 um), the mass growth rate begins to flatten. This result is due to the declining mass
uptake of the pyramidal regions as their area shrinks to zero. The disappearance of the pyramidal
regions takes about 3 minutes (Fig. 6b), which occurs when the lateral facet a-axis dimension (a;)
approaches the normal a-axis dimension (a,). This time-scale is similar to the measured range of
2 to 4 minutes (Gonda and Yamazaki 1984). The loss of the pyramidal regions causes the total
mass growth rate to asymptotically approach the normal growth rate, as expected.

In order to provide context for the total mass growth rate, calculations using rough growth and
using the spherical capacitance model are also shown. Rough growth provides the maximum rate
and it was computed diagnostically: As the crystal evolved, the rough growth rate was calculated
assuming that & = 1 for the entire crystal, but this growth rate did not influence the particle evo-
lution. The rough growth rate initially follows, but then climbs away from, the total growth rate.
This difference with the total growth rate occurs because the average o declines as the particle
becomes faceted (Fig. 5), causing the total mass growth rate to fall.

The capacitance model calculations followed the standard approach of treating the crystal as a
sphere with o = 1. Treating the crystal in this manner leads to mass growth rates that are initially
lower than the total growth rate (Fig. 6), a result that is due to spherical particles having too small
of a surface area for a given volume. The measured crystals grow by filling out volume and
increasing area while the normal dimension changes slowly. Once lateral growth ceases, a fully
faceted crystal remains with an area-average o value below unity (Fig. 5). In contrast, the larger
capacitance growth rate causes the size to increase more rapidly than that of the faceted crystal

(Fig. 6b), and this in turn increases the growth rate. As discussed in the introduction, it is common
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practice to adjust the capacitance model using a constant o in order to match the mass growth
measured in laboratory experiments. If that approach were applied to a crystal undergoing lateral
growth, such as the case considered above, an & of approximately 0.05 (Fig. 6a) would be needed
to match the mass growth. This value is too low in comparison to the time-series of ¢, which is

generally above 0.1, and mis-represents the actual growth process.

4. Lateral Growth: Mechanistic Theory

The empirical theory above is relatively successful at reproducing the measured growth rates of a
combination of basal and prism facets and pyramidal regions. However, the theory is based on the
assumption that the vapor flux to the pyramidal regions can be treated classically, and that the facet
areas increase commensurately with the volume. In this section we develop a mechanistic model
that links these two assumptions to surface kinetic effects. Doing so entails some key assumptions,

though the results are not overly sensitive to those assumptions.

a. Attachment kinetics with basal, prism, and pyramidal regions

As discussed in the introduction, we use deposition coefficients to model all surface kinetic
processes. Given the generally larger growth velocity of the pyramidal regions due to lateral
growth, we represent this growth with a higher deposition coefficient () than the basal (o)
and prism (o) facets. This representation of ¢, is supported by molecular dynamics simulations
(Pfalzgraff et al. 2011) that show higher a for the pyramidal facets. Calculating o, using Eq. 1
requires an s.j, for the pyramidal region; since the growth of this region is highly efficient we
represent it with an s, that is a factor f.,- lower than the smallest value among the basal and

prism facets,
Schar,r = fchar : min(schar,aa Schar,c) where fchar <1 (12)
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The adjustable parameter f, 1s used to mimic the combine effects of direct and adjoining surface
fluxes on lateral growth (Fig. 2).

The mass growth equation (Eq. 7) remains the same, except that the vapor flux to the pyramidal
region is now treated similarly to the vapor flux to the basal and prism faces of the crystal (Eq. 2),
however with an important modification. Instead of treating the surface vapor density with distinct
values for each facet, we assume that growth is driven by a single value of py,r. This is an
oversimplification, but as a first approximation it may be justified: If lateral growth dominates
the vapor uptake, then the pyramidal regions will reduce sy, s keeping its value low and nearly
the same at the edge of both the basal and prism facets (as indicated in Fig. 2). Consequently, the
basal and prism normal growth rates will be reduced with the result that mass will be preferentially
deposited in the pyramidal regions, thus causing facet spreading. Using the assumption that g, ¢

is the same for each crystal facet in Eq. 2, the mass growth rate (Eq. 7) can be written as,

dm _1_
E ZArFr+Ach+ApFa =A Z Vy [psurf _peq(Ti)] (13)

where A, = A, +Aj, +A, is the total surface area, and @ = ‘Z—f o, + ‘2—’; o+ ﬁ—: o 1s the area averaged
deposition coefficient.
The above surface kinetic equation must now be coupled with the ambient gas-phase diffusion of

water vapor to the crystal, and we use capacitance theory following Zhang and Harrington (2014),

dm

— =4 CDV o — Psurf|s 14
I TCADy[Poo — Psury] (14)

where the above symbols were previously defined. The vapor transport rate from the far field

(Eq. 14) must match the transport at the surface (Eq. 13), allowing us to solve for Py, — Pegs

av, A\ [pe—peg(T))]
4D, 47C, 1+R,

psurf - peq(Ti) = [Poo - peq(Ti)] (1 + (15)

This equation has the same form as that for normal growth (Eq. 3), except that the axis-dependent

o are replaced with the area-average. The denominator of the right-hand-side of the equation can
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be interpreted as a “surface resistance”, R;: As the & declines, the surface resistance to growth
increases causing a rise in the surface vapor density and supersaturation. We expect this physical
behavior to occur during lateral growth, when the more efficiently growing pyramidal regions
are replaced with slower growing facets. Combining Eqgs. 14 and 15 gives the equation for mass

growth in terms of the ambient and equilibrium vapor densities,

dm * * b
— =4TCD [P —peg(T))]  where D= 4 + R

(16)
Mass growth including surface kinetics are often cast in a similar form (see Lamb and Verlinde
2011, pg. 337). Thermal diffusion is treated following Zhang and Harrington (2014) and, for

brevity, will not be repeated here.

b. Mass and axis length prediction

Using the mass growth rate above requires specific geometrical details. For instance, Fig. 2
shows that the normal fluxes to the basal and prism facets cause the outward growth of the normal
dimensions (a, and c,), as shown by the blue rectangles in Fig. 7. The combination of direct
fluxes and adjoining surface fluxes to the pyramidal regions will cause the pyramidal axis (p,)
and the lateral facet axes (a; and c¢;) to increase in time. It is possible to attack this problem
by calculating the height of the facets above the pyramidal regions and then growing the facets
laterally using explicit fluxes (the approach of Nelson and Swanson 2019). We have developed a
model of this growth, however it is complex and requires a number of additional assumptions. A
more rudimentary approach is taken here that produces qualitatively similar results. If we assume
that there is no height to the basal and prism facets, then the round regions directly intersect the
facets (Fig. 7). Since o of the pyramidal regions is always greater than that of the basal and prism

facets, the outward growth of the pyramidal region is always sufficient for the edges to intersect.
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However, requiring the intersection of the round and facet regions means that the pyramidal region
grows at a faster rate than is measured (see below).

Requiring the intersection of the facets and the round regions makes it possible to analytically
calculate the changes in the normal axis lengths (a,, c¢,;, and p,) and the lateral facet dimensions (a;
and ¢;) if we know the area and volume. The total surface area of the basal, prism, and pyramidal

regions can be computed directly from the lateral and normal dimensions using the geometry in

Fig. 7,
A, = 2ma?,
A, = 4rmaycy,
2 19
A = 2 / / P2 sing do d = 4np? [cosd, — cosd.] = 4Tpy [cn — ai], (17)
o Jo,

where the last equation uses cos(@,) = ¢,/pn and cos(9.) = a;/py, and it assumes spherical sec-
tions that therefore restricts this model to isometric crystals (a, = ¢, and a; = ¢;).

The total volume can also be calculated analytically based on the geometry of Fig. 7. One can
integrate from ¢ = 0 to @ = @, over the flat basal region which gives the volume of a cone (V},),
then over the circular region from ¢ = ¢, to ¢ = ¢. which gives the volume of a spherical section

(V}), and finally from ¢ = ¢, to ¢ = 7/2 over the flat prism region (V) resulting in,

V, = 27: 2
b — 3 alcm
_ i 3 o _i 2 2 o
V, = 3)ﬂpn [cos@, — cosP| = 37r(cn+al) [cn —ay],
4 2
V, = gnancl,
4 1
Vi = Vi+Vp+V,==x (c%—l—alz)(cn—al)—k—alzcn+a,2;cl , (18)

3 2

where the last equation is the total volume of the crystal and p2 = c2 + al2 has been used. Note
that V; has the correct limiting behavior for an isometric crystal (a, = c,). Initially the crystal is

spherical without any facets, and so a@; = ¢; = 0, and the total volume reduces to that of a sphere.
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If the crystal remains isometric and the pyramidal regions grow themselves out of existence, then
an = ¢, = a; = ¢; and the volume becomes that of a cylinder (27ra%cn).

It is now possible to calculate the change in the mass and volume of the crystal, and hence the
normal and lateral dimensions. As in §3 the total mass, m(f + At), and total volume, V; (¢ + At) =
m(t + At)/p;, at the end of a short time-step (Ar = 0.1s) can be computed directly from the mass
growth equation (Eq. 16) with thermal diffusion included. Similarly, the normal dimensons at the
end of a time-step, a,(f + At) and ¢, (¢ + At), can be computed directly from Eq. 8. To keep the
particle isometric we use the average of the a,, and ¢,, growth velocities during lateral growth only.
The lateral dimensions cannot be determined in a similar fashion. However, since the total volume
and the normal dimensions are known at the end of the time-step, the new lateral dimensions can

be found diagnostically. Equation 18 can be rearranged as,

4 3
Vit +A1) = 31 | —a) + Senai +(apdr — ) —cy| (19)
t+At
where every term on the right-hand-side is at the end of the time-step (¢ + Ar). This is a cubic

equation for the lateral dimension, a;, which is the only unknown. Standard cubic solutions can

be used to find a; and this closes the equation set.

¢. Results from Mechanistic Theory

The mechanistic theory was used evolve the frozen droplet described §3, however the deposition
coefficient (o) for the pyramidal region is needed and this requires specifying f .- (Eq. 12). We
used a wide range of fj,, in our simulations, from 1/3 to 1/10, but found that the main features
of lateral growth remained the same, and that a value of f., = 1/5 produces the best match to
the data. The evolution of the areas and growth velocities (Fig. 8) is similar to that produced
by the empirical model, in that a rapid increase in the basal and prism areas occurs, along with

a commensurate decline in the pyramidal area. Once lateral growth ceases, and the pyramidal
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area is gone (near 2a, = 26 um), the basal and prism facets grow more slowly at their normal
growth rates. The pyramidal area disappears faster in the mechanistic theory, a result that is likely
due to the requirement that the round and facet regions intersect. Unlike the empirical model,
the mechanistic model more accurately captures the evolution of the facet areas. What is most
remarkable about the mechanistic theory calculations is that the prism area matches the data with
high precision even during the period of lateral growth. Both basal and prism facet areas are
exceedingly well predicted after lateral growth ceases, a result that strongly suggests the facets
grew with dislocations at the measured s.,, of Nelson and Knight (1998).

The growth velocities of the pyramidal region and a-axis match the measurements, though the
c-axis growth rate is under-predicted. Note that all of the growth velocities increase during facet
spreading, which qualitatively agrees with the measurements. The physical cause of this increase
is the competition for vapor among the surface regions. When the basal and prism facets are
small, the pyramidal region keeps the surface supersaturation low (Fig. 9) due to that region’s
higher «, thus starving the facets of vapor. This result is expected based on the work of Nelson
and Swanson (2019), though in their theory explicit adjoining surface fluxes rob the facets of vapor
at the expense of lateral growth. No surface process is explicitly modeled in the theory presented
here, and instead ¢, for the pyramidal region acts in an aggregate fashion to mimic the reduction
of the basal and prism facets normal growth. As the basal and prism facets spread laterally, and
the pyramidal area declines, the surface supersaturation rises causing an increase in 0y, 0, and
o, (Fig. 9). Even though the individual « increases, the area-averaged value (@) decreases due
to the declining pyramidal area: The pyramidal region is being replaced by slower-growing basal
and prism facets with lower a. Once the pyramidal region is gone, sy, s declines as the particle
increases more rapidly in size and grows by normal growth alone. The link between s,,s and

a, is the primary reason for the sensitivity of the areas and growth velocities to our choice of
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Jehar (shown as the shaded regions on the figures). Nevertheless, the qualitative features of lateral
growth are not strongly dependent on the choice of f.,,. Indeed, the cessation of facet spreading,
which occurs when a; equals the normal axis length a,,, occurs after 2 minutes with a spread of 30
seconds due to our selected range of f,,, (Fig. 10b).

The evolution of the growth velocities is reflected in the total mass growth rate of the crystal
(Fig. 10a). Mass growth is initially dominated by lateral growth, which declines rapidly with
crystal diameter. As the basal and prism facet areas increase, thus replacing the pyramidal regions,
the normal growth rate rises until it dominates the total growth rate. Unlike the empirical model,
the mechanistic theory does not produce a maximum in the total growth rate during facet spreading
(Fig. 10) because s, rises smoothly in time. Furthermore, the evolution of s, ¢ is responsible for
the greater growth rate produced by the mechanistic model once lateral growth ceases. The use of
a single s, 7 leads to a larger , and a smaller o (Figs. 5 and 9), more rapid a-axis growth and, in
turn, a higher mass growth rate than the empirical model. If we followed the common procedure
of adjusting the capacitance model with a constant ¢ in order to match the actual growth rate,
a value of 0.075 would be needed. Again, this procedure is often used to interpret laboratory
measurements of mass growth. If lateral growth is occurring on the measured crystals the value
of o determined from the measurements could be too low and it would mis-represent the actual

growth process.

5. Implications of Lateral Growth

The results from sections 3 and 4 indicate that lateral growth may depend on initial size. Facets
must spread laterally over a greater area on a crystal that has a larger initial size. Consequently,
the time-scale over which lateral growth occurs (7;), and over which the normal dimension is

approximately constant, should increase with the initial size of the crystal. Figure 11 shows that
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this is indeed the case for two crystals grown at a supersaturation of 10%, a temperature of -40°C,
and a pressure of 1000 hPa. Smaller crystals with diameters typical of most cloud droplets (20
um) have lateral growth time-scales on the order of a few minutes, whereas for larger crystals
(diameter 40 um) the time-scale can be 10s of minutes. Simulations conducted over a range of
supersaturations and initial particle sizes indicate that 7; is generally on the order of 1 to 10 minutes
for most crystals with initial diameters in the range of 20 to 60 um. These time-scales are long
enough that ice-containing clouds could be impacted by lateral growth, and these results may bear
on prior laboratory studies of crystal growth, which we turn to next.

The experiments of Pokrifka et al. (2020) showed that a number of the small (radius ~ 10
um), homogeneously-frozen crystals grown in their electrodynamic diffusion chamber could not
be modeled with constant ¢ or with normal growth. Those growth data could only be explained if
o decreased in time, which is similar to the behavior predicted by lateral growth (Figs. 5 and 9).
Pokrifka et al. (2020) suggested facet spreading as one possible way to explain the data, and they
provided an ad hoc method to model the measurements. Detailed fits to their data are beyond the
scope of this work, though it is worthwhile to ask whether the theory developed here produces
results that are comparable to those measurements. A useful measure of the overall mass growth
invoked by Pokrifka et al. (2020), and used in other studies (Swanson et al. 1999; Harrison et al.

2016), is that of a power-law,

e 0)
where A; is the total particle area, F, 4 is the vapor flux to the crystal, and r is the radius assum-
ing the crystal is isometric. That the growth rate is proportional to r” can be seen if two limits are
considered. Under diffusion-limited growth (capacitance model) p = 1 because the surface pro-

vides no resistance to growth (& = 1), and the vapor flux is proportional to the inverse of the radius

(Eq. 6). Under kinetics-limited growth the surface resistance is large causing the gas-phase vapor
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gradient and the size-dependence of the vapor flux to disappear (as in Eq. 2) leading to p = 2.
Normal growth has power law exponents that range between 1 and 2, and some of the data of
Pokrifka et al. (2020) follow this growth (their Fig. 12 and our Fig. 12). However, approximately
half of the measured crystals grew slowly, produced p < 1, and required « that decline in time in
order to fit the data. We did representative calculations using lateral growth theory with typical
frozen droplet radii (10 and 20 um), temperature (-40°C), pressure (970 hPa), and supersaturation
(10%) of the experiments. The value of p was calculated from the slope of the mass derivative and
the mass in log-log space, following Pokrifka et al. (2020), their Eq. 14. Note that both the empir-
ical and mechanistic models produce p < 1 along with curve shapes that resemble those derived
from the data (Fig. 12). The empirical model produces a lower value of p, and this is due to the
longer period of time over which the growth rate remains relatively constant. The initial size also
produces a lower value of p (shaded range in Fig. 12) since larger particles have longer periods of
lateral growth (Fig. 11). These results provide some additional evidence that lateral growth may
have been captured in the experiments of Pokrifka et al. (2020), though their mechanism assumed
a transition to step nucleation growth whereas the model developed here suggests dislocations can
also explain the data.

These experiments also provide some tantalizing evidence for an initial size dependence to
growth. If the average values of p from the experiments (Fig. 13 of Pokrifka et al. 2020) are
plotted against the initial particle size, a slight size dependence emerges (Fig. 13). While there
is not enough data to draw definitive conclusions, the data suggest that p may be lower for crys-
tals formed from initially larger frozen droplets. The average p-values derived from the empirical
model produces curves with a roughly similar initial size dependence to the data, using a similar
temperature and pressure from of those experiments (-40°C and 970 hPa, respectively). The max-

imum and minimum range of p determined from the simulations (grey shade) are also on the order
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of those derived from the measurements (error bars), and supersaturation plays only a modest role
in determining the curve shape. While the empirical model indicates an intriguing initial size de-
pendence to p, such a dependence does not appear in the mechanistic model. The reason for this
difference is due to the manner in which the mass growth rate evolves during facet spreading. The
empirical model produces a small maximum with a constant rate thereafter until lateral growth
ceases, whereas the mechanistic model produces a rise in the growth rate throughout the period of
lateral growth (Fig. 10). With so little data it is not possible to draw specific conclusions and more
measurements of lateral growth are needed.

Lateral growth is also known to occur on previously sublimated crystals, and this growth may
be important for crystals cycled in cold clouds. Nelson and Swanson (2019) measured the lateral
growth of the basal facet on a previously sublimated crystal at 7 = -30°C, a supersaturation of
about 1%, and at atmospheric pressure (Fig. 14). Their results showed that the ratio of the lateral
to the normal basal radius (¢, = a;/a,) increased rapidly initially, but slowed down as the facet
spread across the surface. Normal growth cannot explain the data and a lateral growth model
is required (Nelson and Swanson 2019, their Fig. 6). While the mechanistic model developed
here is only valid for isometric crystals, the empirical model is capable of modeling non-isometric
growth since it was developed based on the spheroidal model of Zhang and Harrington (2014).
The measured crystal had a basal axis radius of about a,, = 186 um, and we assumed an initial
crystal thickness of 60 um which is similar to the measured crystals. The s, for normal growth
were taken from the data set of Harrington et al. (2019), and the empirical model results are shown
in Fig. 14 for three different supersaturations (1, 2 and 3%). Clearly, the empirical model captures
the increase in the axis length ratio in time, including the more rapid initial spreading of the facets
and the later slow-down in the growth. While the measured supersaturation was 1%, our model

requires higher values of 2 to 3% for a better match with the data. In addition, the data indicate that
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the normal a-dimension (a,) increased by 1 um, whereas the empirical model produces a nearly
6 um increase in a,. Never-the-less, the qualitative match with the data is encouraging especially
if one bears in mind the simplistic nature of the empirical theory. The slow-down in growth is
also reflected in the mass growth rate (Fig. 14b), which shows an initial rise followed by a plateau
and a minor decrease towards the end of the simulation. It is worth noting that mass derivatives
with this shape have been measured (Pokrifka et al. 2020, their Fig. 11b). If we treated the crystal
with normal growth only, the growth rate would be too low by about 30% (Fig. 14b). On the other
hand, treating the crystal as if it were entirely rough (o = 1, capacitance model) would produce

mass growth that rapidly diverges from the actual growth rate and becomes too large.

6. Concluding Remarks

Growth that spreads laterally across crystal surfaces has not often been measured, but it may
have important consequences for ice-containing clouds and laboratory measurements of ice crystal
growth. If our simple theory is approximately correct, then lateral growth produces rates that are
initially higher, but then become generally lower than that predicted by capacitance theory and
this is due to two factors: Efficiently growing regions are replaced by facets that grow with lower
efficiency, leading to a declining area-averaged deposition coefficient (&) in time and a lower
growth rate. But this decrease in @ is also conflated with the changing particle geometry. The
particle is growing, essentially, by filling out volume and increasing surface area while the particle
normal dimension increases slowly in time until lateral growth ceases. These process will also
be modulated by the time-scale for initial facet formation, for which few studies exist. Lateral
growth may therefore complicate interpretations of laboratory-grown ice crystals, especially those
that include nucleation. For instance, many studies of surface kinetics at low temperatures (below

-30°C) have used small ice crystals and the spherical capacitance model with a constant & (Magee
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et al. 2006; Skrotzki et al. 2013; Harrison et al. 2016). However, the assumption of a constant
for ice is only approximately true if the surface structure is static in time, which is not the case for
actively growing ice (Nelson 2005). If both lateral and normal growth are occurring on the growing
crystals the estimated & could then be either too low or too high depending upon the initial size
of the crystal, the length of the measurement, and the supersaturation. Longer growth experiments
at low to moderate supersaturations on cloud-droplet sized crystals could lead to anomalously low
estimates of & (as indicated in Figs. 6 and 10). On the other hand, short-duration experiments
could lead to anomalously high values of « if an active period of lateral and normal growth is
sampled since the growing crystals are not changing much in size, but instead are growing by
filling out surface area and volume.

Crystals that are cycled through periods of growth and sublimation may also be influenced by
lateral growth, and this could help explain some perplexing results from laboratory studies. The
levitation cloud chamber studies of Magee et al. (2006) required low o to explain their results.
Their crystals were cycled between growth and sublimation, so it could be that lateral growth
occurred frequently in their studies, which would then affect the deposition coefficients determined
by those studies. A recent study by Voigtldnder et al. (2018) showed increasing optical complexity
likely associated with mesoscopic and other larger surface features as crystals were cycled through
growth and sublimation regimes. The growth of the crystals seemed to become suppressed by such
cycling, and this could be an indication of contributions from lateral growth.

Lateral growth may also have consequences for the microphysics of cold clouds. If facet spread-
ing dominates the early growth of crystals it could influence the nucleation of ice in some types of
cirrus clouds. The concentration of crystals in cirrus depend on the manner in which ice is nucle-
ated, and the homogeneous freezing of solution droplets can produce high concentrations of ice

crystals. However, homogeneous freezing is sensitive to the ambient supersaturation; the growth
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of pre-existing crystals and newly frozen solution droplets are a sink of water vapor, which can
cause a reduction in the rate of homogeneous freezing (e.g. DeMott et al. 1997). Active lateral
growth on newly frozen solution droplets could initially enhance vapor growth (through increased
surface area), leading to further suppression of homogeneous freezing. The dynamic recycling of
crystals through clouds could also be influenced by lateral growth. Larger crystals that sublimate
below cloud base and are recycled by stronger updrafts could see relatively long periods of lateral
growth. Such periods of lateral growth may produce relatively constant growth rates, along with
maximum dimensions that change slowly in time thus affecting crystal fall speeds. Finally, Nel-
son and Swanson (2019) suggest that many of the complex ice features at low temperature (below
-30°C) are influenced by lateral growth, and this may indicate that theories of ice vapor growth for

very cold clouds need to be revised.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Following nucleation, facets begin to develop on frozen droplets. Basal and elliptical faces
appear, along with round regions or pyramidal faces. The faces grow both normally (out-
ward) and laterally (along the surface). Over time, the elliptical regions become distinct
prism, basal and pyramidal facets shown at the end. The pyramidal facets can grow them-
selves out of existence resulting in a hexagonal prism (not shown).

Approximate model of normal and lateral growth assuming circular cylinders for the basal
and prism facets. The normal fluxes (£, and F;) are shown along with fluxes that drive lateral
growth (direct and adjoining surface, F,), and both depend on the surface supersaturation
over the facet edges, (s ). The fluxes depend on the deposition coefficients for each region,
as indicated on the figure. The facets are defined in terms of their lateral dimensions, a; for
the basal facets and ¢; for the prism facets. The overall crystal dimensions are given in terms
of the normal dimensions, a, and c¢,, so named because they are perpendicular to the facet.

Deposition coefficient as a function of the ratio of the surface to the characteristic supersat-
uration (g, /Schqr) for different values of M. A value of M = 1 corresponds to growth by
spiral dislocations whereas values of M > 10 are generally used to represent step nucleation
(Nelson and Baker 1996). Spiral dislocations allow for crystal growth at low sg,,-¢, unlike
step nucleation which produces almost no (inefficient) growth until sg,,s reaches s, and
growth rapidly becomes efficient.

(a) Area of single basal, prism, and pyramidal regions, and (b) their respective growth ve-
locities (axis growth rates) as a function of the a-axis diameter (2a,) of the crystal. The
measurements of Gonda and Yamazaki (1984) are given by the symbols. The solid lines are
predictions using the empirical growth model with rough area (A,) parameterized as a ratio
of the fractional volume change to the power, n with n = 2.5. The largest variability in the
growth is due to this parameterization, with the spread indicated by the shaded regions. The
upper and lower bound of each range is given by n = 3 and 2, respectively.

Deposition coefficients as a function of the a-axis diameter (2a,) for the basal facet (black),
prism facet (red), and the area-weighted total (blue and blue shade). Since the total depo-
sition coefficient is an area-weighted average, it depends on the facet and pyramidal area
approximation. The blue solid line assumes n = 2.5 and the shaded region gives the spread
in the solution for n between 2 and 3.

(a) Mass growth rates as a function of the a-axis diameter (2a,) for the total growth rate (red
solid, shaded), normal growth only (red dashed), and rough growth with o¢ = 1 for all facets
(blue solid). The solid lines use the pyramidal area (A,) approximation with n = 2.5; the red
shaded region shows the range of variability due to n between 2 and 3. Capacitance theory
using a sphere with o = 1 (blue short-dashed) and & = 0.05 (blue long-dashed) is also
shown, and the blue shaded region shows o ranging from 0.03 to 0.1. (b) Crystal diameters
as a function of time for the lateral (black dashed) and normal (black solid) diameters along
with the diameter predicted by the capacitance model (& = 1, blue).

Geometry for mass distribution during growth; cross-section view of Fig. 1 with the basal
and prism facets flush with the round regions (no facets edges are assumed). Normal growth
adds mass directly to the basal and prism facets increasing the normal lengths by Aa, and
Ac,, indicated by the blue rectangles. Growth of the pyramidal regions (solid red outline)
causes both an increase in the pyramidal length (p,) by Ap,, but it also causes the lateral
growth of the basal and prism facets by Ag; and Ac;. The angles ¢, and ¢, define the location
of the basal and prism intersection with the pyramidal region. S
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Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

(a) Area of single basal, prism, and pyramidal (rough) facets, and (b) their respective growth
velocities (axis growth rates) as a function of the a-axis diameter (2a,). The measurements
of Gonda and Yamazaki (1984) are given by the symbols. The solid lines are predictions
using the mechanistic growth theory with the pyramidal s, that is a factor f;., = 1/5 the
value for the prism facet. The shaded ranges show the variability in the solution due to fy.q,-
The upper and lower bound of each range is given by f.q = 1/10 and 1/3, respectively. .

(a) Deposition coefficients as a function of the a-axis diameter (2a,) for the basal facet
(black), prism facet (red), the pyramidal region (blue), and the area-weighted total (violet
and violet shade). (b) The surface supersaturation for growth of basal, prism, and pyramidal
facets (black and black shade). The solid lines assume a pyramidal s, that is a factor fcpa,
= 1/5 the value for the prism facet, and the shaded ranges show the solution for fi.,, ranging
from 1/3 to 1/10.

(a) Mass growth rates as a function of the a-axis diameter (2a,,) for the total growth rate (red
solid) and its components: normal growth (red dashed) and lateral growth (black dashed).
The solid red line assumes a pyramidal s.;,, that is a factor f.,- = 1/5 the value for the
prism facet, and the red shade shows the range f . = 1/3 to 1/10. For comparison, the
total growth rate from empirical theory (Fig. 6) is shown with the green line and shade.
Capacitance theory solution using an equivalent volume sphere and a constant ¢ of 0.075
(blue long-dashed) is also shown, and the blue shaded region shows ¢ ranging from 0.05 to
0.1. (b) Crystal diameters as a function of time for the lateral (black) and normal a (black)
and c (red) diameters. The black shade indicates the range f.;, = 1/3 to 1/10.

Evolution of the normal (solid lines) and lateral (dashed lines) a-axis diameters in time at
T =-40°C, P = 1000 hPa, and s; = 10%. The thin and thick lines indicate an initial frozen
spherical diameter of 20 and 40 um, respectively. Solutions using the empirical model are
given by the black lines whereas the mechanistic model solution is given by the red lines.
The time-period for lateral growth 7; is defined when the lateral diameter is 99% of the
normal diameter, the range of 7; given by the empirical and mechanistic models is given by
the vertical solid lines. This time-scale depends strongly on the initial size.

Power-law exponent of the mass growth equation (dm/dt < rP) as a function of the mass
ratio (mass divided by initial mass) for vapor-grown crystals. Solid, isometric crystals un-
dergoing normal faceted growth have values of p that range between 1 (diffusion-limited
growth) and 2 (kinetics-limited growth). The solid blue (consistent with normal growth) and
red (inconsistent with normal growth) curves are derived from measurements of Pokrifka
et al. (2020). Solutions using the empirical and mechanistic models are indicated by the
purple and black shades, respectively. The upper and lower edge of the shaded region is
given by the initial particle size of r, = 10 and 20 pum, respectively.

Power-law exponent of the mass growth equation (dm/dt o< rP) as a function of the initial
particle radius as derived from the measurements of Pokrifka et al. (2020), data points, and
as calculated with the empirical (black lines) and mechanistic (blue line) models. The filled
circles and lines are the average value of p, whereas the error bars and the grey shade indicate
the maximum and minimum value of p attained during particle growth. The blue data points
indicate growth data that could be fit with normal faceted growth, whereas purple points
required a model of faceting transitions. The black solid and dashed curves indicate the
model solution supersaturation dependence (10 and 25%, respectively), and this range was
chosen based on the measurement range.

(a) Ratio of the lateral and normal a-axis lengths as a function of time. The blue data points
are from Fig. 6 of Nelson and Swanson (2019) who measured the lateral basal facet spread-
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F1G. 1. Following nucleation, facets begin to develop on frozen droplets. Basal and elliptical faces appear,
along with round regions or pyramidal faces. The faces grow both normally (outward) and laterally (along the
surface). Over time, the elliptical regions become distinct prism, basal and pyramidal facets shown at the end.

The pyramidal facets can grow themselves out of existence resulting in a hexagonal prism (not shown).
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FIG. 2. Approximate model of normal and lateral growth assuming circular cylinders for the basal and prism
facets. The normal fluxes (F;, and F.) are shown along with fluxes that drive lateral growth (direct and adjoining
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the deposition coefficients for each region, as indicated on the figure. The facets are defined in terms of their
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values of M > 10 are generally used to represent step nucleation (Nelson and Baker 1996). Spiral dislocations

allow for crystal growth at low s, ¢, unlike step nucleation which produces almost no (inefficient) growth until

Ssury reaches s, and growth rapidly becomes efficient.
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The upper and lower bound of each range is given by n = 3 and 2, respectively.
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P = 1000 hPa, and s; = 10%. The thin and thick lines indicate an initial frozen spherical diameter of 20 and
40 um, respectively. Solutions using the empirical model are given by the black lines whereas the mechanistic
model solution is given by the red lines. The time-period for lateral growth 7; is defined when the lateral diameter
is 99% of the normal diameter, the range of 7; given by the empirical and mechanistic models is given by the

vertical solid lines. This time-scale depends strongly on the initial size.
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FIG. 12. Power-law exponent of the mass growth equation (dm/dt o< r”) as a function of the mass ratio
(mass divided by initial mass) for vapor-grown crystals. Solid, isometric crystals undergoing normal faceted
growth have values of p that range between 1 (diffusion-limited growth) and 2 (kinetics-limited growth). The
solid blue (consistent with normal growth) and red (inconsistent with normal growth) curves are derived from
measurements of Pokrifka et al. (2020). Solutions using the empirical and mechanistic models are indicated by
the purple and black shades, respectively. The upper and lower edge of the shaded region is given by the initial

particle size of r, = 10 and 20 um, respectively.
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FIG. 13. Power-law exponent of the mass growth equation (dm/dt < rP) as a function of the initial particle
radius as derived from the measurements of Pokrifka et al. (2020), data points, and as calculated with the
empirical (black lines) and mechanistic (blue line) models. The filled circles and lines are the average value of p,
whereas the error bars and the grey shade indicate the maximum and minimum value of p attained during particle
growth. The blue data points indicate growth data that could be fit with normal faceted growth, whereas purple
points required a model of faceting transitions. The black solid and dashed curves indicate the model solution
supersaturation dependence (10 and 25%, respectively), and this range was chosen based on the measurement

range.
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FIG. 14. (a) Ratio of the lateral and normal a-axis lengths as a function of time. The blue data points are from
Fig. 6 of Nelson and Swanson (2019) who measured the lateral basal facet spreading of a planar crystal with an
a-axis radius of about 165 um at 7 = -30°C and at a supersaturation of 1%. Empirical model solutions for an
initially spheroidal crystal with no facets, a thickness of 60 um, and supersaturations of 1, 2 and 3% are shown
by the solid lines. (b) The total mass growth rate (normal and lateral, solid line) as a function of the normal
a-axis radius. The growth rate computed as if the particle were rough (o = 1, dot-dashed line) or undergoing

only normal faceted growth (dashed line) are also shown.
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