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ABSTRACT

Numerical cloud models require estimates of the vapor growth rate for ice

crystals. Current bulk and bin microphysical parameterizations generally as-

sume that vapor growth is diffusion limited, though some parameterizations

include the influence of surface attachment kinetics through a constant depo-

sition coefficient. A parameterization for variable deposition coefficients is

provided herein. The parameterization is an explicit function of the ambient

ice supersaturation and temperature, and an implicit function of crystal dimen-

sions and pressure. The parameterization is valid for variable surface types

including growth by dislocations and growth by step nucleation. Deposition

coefficients are predicted for the two primary growth directions of crystals, al-

lowing for the evolution of the primary habits. Comparisons with benchmark

calculations of instantaneous mass growth indicate that the parameterization

is accurate to within a relative error of 1%. Parcel model simulations using

Lagrangian microphysics as a benchmark indicate that the bulk parameteriza-

tion captures the evolution of mass mixing ratio and fall speed with typical

relative errors of less than 10%, whereas the average axis lengths can have

errors of up to 20%. The bin model produces greater accuracy with relative

errors often less that 10%. The deposition coefficient parameterization can

be used in any bulk and bin scheme, with low error, if an equivalent volume

spherical radius is provided.
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1. Introduction33

Numerical models of ice-containing clouds require estimates of the ice crystal vapor growth34

rate. However, the vapor growth rate is complex, involving the diffusion of water vapor and35

thermal energy through the background gas. Gas-phase diffusion, in turn, depends on the size and36

shape of the crystal along with the surface processes that determine the incorporation of water37

molecules into the crystalline lattice. It is these surface processes that control the development38

of crystal habits (Hallett 1965; Lamb and Scott 1972; Nelson 2001). The challenge in modeling39

the ice growth lies in taking simultaneous account of crystal shape effects on gas-phase diffusion40

along with the surface kinetic processes that influence the mass uptake of the crystal.41

The most common method for parameterizing the growth and ablation of ice crystals in numer-42

ical cloud models follows the work of Houghton (1950) in using capacitance theory. Capacitance43

theory assumes that the vapor density is constant along the crystal surface, which occurs when the44

surface is rough on the nanometer scale. Surface processes are ignored in this model: facets cannot45

remain flat (Saito 1996, Ch. 27), and aspect ratio cannot evolve (Ham 1959) without supplemen-46

tary theories (Chen and Lamb 1994). Though it was historically understood that surface processes47

were the drivers of the variations in habit forms, it was not clear how to include these processes48

in cloud models. For instance, Koenig (1971) included surface processes through a reduction fac-49

tor that acts in a similar mathematical fashion to a ventilation coefficient, but this kinetic factor50

was not included in most subsequent models. The work of Todd (1964) and Hindman and John-51

son (1972) avoided capacitance theory entirely by using laboratory-measured axis growth rates52

to drive habit development. Since their rate equations were taken directly from laboratory data,53

both surface and gas phase diffusion processes were empirically woven into the parameterization.54

While this line of modeling died out, it did presage current particle property approaches (Chen and55
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Lamb 1999; Hashino and Tripoli 2007; Chen and Tsai 2016). Most cloud model parameterizations56

do not include the effects of surface processes on mass uptake during vapor growth, but those that57

do commonly use deposition coefficients (α). Deposition coefficients account, in aggregate, for58

all of the surface processes occurring on the crystal surface that ultimately control the growth59

rates. Though all numerical models that include α treat it as a constant, this approximation is only60

valid over a very narrow range of conditions (Nelson 2005). In this paper, we develop a parame-61

terization of supersaturation- and temperature-dependent α that is consistent with faceted growth62

and is suitable for bulk and bin microphysical models. The parameterization is developed to be63

flexible in that it can be used with traditional and particle property schemes. The parameterization64

is tested against benchmark simulations using a parcel model framework with Lagrangian bin ice65

microphysics, and the accuracy and limitations of the method are discussed. We first review the66

theory of faceted growth, and the need for a closed-form approximation for α .67

2. Mass and Dimensional Growth of Faceted Ice68

Deposition coefficients (α) have long been used to model the influences of surface attachment69

kinetic (hereafter surface-kinetic) processes on vapor growth (Strickland-Constable 1968). For70

faceted crystals, α varies explicitly with the ambient ice supersaturation (si, hereafter “supersatu-71

ration”) and implicitly with the temperature, crystal size and shape (Nelson and Baker 1996; Wood72

et al. 2001). The classical theory of faceted growth posits that crystals grow primarily by the prop-73

agation of steps across their surface. In order for growth to proceed, adsorbed water molecules74

must attach to a step before they desorb from the surface. The fraction of molecules that adsorb,75

migrate to a step, and incorporate into the crystalline lattice defines the deposition coefficient.76

The growth of faceted ice requires the formation of surface steps, and there are at least two mech-77

anisms that produce them. The first mechanism is associated with natural dislocations that occur78
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in the crystal lattice and can outcrop on the surface. Dislocations provide permanent step sources,79

the theory of which originated with Burton et al. (1951). This mechanism appears to control the80

growth of newly formed crystals (Harrington and Pokrifka 2021) and crystals grown at low super-81

saturation (Nelson 2001). The second mechanism is the nucleation of two-dimensional steps on82

the crystal surface (step nucleation). This mechanism occurs on facets that have large defect-free83

areas, and appears to control the growth of larger crystals with distinct habits (Nelson and Knight84

1998; Harrington et al. 2019). Indeed, Frank (1982) points out that thin crystals are only possible85

if steps nucleate at the crystal edge. Step nucleation is strongly dependent on the supersaturation86

immediately above the surface (surface supersaturation, ssur f ), with very weak growth at ssur f val-87

ues below some critical supersaturation, and faster growth once the critical supersaturation has88

been exceeded. While both theories have been developed in detail, an approximation for α that89

encapsulates both growth mechanisms was provided by Nelson and Baker (1996),90

α(ssur f ,T ) = αs

[
ssur f

schar(T )

]M

tanh
[

schar(T )
ssur f

]M

(1)91

where schar(T ) is a temperature-dependent “characteristic” supersaturation that describes the92

supersaturation-dependence of surface-kinetic mediated growth, and M is a parameter that de-93

scribes the surface growth mode. The adsorption efficiency (αs) is thought to be near unity (Nel-94

son 2001), which we will assume. Convenient polynomial fits to values of schar derived from data95

(Harrington et al. 2019) are used in this study and are available from a data archive (see our data96

statement). A value of M = 1 is consistent with the theory of dislocation growth, whereas a value97

of M ≥ 10 is suitable for step nucleation. In general, α rises commensurately with ssur f , and the98

rate of rise is controlled by M (Zhang and Harrington 2015, see their Fig. 1). The evidence above99

suggests that M = 1 may be appropriate for the growth of smaller crystals in numerical cloud mod-100
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els, whereas M = 10 may be more applicable to the growth of larger crystals with well-defined101

habits.102

The above form of α has been most often used in models of faceted crystal growth requiring103

complex numerical solution methods (Nelson and Baker 1996; Wood et al. 2001). However, it is104

possible to include the above model for α in theories suitable for use in Eulerian cloud models105

(MacKenzie and Haynes 1992; Zhang and Harrington 2014). The theory of Zhang and Harrington106

(2014) combines the surface boundary conditions for faceted ice with the diffusive fluxes from107

the capacitance model, thus allowing for the calculation of the deposition coefficients using Eq. 1.108

The resulting growth equation has the same general form as the capacitance model,109

dm
dt

= 4πC(c,a)ρeqsiDe f f (T,P,a,c,αa,αc), (2)110

where ρeq is the ice equilibrium vapor density, si is the supersaturation, C(c,a) is the capacitance,111

and c and a are the crystal semi-dimensions that are referenced to the prism and basal faces of112

hexagonal ice, respectively. The combined effects of vapor and thermal energy diffusion along113

with surface kinetic effects (αa and αc) enter into the growth equation through an effective diffu-114

sivity (De f f ) that also depends on size and shape (see Zhang and Harrington 2014, their Eq. 15).115

The a- and c-axis lengths define a spheroid that is used as a surrogate for crystal shape. Spheroids116

are not meant to exactly represent crystal shapes, but rather to provide equations for two crystal117

dimensions instead of one dimension (see below).118

Predicting the change in the crystal semi-dimensions (a and c) requires equations for the evolu-119

tion of the axis lengths. Faceted crystals often have steps that form near crystal edges where ssur f120

is greatest, in this case the ratio of the c and a axis growth rates is (Nelson and Baker 1996),121

dc
da

=
αc

αa
= Γ or

dlnφ

dlnV
=

Γ/φ −1
Γ/φ −2

, (3)122
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where the right-most form can be derived using the volume (4/3πa2c) and aspect ratio (φ = c/a)123

of a spheroid. Current habit-evolving cloud models (Hashino and Tripoli 2007; Harrington et al.124

2013) use a different form of dc/da rooted in the work of Chen and Lamb (1994), however this125

equation produces incorrect growth when variable deposition coefficients are used (Harrington126

et al. 2019). The Chen and Lamb (1994) expression is replaced with Eq. 3 in the parameterizations127

developed below.128

Secondary habit features that appear at high supersaturations, such as dendritic branching and129

hollowing, cannot be modeled explicitly. These features are frequently treated through an “ef-130

fective” particle density (ρp) that is lower than the bulk density of ice (Miller and Young 1979;131

Thompson et al. 2008). Chen and Lamb (1994) hypothesized that one could treat the volumetric132

increase in ice crystals with a deposition density (ρdep) that mimics the spatial gaps caused by133

branching and hollowing,134

dV
dt

=
1

ρdep

dm
dt

. (4)135

The above equation, when used in combination with Eqs. 1, 2, and 3 produces crystal axis lengths,136

effective densities, and fall speeds that compare well to wind tunnel measurements of columnar137

and dendritic ice crystals grown at liquid saturation. The theory also compares well to hexagonal138

model solutions for crystals grown at low ice supersaturations, and to measurements of crystals139

grown at low pressures (Harrington et al. 2019).140

While the above model provides a good approximation for faceted growth, care should be ex-141

ercised when applying these theories in general. It is important to bear in mind that the surface142

growth mechanism can change in time. Evidence suggests that ice crystals grow by dislocations143

(M = 1) when they are relatively small and at low supersaturations. However, at higher supersatu-144

rations step nucleation (M = 10) is thought to control the growth since it is otherwise not possible145

to produce thin crystals (Frank 1982; Nelson and Knight 1998; Harrington et al. 2019), though146
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quasi-liquid layers (QLL) are also important (Neshyba et al. 2016; Sibley et al. 2021). Ice crystals147

are known to have stacking faults which reduce the nucleation barrier for surface steps (Ming et al.148

1988), and Nelson and Baker (1996) have suggested modeling this growth with M ' 3 in Eq. 1.149

Crystals can have both slower and faster growing regions (Gonda and Yamazaki 1984), and facets150

can grow along the surface instead of outward (Gonda and Yamazaki 1984; Nelson and Swanson151

2019). Faster growing (rough) regions can starve slower growing facets of water vapor, leading to152

stagnated growth rates (Harrington and Pokrifka 2021). The grain boundaries in polycrystalline153

ice are sources of dislocations that may cause rapid growth (Pedersen et al. 2011). Mesoscopic154

surface roughness has been measured on many crystals (Neshyba et al. 2013; Magee et al. 2014),155

but the scale of these features is generally larger than the steps that influence growth, and some of156

these measured crystals stop growing entirely (Magee et al. 2014). Unfortunately, measurements157

of many of the above growth modes are scant and theoretical models are generally lacking.158

It is also important to keep in mind that spheroidal shapes are an approximation for two crys-159

tal dimensions only. It is not clear how complex crystal morphologies should be treated. For160

instance, it has been shown that ellipsoids are more accurate than spheroids as a representation161

of aggregate shapes (Jiang et al. 2019; Dunnavan et al. 2019). Complex growth morphologies,162

such as capped columns and the polycrystalline forms that occur at low temperatures (e.g. planar163

polycrystals, tetragons with side planes, scrolls, and rosettes) provide other compelling examples.164

These growth forms suggest that multiple axes may be needed to characterize the crystal shape,165

and since these crystals are faceted they can be described by faceted growth kinetics. Though166

predicting the precise shape of these crystals is beyond the capabilities of any current theory, it167

may be possible to treat the overall influence of surface kinetics on mass growth. Zhang and Har-168

rington (2015) and Harrington et al. (2019) have shown that the overall influence of attachment169

kinetics on the growth of columnar and planar crystals can be treated with an equivalent volume170
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sphere and a particle averaged deposition coefficient. Since columnar and planar crystals have171

very different deposition coefficients for each crystal facet, more complex crystals may also be172

amenable to treatment with an average deposition coefficient. Indeed, Pokrifka et al. (2020) found173

that particle-average deposition coefficients characterized most of the growth of small ice crystals174

at temperatures below -40◦C.175

a. Closed-Form Approximation of the Deposition Coefficient176

Calculating the deposition coefficients requires the surface supersaturation (ssur f ) for each crys-177

tal axis (Eq. 1), however ssur f also depends on the gas-phase vapor diffusion rate. Consequently,178

ssur f for each crystal axis depends strongly on α (see Zhang and Harrington 2014, their Eq. 9).179

The problem is transcendental, requiring numerical solutions that are too costly for use in model180

parameterizations (Zhang 2012). It is therefore imperative to develop an approximate, yet accurate181

method to solve for ssur f in closed-form.182

The strong sensitivity of α to ssur f is demonstrated in Fig. 1 by solving Eq. 9 of Zhang and183

Harrington (2014) for a planar crystal with an aspect ratio of five, and an a-axis semi-length of184

86 µm that is growing by step nucleation (M = 10) at a temperature of -15◦C and a pressure of185

500 hPa. When the ambient supersaturation (si) is low, step nucleation is inhibited and the surface186

supersaturation is nearly identical to the ambient value. As the ambient supersaturation rises,187

growth by step nucleation commences thus keeping ssur f near schar. The surface supersaturation188

rises slowly with further increases in si because increasing growth, through substantially rising189

deposition coefficients, keeps ssur f low. The rise in ssur f again becomes commensurate with si once190

α reaches unity, however, this occurs at supersaturations that are not realized in the atmosphere.191

The strong sensitivity of α to changes in ssur f indicates why a closed-form parameterization of192

α is difficult to achieve: Calculating the deposition coefficient requires a quantitative method to193
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relate ssur f to the ambient supersaturation for particles of any shape and size, though the equations194

for α are extremely sensitive to any change in ssur f . On the other hand, the results shown in Fig. 1195

provide a hint for developing a closed-form parametrization: The variation of ssur f with si has a196

similar functional form for both the a- and c-axes, suggesting that a scaling law may exist that197

relates the two quantities. Moreover, the form of the equation for α itself (Eq. 1) suggests seeking198

scaling laws that exploit ratios of a measure of supersaturation with schar.199

Since our approach is empirical, we tested a number of different scaling relationships to calculate200

ssur f . Since ssur f for each axis depends on α itself, one possibility is to simply set α to unity in the201

equations for ssur f for each axis, and to scale the resulting equation with schar. Rearranging Eq. 9202

of Zhang and Harrington (2014) and setting α to unity for the a and c axes gives,203

sdi f f ,a = si
1

1+La
where La =

ac
C∆(c,a)

vv

4Dv
,204

sdi f f ,c = si
1

1+Lc
where Lc =

a2

C∆(c,a)
vv

4Dv
, (5)205

In the above equation, si is the ambient supersaturation, Dv is the vapor diffusivity in air, vv is the206

mean speed of a vapor molecule, La and Lc are unitless quantities that depend on the crystal geom-207

etry, and C∆(c,a) is the capacitance evaluated one mean free path from the surface. The quantities208

sdi f f ,a and sdi f f ,c are the surface supersaturations over the a and c axes when αa and αc are unity,209

and we therefore define these as diffusion-limited surface supersaturations. Our empirical testing210

showed that, over a relatively large range of ambient supersaturations, the surface supersaturation211

scales with schar/sdi f f for a given axis. The form of that dependence can be well approximated212

with a power-law,213

ssur f ∼ spwr ≡ sdi f f

(
schar

sdi f f

)β

= s1−β

di f f · s
β

char, (6)214

where the exponent, β , can be found by fitting to the exact calculation (Fig. 2). Simulations that215

we conducted indicate that the value of β is relatively insensitive to the size and aspect ratio of the216
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crystal. This result may be due to the inclusion of length and aspect ratio information through the217

variables La and Lc. This makes the above equations ideal for parameterization development.218

The above approximation increasingly deviates from the actual surface supersaturation when219

approaching the low and high si limits, and therefore must be corrected. As si rises α eventually220

reaches unity and the surface supersaturation begins to climb away from the approximate value221

(a-axis in Fig. 2). As the supersaturation declines and schar is approached, surface kinetics begin222

to dominate the growth process and ssur f declines rapidly, eventually becoming the same as the223

ambient supersaturation (blue dashed lines on Fig. 2). In order to correct the approximation for224

these limits, we first correct for the low supersaturation limit by taking the minimum between spwr225

and si,226

slim = min(spwr,si). (7)227

This limited form of the power-law approximation deviates from the actual surface supersaturation228

only in the vicinity of schar and at high supersaturations; these deviations are indicated by dashed229

circles on Fig. 2. The deviation of slim from schar in these regions, which we call residuals, have230

consistent behavior that depends fundamentally on the ratio of sdi f f /schar, as is shown by the black231

lines in Fig. 3. The size and aspect ratio dependence of the residuals occurs because of the length-232

scales, La and Lc, that define sdi f f /schar. The maximum value reached by the residuals does not233

vary with the size or aspect ratio of the crystal (not shown). We fit the residuals as a function of234

the sdi f f /ssur f , so that the parameterization becomes,235

sdi f f

ssur f
≈

sdi f f

slim
+Rl−Ru, (8)236

where Rl and Ru are the residuals shown in Fig. 3. Note that the sign of Rl and Ru differ because237

the absolute value of the residual is plotted in the figure. Both residuals can be well approximated238
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with a similar power-law form that convolves rising and decaying functions,239

Rl = Rmax,l

(
sdi f f

spwr

)(
si

spwr

)p1

min

[(
si

spwr

)p2

,1

]
,240

Ru = Rmax,u

(
sdi f f

spwr

)(
sdi f f

slim

)n1(
max

[
0,

sdi f f

slim
−1
]
+1
)n2

. (9)241

The results shown in Fig. 3 indicate that the maximum in each residual curve, Rmax,l and Rmax,u, is242

nearly constant, which we assume. The power-law exponents, p1, p2, n1, and n2, are determined243

by least-squares fitting. Examples of the residual fits for the a-axis of a planar crystal with an244

aspect ratio of 0.1 are shown by the blue dashed lines in Fig. 3. While the fit is not perfect, the245

small deviation from the actual curves produces very low errors in the modeled growth rates (see246

below). The surface supersaturation for a given axis can now be calculated approximately by247

rearranging Eq. 8,248

ssur f ≈
sdi f f

sdi f f /slim +Rl−Ru
. (10)249

Each term in the above equation can be calculated based on the ambient temperature, pressure, su-250

persaturation, and crystal axis length since the crystal geometry enters into the calculation through251

sdi f f . This equation provides an approximate closed-form solution to the calculation of ssur f and,252

therefore, the deposition coefficients (Eq. 1), for each crystal axis.253

An advantage of the above approach for calculating ssur f is that the main fitting coefficients254

(β , Rmax,l , Rmax,u, p1, p2, n1, and n2) do not depend on crystal size or geometry. However, the255

approximation does depend on the growth mechanism through the parameter M in Eq. 1. We256

therefore repeated the above fitting procedure using integer values of M ranging between unity257

(dislocation growth) and 15. Naturally, the fitting coefficients change substantially with different258

values of M, however the behavior of the coefficients themselves is regular and can be fit with up259

to a tenth-order polynomial in M (Fig. 4). The coefficient values for Eqs. 6 and 9, along with the260
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polynomial fits to the coefficients, and code to compute ssur f are available from a data archive (see261

our data statement).262

b. Single-Particle Tests of the Deposition Coefficient Approximation263

In order to test the accuracy of the α approximation described above, a large number of simula-264

tions were conducted against accurate benchmark calculations with the iterative solution method265

used by Zhang and Harrington (2014). Simulations were done for individual crystals covering a266

wide range of temperatures (0 to -40◦C), pressures (1000 to 100 hPa), and supersaturations (near267

0% to liquid saturation). We conducted simulations using initially spherical crystals with a ra-268

dius of 10 µm, and the crystals grew for a time ranging from 5 to 30 minutes. In general, the269

approximate calculation of α produces accurate solutions to the mass and axis ratio evolution. For270

example, it is not possible to visually distinguish between the approximate and accurate solutions271

for the a and c axes of crystals grown for 10 minutes over a range of ambient supersaturations at272

a temperature of -15◦C and a pressure of 500 hPa in Fig. 5. The level of accuracy is high regard-273

less of whether the crystals grow by step nucleation (M = 10), which has a strong supersaturation274

dependence to the deposition coefficient, or a more efficient mechanism with M = 3 or M = 1275

(dislocations). This accuracy is due entirely to the prediction of the deposition coefficients, as276

shown in Fig. 6. Relative errors of around 10% can occur for the minor crystal axis as α decreases277

with supersaturation (yellow and red curves, Fig. 6a), however these errors have only a small influ-278

ence on the minor axis growth rate. The accuracy in the estimates of the deposition coefficients is279

due, primarily, to the accuracy in the calculation of ssur f , as is clearly shown in Fig. 6b using step280

nucleation as an example: The surface supersaturation calculated with the approximation remains281

near the ambient value until si approaches the characteristic value. At this stage, step nucleation282

begins and ssur f decreases due to vapor uptake at the crystal surface. Further increases in si cause283
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a slow rise in ssur f since step nucleation increases, thus increasing the vapor uptake rate and the284

deposition coefficient.285

The aspect ratios of single crystals are strongly dependent on temperature, and the approximate286

model of the deposition coefficients captures this dependence (Fig. 7). These simulations show287

the a- and c-axis lengths and deposition coefficients after 10 minutes of growth using dislocations288

(M = 1) and step nucleation (M=10). Each simulation was conducted at a constant temperature (-2289

to -40◦C), a pressure of 500 hPa, and a relatively low supersaturation (5% of liquid saturation).290

A low supersaturation was used because errors are largest when the supersaturation is low. The291

simulations show that the crystal a and c axes after 10 minutes of growth are well captured by292

the approximate model for both dislocation and step nucleation growth. Small deviations (relative293

errors less than 6%) appear in the axis lengths after 10 minutes of growth when step nucleation294

growth is assumed. The approximate model also captures the cessation of axis growth when ssur f295

falls substantially below schar for a given axis length (at temperatures below -12.5◦C for the c-axis296

and below -19◦C for the a-axis). Indeed, at temperatures below -20◦C crystal growth is effectively297

suppressed at the supersaturations used in these calculations, since the schar are substantially larger298

than ssur f (not shown). Note that the cessation of dimensional growth has been observed in the299

laboratory (Nelson and Knight 1998; Magee et al. 2014) and may be responsible for extremely thin300

crystals that are sometimes observed (Jensen et al. 2008). The errors shown in these calculations301

are representative of the approximate form of ssur f across a wide range of temperatures, pressures,302

and supersaturations. In order to illustrate the degree to which attachment kinetics affect the303

growth rates, calculations using the Chen and Lamb (1994) adaptive-habit method are also shown.304

The adaptive habit method assumes that growth is diffusion-limited, leading to much stronger305

growth of the a- and c-axes, and to generally thinner crystals.306
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3. Deposition Coefficient Parameterization307

Given the accuracy of the approximate form of α , we next develop parameterizations for bin and308

bulk microphysical models. Eulerian bin microphysical parameterization is relatively straightfor-309

ward given that bin widths are narrow enough to perform deposition coefficient calculations using310

the bin-average crystal dimensions. Bulk parameterization requires a different approach since the311

growth rates are integrated analytically across a wide range of crystal dimensions. We discuss each312

parameterization in turn and then describe tests of the parameterizations against a Lagrangian bin313

microphysical model.314

a. Bin Microphysical Model Parameterization315

Eulerian bin microphysical modeling is computationally costly, but has the advantage that no316

assumptions are made about the shape of the size distribution. However, Eulerian bin models do317

suffer from numerical problems such as artificial distribution broadening caused by numerical dif-318

fusion on the Eulerian mass grid, and on the spatial grid in Eulerian cloud models (Morrison et al.319

2018) though this latter effect appears to be small in some cases (Pardo et al. 2020). The Eulerian320

bin microphysical framework from our prior work (e.g. Harrington et al. 1999) is expanded here to321

use variable deposition coefficients, and to predict two axis lengths and an effective density con-322

sistent with the approach of Harrington et al. (2013). The bin model uses the method-of-moments323

approach for mixed-phase microphysics (Reisin et al. 1996) and predicts the number and mass324

mixing ratio for each of 35 Eulerian size bins, with bin edges defined by mass doubling. The 35325

bins span an equivalent volume diameter range of 3 to 4030 µm, which is sufficient for the growth326

processes modeled here.327

The transport of number and mass mixing ratio among bins is treated in a semi-Lagrangian328

sense following the “top-hat” method advocated by Stevens et al. (1996). The top-hat method329
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for growth and the remapping of the particle properties among bins assumes that the distribution330

is flat within a bin (Fig. 8). The lower and upper mass edges (ml(t) and mu(t), respectively)331

of the top-hat are defined following the procedure in Stevens et al. (1996), and the new mass332

edges at the end of a time-step (ml(t +∆t) and mu(t +∆t)) are determined from the solution to333

the growth equation. Though the capacitance and the deposition coefficients vary with the crystal334

dimensions, the growth equation can be integrated forward in time with relatively low error using335

some simplifying approximations (Chen 1992; Harrington et al. 2019): If the time-step is less than336

about 20 seconds, Eq. 2 can be integrated assuming an equivalent volume sphere (radius req) with337

the shape factor (qeq = C(a,c)/req), particle effective density (ρp), and the effective diffusivity338

(De f f ) assumed constant over the time-step (∆t),339

m(t +∆t) =

[
m(t)2/3 +

8 π αv qeq De f f ρeq si ∆t

3 ρ
1/3
p

]3/2

, (11)340

where αv = [3/(4π)]1/3 originates from the definition of the equivalent volume spherical mass341

(m = 4/3πr3
eqρp). The deposition coefficients are computed using the average a- and c-axes for342

a given bin. This equation (Eq. 11) is similar to Eq. A2 in Stevens et al. (1996) except that343

the integral forcing term τ is written as the time-step averaged supersaturation, si. The time-step344

averaged supersaturation is computed from the supersaturation forcing equation following Wu345

(1999). The method is the same as that of Stevens et al. (1996) and mass closure is enforced346

(Tzivion et al. 1989), thus ensuring mass conservation.347

Equation 11 is used to evolve the top-hat mass edges in time, and remap distribution properties348

among the bins. In the example shown in Fig. 8, the resulting growth causes the top-hat distribu-349

tion to straddle two bins. The number concentration within bin-k (Nk) is redistributed based on the350

fractional area of the top-hat that resides within a given bin while preserving the total concentra-351
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tion,352

Nk =
1

∆m

∫ mu

ml

Nkdm =
1

∆m

∫ mk+1

ml

Nkdm+
1

∆m

∫ mu

mk+1

Nkdm = Nk
mk+1−ml

∆m
+Nk

mu−mk+1

∆m
, (12)353

where ∆m = mu−ml and mu and ml are the values at the end of the time-step. The right-most354

term in the equation above represents the concentration that is remapped to the next bin (shown355

as the blue shaded region in Fig. 8) whereas the left-most term represents the concentration that356

remains in the original bin (unshaded region). This approach is also applied to the mass moment,357

thus conserving mass during vapor growth.358

Predicting a second axis length and effective density requires transporting information on aspect359

ratio and volume as well as number and mass. Jensen et al. (2017) showed that aspect ratio and360

effective density can be tracked accurately on the spatial grid of an Eulerian cloud model if mixing361

ratios of total volume and total volume times aspect ratio are conserved. We follow this approach362

here and conserve the moments,363

Vk =
1

∆m

∫ mu

ml

NkV dm' 1
ρp∆m

∫ mu

ml

Nk m dm364

Φk =
1

∆m

∫ mu

ml

NkV φdm' φ

ρp∆m

∫ mu

ml

Nk m dm (13)365

where Vk and Φk are the total volume and total volume times aspect ratio in bin-k. General analyt-366

ical expressions for the co-variation of the effective density and aspect ratio with size do not exist,367

and we therefore use bin-averaged quantities (ρp and φ ). This approximation allows us to write368

the volume as V = m/ρp, and therefore the above moment equations reduce to variations of the369

mass-moment, which are shown as the right-most equations (Eq. 13). This approach is attractive370

because the mass-moment remapping can be used for Vk and Φk, however it requires estimates of371

ρp and φ at the end of a time-step.372

There are several procedures that could be invoked to estimate ρp and φ , and each approach373

has its limitations. However, testing shows that the following approach is most accurate. Since374
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the change in mass is known, we calculate the volume of the upper (Vu) and lower (Vl) top-hat375

mass edges at the end of a time-step using Eq. 4. We then estimate the new particle density by376

preserving the zeroth moment,
∫ mu

ml
Nkdm =

∫Vu
Vl

NkρpdV which implies that377

ρp =
mu−ml

Vu−Vl
. (14)378

This method produces average effective densities that are higher than Lagrangian bin microphys-379

ical calculations (see §4 below). However, it provides a better overall match with the ice water380

content, axis lengths, and fall-speed, quantities that are arguably more critical to capture accu-381

rately. Finally, we can use the change in the average volume to estimate the change in the average382

aspect ratio directly from Eq. 3 by assuming that the ratio Γ/φ is constant over a typical time-step383

(less than 20 s), which is usually a good approximation.384

b. Bulk Microphysical Model Parameterization385

Treating variable deposition coefficients in a bulk microphysical model is less straightforward,386

since the deposition coefficients vary considerably across the size distribution. Nevertheless, our387

prior work shows that it is possible to accurately parameterize the influences of constant deposition388

coefficients (Harrington et al. 2009). In this section, we use this approach to extend the adaptive389

habit parameterization of Harrington et al. (2013) and Jensen et al. (2017) so that it is consistent390

with variable deposition coefficients. We also provide an approach for the general use of variable391

deposition coefficients in any bulk model.392

Including variable deposition coefficients in a bulk model ultimately involves approximating the393

integrated mass growth rate, which gives the change in the ice mixing ratio (qi) in time,394

dqi

dt
=

1
ρa

∫
∞

0

dm(a)
dt

n(a)da (15)395
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where ρa is the air density, the mass is a function of a length-scale (a), and n(a) is the gamma396

distribution. The length scale we use here is the a-axis length of a spheroid as defined in Harring-397

ton et al. (2013). This integral cannot be solved analytically for variable deposition coefficients398

because the effective diffusivity (De f f ) varies with size. Harrington et al. (2009) showed that when399

the deposition coefficient is constant, the above integral can be approximated accurately if De f f is400

calculated at an appropriate “kinetic” length-scale. Zhang (2012) showed that this approach can401

be extended to variable deposition coefficients if the ratio of the second and first moments of the402

distribution are used to define the kinetic length scales for the a- and c-axes,403

akin ≡
∫

∞

0 a2n(a)da∫
∞

0 an(a)da
= an

Γ(ν +2)
Γ(ν +1)

and ckin ≡ cn
Γ(ν +2)
Γ(ν +1)

. (16)404

In the above equation, ν is the distribution shape and the characteristic length scale an is used405

in the gamma distribution definition. Both an and cn are directly related to the number-weighted406

mean a- and c-axis lengths (for details see Harrington et al. 2013). The kinetic length-scales407

are used to calculate representative values of the deposition coefficients (αa and αc), which are408

then used to calculate a representative value of De f f ≡ De f f (αa,αc,akin,ckin,T,P). When these409

approximations are used in Eq. 2 they allow us to write Eq. 15 as,410

dqi

dt
' Ni

ρa
4π C De f f ρeq si, (17)411

where Ni is the ice concentration and C is the distribution-averaged capacitance. The above equa-412

tion allows us to calculate changes in ice mass mixing ratio subject to the influences of variable413

deposition coefficients, and it should be generally applicable since the form is nearly identical to414

that used in most bulk microphysical schemes. In addition to using αa and αc in De f f to estimate415

the overall effects of surface kinetics on mass growth, we also use these values in Eq. 3 to evolve416

the average a- and c-axis lengths following the procedure in Harrington et al. (2013). These mod-417

ifications make the bulk adaptive habit microphysical model (Harrington et al. 2013; Jensen et al.418
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2017) consistent with faceted growth and variable deposition coefficients. In the next section, both419

the Eulerian bin and bulk habit models are tested against Lagrangian bin microphysics.420

4. Parcel Model Testing against Lagrangian Microphysics421

The parameterizations are implemented into a parcel model framework (Sulia and Harrington422

2011) and are tested against a Lagrangian bin microphysical model that includes variable depo-423

sition coefficients (Zhang and Harrington 2015). Parcel models are idealized in that only parcel424

lifting at either a constant or sinusoidally varying updraft speed is used to provide the supersatu-425

ration forcing. No mixing with the environment occurs, and all of the hydrometeors move with426

the parcel. However, the idealized nature of parcel models makes them useful for testing micro-427

physical schemes since complicating processes (such as mixing and sedimentation) are ignored.428

The influence of growth processes alone can therefore be isolated, and biases and errors are easier429

to detect. The parcel model used here (described fully in Zhang and Harrington 2015) solves dif-430

ferential equations for the temperature, pressure, height, and total water mixing ratio, along with431

the microphysical equations. The Lagrangian bin microphysics is configured with 100 ice crystal432

bins for which the a- and c-axes, mass, and effective density are tracked. Since the growth of433

each bin is followed explicitly, the Lagrangian model results are used as the benchmark against434

which the Eulerian bin and bulk solutions are tested. The parcel model in each case is run for 4000435

seconds and initialized with a constant updraft speed, initial temperature, and initial pressure that436

varies for each simulation (described below). The initial relative humidity with respect to liquid437

for all simulations is 0.95, and this allows us to explore diffusion and kinetics-limited growth in438

a single simulation: High supersaturations and α are produced early in the simulations, whereas439

low supersaturations and α occur later in the simulations. Liquid water is not included in the sim-440

ulations and ice is nucleated instantaneously at the first time-step, which removes complications441
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that mixed-phase processes and nucleation feedbacks introduce. The instantaneously nucleated442

ice is spherical with an average initial radius of 10 µm for all the models. This initial ice spectrum443

is distributed over the the bins of the Lagrangian and Eulerian models during the first time-step444

using a gamma distribution with a shape of ν = 4. Note that the results are not highly sensitive445

to the assumed shape of the initial ice spectrum. A distribution shape of ν = 5 is prescribed for446

the bulk model because this value produces the best match with the Lagrangian simulations, and447

therefore provides an estimate of the minimum error associated with the parameterization. Depo-448

sition coefficients in all models are predicted with the parameterization described above using step449

nucleation (M = 10) for two reasons: First, the development of crystal habits is thought to be due450

to step-nucleation mediated growth (Frank 1982). Second, step nucleation is the most error-prone451

growth process to model due to the strong supersaturation dependence of α .452

Parcel model simulations were conducted for a range of constant vertical motions (from 0.1 to453

1 m s−1), a range of initial temperatures from -4 to -45 ◦C, and a range of ice concentrations from454

10 to 500 L−1. Vertical motion primarily alters the supersaturation forcing term, and since errors455

tended to be somewhat larger at lower vertical motions we only show results for a fixed vertical456

motion of 0.25 m s−1. In the analyses presented below, we first provide time-series results from457

a selected set of simulations that are representative of the ensemble of simulations. These results458

are followed by analyses of simulation-averaged results over a range of initial temperatures, which459

provide a broader picture of the parameterization accuracy.460

a. Time-series Results461

Time-series results for two sets of simulations conducted at high (-15◦C and 850 hPa) and low462

(-45◦C and 300 hPa) respective initial temperatures and pressures are shown in Fig. 9. For these463

simulations, schar and ρdep were held constant at their initial values so that temperature feedbacks464
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to the growth through α and the density do not occur. Consequently, any errors that appear should465

be due primarily to the evolution of the particle axis lengths. The constancy of schar and ρdep is466

relaxed in the next subsection.467

For all of the simulations (Fig. 9a), the supersaturation rises and then declines depending on468

when ice crystal growth dominates over the supersaturation production caused by vertical lifting.469

At -15◦C and a concentration of 10 L−1 the supersaturation rises above that of liquid, but as470

noted above we have neglected liquid-phase microphysics. Note that both the Eulerian bin and the471

bulk microphysical schemes capture the supersaturation evolution, though it is over-estimated in472

the bulk model, and under-estimated in the Eulerian bin model. This result illustrates the reason473

we ignored liquid-phase microphysics for these simulations: Not only does liquid-phase micro-474

physics introduce another complicating process, but liquid-phase microphysics would limit the475

supersaturation rise and therefore may not expose differences in model performance. Note that the476

supersaturation predicted by the Eulerian bin model is nearly identical to the Lagrangian solution477

at the higher ice concentration, however the bulk model prediction remains slightly high.478

The ice water content (Fig. 9b) rises continuously with time, but begins to asymptote as the479

supersaturation approaches steady-state. This is well predicted by both the Eulerian bin and the480

bulk models, though there are small differences that are difficult to discern in the figure: Since481

the bulk model over-predicts the supersaturation, it tends to slightly under-predict the ice water482

content (since total mass is conserved). The semi-axis lengths averaged over the size distribu-483

tions (Fig. 9c and d) are consistent with the behavior expected at each temperature. At -15◦C the484

average major semi-axis length (a-axis) increases rapidly reaching nearly 800 µm when the con-485

centration is low (10 L−1) whereas the minor semi-axis (c-axis) remains small. This growth is486

consistent with planar dendrites, and it is dependent on the ice concentration. The reason for the487

concentration dependence is the lack of a liquid phase: Including a liquid-phase would keep the488
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supersaturation near that of liquid saturation, thus constraining the growth and limiting the ice489

concentration dependence. At -45◦C columnar crystals are produced with much smaller major490

semi-axis dimensions (up to 150 µm) than crystals grown at the higher temperature. The Eulerian491

bin and bulk models capture the evolution of the average major semi-axis length with relatively492

high accuracy. The average minor semi-axis, in contrast, is only well-predicted by the Eulerian493

bin model. The bulk microphysical model either over- or under-predicts this axis length by 14%494

at -15◦C and 30% at -45◦C.495

While the distribution shape is fixed in the bulk microphysical model, it varies with time in the496

Eulerian and Lagrangian bin models. The Lagrangian bin model produces a rapid narrowing of497

the crystal size spectrum (Fig. 10), an expected result that Sheridan et al. (2009) showed is due498

to the faster habit development and growth of initially smaller particles. The Eulerian bin model499

captures the evolution of the distributions for both axis lengths in that the distribution mode is500

relatively well predicted. The a-axis distribution appreciably narrows similarly to the Lagrangian501

model, however the c-axis distribution width remains broader and is skewed towards the lower502

end. This result is due to the use of an average aspect ratio for each bin.503

The Eulerian bin and bulk microphysical models approximate the manner in which the deposi-504

tion coefficients, the effective density, and the aspect ratio are treated during growth, and some505

variables will thus be predicted with lower precision, a consequence that is clearly shown in506

Fig. 11. The effective density is relatively well predicted by the bulk microphysical model at -507

15◦C, however it is slightly under-predicted at -45◦C. It is possible to produce a better prediction508

of the density at lower temperature, but doing so causes the fall speed error to become greater than509

the 28% relative error shown in Fig. 11c. In contrast, the average effective density predicted by the510

Eulerian bin model is generally too high, though the fall speeds are predicted with a relative error511

of less than 10%. It is possible to predict the density more accurately by using mass moment con-512
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servation instead of the zeroth moment (Eq. 14). However, doing so leads to particles with smaller513

a- and c-axis lengths, and fall speeds that are much lower and with larger error (over 20%). The514

key point is that improving the prediction of one variable will necessarily introduce errors in other515

variables, and we choose to minimize the error in the ice water content and fall speed. It is also516

worth noting that the accuracy of the Eulerian bin parameterization is not strongly dependent on517

bin resolution. Tests with bin spacing reduced by half and one quarter produced nearly indistin-518

guishable results, and so they are not included on the figures. The insensitivity to bin resolution is519

due to a few factors. First of all, mass doubling is used to define the bin edges, and this leads to520

increasing bin widths for larger crystals. Therefore, reducing the bin width has less of an effect at521

larger sizes. Larger crystals also have the lowest densities, and accurate predictions of both aspect522

ratio and density are difficult to achieve when an average density is estimated for each bin. The523

relative insensitivity of the parameterization to bin width is a disadvantage, in that higher accuracy524

cannot be attained by reasonable refinements to the bin width. However, it is also an advantage in525

that using smaller numbers of bins will not strongly decrease the accuracy of the scheme.526

In contrast to the effective density and the fall speed, the distribution-averaged deposition co-527

efficients are relatively well predicted by each model. The deposition coefficient for the major528

semi-axis is always greatest, and this is expected: The surface supersaturation maximizes near529

regions of high curvature, such as at narrow end of a plate or a column, thus leading to larger α .530

Note that α for the major semi-axis begins above 0.1 when the supersaturation is high. Values of531

α above about 0.1 do not cause strong reductions in mass growth (Gierens et al. 2003). Growth of532

the major axis is therefore not strongly inhibited by surface kinetics early in the simulations, and is533

driven primarily by gas-phase diffusion. In contrast, the deposition coefficient for the minor axis is534

always below 0.1. The minor axis is therefore strongly inhibited by surface kinetics, and this is the535

reason that the modeled crystals develop planar and columnar shapes over time. As the simulations536
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progress, the supersaturation in each case declines and α for the major axis even decreases below537

0.1 indicating that growth is increasingly inhibited by surface processes. The bulk and Eulerian538

bin models capture these transitions remarkably well, especially given the strong supersaturation539

dependence of step nucleation.540

b. Simulation-Averaged Results541

The above time-series results are illuminating, but a broader picture of the parameterization542

results can be painted if we examine the various microphysical quantities, both averaged over the543

course of the simulations and as a function of the initial temperature. In the simulations presented544

below, we relax the assumption that the deposition density and the characteristic supersaturations545

are fixed at their initial value. Simulations are shown for initial temperatures between -4 and -546

40◦C, a pressure of 850 hPa, and for three initial ice concentrations of 10, 50, and 500 L−1, which547

produces a wide range of average particle sizes and aspect ratios.548

The simulation results show that both the Eulerian bin and bulk models predict the average ice549

water content trend with temperature, and with small relative errors (less than 5%) at all con-550

centrations and at initial temperatures below -10◦C (Fig. 12a). The ice water content decreases551

commensurately with temperature, as expected. Note that all the models predict a local minimum552

in the predicted ice water content near -9◦C at lower ice concentrations (Ni = 10 L−1). The mini-553

mum in ice water content is due to the isometric growth of the crystals near -9◦C, which is much554

slower than the columnar and planar growth that occur near -6 and -15◦C, respectively (Sulia and555

Harrington 2011). This result indicates that the Eulerian bin and bulk parameterizations can cap-556

ture an important feature of habit-dependent growth, even though the relative error in the ice water557

content is larger at higher temperatures: At initial temperatures above -10◦C the relative error558

reaches values of up to 14%.559
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The Eulerian bin and the bulk models also capture the general temperature dependence of the a-560

and c-axes of the crystals (Fig. 12c and d), with planar dendritic crystals that have low effective561

density (Fig. 12b) predicted between temperatures of -10 and -20◦C, and columnar crystals pre-562

dicted at temperatures above -10◦C. The effective density is well predicted by the bulk model at563

temperatures above -20◦C, however the Eulerian bin model tends to over-predict the effective den-564

sity. These results are consistent with those of the last section, and while we could alter the model565

to improve the effective density, the accuracy of the ice water content and the fall speed prediction566

(Fig.13b) would then suffer. Though it is difficult to discern from the figure, the simulated crystals567

are isometric at temperatures below -30◦C with relatively high effective density. As pointed out568

in Harrington et al. (2019), little data on schar exist at temperatures below -30◦C, and crystals at569

these temperatures are often polycrystalline. Given our limited knowledge we used a single schar570

for growth at low temperatures, leading to isometric crystals. Modeling either planar or columnar571

growth at low temperatures, as was done in the subsection above, requires reducing schar for the572

major axis, though little data is available to guide such a choice.573

The Eulerian bin model predicts the average axis evolution with a high degree of accuracy in that574

relative errors are less than 2%. In contrast, the bulk microphysical model tends to under-predict575

both average axis lengths by up to 20%. The larger error in the axis lengths is due primarily576

to the constant distribution shape, ν , which fixes the spectrum with a greater breadth than that577

simulated by the Lagrangian and Eulerian bin models. It is possible to improve upon the accuracy578

with which the bulk average axis lengths are predicted by changing the distribution shape. For579

instance, Fig. 13a shows that distribution shapes ranging between 3 and 6 produce average axis580

lengths that encompass the Lagrangian model solutions. However, using much smaller or larger581

values of ν then increase errors in other quantities including the ice water content (not shown) and582

fall speed (Fig. 13b). For instance, a value of ν = 6 produces larger average axis lengths, which583

26



causes much larger fall speeds. However, at T < -20◦C, a smaller value of ν=3 also produces584

larger fall speeds even though the crystal sizes are smaller. This result is due to the increase in the585

effective density that occurs as ν is reduced (not shown). A ν value of 5 appears to produce the586

best prediction of both the ice water content and the fall speed as compared to the Lagrangian bin587

model. However, it is worth keeping in mind that these benchmark comparisons do not include588

processes that will naturally broaden the size spectrum, such as differential vertical advection due589

to sedimentation, mixing, aggregation, and ice nucleation. One could therefore argue that a smaller590

value of ν may be more appropriate for simulations in Eulerian cloud models.591

The deposition coefficient parameterization developed above is general enough for use in any592

bulk microphysical scheme. Harrington et al. (2019) have shown that accurate mass growth rate593

calculations are possible if the growth rate is evaluated using the equivalent volume spherical594

radius (req) and an average characteristic supersaturation (schar),595

dqi

dt
' Ni

ρa
4π req qeq De f f [α(schar),req] ρeq si, (18)596

where qeq = C/req is an effective shape factor, and De f f [α(schar),req] is the effective diffusivity597

evaluated at req using a single α calculated with the average value of schar. In order to test the ac-598

curacy of this approximation for bulk models, the simulations shown in Fig. 12 were recomputed599

using Eq. 18 to calculate the mass growth only. Crystal shapes were still allowed to develop in600

time using the αa and αc values for each axis. Since the evolution of the crystal a- and c-axes601

is tied to changes in volume through the mass growth rate (see Eq. B26, Harrington et al. 2013),602

the change in crystal mass evolution will be consistent with Eq. 18. Consequently, any errors in603

the approximate mass growth rate should appear in the evolution of the crystal shapes and the ice604

water content, however, the relative errors in those quantities was always below 1%. To illustrate605

the low relative errors, Fig. 14 shows the simulation-averaged ice water content growth rate as a606
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function of the initial temperature. The overall mass uptake rate from the bulk model that uses a607

single α (Eq. 18) is nearly identical to the model that predicts both αa and αc. Note that the α608

value calculated with the above approach falls between αa and αc. The value of α tends to reside609

nearest the value for the fastest growing axis, and this makes physical sense: During either planar610

or columnar growth the major axis dominates the overall mass uptake by the crystals, and thus α611

for this axis will control most of the growth. These results indicate that Eq. 18 provides a use-612

ful approximation of the supersaturation-dependent deposition coefficient for bulk microphysical613

schemes.614

5. Summary and Concluding Remarks615

Surface attachment kinetics are often treated in numerical cloud models with a constant depo-616

sition coefficient. Such an approximation is only valid for a small range of conditions, and it is617

inappropriate for faceted crystals, including crystals with small faceted structures such as dendrites618

and the lacunae that occur with hollowed columns and plates. While theories for supersaturation-619

dependent deposition coefficients consistent with the growth of faceted ice have been available for620

many years, methods to connect those theories to the growth equations used in cloud models have621

been lacking. Moreover, the numerical procedures needed to calculate the deposition coefficients622

consistently with the equations for vapor growth are cumbersome and computationally costly. In623

this work, we provide an efficient method for calculating the deposition coefficient. This approxi-624

mate method produces small errors (less than 1%) relative to benchmark numerical solutions and625

allows for the specification of different surface growth modes, therefore providing flexibility in626

calculating α .627

The approximate method for calculating the deposition coefficient was parameterized for Eu-628

lerian bin and bulk microphysical models by making use of prior modeling methods. Parcel629
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tests of the Eulerian bin and bulk schemes indicate that both models are capable of reproducing630

temperature-dependent habit growth at low and high supersaturations, including the development631

of low density planar crystals consistent with dendrites, and narrow columnar crystals consistent632

with needles and hollow columns. Moreover, temperature-dependent features of the ice water con-633

tent, such as a minimum near a temperature of -9◦C, are reproduced by both bin and bulk models.634

The ice water content is generally simulated with relatively low error by both models, though635

errors can reach 14% at higher temperatures (above -6◦C). Fall speeds and average axis lengths636

are well predicted by the Eulerian bin model (relative errors < 10%), however effective density is637

over-predicted. In contrast, the bulk model predicts the effective density with lower relative error,638

but produces larger errors in the average axis lengths (up to 20%). Better axis length prediction639

by the bulk model is possible by changing the distribution shape parameter (ν), however doing so640

can produce larger errors in the fall speed (over 20%). Using an equivalent volume radius sphere641

and a single deposition coefficient can reproduce the growth rates of highly anisotropic crystals,642

and therefore provides a method for including variable deposition coefficients in any bulk scheme.643

It is worth noting that the present parameterization is perhaps most easily adapted to Lagrangian644

super-particle schemes, where the properties of particles are tracked in a Lagrangian sense within645

an Eulerian spatial framework (e.g. Shima et al. 2020)646

Even though our focus is on ice crystal growth, for completeness we point out that sublimating647

crystals can also be treated with the framework described in this manuscript, though with mod-648

ifications. Sublimation causes the crystal surface to roughen rapidly (Magee et al. 2014), and649

the sublimation coefficient appears to be near unity (Magee et al. 2011). Moreover, single crys-650

tals become spheroidal during sublimation, and their aspect ratios remain approximately constant651

(Nelson 1998).652
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hPa (300 hPa) was assumed for the -15◦C (-45◦C) simulation. Note that the major axis at885

-15◦C (-45◦C) is the a-axis (c-axis). Ice crystal growth assumed step nucleation (M = 10).886

Results using the Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed)887

models are shown. . . . . . . . . . . . . . . . . . . . . . 50888

38
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the a-axis semi-length and, (d) the c-axis semi-length as a function of the initial temperature890

of the simulation. Initial ice crystal concentrations of 10 (black lines), 50 (red lines), and 500891

(blue lines) L−1, along with a constant updraft speed of 0.25 m s−1 and an initial pressure of892

850 hPa were used. Ice crystal growth assumed step nucleation (M = 10). Results from the893

Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed) models are shown. . . 51894

Fig. 13. Simulation and distribution average of (a) the a-axis (black) and c-axis (red) semi-lengths,895

and (b) the mass-weighted fall speed as a function of the initial temperature. An initial896

ice concentration of 10 L−1, along with a constant updraft speed of 0.25 m s−1 and an897

initial pressure of 850 hPa were used. Ice crystal growth assumed step nucleation (M = 10).898

Lagrangian and bulk model results are shown by the solid line and the dashed-dotted lines,899

respectively. Eulerian bin model results are shown by the red dashed line for the fall speed900
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Fig. 14. Simulation and distribution average of the (a) ice water content growth rate and (b) the905

deposition coefficients as a function of the initial temperature. Results are shown for bulk906

model simulations using both deposition coefficients (αa and αc, solid lines) and bulk model907

simulations using a single deposition coefficient as could be used in classical bulk models908

(dashed-dotted lines). The ice water content growth rate is shown three initial ice concen-909
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axis, dashed lines) as a function of the ambient supersaturation for a crystal with an a-axis of 86 µm, a c-axis of

17 µm, and at T = -15◦C, P = 500 hPa. The one-to-one ambient supersaturation line is shown on the figure in

blue and is labeled. The surface supersaturation and deposition coefficient for the a and c axes are given by the
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shown with the solid black and red lines, respectively whereas the parameterization is shown with the dashed

lines. The ambient supersaturation is indicted by the blue dashed lines, and the power-law fit (spwr) is given by

the solid blue lines for each axis. Deviations from the power-law fit are indicated by the black circles and labeled

residuals, using the a-axis as an example.

921

922

923

924

925

926

927

928

41



0.0001 0.0010 0.0100 0.1000 1.0000

s
diff

/s
char

0.05

0.10

0.15

0.20

R
e

s
id

u
a

l 
[(

s
lim

−
s

s
u

rf
)/

s
s
u

rf
]

r i
 =

 4
6 μ

m

r i
 =

 1
10 μ

m

r i
 =

 2
64 μ

m

r i
 =

 6
30 μ

m

r i
 =

 1
502 μ

m

R
l R

u

FIG. 3. Residuals (black lines) as a function of sdi f f /schar computed from the difference between the limited

power-law value (slim) and the actual surface supersaturation (ssur f ). The residuals are given as a fractional

quantity. The temperature, pressure, growth mechanism, and aspect ratio were the same as Fig. 2. The particle

size was varied by keeping the aspect ratio constant and changing the radius of an equivalent volume sphere

(req). The dashed blue lines show the parameterized residuals: Rl varies implicitly with size whereas Ru is fixed

near unity.

929

930

931

932

933

934

42



0 2 4 6 8 10 12 14 16
M-value

0

0.2

0.4

0.6

0.8

1

co
ef

fi
ci

en
ts

/e
x

p
o

n
en

ts

0 2 4 6 8 10 12 14 16
M-value

-15

-10

-5

0

5

10

p
o

w
er

-l
aw

 e
x

p
o

n
en

ts

R
max,l

R
max,u

β

n
1

n
2

p
1

p
2

circles: fit coefficients and exponents

lines: polynomial fits

(a)

(b)

FIG. 4. Deposition coefficient growth mechanism parameter M-dependence of, (a) power-law exponent used

in Eq. 6 and coefficients used in Eq. 9, and (b) power-law exponents used in Eq. 9. Circles represent the actual

values used to fit Eqs. 6 and 9 to accurate calculations of the surface supersaturation (values are given in Table

1). Lines are polynomial fits to the circles, and the fit coefficients are given in Table 2.

935

936

937

938

43



0 2 4 6 8 10 12 14
ambient supersaturation [%]

10

100
s
e

m
i−

a
x
is

 [
μ

m
] a−axis

c−axis

M=1 M=3
M=10

FIG. 5. Semi-axis lengths (a and c) after 10 minutes of growth at a pressure of 500 hPa and a temperature of

-15◦C and a constant ambient supersaturation. Calculations are shown for three values of the growth mechanism

parameter, M, of 1 (dislocation growth), 3, and 10 (ledge formation), which are indicated by the lines. Bench-

mark calculations for three values M, are indicated by the magenta (M=1), green (M=3), and black (M=10) lines.

Simulations using the approximate form of the deposition coefficient are indicated by the dashed blue (M=1),

orange (M=3), and red (M=10) lines.

939

940

941

942

943

944

44



0 2 4 6 8 10 12 14
ambient supersaturation [%]

0.001

0.010

0.100

1.000

d
e

p
o

s
it
io

n
 c

o
e

ff
ic

ie
n

t

0 2 4 6 8 10 12 14
ambient supersaturation [%]

0.1

1.0

10.0

s
u

rf
a

c
e

 s
u

p
e

rs
a

tu
ra

ti
o

n
 [

%
]

a−axis

c−axis

step nucleation (M=10)

ssurface a−axis

ssurface c−axis

si

schar,a

schar,c

M=10
M=3 M=1

(a)

(b)

FIG. 6. (a) Deposition coefficients (a and c) after 10 minutes of growth at a pressure of 500 hPa, a temperature

of -15◦C as a function of the ambient supersaturation (si). Calculations are shown for three values of the growth

mechanism parameter, M, of 1 (dislocation growth), 3, and 10 (ledge formation), which are indicated by the

curves. Benchmark calculations for three values M, are indicated by the magenta (M=1), green (M=3), and

black (M=10) curves. Simulations using the approximate form of α are indicated by the dashed blue (M=1),

orange (M=3), and red (M=10) curves. (b) Surface supersaturation for the a- and c-axes as a function of si for

step nucleation (M = 10). Benchmark calculations are shown with the black curve, whereas the approximate

form is given by the red-dashed curve. The one-to-one ambient supersaturation is given by the blue curve, and

the values of schar for the a- and c-axes are given by the green solid and dashed lines, respectively.
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FIG. 7. (a) Semi-axis lengths (a and c) and, (b) deposition coefficients after 10 minutes of growth at a pressure

of 500 hPa, a temperature of -15◦C, an initial crystal radius of 10µm, and a constant ambient supersaturation

that is 5% of liquid saturation, si = 0.05× [es− ei]/ei where es and ei are the equilibrium vapor pressures of

liquid and ice, respectively. Accurate benchmark calculations are indicated by the green (M=1, dislocations),

and black (M=10, step nucleation) lines. Simulations using the approximate form of the deposition coefficient

are indicated by the dashed orange (M=1) and dashed red (M=10) lines. Simulations using the capacitance

model with the Chen and Lamb (1994) habit parameterization is shown by the blue dashed lines.
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FIG. 8. Cartoon example of top-hat semi-Lagrangian depositional growth (Stevens et al. 1996). Bin mass

edges are given along the x-axis as mk and mk+1 defining bin-k. The edges of the original top-hat construction in

bin-k is shown in red, with the lower and upper mass edges shown (ml(t) and mu(t), respectively). The analytical

solution to the vapor growth equation is used to calculate the change in the top-hat edges indicated by the black

arrows (ml(t +∆t) and mu(t +∆)), resulting in a new top-hat distribution shown by the dashed blue lines. In

this example, the number mixing ratio (Nk) is then remapped to the next bin (k+ 1) using the fraction shown

by the blue shade, while the remainder (shown in white) is mapped to the original bin. The total concentration

(zeroth-moment) is conserved in this process. This procedure is used to remap the mass, volume, and aspect

ratio.
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FIG. 9. Parcel model simulation time-series of (a) ice saturation ratio (e/ei), (b) ice water content, (c) minor

semi-axis length, and (d) major semi-axis length. The simulations were conducted for two different initial tem-

peratures (-15◦C, red and black, and -45◦C, blue) and two difference ice concentrations for the -15◦C simulation

(labeled on panel a). Both simulations used a constant updraft speed of 0.25 m s−1. An initial pressure of 850

hPa (300 hPa) was assumed for the -15◦C (-45◦C) simulation. Note that the major axis at -15◦C (-45◦C) is the

a-axis (c-axis). Ice crystal growth assumed step nucleation (M = 10). Results using the Lagrangian bin (solid),

Eulerian bin (dashed), and bulk (circle-dashed) models are shown.
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FIG. 10. Distributions of fractional ice concentration (N/Nmax) as a function of the a-axis (left panel) and

c-axis (right panel) semi-lengths. N is the ice crystal concentration and Nmax is the concentration at the distri-

bution peak (mode). Lagrangian microphysical model distributions are given by the solid lines, Eulerian bin

microphysical distributions by the dashed red lines. Distributions are plotted at the simulation times indicated

above the distributions shown in the left panel. Distributions are plotted for the simulation with an initial tem-

perature of -15◦C, an initial pressure of 850 hPa, an ice concentration of 10 L−1, and a constant updraft speed of

0.25 m s−1.
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FIG. 11. Parcel model simulation time-series of average (a) deposition coefficients for the minor and major

semi-axes (b) effective particle density, and (c) mass-weighted fall speed. The simulations were conducted for

two different initial temperatures (-15◦C, red and black, and -45◦C, blue) and two difference ice concentrations

for the -15◦C simulation (labeled on panel a). Both simulations used a constant updraft speed of 0.25 m s−1.

An initial pressure of 850 hPa (300 hPa) was assumed for the -15◦C (-45◦C) simulation. Note that the major

axis at -15◦C (-45◦C) is the a-axis (c-axis). Ice crystal growth assumed step nucleation (M = 10). Results using

the Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed) models are shown.
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FIG. 12. Simulation and distribution averages of (a) the ice water content, (b) the effective density, (c) the a-

axis semi-length and, (d) the c-axis semi-length as a function of the initial temperature of the simulation. Initial

ice crystal concentrations of 10 (black lines), 50 (red lines), and 500 (blue lines) L−1, along with a constant

updraft speed of 0.25 m s−1 and an initial pressure of 850 hPa were used. Ice crystal growth assumed step

nucleation (M = 10). Results from the Lagrangian bin (solid), Eulerian bin (dashed), and bulk (circle-dashed)

models are shown.
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FIG. 13. Simulation and distribution average of (a) the a-axis (black) and c-axis (red) semi-lengths, and (b)

the mass-weighted fall speed as a function of the initial temperature. An initial ice concentration of 10 L−1,

along with a constant updraft speed of 0.25 m s−1 and an initial pressure of 850 hPa were used. Ice crystal

growth assumed step nucleation (M = 10). Lagrangian and bulk model results are shown by the solid line and

the dashed-dotted lines, respectively. Eulerian bin model results are shown by the red dashed line for the fall

speed only. The influence of the assumed distribution shape on the axis lengths is indicated by the long-dashed

and short-dashed lines bounding the shaded regions. The bounding long-dashed and short dashed lines used a

distribution shape of ν = 3 and ν = 6, respectively. For reference, this is indicated for the c-axis in (a).
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FIG. 14. Simulation and distribution average of the (a) ice water content growth rate and (b) the deposition

coefficients as a function of the initial temperature. Results are shown for bulk model simulations using both

deposition coefficients (αa and αc, solid lines) and bulk model simulations using a single deposition coefficient

as could be used in classical bulk models (dashed-dotted lines). The ice water content growth rate is shown

three initial ice concentrations of 10 (black lines), 50 (red lines), and 500 (blue lines) L−1, along with a constant

updraft speed of 0.25 m s−1 and an initial pressure of 850 hPa. The deposition coefficients are shown only for

the simulation with an ice concentrations of 10 L−1.
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