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ABSTRACT

Numerical cloud models require estimates of the vapor growth rate for ice
crystals. Current bulk and bin microphysical parameterizations generally as-
sume that vapor growth is diffusion limited, though some parameterizations
include the influence of surface attachment kinetics through a constant depo-
sition coefficient. A parameterization for variable deposition coefficients is
provided herein. The parameterization is an explicit function of the ambient
ice supersaturation and temperature, and an implicit function of crystal dimen-
sions and pressure. The parameterization is valid for variable surface types
including growth by dislocations and growth by step nucleation. Deposition
coefficients are predicted for the two primary growth directions of crystals, al-
lowing for the evolution of the primary habits. Comparisons with benchmark
calculations of instantaneous mass growth indicate that the parameterization
is accurate to within a relative error of 1%. Parcel model simulations using
Lagrangian microphysics as a benchmark indicate that the bulk parameteriza-
tion captures the evolution of mass mixing ratio and fall speed with typical
relative errors of less than 10%, whereas the average axis lengths can have
errors of up to 20%. The bin model produces greater accuracy with relative
errors often less that 10%. The deposition coefficient parameterization can
be used in any bulk and bin scheme, with low error, if an equivalent volume

spherical radius is provided.
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1. Introduction

Numerical models of ice-containing clouds require estimates of the ice crystal vapor growth
rate. However, the vapor growth rate is complex, involving the diffusion of water vapor and
thermal energy through the background gas. Gas-phase diffusion, in turn, depends on the size and
shape of the crystal along with the surface processes that determine the incorporation of water
molecules into the crystalline lattice. It is these surface processes that control the development
of crystal habits (Hallett 1965; Lamb and Scott 1972; Nelson 2001). The challenge in modeling
the ice growth lies in taking simultaneous account of crystal shape effects on gas-phase diffusion
along with the surface kinetic processes that influence the mass uptake of the crystal.

The most common method for parameterizing the growth and ablation of ice crystals in numer-
ical cloud models follows the work of Houghton (1950) in using capacitance theory. Capacitance
theory assumes that the vapor density is constant along the crystal surface, which occurs when the
surface is rough on the nanometer scale. Surface processes are ignored in this model: facets cannot
remain flat (Saito 1996, Ch. 27), and aspect ratio cannot evolve (Ham 1959) without supplemen-
tary theories (Chen and Lamb 1994). Though it was historically understood that surface processes
were the drivers of the variations in habit forms, it was not clear how to include these processes
in cloud models. For instance, Koenig (1971) included surface processes through a reduction fac-
tor that acts in a similar mathematical fashion to a ventilation coefficient, but this kinetic factor
was not included in most subsequent models. The work of Todd (1964) and Hindman and John-
son (1972) avoided capacitance theory entirely by using laboratory-measured axis growth rates
to drive habit development. Since their rate equations were taken directly from laboratory data,
both surface and gas phase diffusion processes were empirically woven into the parameterization.

While this line of modeling died out, it did presage current particle property approaches (Chen and
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Lamb 1999; Hashino and Tripoli 2007; Chen and Tsai 2016). Most cloud model parameterizations
do not include the effects of surface processes on mass uptake during vapor growth, but those that
do commonly use deposition coefficients (). Deposition coefficients account, in aggregate, for
all of the surface processes occurring on the crystal surface that ultimately control the growth
rates. Though all numerical models that include o treat it as a constant, this approximation is only
valid over a very narrow range of conditions (Nelson 2005). In this paper, we develop a parame-
terization of supersaturation- and temperature-dependent ¢ that is consistent with faceted growth
and is suitable for bulk and bin microphysical models. The parameterization is developed to be
flexible in that it can be used with traditional and particle property schemes. The parameterization
is tested against benchmark simulations using a parcel model framework with Lagrangian bin ice
microphysics, and the accuracy and limitations of the method are discussed. We first review the

theory of faceted growth, and the need for a closed-form approximation for «.

2. Mass and Dimensional Growth of Faceted Ice

Deposition coefficients (@) have long been used to model the influences of surface attachment
kinetic (hereafter surface-kinetic) processes on vapor growth (Strickland-Constable 1968). For
faceted crystals, a varies explicitly with the ambient ice supersaturation (s;, hereafter “supersatu-
ration”) and implicitly with the temperature, crystal size and shape (Nelson and Baker 1996; Wood
etal. 2001). The classical theory of faceted growth posits that crystals grow primarily by the prop-
agation of steps across their surface. In order for growth to proceed, adsorbed water molecules
must attach to a step before they desorb from the surface. The fraction of molecules that adsorb,
migrate to a step, and incorporate into the crystalline lattice defines the deposition coefficient.

The growth of faceted ice requires the formation of surface steps, and there are at least two mech-

anisms that produce them. The first mechanism is associated with natural dislocations that occur
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in the crystal lattice and can outcrop on the surface. Dislocations provide permanent step sources,
the theory of which originated with Burton et al. (1951). This mechanism appears to control the
growth of newly formed crystals (Harrington and Pokrifka 2021) and crystals grown at low super-
saturation (Nelson 2001). The second mechanism is the nucleation of two-dimensional steps on
the crystal surface (step nucleation). This mechanism occurs on facets that have large defect-free
areas, and appears to control the growth of larger crystals with distinct habits (Nelson and Knight
1998; Harrington et al. 2019). Indeed, Frank (1982) points out that thin crystals are only possible
if steps nucleate at the crystal edge. Step nucleation is strongly dependent on the supersaturation
immediately above the surface (surface supersaturation, sy, r), with very weak growth at s, ¢ val-
ues below some critical supersaturation, and faster growth once the critical supersaturation has
been exceeded. While both theories have been developed in detail, an approximation for « that

encapsulates both growth mechanisms was provided by Nelson and Baker (1996),

Ssurf M Schar(T) M
a(ssurfa T) % S ‘har(T> tanh ssui’f (1)

where s.,-(T) is a temperature-dependent “characteristic” supersaturation that describes the

supersaturation-dependence of surface-kinetic mediated growth, and M is a parameter that de-
scribes the surface growth mode. The adsorption efficiency () is thought to be near unity (Nel-
son 2001), which we will assume. Convenient polynomial fits to values of s, derived from data
(Harrington et al. 2019) are used in this study and are available from a data archive (see our data
statement). A value of M =1 is consistent with the theory of dislocation growth, whereas a value
of M > 10 is suitable for step nucleation. In general, o rises commensurately with sg,,r, and the
rate of rise is controlled by M (Zhang and Harrington 2015, see their Fig. 1). The evidence above

suggests that M = 1 may be appropriate for the growth of smaller crystals in numerical cloud mod-
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els, whereas M = 10 may be more applicable to the growth of larger crystals with well-defined
habits.

The above form of o has been most often used in models of faceted crystal growth requiring
complex numerical solution methods (Nelson and Baker 1996; Wood et al. 2001). However, it is
possible to include the above model for & in theories suitable for use in Eulerian cloud models
(MacKenzie and Haynes 1992; Zhang and Harrington 2014). The theory of Zhang and Harrington
(2014) combines the surface boundary conditions for faceted ice with the diffusive fluxes from
the capacitance model, thus allowing for the calculation of the deposition coefficients using Eq. 1.

The resulting growth equation has the same general form as the capacitance model,

cil—l? =4nC(c,a)PegsiDesr(T,P,a,c, 0y, 0), )
where p,, is the ice equilibrium vapor density, s; is the supersaturation, C(c,a) is the capacitance,
and ¢ and a are the crystal semi-dimensions that are referenced to the prism and basal faces of
hexagonal ice, respectively. The combined effects of vapor and thermal energy diffusion along
with surface kinetic effects (o, and o) enter into the growth equation through an effective diffu-
sivity (D, ) that also depends on size and shape (see Zhang and Harrington 2014, their Eq. 15).
The a- and c-axis lengths define a spheroid that is used as a surrogate for crystal shape. Spheroids
are not meant to exactly represent crystal shapes, but rather to provide equations for two crystal
dimensions instead of one dimension (see below).

Predicting the change in the crystal semi-dimensions (a and c) requires equations for the evolu-

tion of the axis lengths. Faceted crystals often have steps that form near crystal edges where sy, ¢

is greatest, in this case the ratio of the ¢ and a axis growth rates is (Nelson and Baker 1996),

de _ dc _ . ding T/¢—1

de _ G _ _ 3
da o  dinv T T/ 2 )
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where the right-most form can be derived using the volume (4/ 3ma®c) and aspect ratio (¢ = c/a)
of a spheroid. Current habit-evolving cloud models (Hashino and Tripoli 2007; Harrington et al.
2013) use a different form of dc/da rooted in the work of Chen and Lamb (1994), however this
equation produces incorrect growth when variable deposition coefficients are used (Harrington
etal. 2019). The Chen and Lamb (1994) expression is replaced with Eq. 3 in the parameterizations
developed below.

Secondary habit features that appear at high supersaturations, such as dendritic branching and
hollowing, cannot be modeled explicitly. These features are frequently treated through an “ef-
fective” particle density (p,) that is lower than the bulk density of ice (Miller and Young 1979;
Thompson et al. 2008). Chen and Lamb (1994) hypothesized that one could treat the volumetric
increase in ice crystals with a deposition density (pg.,) that mimics the spatial gaps caused by

branching and hollowing,

v 1 dm
dt _pdep dt’

“4)
The above equation, when used in combination with Egs. 1, 2, and 3 produces crystal axis lengths,
effective densities, and fall speeds that compare well to wind tunnel measurements of columnar
and dendritic ice crystals grown at liquid saturation. The theory also compares well to hexagonal
model solutions for crystals grown at low ice supersaturations, and to measurements of crystals
grown at low pressures (Harrington et al. 2019).

While the above model provides a good approximation for faceted growth, care should be ex-
ercised when applying these theories in general. It is important to bear in mind that the surface
growth mechanism can change in time. Evidence suggests that ice crystals grow by dislocations
(M = 1) when they are relatively small and at low supersaturations. However, at higher supersatu-
rations step nucleation (M = 10) is thought to control the growth since it is otherwise not possible

to produce thin crystals (Frank 1982; Nelson and Knight 1998; Harrington et al. 2019), though
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quasi-liquid layers (QLL) are also important (Neshyba et al. 2016; Sibley et al. 2021). Ice crystals
are known to have stacking faults which reduce the nucleation barrier for surface steps (Ming et al.
1988), and Nelson and Baker (1996) have suggested modeling this growth with M ~ 3 in Eq. 1.
Crystals can have both slower and faster growing regions (Gonda and Yamazaki 1984), and facets
can grow along the surface instead of outward (Gonda and Yamazaki 1984; Nelson and Swanson
2019). Faster growing (rough) regions can starve slower growing facets of water vapor, leading to
stagnated growth rates (Harrington and Pokrifka 2021). The grain boundaries in polycrystalline
ice are sources of dislocations that may cause rapid growth (Pedersen et al. 2011). Mesoscopic
surface roughness has been measured on many crystals (Neshyba et al. 2013; Magee et al. 2014),
but the scale of these features is generally larger than the steps that influence growth, and some of
these measured crystals stop growing entirely (Magee et al. 2014). Unfortunately, measurements
of many of the above growth modes are scant and theoretical models are generally lacking.

It is also important to keep in mind that spheroidal shapes are an approximation for two crys-
tal dimensions only. It is not clear how complex crystal morphologies should be treated. For
instance, it has been shown that ellipsoids are more accurate than spheroids as a representation
of aggregate shapes (Jiang et al. 2019; Dunnavan et al. 2019). Complex growth morphologies,
such as capped columns and the polycrystalline forms that occur at low temperatures (e.g. planar
polycrystals, tetragons with side planes, scrolls, and rosettes) provide other compelling examples.
These growth forms suggest that multiple axes may be needed to characterize the crystal shape,
and since these crystals are faceted they can be described by faceted growth kinetics. Though
predicting the precise shape of these crystals is beyond the capabilities of any current theory, it
may be possible to treat the overall influence of surface kinetics on mass growth. Zhang and Har-
rington (2015) and Harrington et al. (2019) have shown that the overall influence of attachment

kinetics on the growth of columnar and planar crystals can be treated with an equivalent volume
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sphere and a particle averaged deposition coefficient. Since columnar and planar crystals have
very different deposition coefficients for each crystal facet, more complex crystals may also be
amenable to treatment with an average deposition coefficient. Indeed, Pokrifka et al. (2020) found
that particle-average deposition coefficients characterized most of the growth of small ice crystals

at temperatures below -40°C.

a. Closed-Form Approximation of the Deposition Coefficient

Calculating the deposition coefficients requires the surface supersaturation (s, r) for each crys-
tal axis (Eq. 1), however sy, also depends on the gas-phase vapor diffusion rate. Consequently,
squrf for each crystal axis depends strongly on o (see Zhang and Harrington 2014, their Eq. 9).
The problem is transcendental, requiring numerical solutions that are too costly for use in model
parameterizations (Zhang 2012). It is therefore imperative to develop an approximate, yet accurate
method to solve for sg,,¢ in closed-form.

The strong sensitivity of o to sg,-r is demonstrated in Fig. 1 by solving Eq. 9 of Zhang and
Harrington (2014) for a planar crystal with an aspect ratio of five, and an a-axis semi-length of
86 um that is growing by step nucleation (M = 10) at a temperature of -15°C and a pressure of
500 hPa. When the ambient supersaturation (s;) is low, step nucleation is inhibited and the surface
supersaturation is nearly identical to the ambient value. As the ambient supersaturation rises,
growth by step nucleation commences thus keeping sy, s near s¢j,,. The surface supersaturation
rises slowly with further increases in s; because increasing growth, through substantially rising
deposition coefficients, keeps sy, r low. The rise in s, r again becomes commensurate with s; once
« reaches unity, however, this occurs at supersaturations that are not realized in the atmosphere.
The strong sensitivity of a to changes in sy, s indicates why a closed-form parameterization of

o 1s difficult to achieve: Calculating the deposition coefficient requires a quantitative method to
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relate sy, ¢ to the ambient supersaturation for particles of any shape and size, though the equations
for o are extremely sensitive to any change in sy, r. On the other hand, the results shown in Fig. 1
provide a hint for developing a closed-form parametrization: The variation of s, s with s; has a
similar functional form for both the a- and c-axes, suggesting that a scaling law may exist that
relates the two quantities. Moreover, the form of the equation for « itself (Eq. 1) suggests seeking
scaling laws that exploit ratios of a measure of supersaturation with s.z,.

Since our approach is empirical, we tested a number of different scaling relationships to calculate
Ssurf- Since sg,r¢ for each axis depends on « itself, one possibility is to simply set ¢ to unity in the
equations for sg,-¢ for each axis, and to scale the resulting equation with s.,,. Rearranging Eq. 9

of Zhang and Harrington (2014) and setting & to unity for the a and c axes gives,

! where L ac v
Sdi = §— =
diff.a 111, “~ Ca(c,a) 4D,
1 a® Vy
, = 5 h Li=———— 5
Sdiff.c ST L where = Cale.a) Dy’ (5)

In the above equation, s; is the ambient supersaturation, D,, is the vapor diffusivity in air, v, is the
mean speed of a vapor molecule, L, and L. are unitless quantities that depend on the crystal geom-
etry, and Ca(c,a) is the capacitance evaluated one mean free path from the surface. The quantities
Sdiff,a and sg;rr - are the surface supersaturations over the a and ¢ axes when o, and o are unity,
and we therefore define these as diffusion-limited surface supersaturations. Our empirical testing
showed that, over a relatively large range of ambient supersaturations, the surface supersaturation
scales with Scpqr/Sqi rr for a given axis. The form of that dependence can be well approximated

with a power-law,

B
Sch 1—
Ssurf ~ Spwr = Sdiff (s;;f) = Sut " Shar (6)

where the exponent, 3, can be found by fitting to the exact calculation (Fig. 2). Simulations that

we conducted indicate that the value of 3 is relatively insensitive to the size and aspect ratio of the
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crystal. This result may be due to the inclusion of length and aspect ratio information through the
variables L, and L.. This makes the above equations ideal for parameterization development.

The above approximation increasingly deviates from the actual surface supersaturation when
approaching the low and high s; limits, and therefore must be corrected. As s; rises & eventually
reaches unity and the surface supersaturation begins to climb away from the approximate value
(a-axis in Fig. 2). As the supersaturation declines and s, is approached, surface kinetics begin
to dominate the growth process and s, s declines rapidly, eventually becoming the same as the
ambient supersaturation (blue dashed lines on Fig. 2). In order to correct the approximation for
these limits, we first correct for the low supersaturation limit by taking the minimum between s,

and s;,

Slim = min(spwrasi)- (7

This limited form of the power-law approximation deviates from the actual surface supersaturation
only in the vicinity of s, and at high supersaturations; these deviations are indicated by dashed
circles on Fig. 2. The deviation of s, from s.,, in these regions, which we call residuals, have
consistent behavior that depends fundamentally on the ratio of sy;7¢ /Schar» as is shown by the black
lines in Fig. 3. The size and aspect ratio dependence of the residuals occurs because of the length-
scales, L, and L., that define sg4; ¢ /Schar- The maximum value reached by the residuals does not
vary with the size or aspect ratio of the crystal (not shown). We fit the residuals as a function of
the sqirr /Ssur r, so that the parameterization becomes,

Sdi Sdi
ﬂ%M—FRz—Ru, (8)
Ssurf Slim

where R; and R, are the residuals shown in Fig. 3. Note that the sign of R; and R, differ because

the absolute value of the residual is plotted in the figure. Both residuals can be well approximated
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with a similar power-law form that convolves rising and decaying functions,

$ s -\ Pl N\ P2
Rl = Rmax,l( dlff) (i> min ( il ) ,1 R
Spwr Spwr Spwr

) ) nl ) n2
Re = Ruaxu (S"’ff ) (M> (max [o,sd’ff —1]+1> . )
Spwr Slim Slim

The results shown in Fig. 3 indicate that the maximum in each residual curve, R4y and Ryqyx u, 1S

nearly constant, which we assume. The power-law exponents, pl, p2, nl, and n2, are determined
by least-squares fitting. Examples of the residual fits for the a-axis of a planar crystal with an
aspect ratio of 0.1 are shown by the blue dashed lines in Fig. 3. While the fit is not perfect, the
small deviation from the actual curves produces very low errors in the modeled growth rates (see
below). The surface supersaturation for a given axis can now be calculated approximately by

rearranging Eq. 8,

Sdiff . (10)
Sdiff/Stim +Ri — Ry

Ssurf ~

Each term in the above equation can be calculated based on the ambient temperature, pressure, su-
persaturation, and crystal axis length since the crystal geometry enters into the calculation through
sqaiff- This equation provides an approximate closed-form solution to the calculation of s, s and,
therefore, the deposition coefficients (Eq. 1), for each crystal axis.

An advantage of the above approach for calculating sy, is that the main fitting coefficients
(B, Ruax.1s Rmaxu> p1, p2, nl, and n2) do not depend on crystal size or geometry. However, the
approximation does depend on the growth mechanism through the parameter M in Eq. 1. We
therefore repeated the above fitting procedure using integer values of M ranging between unity
(dislocation growth) and 15. Naturally, the fitting coefficients change substantially with different
values of M, however the behavior of the coefficients themselves is regular and can be fit with up

to a tenth-order polynomial in M (Fig. 4). The coefficient values for Egs. 6 and 9, along with the
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polynomial fits to the coefficients, and code to compute sy, s are available from a data archive (see

our data statement).

b. Single-Particle Tests of the Deposition Coefficient Approximation

In order to test the accuracy of the o approximation described above, a large number of simula-
tions were conducted against accurate benchmark calculations with the iterative solution method
used by Zhang and Harrington (2014). Simulations were done for individual crystals covering a
wide range of temperatures (0 to -40°C), pressures (1000 to 100 hPa), and supersaturations (near
0% to liquid saturation). We conducted simulations using initially spherical crystals with a ra-
dius of 10 um, and the crystals grew for a time ranging from 5 to 30 minutes. In general, the
approximate calculation of o produces accurate solutions to the mass and axis ratio evolution. For
example, it is not possible to visually distinguish between the approximate and accurate solutions
for the a and ¢ axes of crystals grown for 10 minutes over a range of ambient supersaturations at
a temperature of -15°C and a pressure of 500 hPa in Fig. 5. The level of accuracy is high regard-
less of whether the crystals grow by step nucleation (M = 10), which has a strong supersaturation
dependence to the deposition coefficient, or a more efficient mechanism with M =3 or M = 1
(dislocations). This accuracy is due entirely to the prediction of the deposition coefficients, as
shown in Fig. 6. Relative errors of around 10% can occur for the minor crystal axis as & decreases
with supersaturation (yellow and red curves, Fig. 6a), however these errors have only a small influ-
ence on the minor axis growth rate. The accuracy in the estimates of the deposition coefficients is
due, primarily, to the accuracy in the calculation of s, ¢, as is clearly shown in Fig. 6b using step
nucleation as an example: The surface supersaturation calculated with the approximation remains
near the ambient value until s; approaches the characteristic value. At this stage, step nucleation

begins and sy, s decreases due to vapor uptake at the crystal surface. Further increases in s; cause
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a slow rise in sy, since step nucleation increases, thus increasing the vapor uptake rate and the
deposition coefficient.

The aspect ratios of single crystals are strongly dependent on temperature, and the approximate
model of the deposition coefficients captures this dependence (Fig. 7). These simulations show
the a- and c-axis lengths and deposition coefficients after 10 minutes of growth using dislocations
(M = 1) and step nucleation (M=10). Each simulation was conducted at a constant temperature (-2
to -40°C), a pressure of 500 hPa, and a relatively low supersaturation (5% of liquid saturation).
A low supersaturation was used because errors are largest when the supersaturation is low. The
simulations show that the crystal a and ¢ axes after 10 minutes of growth are well captured by
the approximate model for both dislocation and step nucleation growth. Small deviations (relative
errors less than 6%) appear in the axis lengths after 10 minutes of growth when step nucleation
growth is assumed. The approximate model also captures the cessation of axis growth when s, ¢
falls substantially below s, for a given axis length (at temperatures below -12.5°C for the c-axis
and below -19°C for the a-axis). Indeed, at temperatures below -20°C crystal growth is effectively
suppressed at the supersaturations used in these calculations, since the s, are substantially larger
than sg,,r (not shown). Note that the cessation of dimensional growth has been observed in the
laboratory (Nelson and Knight 1998; Magee et al. 2014) and may be responsible for extremely thin
crystals that are sometimes observed (Jensen et al. 2008). The errors shown in these calculations
are representative of the approximate form of sy, s across a wide range of temperatures, pressures,
and supersaturations. In order to illustrate the degree to which attachment kinetics affect the
growth rates, calculations using the Chen and Lamb (1994) adaptive-habit method are also shown.
The adaptive habit method assumes that growth is diffusion-limited, leading to much stronger

growth of the a- and c-axes, and to generally thinner crystals.
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3. Deposition Coefficient Parameterization

Given the accuracy of the approximate form of o, we next develop parameterizations for bin and
bulk microphysical models. Eulerian bin microphysical parameterization is relatively straightfor-
ward given that bin widths are narrow enough to perform deposition coefficient calculations using
the bin-average crystal dimensions. Bulk parameterization requires a different approach since the
growth rates are integrated analytically across a wide range of crystal dimensions. We discuss each
parameterization in turn and then describe tests of the parameterizations against a Lagrangian bin

microphysical model.

a. Bin Microphysical Model Parameterization

Eulerian bin microphysical modeling is computationally costly, but has the advantage that no
assumptions are made about the shape of the size distribution. However, Eulerian bin models do
suffer from numerical problems such as artificial distribution broadening caused by numerical dif-
fusion on the Eulerian mass grid, and on the spatial grid in Eulerian cloud models (Morrison et al.
2018) though this latter effect appears to be small in some cases (Pardo et al. 2020). The Eulerian
bin microphysical framework from our prior work (e.g. Harrington et al. 1999) is expanded here to
use variable deposition coefficients, and to predict two axis lengths and an effective density con-
sistent with the approach of Harrington et al. (2013). The bin model uses the method-of-moments
approach for mixed-phase microphysics (Reisin et al. 1996) and predicts the number and mass
mixing ratio for each of 35 Eulerian size bins, with bin edges defined by mass doubling. The 35
bins span an equivalent volume diameter range of 3 to 4030 pwm, which is sufficient for the growth
processes modeled here.

The transport of number and mass mixing ratio among bins is treated in a semi-Lagrangian

sense following the “top-hat” method advocated by Stevens et al. (1996). The top-hat method

15



330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

for growth and the remapping of the particle properties among bins assumes that the distribution
is flat within a bin (Fig. 8). The lower and upper mass edges (m;(¢) and m,(t), respectively)
of the top-hat are defined following the procedure in Stevens et al. (1996), and the new mass
edges at the end of a time-step (m;(f + At) and m, (¢ + At)) are determined from the solution to
the growth equation. Though the capacitance and the deposition coefficients vary with the crystal
dimensions, the growth equation can be integrated forward in time with relatively low error using
some simplifying approximations (Chen 1992; Harrington et al. 2019): If the time-step is less than
about 20 seconds, Eq. 2 can be integrated assuming an equivalent volume sphere (radius r,4) with
the shape factor (¢.q = C(a,c)/req), particle effective density (p,), and the effective diffusivity

(D rr) assumed constant over the time-step (A7),

3/2
3o D 5i At
2/3+ v Geq T%Peq S ’ (11)

3pp
where @, = [3/ (47r)]1/ 3 originates from the definition of the equivalent volume spherical mass

m(t+At) = |m(r)

(m=4/ 37rr2qpp). The deposition coefficients are computed using the average a- and c-axes for
a given bin. This equation (Eq. 11) is similar to Eq. A2 in Stevens et al. (1996) except that
the integral forcing term 7 is written as the time-step averaged supersaturation, s;. The time-step
averaged supersaturation is computed from the supersaturation forcing equation following Wu
(1999). The method is the same as that of Stevens et al. (1996) and mass closure is enforced
(Tzivion et al. 1989), thus ensuring mass conservation.

Equation 11 is used to evolve the top-hat mass edges in time, and remap distribution properties
among the bins. In the example shown in Fig. 8, the resulting growth causes the top-hat distribu-
tion to straddle two bins. The number concentration within bin-k (V) is redistributed based on the

fractional area of the top-hat that resides within a given bin while preserving the total concentra-
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1 my 1 M1 1 my My —my my — My |
Ny =— Nydm = —/ Nid —/ Nydm = N, N, , (12
k Am/ml kam Am Jm, k m+Am M1 ke T Am N Am (12)

where Am = m,, —m; and m, and m; are the values at the end of the time-step. The right-most
term in the equation above represents the concentration that is remapped to the next bin (shown
as the blue shaded region in Fig. 8) whereas the left-most term represents the concentration that
remains in the original bin (unshaded region). This approach is also applied to the mass moment,
thus conserving mass during vapor growth.

Predicting a second axis length and effective density requires transporting information on aspect
ratio and volume as well as number and mass. Jensen et al. (2017) showed that aspect ratio and
effective density can be tracked accurately on the spatial grid of an Eulerian cloud model if mixing
ratios of total volume and total volume times aspect ratio are conserved. We follow this approach

here and conserve the moments,

1 nmy 1 nmy,
Vii = —/ N Vdm ~ / Ny mdm
Am

my ppAm Jm,
1 ny r ny
b, = — N.Vodm ~ — N, mdm 13
k At o Vo oA I k (13)

where V), and ®;, are the total volume and total volume times aspect ratio in bin-k. General analyt-
ical expressions for the co-variation of the effective density and aspect ratio with size do not exist,
and we therefore use bin-averaged quantities (p, and ¢). This approximation allows us to write
the volume as V = m/p,, and therefore the above moment equations reduce to variations of the
mass-moment, which are shown as the right-most equations (Eq. 13). This approach is attractive
because the mass-moment remapping can be used for V; and ®;, however it requires estimates of
pp and ¢ at the end of a time-step.

There are several procedures that could be invoked to estimate p, and ¢, and each approach

has its limitations. However, testing shows that the following approach is most accurate. Since
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the change in mass is known, we calculate the volume of the upper (V,) and lower (V;) top-hat
mass edges at the end of a time-step using Eq. 4. We then estimate the new particle density by

preserving the zeroth moment, fn'f[ " Nydm = f‘g” NippdV which implies that

_my—my
B Vu_Vl ‘

Pp (14)
This method produces average effective densities that are higher than Lagrangian bin microphys-
ical calculations (see §4 below). However, it provides a better overall match with the ice water
content, axis lengths, and fall-speed, quantities that are arguably more critical to capture accu-
rately. Finally, we can use the change in the average volume to estimate the change in the average

aspect ratio directly from Eq. 3 by assuming that the ratio I'/¢ is constant over a typical time-step

(less than 20 s), which is usually a good approximation.

b. Bulk Microphysical Model Parameterization

Treating variable deposition coefficients in a bulk microphysical model is less straightforward,
since the deposition coefficients vary considerably across the size distribution. Nevertheless, our
prior work shows that it is possible to accurately parameterize the influences of constant deposition
coefficients (Harrington et al. 2009). In this section, we use this approach to extend the adaptive
habit parameterization of Harrington et al. (2013) and Jensen et al. (2017) so that it is consistent
with variable deposition coefficients. We also provide an approach for the general use of variable
deposition coefficients in any bulk model.

Including variable deposition coefficients in a bulk model ultimately involves approximating the
integrated mass growth rate, which gives the change in the ice mixing ratio (g;) in time,

dgi _ 1 [~dm(a)

dt — pa.Jo dt

n(a)da (15)
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where p, is the air density, the mass is a function of a length-scale (a), and n(a) is the gamma
distribution. The length scale we use here is the a-axis length of a spheroid as defined in Harring-
ton et al. (2013). This integral cannot be solved analytically for variable deposition coefficients
because the effective diffusivity (D, ry) varies with size. Harrington et al. (2009) showed that when
the deposition coefficient is constant, the above integral can be approximated accurately if D, sz is
calculated at an appropriate “kinetic” length-scale. Zhang (2012) showed that this approach can
be extended to variable deposition coefficients if the ratio of the second and first moments of the

distribution are used to define the kinetic length scales for the a- and c-axes,

- _ Jyda’n(a)da  T(v+2) C(v+2)
= < an(a)yda  "T(v+1) T(v+1)

In the above equation, Vv is the distribution shape and the characteristic length scale a, is used

(16)

ax and ¢y =cp
in the gamma distribution definition. Both a, and ¢, are directly related to the number-weighted
mean a- and c-axis lengths (for details see Harrington et al. 2013). The kinetic length-scales
are used to calculate representative values of the deposition coefficients (¢, and @), which are
then used to calculate a representative value of D, 1t = Deyp(Oq, Oc, Agin, Ckin, T, P). When these
approximations are used in Eq. 2 they allow us to write Eq. 15 as,

W L4 CD; pug s a7
where N; is the ice concentration and C is the distribution-averaged capacitance. The above equa-
tion allows us to calculate changes in ice mass mixing ratio subject to the influences of variable
deposition coefficients, and it should be generally applicable since the form is nearly identical to
that used in most bulk microphysical schemes. In addition to using &, and &, in D, s to estimate
the overall effects of surface kinetics on mass growth, we also use these values in Eq. 3 to evolve

the average a- and c-axis lengths following the procedure in Harrington et al. (2013). These mod-

ifications make the bulk adaptive habit microphysical model (Harrington et al. 2013; Jensen et al.
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2017) consistent with faceted growth and variable deposition coefficients. In the next section, both

the Eulerian bin and bulk habit models are tested against Lagrangian bin microphysics.

4. Parcel Model Testing against Lagrangian Microphysics

The parameterizations are implemented into a parcel model framework (Sulia and Harrington
2011) and are tested against a Lagrangian bin microphysical model that includes variable depo-
sition coefficients (Zhang and Harrington 2015). Parcel models are idealized in that only parcel
lifting at either a constant or sinusoidally varying updraft speed is used to provide the supersatu-
ration forcing. No mixing with the environment occurs, and all of the hydrometeors move with
the parcel. However, the idealized nature of parcel models makes them useful for testing micro-
physical schemes since complicating processes (such as mixing and sedimentation) are ignored.
The influence of growth processes alone can therefore be isolated, and biases and errors are easier
to detect. The parcel model used here (described fully in Zhang and Harrington 2015) solves dif-
ferential equations for the temperature, pressure, height, and total water mixing ratio, along with
the microphysical equations. The Lagrangian bin microphysics is configured with 100 ice crystal
bins for which the a- and c-axes, mass, and effective density are tracked. Since the growth of
each bin is followed explicitly, the Lagrangian model results are used as the benchmark against
which the Eulerian bin and bulk solutions are tested. The parcel model in each case is run for 4000
seconds and initialized with a constant updraft speed, initial temperature, and initial pressure that
varies for each simulation (described below). The initial relative humidity with respect to liquid
for all simulations is 0.95, and this allows us to explore diffusion and kinetics-limited growth in
a single simulation: High supersaturations and o are produced early in the simulations, whereas
low supersaturations and & occur later in the simulations. Liquid water is not included in the sim-

ulations and ice is nucleated instantaneously at the first time-step, which removes complications
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that mixed-phase processes and nucleation feedbacks introduce. The instantaneously nucleated
ice is spherical with an average initial radius of 10 um for all the models. This initial ice spectrum
is distributed over the the bins of the Lagrangian and Eulerian models during the first time-step
using a gamma distribution with a shape of v = 4. Note that the results are not highly sensitive
to the assumed shape of the initial ice spectrum. A distribution shape of v =35 is prescribed for
the bulk model because this value produces the best match with the Lagrangian simulations, and
therefore provides an estimate of the minimum error associated with the parameterization. Depo-
sition coefficients in all models are predicted with the parameterization described above using step
nucleation (M = 10) for two reasons: First, the development of crystal habits is thought to be due
to step-nucleation mediated growth (Frank 1982). Second, step nucleation is the most error-prone
growth process to model due to the strong supersaturation dependence of «.

Parcel model simulations were conducted for a range of constant vertical motions (from 0.1 to
1 m s~!), a range of initial temperatures from -4 to -45 °C, and a range of ice concentrations from
10 to 500 L. Vertical motion primarily alters the supersaturation forcing term, and since errors
tended to be somewhat larger at lower vertical motions we only show results for a fixed vertical
motion of 0.25 m s~!. In the analyses presented below, we first provide time-series results from
a selected set of simulations that are representative of the ensemble of simulations. These results
are followed by analyses of simulation-averaged results over a range of initial temperatures, which

provide a broader picture of the parameterization accuracy.

a. Time-series Results

Time-series results for two sets of simulations conducted at high (-15°C and 850 hPa) and low
(-45°C and 300 hPa) respective initial temperatures and pressures are shown in Fig. 9. For these

simulations, s¢,, and pge, were held constant at their initial values so that temperature feedbacks
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to the growth through o and the density do not occur. Consequently, any errors that appear should
be due primarily to the evolution of the particle axis lengths. The constancy of s¢,, and pge 18
relaxed in the next subsection.

For all of the simulations (Fig. 9a), the supersaturation rises and then declines depending on
when ice crystal growth dominates over the supersaturation production caused by vertical lifting.
At -15°C and a concentration of 10 L™! the supersaturation rises above that of liquid, but as
noted above we have neglected liquid-phase microphysics. Note that both the Eulerian bin and the
bulk microphysical schemes capture the supersaturation evolution, though it is over-estimated in
the bulk model, and under-estimated in the Eulerian bin model. This result illustrates the reason
we ignored liquid-phase microphysics for these simulations: Not only does liquid-phase micro-
physics introduce another complicating process, but liquid-phase microphysics would limit the
supersaturation rise and therefore may not expose differences in model performance. Note that the
supersaturation predicted by the Eulerian bin model is nearly identical to the Lagrangian solution
at the higher ice concentration, however the bulk model prediction remains slightly high.

The ice water content (Fig. 9b) rises continuously with time, but begins to asymptote as the
supersaturation approaches steady-state. This is well predicted by both the Eulerian bin and the
bulk models, though there are small differences that are difficult to discern in the figure: Since
the bulk model over-predicts the supersaturation, it tends to slightly under-predict the ice water
content (since total mass is conserved). The semi-axis lengths averaged over the size distribu-
tions (Fig. 9c and d) are consistent with the behavior expected at each temperature. At -15°C the
average major semi-axis length (a-axis) increases rapidly reaching nearly 800 um when the con-
centration is low (10 L~!) whereas the minor semi-axis (c-axis) remains small. This growth is
consistent with planar dendrites, and it is dependent on the ice concentration. The reason for the

concentration dependence is the lack of a liquid phase: Including a liquid-phase would keep the
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supersaturation near that of liquid saturation, thus constraining the growth and limiting the ice
concentration dependence. At -45°C columnar crystals are produced with much smaller major
semi-axis dimensions (up to 150 um) than crystals grown at the higher temperature. The Eulerian
bin and bulk models capture the evolution of the average major semi-axis length with relatively
high accuracy. The average minor semi-axis, in contrast, is only well-predicted by the Eulerian
bin model. The bulk microphysical model either over- or under-predicts this axis length by 14%
at -15°C and 30% at -45°C.

While the distribution shape is fixed in the bulk microphysical model, it varies with time in the
Eulerian and Lagrangian bin models. The Lagrangian bin model produces a rapid narrowing of
the crystal size spectrum (Fig. 10), an expected result that Sheridan et al. (2009) showed is due
to the faster habit development and growth of initially smaller particles. The Eulerian bin model
captures the evolution of the distributions for both axis lengths in that the distribution mode is
relatively well predicted. The a-axis distribution appreciably narrows similarly to the Lagrangian
model, however the c-axis distribution width remains broader and is skewed towards the lower
end. This result is due to the use of an average aspect ratio for each bin.

The Eulerian bin and bulk microphysical models approximate the manner in which the deposi-
tion coefficients, the effective density, and the aspect ratio are treated during growth, and some
variables will thus be predicted with lower precision, a consequence that is clearly shown in
Fig. 11. The effective density is relatively well predicted by the bulk microphysical model at -
15°C, however it is slightly under-predicted at -45°C. It is possible to produce a better prediction
of the density at lower temperature, but doing so causes the fall speed error to become greater than
the 28% relative error shown in Fig. 11c. In contrast, the average effective density predicted by the
Eulerian bin model is generally too high, though the fall speeds are predicted with a relative error

of less than 10%. It is possible to predict the density more accurately by using mass moment con-
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servation instead of the zeroth moment (Eq. 14). However, doing so leads to particles with smaller
a- and c-axis lengths, and fall speeds that are much lower and with larger error (over 20%). The
key point is that improving the prediction of one variable will necessarily introduce errors in other
variables, and we choose to minimize the error in the ice water content and fall speed. It is also
worth noting that the accuracy of the Eulerian bin parameterization is not strongly dependent on
bin resolution. Tests with bin spacing reduced by half and one quarter produced nearly indistin-
guishable results, and so they are not included on the figures. The insensitivity to bin resolution is
due to a few factors. First of all, mass doubling is used to define the bin edges, and this leads to
increasing bin widths for larger crystals. Therefore, reducing the bin width has less of an effect at
larger sizes. Larger crystals also have the lowest densities, and accurate predictions of both aspect
ratio and density are difficult to achieve when an average density is estimated for each bin. The
relative insensitivity of the parameterization to bin width is a disadvantage, in that higher accuracy
cannot be attained by reasonable refinements to the bin width. However, it is also an advantage in
that using smaller numbers of bins will not strongly decrease the accuracy of the scheme.

In contrast to the effective density and the fall speed, the distribution-averaged deposition co-
efficients are relatively well predicted by each model. The deposition coefficient for the major
semi-axis is always greatest, and this is expected: The surface supersaturation maximizes near
regions of high curvature, such as at narrow end of a plate or a column, thus leading to larger .
Note that o for the major semi-axis begins above 0.1 when the supersaturation is high. Values of
a above about 0.1 do not cause strong reductions in mass growth (Gierens et al. 2003). Growth of
the major axis is therefore not strongly inhibited by surface kinetics early in the simulations, and is
driven primarily by gas-phase diffusion. In contrast, the deposition coefficient for the minor axis is
always below 0.1. The minor axis is therefore strongly inhibited by surface kinetics, and this is the

reason that the modeled crystals develop planar and columnar shapes over time. As the simulations
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progress, the supersaturation in each case declines and o for the major axis even decreases below
0.1 indicating that growth is increasingly inhibited by surface processes. The bulk and Eulerian
bin models capture these transitions remarkably well, especially given the strong supersaturation

dependence of step nucleation.

b. Simulation-Averaged Results

The above time-series results are illuminating, but a broader picture of the parameterization
results can be painted if we examine the various microphysical quantities, both averaged over the
course of the simulations and as a function of the initial temperature. In the simulations presented
below, we relax the assumption that the deposition density and the characteristic supersaturations
are fixed at their initial value. Simulations are shown for initial temperatures between -4 and -
40°C, a pressure of 850 hPa, and for three initial ice concentrations of 10, 50, and 500 L1, which
produces a wide range of average particle sizes and aspect ratios.

The simulation results show that both the Eulerian bin and bulk models predict the average ice
water content trend with temperature, and with small relative errors (less than 5%) at all con-
centrations and at initial temperatures below -10°C (Fig. 12a). The ice water content decreases
commensurately with temperature, as expected. Note that all the models predict a local minimum
in the predicted ice water content near -9°C at lower ice concentrations (N; = 10 L~ 1). The mini-
mum in ice water content is due to the isometric growth of the crystals near -9°C, which is much
slower than the columnar and planar growth that occur near -6 and -15°C, respectively (Sulia and
Harrington 2011). This result indicates that the Eulerian bin and bulk parameterizations can cap-
ture an important feature of habit-dependent growth, even though the relative error in the ice water
content is larger at higher temperatures: At initial temperatures above -10°C the relative error

reaches values of up to 14%.
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The Eulerian bin and the bulk models also capture the general temperature dependence of the a-
and c-axes of the crystals (Fig. 12c and d), with planar dendritic crystals that have low effective
density (Fig. 12b) predicted between temperatures of -10 and -20°C, and columnar crystals pre-
dicted at temperatures above -10°C. The effective density is well predicted by the bulk model at
temperatures above -20°C, however the Eulerian bin model tends to over-predict the effective den-
sity. These results are consistent with those of the last section, and while we could alter the model
to improve the effective density, the accuracy of the ice water content and the fall speed prediction
(Fig.13b) would then suffer. Though it is difficult to discern from the figure, the simulated crystals
are isometric at temperatures below -30°C with relatively high effective density. As pointed out
in Harrington et al. (2019), little data on s, exist at temperatures below -30°C, and crystals at
these temperatures are often polycrystalline. Given our limited knowledge we used a single s.j,,
for growth at low temperatures, leading to isometric crystals. Modeling either planar or columnar
growth at low temperatures, as was done in the subsection above, requires reducing s, for the
major axis, though little data is available to guide such a choice.

The Eulerian bin model predicts the average axis evolution with a high degree of accuracy in that
relative errors are less than 2%. In contrast, the bulk microphysical model tends to under-predict
both average axis lengths by up to 20%. The larger error in the axis lengths is due primarily
to the constant distribution shape, v, which fixes the spectrum with a greater breadth than that
simulated by the Lagrangian and Eulerian bin models. It is possible to improve upon the accuracy
with which the bulk average axis lengths are predicted by changing the distribution shape. For
instance, Fig. 13a shows that distribution shapes ranging between 3 and 6 produce average axis
lengths that encompass the Lagrangian model solutions. However, using much smaller or larger
values of v then increase errors in other quantities including the ice water content (not shown) and

fall speed (Fig. 13b). For instance, a value of v = 6 produces larger average axis lengths, which
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causes much larger fall speeds. However, at T < -20°C, a smaller value of v=3 also produces
larger fall speeds even though the crystal sizes are smaller. This result is due to the increase in the
effective density that occurs as Vv is reduced (not shown). A v value of 5 appears to produce the
best prediction of both the ice water content and the fall speed as compared to the Lagrangian bin
model. However, it is worth keeping in mind that these benchmark comparisons do not include
processes that will naturally broaden the size spectrum, such as differential vertical advection due
to sedimentation, mixing, aggregation, and ice nucleation. One could therefore argue that a smaller
value of v may be more appropriate for simulations in Eulerian cloud models.

The deposition coefficient parameterization developed above is general enough for use in any
bulk microphysical scheme. Harrington et al. (2019) have shown that accurate mass growth rate
calculations are possible if the growth rate is evaluated using the equivalent volume spherical
radius (r.,) and an average characteristic supersaturation (5.4,

% o % AT Teg Geg Def 10 (Schar)s Teq) Peq Sis (18)
where g.; = C/req is an effective shape factor, and D, [0 (Scnar), Teq] is the effective diffusivity
evaluated at r,, using a single o calculated with the average value of s.p,,-. In order to test the ac-
curacy of this approximation for bulk models, the simulations shown in Fig. 12 were recomputed
using Eq. 18 to calculate the mass growth only. Crystal shapes were still allowed to develop in
time using the @, and &, values for each axis. Since the evolution of the crystal a- and c-axes
is tied to changes in volume through the mass growth rate (see Eq. B26, Harrington et al. 2013),
the change in crystal mass evolution will be consistent with Eq. 18. Consequently, any errors in
the approximate mass growth rate should appear in the evolution of the crystal shapes and the ice

water content, however, the relative errors in those quantities was always below 1%. To illustrate

the low relative errors, Fig. 14 shows the simulation-averaged ice water content growth rate as a
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function of the initial temperature. The overall mass uptake rate from the bulk model that uses a
single o (Eq. 18) is nearly identical to the model that predicts both ¢, and ¢,. Note that the o
value calculated with the above approach falls between o, and .. The value of & tends to reside
nearest the value for the fastest growing axis, and this makes physical sense: During either planar
or columnar growth the major axis dominates the overall mass uptake by the crystals, and thus «
for this axis will control most of the growth. These results indicate that Eq. 18 provides a use-
ful approximation of the supersaturation-dependent deposition coefficient for bulk microphysical

schemes.

5. Summary and Concluding Remarks

Surface attachment kinetics are often treated in numerical cloud models with a constant depo-
sition coefficient. Such an approximation is only valid for a small range of conditions, and it is
inappropriate for faceted crystals, including crystals with small faceted structures such as dendrites
and the lacunae that occur with hollowed columns and plates. While theories for supersaturation-
dependent deposition coefficients consistent with the growth of faceted ice have been available for
many years, methods to connect those theories to the growth equations used in cloud models have
been lacking. Moreover, the numerical procedures needed to calculate the deposition coefficients
consistently with the equations for vapor growth are cumbersome and computationally costly. In
this work, we provide an efficient method for calculating the deposition coefficient. This approxi-
mate method produces small errors (less than 1%) relative to benchmark numerical solutions and
allows for the specification of different surface growth modes, therefore providing flexibility in
calculating o.

The approximate method for calculating the deposition coefficient was parameterized for Eu-

lerian bin and bulk microphysical models by making use of prior modeling methods. Parcel
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tests of the Eulerian bin and bulk schemes indicate that both models are capable of reproducing
temperature-dependent habit growth at low and high supersaturations, including the development
of low density planar crystals consistent with dendrites, and narrow columnar crystals consistent
with needles and hollow columns. Moreover, temperature-dependent features of the ice water con-
tent, such as a minimum near a temperature of -9°C, are reproduced by both bin and bulk models.
The ice water content is generally simulated with relatively low error by both models, though
errors can reach 14% at higher temperatures (above -6°C). Fall speeds and average axis lengths
are well predicted by the Eulerian bin model (relative errors < 10%), however effective density is
over-predicted. In contrast, the bulk model predicts the effective density with lower relative error,
but produces larger errors in the average axis lengths (up to 20%). Better axis length prediction
by the bulk model is possible by changing the distribution shape parameter (v), however doing so
can produce larger errors in the fall speed (over 20%). Using an equivalent volume radius sphere
and a single deposition coefficient can reproduce the growth rates of highly anisotropic crystals,
and therefore provides a method for including variable deposition coefficients in any bulk scheme.
It is worth noting that the present parameterization is perhaps most easily adapted to Lagrangian
super-particle schemes, where the properties of particles are tracked in a Lagrangian sense within
an Eulerian spatial framework (e.g. Shima et al. 2020)

Even though our focus is on ice crystal growth, for completeness we point out that sublimating
crystals can also be treated with the framework described in this manuscript, though with mod-
ifications. Sublimation causes the crystal surface to roughen rapidly (Magee et al. 2014), and
the sublimation coefficient appears to be near unity (Magee et al. 2011). Moreover, single crys-
tals become spheroidal during sublimation, and their aspect ratios remain approximately constant

(Nelson 1998).

29



653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

Acknowledgments. The authors are grateful for support from the National Science Founda-
tion under Grant #AGS-1824243 and for support from the U.S.Department of Energy’s Atmo-
spheric Science Program Atmospheric System Research, an Office of Science, Office of Biological
and Environmental Research program under Grants DE-SC0012827 and DE-SC0021001. Three
anonymous reviewers are thanked for their time and effort, and comments that improved the con-
tents of this manuscript.

Data Statement: Data tables for the fits to the surface supersaturation, and output from from the
calculations used to produce the figures are available from The Pennsylvania State University Data
Commons at https://doi.org/10.26208/f6q0-8p03. Fortran codes to calculate the characteristic and
surface supersaturation, and the deposition coefficients is also available through Data Commons

at https://doi.org/10.26208/s7de-et44.

References

Burton, W. K., N. Cabrera, and F. C. Frank, 1951: The growth of crystals and the equilibrium
structure of their surfaces. Philosophical Transactions of the Royal Society of London. Series A,

Mathematical and Physical Sciences, 243 (866), 299-358.

Chen, J.-P., 1992: Numerical Simulation of the Redistribution of Atmospheric Trace Chemicals
Through Cloud Processes. Ph.D. thesis, The Pennsylvania State University, University Park, PA,

16802, 342pp.

Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits:

Growth by vapor deposition. J. Atmos. Sci., 51, 1206—-1221.

Chen, J.-P., and D. Lamb, 1999: Simulation of cloud microphysical and chemical processes using a

multicomponent framework. Part II: Microphysical evolution of a wintertime orographic cloud.

30



675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

J. Atmos. Sci., 56, 2293-2312.

Chen, J.-P., and T.-C. Tsai, 2016: Triple-moment modal parameterization for the adaptive growth

habit of pristine ice crystals. J. Atmos. Sci., 73, 2105-2122.

Dunnavan, E. L., Z. Jiang, J. Harrington, J. Verlinde, K. Fitch, and T. Garrett, 2019: The shape

and density evolution of snow aggregates. J. Atmos. Sci., 76, 3919-3940.

Frank, F. C., 1982: Snow crystals. Contemporary Physics, 23 (1), 3-22, doi:10.1080/

00107518208231565.

Gierens, K., M. Monier, and J.-F. Gayet, 2003: The deposition coefficient and its role for cirrus. J.

Geophys. Res., 108(D2), 4069.

Gonda, T., and T. Yamazaki, 1984: Initial growth forms of snow crystals growing from frozen

cloud droplets. J. Meteorol. Soc. Japan, 62, 190-192.

Hallett, J., 1965: Field and laboratory observations of ice crystal growth from the vapor. J. Atmos.

Sci., 22, 64-69.

Ham, F., 1959: Shape-preserving solutions of the time-dependent diffusion equation. Quarterly of

Applied Mathematics, 17, 137-145.

Harrington, J., and G. Pokrifka, 2021: Approximate models for lateral growth on ice crystal sur-

faces during vapor depositional growth. J. Atmos. Sci., Early Online Release.

Harrington, J., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk
microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349-364, doi:10.

1175/JAS-D-12-040.1.

31



695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

M

712

713

714

X

5

Harrington, J. Y., R. Carver, and D. Lamb, 2009: Parameterization of surface kinetic effects for
bulk microphysical models: Influences on simulated cirrus dynamics and structure. J. Geophys.

Res., 114, D06 212.

Harrington, J. Y., A. Moyle, L. E. Hanson, and H. Morrison, 2019: On calculating deposition co-
efficients and aspect-ratio evolution in approximate models of ice crystal vapor growth. Journal

of the Atmospheric Sciences, 76 (6), 1609-1625, doi:10.1175/JAS-D-18-0319.1.

Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simula-

tions of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51, 45-75.

Hashino, T., and G. J. Tripoli, 2007: The spectral ice habit prediction system (SHIPS). Part I:
Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 2210-

2237.

Hindman, E. E., and D. B. Johnson, 1972: Numerical simulation of ice particle growth in a cloud

of supercooled water droplets. J. Atmos. Sci., 29, 1313-1321.

Houghton, H. G., 1950: A preliminary quantitative analysis of precipitation mechanisms. J. Atmos.

Sci., 7, 363-369.

Jensen, A., J. Harrington, H. Morrison, and J. Milbrandt, 2017: Predicting ice shape evolution in

a bulk microphysics model. J. Atmos. Sci., 74, 2081-2104.

Jensen, E., and Coauthors, 2008: Formation of large (~ 100 micron) ice crystals near the tropical

tropopause. Atmospheric Chemistry and Physics, 8 (6), 1621-1633.

Jiang, Z., J. Verlinde, E. Clothiaux, K. Aydin, and C. Schmitt, 2019: Shapes and fall orientations

of ice particle aggregates. J. Atmos. Sci., 76, 1903-1916.

32



716

7

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

Koenig, L., 1971: Numerical modeling of ice deposition. J. Atmos. Sci., 28, 226-237.

Lamb, D., and W. Scott, 1972: Linear growth rates of ice crystals grown from the vapor phase. J.

Crystal Growth, 12, 21-31.

MacKenzie, A., and P. Haynes, 1992: The influence of surface kinetics on the growth of strato-

spheric ice crystals. J. Geophys. Res., 97, 8057-8064.

Magee, N., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of
ice crystals pervasive across a wind range of ice crystal conditions. Atmos. Chem. Phys., 14,

12357-12371.

Magee, N., K. Spector, Y.-H. Lin, C. Tong, and J. BEATTY, 2011: Initial ice microparti-
cle sublimation measurements from the levitating upper-tropospheric environmental simulator

(LUTES). J. Atmos. Ocean. Tech., 28, 884— 890.

Miller, T., and K. Young, 1979: A numerical simulation of ice cyrstal growth from the vapor phase.

J. Atmos. Sci., 36, 458—469.

Ming, N.-B., K. Tsukamoto, I. Sunagawa, and A. Chernov, 1988: Stacking faults as self-

perpetuating step sources. Journal of Crystal Growth, 91, 11-19.

Morrison, H., M. Witte, G. Bryan, J. Harrington, and Z. Lebo, 2018: Broadening of modeled
cloud droplet spectra using bin microphysics in an eulerian spatial domain. J. Atmos. Sci., 75,

4005-4029.

Nelson, J., 1998: Sublimation of ice crystals. J. Atmos. Sci., 55, 910-919.

Nelson, J., 2001: Growth mechanisms to explain the primary and secondary habits pf snow crys-

tals. Philos. Mag. A., 81, 2337-2373.

33



737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

Nelson, J., 2005: Interactive comment on “‘supersaturation dehydration, and dentrification in arctic

cirrus” by B. Kacher. Atmos. Chem. Phys. Discuss., S, S257-S260.

Nelson, J., and M. Baker, 1996: New theoretical framework for studies of vapor growth and

sublimation of small ice crystals in the atmosphere. J. Geophys. Res., 101, 7033-7047.

Nelson, J., and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. J.

Atmos. Sci., 55, 1452-1465.

Nelson, J., and B. Swanson, 2019: Air pockets and secondary habits in ice from lateral-
type growth. Atmospheric Chemistry and Physics Discussions, 2019, 1-51, doi:10.5194/

acp-2019-280.

Neshyba, S., J. Adams, K. Reed, P. M. Rowe, and 1. Gladich, 2016: A quasi-liquid mediated
continuum model of faceted ice dynamics. Journal of Geophysical Research: Atmospheres,

121 (23), 14,035-14,055, doi:10.1002/2016JD025458.

Neshyba, S., B. Lowen, M. Benning, A. Lawson, and P. Rowe, 2013: Roughness metrics of

prismatic facets of ice. J. Geophys. Res., 118, 3309-3318, doi:10.1002/jgrd.50537.

Pardo, L., H. Morrison, L. Mchado, J. Harrington, and Z. Lebo, 2020: Drop size distribution
broadening mechanisms in a bin microphysics eulerian model. J. Atmos. Sci., Early online re-

lease.

Pedersen, C., A. Mihranyan, and M. Stromme, 2011: Surface transition on ice induced by the

formation of a grain boundary. PLoS ONE, 6, €24 373.

Pokrifka, G., A. Moyle, L. Hanson, and J. Harrington, 2020: Estimating surface attachment kinetic

and growth transition influences on vapor-grown ice crystals. J. Atmos. Sci., 77, 2393-2410.

34



758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in
an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos.

Sci., 53, 497-519.

Saito, Y., 1996: Statistics Physics of Crystal Growth. World Scientific, 179pp.

Sheridan, L. M., J. Y. Harrington, D. Lamb, and K. Sulia, 2009: Influence of ice crystal aspect
ratio on the evolution of ice size spectra during vapor depositional growth. J. Atmos. Sci., 66,

3732-3743.

Shima, S.-I., Y. Sato, A. Hashimoto, and R. Misumi, 2020: Predicting the morphology of ice
particles in deep convection using the super-droplet method: development and evaluation of

SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2. Geosci. Model Dev., 13, 4107-4157.

Sibley, D., P. Llombart, E. Noya, A. Archer, and L. MacDowell, 2021: How ice grows from

premelting fims and water droplets. Nature Communications, 12, 1-11.

Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical

structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980-1007.

Strickland-Constable, R. E., 1968: Kinetics and mechanism of crystallization from the fluid phase

and of the condensation and evaporation of liquids. Academic Press, London;New York;, 356

Pp-

Sulia, K., and J. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds. Part
I: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, doi:10.1029/

2011JD016298.

35



778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

Thompson, G., P. Field, R. Rasmussen, and W. Hall, 2008: Explicit forecasts of winter precip-
itation using an improved bulk microphysics scheme. Part II: Implementation of a new snow

parameterization. Mon. Wea. Rev., 136, 5095-5115, doi:10.1175/2008MWR2387.1.

Todd, C. J., 1964: A system for computing ice phase hydrometeor development. Rept. arg-64

pa-121, pp. 30., Meteorology Research Inc.

Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of rain-drop spectra. part ii: Colli-

sional collection/breakup and evaporation in a rain shaft. J. Atmos. Sci., 46, 3312-3327.

Wood, S., M. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice

crystals in the atmosphere. J. Geophys. Res., 106, 4845-4870.

Wu, T., 1999: Numerical modeling of the November 26, 1991 cirrus event. Ph.D. thesis, Colorado

State University.

Zhang, C., 2012: A unified theory for ice vapor growth suitable for cloud models: Testing and

implications for cold cloud evolution. Ph.D. thesis, The Pennsylvania State University.

Zhang, C., and J. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor

diffusion. J. Atmos. Sci., 71, 372-390.

Zhang, C., and J. Harrington, 2015: The effects of surface kinetics on crystal growth and homo-

geneous freezing in parcel simulations of cirrus. J. Atmos. Sci., 72, 2929-2946.

36



795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

LIST OF FIGURES

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Variation of the surface supersaturations (left axis, solid lines) and the deposition coefficients
(right axis, dashed lines) as a function of the ambient supersaturation for a crystal with an
a-axis of 86 um, a c-axis of 17 um, and at 7 = -15°C, P = 500 hPa. The one-to-one
ambient supersaturation line is shown on the figure in blue and is labeled. The surface
supersaturation and deposition coefficient for the a and ¢ axes are given by the black and
red curves (respectively) and are labeled on the figure. The characteristic supersaturation
for each axis is indicated by the dotted lines with c-axis s¢p,, = 2.2% (red) and a-axis Scpq;,
= (0.53% (black). The cartoon at the top illustrates the surface supersaturation for each axis
(dashed line) at an ambient supersaturation of 10%. The proximity of the dashed line to the
surface indicates the degree of supersaturation (g f).

Surface supersaturation as a function of the ratio of the ambient supersaturation to the char-
acteristic value (s;/snqr) for a planar crystal with an a-axis length of 240 um, an aspect ratio
of 0.1, a temperature of -35°C, and a pressure of 500 hPa. Ledge nucleation (M = 10) was
assumed with characteristic supersaturations for the a- and c-axes of s, = 3% and s, = 6%,
respectively. Exact calculation of sy, for the a- and c-axes are shown with the solid black
and red lines, respectively whereas the parameterization is shown with the dashed lines. The
ambient supersaturation is indicted by the blue dashed lines, and the power-law fit (s,,,) is
given by the solid blue lines for each axis. Deviations from the power-law fit are indicated
by the black circles and labeled residuals, using the a-axis as an example.

Residuals (black lines) as a function of sg;ff/Schar computed from the difference between the
limited power-law value (s;;,,) and the actual surface supersaturation (sy,,r). The residuals
are given as a fractional quantity. The temperature, pressure, growth mechanism, and aspect
ratio were the same as Fig. 2. The particle size was varied by keeping the aspect ratio
constant and changing the radius of an equivalent volume sphere (r,,;). The dashed blue
lines show the parameterized residuals: R; varies implicitly with size whereas R, is fixed
near unity.

Deposition coefficient growth mechanism parameter M-dependence of, (a) power-law ex-
ponent used in Eq. 6 and coefficients used in Eq. 9, and (b) power-law exponents used in
Eq. 9. Circles represent the actual values used to fit Eqs. 6 and 9 to accurate calculations
of the surface supersaturation (values are given in Table 1). Lines are polynomial fits to the
circles, and the fit coefficients are given in Table 2.

Semi-axis lengths (a and ¢) after 10 minutes of growth at a pressure of 500 hPa and a
temperature of -15°C and a constant ambient supersaturation. Calculations are shown for
three values of the growth mechanism parameter, M, of 1 (dislocation growth), 3, and 10
(ledge formation), which are indicated by the lines. Benchmark calculations for three values
M, are indicated by the magenta (M=1), green (M=3), and black (M=10) lines. Simulations
using the approximate form of the deposition coefficient are indicated by the dashed blue
(M=1), orange (M=3), and red (M=10) lines.

(a) Deposition coefficients (a and c) after 10 minutes of growth at a pressure of 500 hPa,
a temperature of -15°C as a function of the ambient supersaturation (s;). Calculations are
shown for three values of the growth mechanism parameter, M, of 1 (dislocation growth),
3, and 10 (ledge formation), which are indicated by the curves. Benchmark calculations
for three values M, are indicated by the magenta (M=1), green (M=3), and black (M=10)
curves. Simulations using the approximate form of « are indicated by the dashed blue
(M=1), orange (M=3), and red (M=10) curves. (b) Surface supersaturation for the a- and
c-axes as a function of s; for step nucleation (M = 10). Benchmark calculations are shown
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Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

with the black curve, whereas the approximate form is given by the red-dashed curve. The
one-to-one ambient supersaturation is given by the blue curve, and the values of s, for the
a- and c-axes are given by the green solid and dashed lines, respectively.

(a) Semi-axis lengths (a and ¢) and, (b) deposition coefficients after 10 minutes of growth
at a pressure of 500 hPa, a temperature of -15°C, an initial crystal radius of 10um, and
a constant ambient supersaturation that is 5% of liquid saturation, s; = 0.05 X [e; — ¢;]/e;
where e; and e; are the equilibrium vapor pressures of liquid and ice, respectively. Accurate
benchmark calculations are indicated by the green (M=1, dislocations), and black (M=10,
step nucleation) lines. Simulations using the approximate form of the deposition coefficient
are indicated by the dashed orange (M=1) and dashed red (M=10) lines. Simulations using
the capacitance model with the Chen and Lamb (1994) habit parameterization is shown by
the blue dashed lines.

Cartoon example of top-hat semi-Lagrangian depositional growth (Stevens et al. 1996). Bin
mass edges are given along the x-axis as my and my, defining bin-k. The edges of the
original top-hat construction in bin-k is shown in red, with the lower and upper mass edges
shown (m(¢) and m,,(t), respectively). The analytical solution to the vapor growth equation
is used to calculate the change in the top-hat edges indicated by the black arrows (m; (¢ + Ar)
and m,(t + A)), resulting in a new top-hat distribution shown by the dashed blue lines. In
this example, the number mixing ratio (V) is then remapped to the next bin (k+ 1) using
the fraction shown by the blue shade, while the remainder (shown in white) is mapped to
the original bin. The total concentration (zeroth-moment) is conserved in this process. This
procedure is used to remap the mass, volume, and aspect ratio.

Parcel model simulation time-series of (a) ice saturation ratio (e¢/e;), (b) ice water content, (c)
minor semi-axis length, and (d) major semi-axis length. The simulations were conducted for
two different initial temperatures (-15°C, red and black, and -45°C, blue) and two difference
ice concentrations for the -15°C simulation (labeled on panel a). Both simulations used a
constant updraft speed of 0.25 m s~!. An initial pressure of 850 hPa (300 hPa) was assumed
for the -15°C (-45°C) simulation. Note that the major axis at -15°C (-45°C) is the a-axis
(c-axis). Ice crystal growth assumed step nucleation (M = 10). Results using the Lagrangian
bin (solid), Eulerian bin (dashed), and bulk (circle-dashed) models are shown.

Distributions of fractional ice concentration (N /N,,) as a function of the a-axis (left panel)
and c-axis (right panel) semi-lengths. N is the ice crystal concentration and N,y is the
concentration at the distribution peak (mode). Lagrangian microphysical model distributions
are given by the solid lines, Eulerian bin microphysical distributions by the dashed red lines.
Distributions are plotted at the simulation times indicated above the distributions shown in
the left panel. Distributions are plotted for the simulation with an initial temperature of -
15°C, an initial pressure of 850 hPa, an ice concentration of 10 L~!, and a constant updraft
speed of 0.25 m s

Parcel model simulation time-series of average (a) deposition coefficients for the minor and
major semi-axes (b) effective particle density, and (c) mass-weighted fall speed. The simula-
tions were conducted for two different initial temperatures (-15°C, red and black, and -45°C,
blue) and two difference ice concentrations for the -15°C simulation (labeled on panel a).
Both simulations used a constant updraft speed of 0.25 m s~'. An initial pressure of 850
hPa (300 hPa) was assumed for the -15°C (-45°C) simulation. Note that the major axis at
-15°C (-45°C) is the a-axis (c-axis). Ice crystal growth assumed step nucleation (M = 10).
Results using the Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed)
models are shown.
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Fig. 12.

Fig. 13.

Fig. 14.

Simulation and distribution averages of (a) the ice water content, (b) the effective density, (c)
the a-axis semi-length and, (d) the c-axis semi-length as a function of the initial temperature
of the simulation. Initial ice crystal concentrations of 10 (black lines), 50 (red lines), and 500
(blue lines) L™, along with a constant updraft speed of 0.25 m s ! and an initial pressure of
850 hPa were used. Ice crystal growth assumed step nucleation (M = 10). Results from the
Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed) models are shown.

Simulation and distribution average of (a) the a-axis (black) and c-axis (red) semi-lengths,
and (b) the mass-weighted fall speed as a function of the initial temperature. An initial
ice concentration of 10 L™!, along with a constant updraft speed of 0.25 m s~! and an
initial pressure of 850 hPa were used. Ice crystal growth assumed step nucleation (M = 10).
Lagrangian and bulk model results are shown by the solid line and the dashed-dotted lines,
respectively. Eulerian bin model results are shown by the red dashed line for the fall speed
only. The influence of the assumed distribution shape on the axis lengths is indicated by
the long-dashed and short-dashed lines bounding the shaded regions. The bounding long-
dashed and short dashed lines used a distribution shape of v = 3 and v = 6, respectively. For
reference, this is indicated for the c-axis in (a). .

Simulation and distribution average of the (a) ice water content growth rate and (b) the
deposition coefficients as a function of the initial temperature. Results are shown for bulk
model simulations using both deposition coefficients (&, and &, solid lines) and bulk model
simulations using a single deposition coefficient as could be used in classical bulk models
(dashed-dotted lines). The ice water content growth rate is shown three initial ice concen-
trations of 10 (black lines), 50 (red lines), and 500 (blue lines) L~!, along with a constant
updraft speed of 0.25 m s~! and an initial pressure of 850 hPa. The deposition coefficients
are shown only for the simulation with an ice concentrations of 10 L1,
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FIG. 1. Variation of the surface supersaturations (left axis, solid lines) and the deposition coefficients (right
axis, dashed lines) as a function of the ambient supersaturation for a crystal with an a-axis of 86 um, a c-axis of
17 pum, and at T = -15°C, P = 500 hPa. The one-to-one ambient supersaturation line is shown on the figure in
blue and is labeled. The surface supersaturation and deposition coefficient for the a and c axes are given by the
black and red curves (respectively) and are labeled on the figure. The characteristic supersaturation for each axis
is indicated by the dotted lines with c-axis s, = 2.2% (red) and a-axis s pqr = 0.53% (black). The cartoon at
the top illustrates the surface supersaturation for each axis (dashed line) at an ambient supersaturation of 10%.

The proximity of the dashed line to the surface indicates the degree of supersaturation (s, f).
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F1G. 2. Surface supersaturation as a function of the ratio of the ambient supersaturation to the characteristic
value (s;/schqr) for a planar crystal with an a-axis length of 240 um, an aspect ratio of 0.1, a temperature of
-35°C, and a pressure of 500 hPa. Ledge nucleation (M = 10) was assumed with characteristic supersaturations
for the a- and c-axes of s, = 3% and 5. = 6%, respectively. Exact calculation of sy, for the a- and c-axes are
shown with the solid black and red lines, respectively whereas the parameterization is shown with the dashed
lines. The ambient supersaturation is indicted by the blue dashed lines, and the power-law fit (s, is given by
the solid blue lines for each axis. Deviations from the power-law fit are indicated by the black circles and labeled

residuals, using the a-axis as an example.
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orange (M=3), and red (M=10) lines.
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mechanism parameter, M, of 1 (dislocation growth), 3, and 10 (ledge formation), which are indicated by the
curves. Benchmark calculations for three values M, are indicated by the magenta (M=1), green (M=3), and
black (M=10) curves. Simulations using the approximate form of ¢ are indicated by the dashed blue (M=1),
orange (M=3), and red (M=10) curves. (b) Surface supersaturation for the a- and c-axes as a function of s; for
step nucleation (M = 10). Benchmark calculations are shown with the black curve, whereas the approximate

form is given by the red-dashed curve. The one-to-one ambient supersaturation is given by the blue curve, and
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(a) Deposition coefficients (a and c¢) after 10 minutes of growth at a pressure of 500 hPa, a temperature

as a function of the ambient supersaturation (s;). Calculations are shown for three values of the growth

the values of s.j,, for the a- and c-axes are given by the green solid and dashed lines, respectively.
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FIG. 7. (a) Semi-axis lengths (@ and c¢) and, (b) deposition coefficients after 10 minutes of growth at a pressure
of 500 hPa, a temperature of -15°C, an initial crystal radius of 10um, and a constant ambient supersaturation
that is 5% of liquid saturation, s; = 0.05 X [e; — ¢;]/e; where e; and e; are the equilibrium vapor pressures of
liquid and ice, respectively. Accurate benchmark calculations are indicated by the green (M=1, dislocations),
and black (M=10, step nucleation) lines. Simulations using the approximate form of the deposition coefficient
are indicated by the dashed orange (M=1) and dashed red (M=10) lines. Simulations using the capacitance

model with the Chen and Lamb (1994) habit parameterization is shown by the blue dashed lines.
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FI1G. 8. Cartoon example of top-hat semi-Lagrangian depositional growth (Stevens et al. 1996). Bin mass
edges are given along the x-axis as my and my, | defining bin-k. The edges of the original top-hat construction in
bin-k is shown in red, with the lower and upper mass edges shown (m;(¢) and m,,(t), respectively). The analytical
solution to the vapor growth equation is used to calculate the change in the top-hat edges indicated by the black
arrows (m;(t + At) and m,,(t + A)), resulting in a new top-hat distribution shown by the dashed blue lines. In
this example, the number mixing ratio (M) is then remapped to the next bin (k + 1) using the fraction shown
by the blue shade, while the remainder (shown in white) is mapped to the original bin. The total concentration
(zeroth-moment) is conserved in this process. This procedure is used to remap the mass, volume, and aspect

ratio.
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FIG. 9. Parcel model simulation time-series of (a) ice saturation ratio (e/e;), (b) ice water content, (c) minor
semi-axis length, and (d) major semi-axis length. The simulations were conducted for two different initial tem-
peratures (-15°C, red and black, and -45°C, blue) and two difference ice concentrations for the -15°C simulation
(labeled on panel a). Both simulations used a constant updraft speed of 0.25 m s~!. An initial pressure of 850
hPa (300 hPa) was assumed for the -15°C (-45°C) simulation. Note that the major axis at -15°C (-45°C) is the
a-axis (c-axis). Ice crystal growth assumed step nucleation (M = 10). Results using the Lagrangian bin (solid),

Eulerian bin (dashed), and bulk (circle-dashed) models are shown.
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FIG. 10. Distributions of fractional ice concentration (N/Ny,,) as a function of the a-axis (left panel) and
c-axis (right panel) semi-lengths. N is the ice crystal concentration and N, is the concentration at the distri-
bution peak (mode). Lagrangian microphysical model distributions are given by the solid lines, Eulerian bin
microphysical distributions by the dashed red lines. Distributions are plotted at the simulation times indicated
above the distributions shown in the left panel. Distributions are plotted for the simulation with an initial tem-

perature of -15°C, an initial pressure of 850 hPa, an ice concentration of 10 L~!, and a constant updraft speed of

0.25ms 1.

49



984

985

986

987

988

989

990

1000

L (b) ]

a Lagrangian (solid)
major axis Eulerian (dashed)
Bulk (circle-dashed)

Lo

900
800

700
600

deposition coefficient

500

effective density [kg m-3]

0.001
IIII|IIII|IIII 4OOIIII|IIII|IIII|IIII
0 1000 2000 3000 4000 0 1000 2000 3000 4000
08 T T TT | T 17T | 1T T1TT | TT I‘I" tlme [S]

C(©) Pl

'T: 0.6 :—

E I

204

) -

o L

Z 02

0IIII|IIII|IIII|IIII

0 1000 2000 3000 4000
time [s]

F1G. 11. Parcel model simulation time-series of average (a) deposition coefficients for the minor and major
semi-axes (b) effective particle density, and (c) mass-weighted fall speed. The simulations were conducted for
two different initial temperatures (-15°C, red and black, and -45°C, blue) and two difference ice concentrations
for the -15°C simulation (labeled on panel a). Both simulations used a constant updraft speed of 0.25 m s~'.
An initial pressure of 850 hPa (300 hPa) was assumed for the -15°C (-45°C) simulation. Note that the major

axis at -15°C (-45°C) is the a-axis (c-axis). Ice crystal growth assumed step nucleation (M = 10). Results using

the Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed) models are shown.
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F1G. 12. Simulation and distribution averages of (a) the ice water content, (b) the effective density, (c) the a-
axis semi-length and, (d) the c-axis semi-length as a function of the initial temperature of the simulation. Initial
ice crystal concentrations of 10 (black lines), 50 (red lines), and 500 (blue lines) L1, along with a constant
updraft speed of 0.25 m s~! and an initial pressure of 850 hPa were used. Ice crystal growth assumed step
nucleation (M = 10). Results from the Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed)

models are shown.
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F1G. 13. Simulation and distribution average of (a) the a-axis (black) and c-axis (red) semi-lengths, and (b)
the mass-weighted fall speed as a function of the initial temperature. An initial ice concentration of 10 L™,
along with a constant updraft speed of 0.25 m s~! and an initial pressure of 850 hPa were used. Ice crystal
growth assumed step nucleation (M = 10). Lagrangian and bulk model results are shown by the solid line and
the dashed-dotted lines, respectively. Eulerian bin model results are shown by the red dashed line for the fall
speed only. The influence of the assumed distribution shape on the axis lengths is indicated by the long-dashed
and short-dashed lines bounding the shaded regions. The bounding long-dashed and short dashed lines used a

distribution shape of v = 3 and v = 6, respectively. For reference, this is indicated for the c-axis in (a).
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FI1G. 14. Simulation and distribution average of the (a) ice water content growth rate and (b) the deposition
coefficients as a function of the initial temperature. Results are shown for bulk model simulations using both
deposition coefficients (¢, and ., solid lines) and bulk model simulations using a single deposition coefficient
as could be used in classical bulk models (dashed-dotted lines). The ice water content growth rate is shown
three initial ice concentrations of 10 (black lines), 50 (red lines), and 500 (blue lines) L~ !, along with a constant
updraft speed of 0.25 m s~! and an initial pressure of 850 hPa. The deposition coefficients are shown only for

the simulation with an ice concentrations of 10 L1,
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