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Abstract— The goal of this paper is to investigate whether mo-
tor imagery tasks, performed under pain-free versus pain condi-
tions, can be discriminated from electroencephalography (EEG)
recordings. Four motor imagery classes of right hand, left hand,
foot, and tongue are considered. A functional connectivity-
based feature extraction approach along with a long short-
term memory (LSTM) classifier are employed for classifying
pain-free versus under-pain classes. Moreover, classification is
performed in different frequency bands to study the significance
of each band in differentiating motor imagery data associated
with pain-free and under-pain states. When considering all
frequency bands, the average classification accuracy is in the
range of 77.86 — 80.04%. Our frequency-specific analysis shows
that the gamma band results in a notably higher accuracy
than other bands, indicating the importance of this band in
discriminating pain/no-pain conditions during the execution of
motor imagery tasks. In contrast, functional connectivity graphs
extracted from delta and theta bands do not seem to provide
discriminatory information between pain-free and under-pain
conditions. This is the first study demonstrating that motor
imagery tasks executed under pain and without pain conditions
can be discriminated from EEG recordings. Our findings can
provide new insights for developing effective brain computer
interface-based assistive technologies for patients who are in
real need of them.

I. INTRODUCTION

Brain computer interface (BCI)-based assistive technolo-
gies can help patients suffering from communication and
motor function disorders to express their feelings, and to
perform simple activities of their daily life independently.
The goal of a BCI in such technologies is to generate
control signals directly from mentally-modulated brain ac-
tivity, in order to enable the operation of assistive devices
[1]. Electroencephalography (EEG) is a great candidate for
monitoring brain activity in BCI applications, due to its low-
cost, portability, and non-invasiveness properties [2], [3]. A
large number of EEG-based BCI studies have considered
some forms of motor imagery tasks as their paradigm, and
promising results have been reported for this paradigm in
individuals with motor disabilities such as those with spinal
cord injury, and amyotrophic lateral sclerosis (ALS) [4], [5].

Pain is, unfortunately, a major problem in a large group
of patients who are in real need for BCI-based assistive
technologies. For example, it has been reported that an
estimated 80% of patients with spinal cord injury experience
pain [6]. During the first year after the injury, in about
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40 —50% of the patients the pain tends to become chronic
[7].

Pain has been demonstrated to activate several regions
in the brain including the prefrontal and somatosensory
cortices. In [8], it has been reported that an increase in
pain perception is associated with an increase in the gamma
and theta powers in the medial prefrontal cortex as well
as a decrease in the lower beta power in the contralateral
sensorimotor cortex. In [9], a global reduction in power was
observed in the lower spectral range. In [10], the relationship
between the peak frequency of alpha activity over senso-
rimotor cortex and pain intensity was investigated, where
it was shown that slower peak frequency in pain-free state
is associated with higher predisposition of pain during pain
condition. Results of these studies along with the prevalence
of the pain in patients in need of the BCI technology, show
the importance of incorporating this issue in the development
of BCIs. In other words, BCIs designed for these patients
should be adapted to take the pain conditions into account.
This issue motivates for investigating whether the pain can
be recognized in BClIs.

Previous studies on pain classification using EEG data
focused on discriminating painful and non-painful stimulus
in resting state [9]-[11], or aimed to classify various levels
of low and high pain intensities [8], [12]. In this work, we
focus on investigating pain in a task-based framework. We
aim to examine if motor imagery tasks, performed in the
presence of the pain, can be discriminated from pain-free
motor imagery tasks. To achieve this goal, an experiment
for collecting EEG recordings under both pain-free and
pain conditions is designed. Four types of motor imagery
tasks, commonly-used in BClIs, are considered. A dynamic
functional connectivity graph-based approach [13] is taken to
extract features for the classification problem. These dynamic
features are fed to a long short term memory (LSTM)
network in order to use the information in the graphs as
well as their dynamics.

Moreover, evidence suggests that the experience of pain
can affect the spectral properties of brain activity [14].
This motivates us to also perform frequency-specific analysis
for the classification of motor imagery data under pain-
free versus pain conditions. EEG data is decomposed into
different bands of delta ([1 —4] Hz), theta (|4 — 8] Hz), alpha
([8 — 16] Hz), beta ([16 —32] Hz), and gamma ([32 — 50]
Hz) using discrete stationary wavelet transform (SWT), and
signals from each of these bands are passed to the feature
extraction and classification algorithms. The results of this
study yield to better understanding of whether the presence



of pain impacts motor imagery-related EEG signals.

The rest of the paper is organized as follows. The experi-
mental paradigm and data analysis are described in Section
II. Results and discussions are presented in Sections III and
IV, respectively and Section V concludes the paper.

II. MATERIALS AND METHODS

A. Data Collection

Four healthy and right-handed volunteers were recruited
for this study. EEG data was recorded using a 32-channel
EEG system (Brain Products, positioned based on the in-
ternational 10 —5 electrode placement system), at a rate of
500 samples/s. Written informed consents approved by the
Rutgers’ Institutional Review Board (IRB) were obtained
prior to the experiments.

Painful stimuli were delivered to the subjects’ dorsum of
the left hand using a standard 30 x 30 mm thermode (TSA-II,
Medoc System) (see Fig. 1a). As there exists pain threshold
and tolerance variability across subjects, for each subject,
temperatures associated with the threshold and tolerance
were determined prior to the main experiment.

To measure the pain threshold, while the thermode was
in place, the temperature was increased from the baseline
(32°C) with the rate of 1°C/s. Subjects were instructed to
press a button on a response unit to indicate the moment
that the temperature becomes painful to them. The tem-
perature was then decreased to the baseline at the rate of
1°C/s. For determining the tolerance temperature, the rate
of increasing the temperature was set to 1.5°C/s. Subjects
were asked to press the button when pain becomes intolerable
after which the thermode was cooled down to the baseline
temperature at the rate of 8°C/s. The safety temperature
limit of 50°C was considered for both the threshold and
tolerance measurements. A total of eight trials were recorded
for each case. Temperatures associated with the threshold and
tolerance were determined by averaging the results across
their corresponding trials. The average of the threshold and
tolerance temperatures was set as the temperature of the
pain stimulus (7). During the main experiment, random
temperature points in the range of [T, — 1,7, + 1] were
selected to induce pain in different blocks of the experiment.

Additionally, to ensure that the highest temperature that
was selected to be used for inducing pain in the main
experiment, was bearable for subjects, the temperature was
held for up to 6.5 minutes, which is equal to the maximum
duration of the blocks in the experiment (see Section II-B).
Subjects were instructed to press a button anytime during
the 6.5 minutes interval, if they could not tolerate the pain.
The idea was to reduce the maximum duration of the blocks
(and increase the number of the blocks) if subjects could not
tolerate the pain for a specified duration of the experiment.
For all subjects, the obtained stimulus temperature was in the
range of (44.8 —46.4)°C. All subjects were able to tolerate
the induced pain for the duration of 6.5 minutes.
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Fig. 1: (a): To induce pain, thermode is attached to the
subject’s dorsum of the left hand. (b): Visual illustration of
a single trial of the paradigm.

B. Experimental Paradigm

The main experiment consisted of 12 pain-free and under-
pain blocks (6 blocks for each condition), which were
presented in random order. During the under-pain blocks,
the thermode was heated up to a random temperature in the
range of the [T, — 1,7, + 1]. During the pain-free blocks, the
temperature of the thermode was set to the baseline (32°C).

In order to avoid habituation to the heat, the location of
the thermode was slightly moved on the dorsum of the left
hand, for different blocks of the experiment. Moreover, to
ensure that the subject does not feel temperature changes at
the beginning/end of each block, we made sure the thermode
had reached the targeted temperature (either baseline for the
pain-free blocks or the stimulus temperatures for the under-
pain blocks), before positioning it on the hand. The thermode
was also detached from subject’s hand at the end of each
block before cooling it down.

Fig. 1b shows a visual illustration of the paradigm in each
trial. At the beginning of the trial, an arrow is displayed for 1
s on the screen. The direction of the arrow is used to indicate
the type of motor imagery task that subjects are expected to
perform during the trial, i.e. right hand, left hand, foot, and
tongue motor imagery tasks if the arrow points to right, left,
down, or up directions, respectively. Next, a diamond symbol
is displayed for 3 s. Subjects were instructed to start the
imagery tasks as soon as they see the diamond symbol until
it is disappeared from the screen. This is followed by a 2 —4
s inter-trial rest. Each block consisted of 12 trials for each
motor imagery task. Therefore, at the end of the experiment,
for each task, 72 trials for pain-free, and 72 trials for under-
pain conditions are obtained. The duration of each block was
about 4.8 — 6.4 minutes.

C. Data Analysis

1) Preprocessing: From each trial, the first 4 s post-
stimulus EEG data was extracted and preprocessed using
the EEGLAB toolbox [15]. First, the data was filtered using
a [1,50] Hz band-pass finite impulse response (FIR) filter.
Artifacts were then removed using independent component
analysis (ICA).

2) Spectral Decomposition: For analyzing the data in
different frequency bands, EEG recordings were decomposed
into the bands of delta, theta, alpha, beta, and gamma using
SWT. We considered SWT in this step, since it outper-
forms other regular filter-bank methods for capturing the



TABLE I: Accuracy results for classifying different motor imagery tasks under pain-free versus pain conditions.

Right Hand Left Hand Foot Tongue Average
Subject 1 85.65+8.10 | 82.13+9.02 | 88.16+8.40 | 78.54+£9.02 83.62+8.64
Subject 2 || 78.57+£10.66 | 73.01+9.39 | 76.56+12.06 | 76.78£9.79 || 76.23+10.52
Subject 3 76.56+9.18 | 76.01£8.82 | 75.42+8.88 | 72.424+9.78 75.10+9.18
Subject 4 76.94+7.92 | 81.92+7.51 80.01+9.79 | 83.69+9.19 80.64 £ 8.65
Average 79.43+9.03 | 78.26+8.72 | 80.04+9.89 | 77.86+9.46 || 78.90 +9.28

temporal structure of the signals. We used Daubechies 4
(Db4) wavelet, due to its similarity to the underlying EEG
activity [16] and the orthogonality of the corresponding basis
[17]. Signals reconstructed from each band are passed to the
feature extraction algorithm to find their corresponding func-
tional connectivity graphs, and to form the feature vectors
associated with each band.

3) Feature Extraction: We employed our recently pro-
posed feature extraction method [13] to extract features based
on dynamic functional connectivity networks from EEG
recordings. This method consists of two main steps. First, the
EEG data is segmented into variable-length segments during
which the spatial distribution of the underlying functional
networks stays quasi-stationary. In this method, the segment
boundaries are identified when the spatial patterns of func-
tional connectivity networks are changed as assessed based
on the results of KolmogorovSmirnov statistical test [18],
[19]. It should be noted that since the nodes of the graphs
are the EEG electrodes, the problem of volume conduction is
addressed by applying the surface Laplacian operator [20]-
[22] on the EEG data. Moreover, the segment-wise average
value of each EEG channel is subtracted from the data points
of the corresponding segment to detect functional networks
based on the patterns of their temporal activities rather than
detecting the nodes with the highest average intensities.
In the second step, functional networks sustaining their
connectivity during each extracted segment are identified
and the corresponding undirected graphs are constructed.
Then, these graphs are vectorized and used as features for
the classification problem. For more details on the feature
extraction method refer to [13].

4) Classification: An LSTM network is employed for
classifying the extracted features. The reason for using this
classifier is to take advantage of a dynamic classification
algorithm, which uses the information in the extracted fea-
tures as well as in their temporal structure. The inputs to
the classifier are the sequence of vectorized graphs extracted
from variable length segments. The LSTM network is com-
prised of three hidden layers where the first layer is a fully-
connected layer consisting of 20 neurons, the second layer
is an LSTM layer consisting of 20 neurons with a single-
step delay feedback loop around the second hidden layer,
and the third layer is a fully-connected layer consisting
of 2 neurons. These layers are followed by softmax and
classification layers. The classification accuracy is considered
as the one obtained at the end of each trial.

III. RESULTS

In this study, 32 EEG channels covering the whole scalp
were used. The extracted functional connectivity graphs were
considered to be undirected. Accordingly, the graph matrices
were symmetric and included no self-loops. As such, only
the upper triangle from each graph matrix was used resulting
in a feature vector of size 496 (= %) To train and test
the classifier for each motor imagery task, features extracted
from both pain-free and under-pain conditions were divided
into three randomized groups for training (70%), validation
(15%), and testing (15%). Table. I summarizes the accuracy
results for classifying pain-free versus under-pain conditions
for each motor imagery task. An average classification
accuracy (across subjects) of 79.43%,78.26%,80.04%, and
77.86% is achieved for the right hand, left hand, foot, and
tongue motor imagery tasks, respectively.

The average classification accuracy results for each fre-
quency band as well as for the un-decomposed EEG data
are shown in Fig. 2. It can be seen that the highest average
accuracy is achieved for the gamma band (84.16%), which
is even higher than the case of using the un-decomposed
EEG data (78.90%). This might be due to the presence of
more non-discriminatory information from other bands when
classification is performed using un-decomposed data as
compared to data in the gamma band. The average accuracy
from beta and alpha bands are 75.48% and 58.85%, respec-
tively. In addition, for all motor imagery tasks, the average
classification accuracy significantly decreases (approximately
to the chance level) when graphs are extracted from the delta
and theta bands. These results suggest that as compared to
the gamma band, the functional connectivity graphs extracted
from these lower bands, contribute less in discriminating
between pain-free and under-pain motor imagery tasks. It
should be noted that we cannot directly compare the results
of this study with existing EEG pain studies, because they
have mostly investigated pain-induced changes in resting
state, whereas here, the brain is engaged in executing motor
imagery tasks.

IV. DISCUSSIONS

In this study, we investigated whether motor imagery
activities in pain-free and under-pain conditions can be
distinguished in EEG data. We conducted motor imagery
experiments to collect EEG recordings under both pain-free
and pain conditions. Using our recently proposed method,
we extracted functional connectivity graphs from quasi-
stationary time intervals of EEG recordings. We used a
LSTM artificial neural network to classify motor imagery
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Fig. 2: Accuracy results for classifying different motor im-
agery tasks under pain-free versus pain conditions in different
frequency bands.

classes corresponding to pain-free versus under-pain condi-
tions. Our results indicated that the proposed method based
on dynamic functional graphs can accurately differentiate
various pain-free motor imagery tasks from their correspond-
ing tasks with added pain. Therefore, this method can serve
as reliable predictor to determine whether the motor imagery
tasks are performed in pain-free or under-pain conditions.
Moreover, our band-specific classification analysis showed
that the highest accuracy was achieved from the gamma
band, suggesting the relevance of gamma oscillations in the
discrimination of motor imagery tasks associated with pain-
free and pain conditions.

In the present study, we investigated classification of pain
vs no-pain conditions in a task-based framework, for the
first time. However, more tasks (e.g. cognitive tasks, etc.)
should be studied to evaluate the generalizability of the
proposed method in discriminating pain-free and under pain
conditions. Alongside with these findings, the results of this
study can be further extended to bring insights into the
understanding of how the brain processes motor imagery
tasks in the presence of the pain.

V. CONCLUSION anD FUTURE WORK

In this paper, we used a functional connectivity-based
method for discriminating motor imagery tasks under pain-
free versus pain conditions. Results for classification accu-
racy demonstrated the effectiveness of the proposed method
in differentiating motor imagery tasks performed with and
without pain. Additionally, the classification results using
different frequency bands revealed that the gamma band
offers the highest average accuracy for this classification
problem. Future work involves the development of motor
imagery-based BCI algorithms which incorporate the pain
detection capability and can adapt to the pain condition
without affecting the classification performance.
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