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ABSTRACT

In modern high-performance aircraft, the Fuel Thermal
Management System (FTMS) plays a critical role in the over-
all thermal energy management of the aircraft. Actuator and
state constraints in the FTMS limit the thermal endurance and
capabilities of the aircraft. Thus, an effective control strategy
must plan and execute optimized transient fuel mass and tem-
perature trajectories subject to these constraints over the entire
course of operation. For the control of linear systems, hierar-
chical Model Predictive Control (MPC) has shown to be an ef-
fective approach to coordinating both short- and long-term sys-
tem operation with reduced computational complexity. However,
for controlling nonlinear systems, common approaches to sys-
tem linearization may no longer be effective due to the long pre-
diction horizons of upper-level controllers. This paper explores
the limitations of using linear models for hierarchical MPC of
the nonlinear FTMS found in aircraft. Numerical simulation re-
sults show that linearized models work well for lower-level con-
trollers with short prediction horizons but lead to significant re-
ductions in aircraft thermal endurance when used for upper-level
controllers with long prediction horizons. Therefore, a mixed-
linearity hierarchical MPC formulation is presented with a non-
linear upper-level controller and a linear lower-level controller
to achieve both high performance and high computational effi-
ciency.
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1 INTRODUCTION

In using Model Predictive Control (MPC) for the control of
nonlinear systems, it is a common practice to linearize system
dynamics in order to formulate the MPC optimization problem
as either a Linear Program (LP) or a Quadratic Progam (QP) that
can be solved quickly online in real-time. While linearization
can be implemented in a variety of ways, it is typical for the dy-
namics to be linearized either once about a desired operating con-
dition or repeatedly about the current operating condition at ev-
ery update of the MPC controller. Historically, these approaches
to linearization have proven effective when the control objective
drives the system to a predetermined operating condition (see [1]
and the references therein). However, the effectiveness of this
linearization approach is unclear when the control objective goes
beyond steady-state regulation or reference tracking.

This paper focuses on the role of system nonlinearity in the
optimization of high-level system behavior with specific applica-
tion to aircraft energy management, where the control objective
is to maximize thermal endurance. In modern high-performance
aircraft, the Fuel Thermal Management System (FTMS) serves
the important role of absorbing thermal energy (heat) from other
subsystems. Some of this energy is removed from the aircraft via
the fuel sent to the engine while the remainder of this energy is
stored in the fuel tanks. While the fuel tanks can store a signif-
icant amount of thermal energy, due to the considerable mass of
fuel in the tanks, the amount of available energy storage is lim-
ited by both an upper temperature bound and the monotonically
decreasing amount of fuel in the aircraft. Thermal endurance
is defined as the length of time an aircraft can operate before
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the fuel in the FTMS exceeds these predetermined upper tem-
perature bounds [2]. With the increasing heat loads associated
with greater electrification and rising demands for aircraft per-
formance, thermal endurance has become a major factor limiting
the capabilities of modern high-performance aircraft [3-5].

As a result, optimizing the operation of the FTMS is crit-
ical to maximizing aircraft capability and significant research
efforts have focused on modeling and control of a wide vari-
ety of FTMS architectures [6—12]. Recently, a dual-tank FTMS
has been shown to increase the thermal endurance of an aircraft
when compared to a single-tank system with the same amount of
fuel [2]. The benefits of a dual-tank FTMS were demonstrated
experimentally in [13] using a small-scale experimental system
designed using dimensional analysis to achieve dynamic simil-
itude to a full-scale aircraft system. Through detailed analysis
of the FTMS dynamics, [2] proves that the thermal endurance
achieved by the proposed dual-tank system will exceed that of a
single-tank system by strategically controlling the fuel flow from
a recirculation tank and a reservoir tank. While the nonlinear
dynamics were considered when analyzing the FTMS behavior,
a LQR-type controller was developed based on a linearized sys-
tem model to track a set of predetermined references. These ref-
erences where chosen offline in an effort to maximize thermal
endurance based on steady-state system analysis.

As shown in [2], it is clear that the operation of the FTMS
has a significant impact on thermal endurance. Therefore, this
paper focuses on optimizing FTMS operation using MPC to di-
rectly maximize thermal endurance subject to actuator and state
constraints. In particular, this paper demonstrates the need to
include the nonlinearities of the FTMS in the MPC prediction
model based on the associated reduction in thermal endurance
incurred when using linear prediction models. To overcome
the computational limits associated with solving Nonlinear Pro-
grams (NLPs) online, a mixed-linearity hierarchical MPC formu-
lation is proposed. To reduce computational cost, the upper-level
controller is designed with a slow update rate and a nonlinear
model of the system to plan long-term state and input trajecto-
ries that maximize thermal endurance. The lower-level controller
is designed with a fast update rate and linear model of the sys-
tem to refine the control decision made by the upper-level con-
troller and provide improved disturbance rejection. Waypoint-
based coordination is used to guide the lower-level controller
based on the desired state trajectory determined by the upper-
level controller [14]. Simulation results demonstrate the practi-
cality of this mixed-linearity hierarchical MPC approach and the
improved thermal endurance achieved by including system non-
linearities in the prediction horizon.

The remainder of the paper is organized as follows. Section
2 introduces the specific FTMS from [2] used for this study and
assesses the modeling error introduced by system linearization.
The importance of including system nonlinearities when maxi-
mizing thermal endurance is established through open-loop state
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FIGURE 1: Dual-tank FTMS architecture modified from [2].

and input trajectory optimization in Section 3. Details of the
closed-loop MPC architectures compared in this work are pre-
sented in Section 4. Numerical simulation results in Section 5
demonstrate the value of the proposed mixed-linearity hierarchi-
cal MPC formulation for several operating scenarios including
both constant and time-varying heat loads. Finally, Section 6
summarizes the conclusions of the paper and provides future re-
search directions.

2 AIRCRAFT FTMS MODEL
2.1 Model Summary

While a number of different FTMS architectures have been
studied, each system 1) uses pumped fuel flow to collect ther-
mal energy from various heat sources, 2) removes some of this
energy from the aircraft by burning a portion of this heated fuel
in the aircraft’s engine, and 3) has the ability to cool some of
the remaining fuel flow before returning to the fuel tank serving
as energy storage. The specific FTMS architecture used in this
paper is shown in Fig. 1 and is modeled to have the same dy-
namic behavior as the dual-tank system from [2]. This system
is modeled with three states corresponding to the mass of fuel in
the recirculation tank, M, the mass of fuel in the reservoir tank,
M,, and the temperature of the fuel in the recirculation tank, 77.
Since fuel can only drain from the reservoir tank, the temperature
of fuel in Tank 2, T3, is assumed constant. Assuming a constant
pumped fuel mass flow rate riz; and a constant fuel mass flow to
the engine, rit,, the recirculation flow rate that returns to Tank 1
is rivy — 1. In this simplified system, the only control input is ¢,
which denotes the fraction of pumped fuel coming from Tank 1
such that 71y = oy, As a result, the fuel coming from Tank 2
is 71y = (1 — o)riry. The pumped fuel is used to absorb heat Q;y
from other subsystems and the fuel returning to Tank 1 passes
though a ram air cooler to remove heat Oout-

From conservation of mass, the differential equations gov-
erning the mass of fuel stored in each of the two tanks are

M; = (1 — o)y — ritg, (1a)
Mzif(lfa)rhf. (1b)
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From conservation of energy, the differential equation governing
the temperature of fuel in Tank 1 is

Mice,Ti + Mye, Ty = (g —1itg) ey T jn — Qmpey, Ty, (2)

where ¢, is the specific heat of fuel at constant volume and 77 ;,
is the temperature of the fuel exiting the ram air cooler and re-
turning to Tank 1. Neglecting the dynamics of the remainder of
the components in Fig. 1, the temperature of the fuel entering
Tank 1 is .

QOMI

Hw=T,—7—""—~—, 3)
(my—mme)cy
where .
Te:och—i—(l—a)Tz—i—,Q—""7 4)
mgcy

is the temperature of the fuel entering the engine. As described in
detail in [2], Q;, is the total heat load from several sources with

Qin = OF + On, + On, + Py + Ko, iy, &)

where Qr is the heat from the Full Authority Digital Engine
Controller (FADEC), th is the heat from a Vapor Cycle Sys-
tem (VCS), Q'h(, is the heat from engine lubrication system, and
P, + K, 1y is the heat from the fuel pump, assumed to be a linear
function of riy. Additionally, the heat removed from the system
by the ram air cooler is defined in [2] as

Qout = (mf_me)cv(l _eiU)(Te_Tw); (6)

where U is is the number of heat transfer units for the heat ex-
changer and T,, is the cold side wall temperature. Both U and T,
are assumed constant.

Combining (1)-(6), the overall nonlinear dynamics of the
system can be written generically as the control-affine nonlinear
system

x=f(x,d)+g(x,d)u, @)

where x = [M; M, Ty]" and u = «. The disturbance d is taken to
be d = th to allow for a time-varying heat load from the VCS,
which will be used in Section 5. Table 1 includes the values of
the model parameters defined in (1)-(6) based on the values used
in [2]. Note that the nonlinearities in the system dynamics are
restricted to the dynamics for 77 and arise from i) the product
between the control input & governing the fuel flow rates in the
system and the temperature state 77, which is common in systems
with heat transfer due to fluid flow, and ii) the division by the
mass of fuel M, which is common for any system governed by
conservation of energy with time-varying thermal capacitance.

2.2 Discretization and Linearization

For implementing discrete-time optimization and MPC,
the nonlinear continuous-time dynamics from (7) must be dis-
cretized. This paper employs a forward Euler discretization
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TABLE 1: SYSTEM PARAMETERS.

Variable Description Units Nominal Lower Upper
Value® Bound Bound
M, Recirculation tank mass kg 200 30 2850
M, Reservoir tank mass kg 2850 0 2850
T Recirculation fuel temperature K 288 280 333
T Reservoir fuel temperature K 288
g Pumped fuel flow rate kg 1.0
Tite Engine fuel flow rate kg 0.26
o Recirculation fuel fraction - - 0 1.0
¢y Fuel specific heat J/(kg:K) 2,010
Or FADEC heat input w 1,000
On, VCS heat input N 55,000
Oh, Engine heat input w 10,000
P, Fuel pump power w 50,000
Ko, Fuel pump heat input coeff. W/kg -6,618
U Heat Transfer Units - -0.37
T Heat exchanger cold wall K 238

temperature

2 Also serves as the initial value for system states My, M,, and 7.

where, for a discrete time step size of Ar, the state derivative
is approximated as x = W, with & indexing the discrete time
steps. Thus the discrete-time approximation of (7) is

X1 = X + A [f (xk, di) + g (k, di g - ®)

While an optimization problem based on (8) would result in
a NLP, the continuous-time dynamics from (7) can be linearized
and then discretized in order to benefit from the reduced compu-
tational burden associated with solving a LP or QP, depending on
the cost function design. For linearization, this paper employs a
Taylor series approximation of f(x,d) and g(x,d)u about nom-
inal operating conditions x°, d°, and u’. Note that these nom-
inal operating conditions do not need to be an equilibrium of
(7), which is important considering the monotonically decreas-
ing amount of fuel stored in the fuel tanks. From this Taylor
series approximation, the discrete-time linear approximation of
(7)1s
Xkl = A’xp +Bup +W°dy, O]

where the superscripts are a reminder that these matrices can only
be expected to accurately approximate the nonlinear dynamics
within a neighborhood of the nominal conditions used for lin-
earization. When designing a linear MPC controller for nonlin-
ear systems, it is common to either i) linearize the system once
about the initial condition xy or some desired operating condi-
tion, or ii) repeatedly linearize the system about the current op-
erating condition x; at every discrete update of the controller.
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2.3 Open-loop Model Comparison

Fig. 2 shows the degree of model error introduced by dis-
cretization (At = 100 sec) and linearization. This discretiza-
tion step size was chosen to be large enough to make the op-
timization problems in the following sections computationally
tractable with 11,700 second prediction horizons while being
small enough to capture the key dynamics of the FTMS. The
control input used for this model comparison corresponds to the
optimized open-loop input trajectory for the dual-tank system de-
termined in [2]. Since the first two states are pure integrators
corresponding to the mass of fuel in the tanks, discretization and
linearization do not introduce any additional modeling error. As
shown in Fig. 2, the discretization of the fuel temperature differ-
ential equation introduces zero steady-state modeling error and a
small degree of model error during the transients on the order of
0.5 K.

The largest modeling error comes from linearizing the sys-
tem about the initial condition, x¢. This linearization introduces
both transient and steady-state model error on the order of 70 K,
as shown in Fig. 2. Clearly, the linearized model is unable to cap-
ture neither i) the bilinear coupling between the mass flow rate
input and temperature state which affects the steady-state operat-
ing condition nor ii) the effects of the time-varying mass of fuel
in Tank 1 on the transient fuel temperature behavior.

However, this linearization error can be drastically reduced
by repeatedly linearizing the nonlinear dynamics about the cur-
rent operation condition, x;, as shown in Fig. 2. This repeated
linearization removes any steady-state modeling error and signif-
icantly reduces the transient modeling error to roughly 0.2 K.

From these open-loop model comparisons, it becomes clear
how short-horizon linear MPC of nonlinear systems can be
highly effective when the control objective is regulation about an
equilibrium or reference-tracking. The combination of repeated
linearization and short prediction horizons ensures that the linear
model remains accurate over the MPC prediction horizon. How-
ever, the following sections show the limitations of using a linear
model for long-horizon predictions.

3 OPEN-LOOP OPTIMIZATION

Unlike many regulation-oriented controllers, the goal for
controlling the FTMS is to optimize a long-term energy man-
agement plan over the course of the mission. Over this predic-
tion horizon, the mass of fuel in the fuel tanks will change sig-
nificantly and the control objective is to use the full state and
input spaces to maximize the thermal endurance of the aircraft.
Without the ability to re-linearize over the long prediction hori-
zon, it is expected that the linearization error might significantly
degrade the ability to effectively plan long-term state and input
trajectories using a linear MPC controller.

To assess the impact of including nonlinearity in the dy-
namic system model used for MPC, the following open-loop
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FIGURE 2: Open-loop control input trajectory and correspond-
ing mass and temperature responses. For temperature: con-
tinuous nonlinear (black), discrete nonlinear (red, here covered
by the green trace line), linear (orange), and successively re-
linearized (green).

optimization problem is formulated to maximize thermal en-
durance:

N
J* (xo) =min Y £ (xy,ur,sk), (10a)
U =0
s.t.Vk € [0,N—1]
Xyt = X+ A [f (g, di) + g (i, di )] (10b)
u<u <i, (10c)
x—sp Sxp <X+ sy (10d)
0 <sp < gyt (10e)

With a prediction horizon of N steps, the input sequence U =
{u }Y=,) is optimized to minimize the cost function in (10a)
designed to maximize thermal endurance and promote smooth-
ness in the input trajectory. For MPC development, minimiz-
ing or maximizing the time for task completion is often achieved
through the use of binary variables that reflect if the task is com-
pleted at each time step [14—16]. The cost function is then formu-
lated to minimize or maximize the sum of these binary variables.
However, when including nonlinear dynamics, as in (10b), the in-
troduction of binary variables converts the already hard to solve
NLP to a Mixed-Integer Nonlinear Program (MINLP), which is
even harder to solve.

Therefore, instead of binary variables, slack variables s(k)
are used in (10a), (10d), and (10e) to promote constraint satisfac-
tion and maximize thermal endurance. With thermal endurance
defined as the number of discrete time steps before a temperature
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FIGURE 3: Optimized input and state trajectories achieved from solving (10) with (a) nonlinear system dynamics and (b) linear system
dynamics (nonlinear model (10b) replaced by the linear model in (9)). In (c), the input trajectory from Fig. 3b is applied to the nonlinear

system model in (8).

constraint violation, the cost function (10a) is designed as
O (xg, g, ) = ||+ Alug — ug—q ], (11)

to minimize slack variables and incentivize smooth inputs with
A = 10. In addition to the nonlinear dynamics constraints (10b),
the lower- and upper-bounds on the inputs and states are con-
strained in (10c) and (10d) based on the limits provided in Ta-
ble 1. The slack variables are included to maintain feasibility
when the fuel temperature exceeds its upper limit while the in-
equality constraints in (10e) ensure that the slack variables are
non-decreasing in time. In combination with (11), (10e) helps to
delay the first temperature constraint until as late in the predic-
tion horizon as possible, thus maximizing thermal endurance.

With a discrete-time step size of Az = 100 seconds, the
prediction horizon is chosen as N = 117 steps to capture the
~ 11,600 seconds constant fuel burn rate example from [2].
All of the results in this paper were generated using MATLAB
and YALMIP [17] on a desktop computer with a 3.2 GHz i7-
8700 processor and 16 GB of RAM and all nonlinear MPC op-
timization problems were solved with IPOPT [18] while all lin-
ear MPC optimization problems were solved with Gurobi [19].
When solving nonlinear optimization problems, warm-starting
the solver with an initial guess at the optimal solution can signif-
icantly reduce the computation time. In [2], the author proposes
a candidate optimal input trajectory based on the idea of keep-
ing the recirculation tank fuel temperature as high as possible for
as long as possible. This is approximately the same trajectory
as shown in Fig. 2, and will be used for warm-starting for the
following results.

Fig. 3a shows the optimized input and state trajectories
based on solving (10) using the nonlinear system model. Note
that the applied heat load is held constant at Q;, = 109,380 kW,
which is slightly higher than the 104,380 kW used in [2] to en-
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sure that the thermal endurance is less than the endurance im-
posed by the limited mass of fuel. For the first 500 seconds, the
optimal input is & = 1, which drains fuel from Tank 1 and allows
T, to quickly rise to the upper-bound T = 333K. For approx-
imately the next 10,700 seconds, the optimal input is o =0.74,
which holds 77 at steady-state effectively maximizing the amount
of energy that is removed from the FTMS via the fuel sent to the
engine. Once Tank 2 is almost empty, the control input must re-
turn to & = 1 to only pull fuel from Tank 1. At this time 7j is
forced to exceed its upper-bound resulting in a thermal endurance
of 11,200 seconds. Overall, this optimal open-loop operation is
very similar to that determined in [2] resulting in a similar ther-
mal endurance. Note that despite the use of warm-starting with
a relatively accurate guess at the input and state trajectories, the
computation time to solve (10) is around 123 seconds.

When the nonlinear model in (10b) is replaced with the lin-
ear model from (9), the corresponding “optimal” input and state
trajectories are shown in Fig. 3b. When comparing the input tra-
jectories in Figs. 3a and 3b, the key difference is that the input
no longer starts at oo = 1 before dropping down to o = 0.7. As
aresult, 77 in Fig. 3b increases more gradually compared to the
rapid increase shown in Fig. 3a. As discussed in [2], maintain-
ing a high value of 7} increases the temperature of fuel sent to
the engine, T,, and in turn maximizes energy removal from the
system with this fuel flow. Solving (10) with the nonlinear model
correctly identifies this optimal behavior while solving (10) with
the linear model does not. Instead, the linear model predicts a
large decrease in temperature which is not physically possible in
the nonlinear system. This results in an “expected” thermal en-
durance of 11,300 seconds, which is even greater than the 11,200
seconds achieved with the nonlinear model.

To demonstrate the risk of using a linear model of the FTMS
for long-term trajectory planning, Fig. 3c shows the true state
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FIGURE 4: Closed-loop control schemes with corresponding sampling time Ar and prediction horizon N: (a) Linear MPC, (b) Nonlinear

MPC, and (c) Hierarchical MPC.

trajectory when the “optimal” input from Fig. 3b is applied in
open-loop to the nonlinear system. While the fuel mass trajecto-
ries are the same, the large decrease in temperature seen in Fig.
3bis no longer seen in Fig. 3c. Instead, 77 remains close to its up-
per bound until Tank 2 is empty, at which point the temperature
constraint is violated. By using an initial value of & = 1 in early
operation, optimization using the nonlinear model was able to de-
lay when fuel is drained from Tank 2, which directly delays when
Tank 2 is empty and when 77 violates the temperature constraint.
This clearly highlights how early system operation can have a
lasting, long-term effect on the system that directly influences
the achieved thermal endurance. While optimization using the
linear model had predicted a thermal endurance of 11,300 sec-
onds, the achieved thermal endurance using this input trajectory
is only 10,100 seconds, which is 9.8% lower than that achieved
using the nonlinear model. However, while solving (10) with the
nonlinear model required a computation time of 123 seconds, the
use of a linear model reduces this computation time to only 0.05
seconds.

4 CLOSED-LOOP MPC
4.1 CONTROL APPROACHES

Instead of applying optimized open-loop control input tra-
jectories directly to the system, MPC is able to compensate for
model uncertainty by repeatedly solving (10) at every discrete-
time step based on the current state of the system. As an added
benefit, when applying linear MPC, the nonlinear dynamics can
be re-linearized about the current operating condition, x, to gen-
erate a more accurate prediction model. Thus, in the remainder
of this work, the performance of three MPC schemes is com-
pared, as shown in Fig. 4 with the corresponding sampling times
and prediction horizon. For the Linear and Nonlinear MPC the
same formulation from the previous section is used. In the Linear
MPC the model is re-linearized every time step. The proposed
Hierarchical MPC is detailed in Section 4.2.

Since (10) is defined to predict to the end of system opera-
tion, (10) is slightly modified to create an MPC controller with

a shrinking prediction horizon, which is applied to all three con-
trollers. As such, regardless of the current time step, the MPC
controllers only predict to the final time step tF = 11,700 sec-
onds and no further. The technical details for formulating an
MPC controller with a shrinking horizon are provided in [14].

4.2 HIERARCHICAL MPC

The main contribution of this work is the mixed-linearity
hierarchical MPC shown in Fig. 4c. As will be shown in Section
5, a nonlinear model of the FTMS system dynamics is needed
to achieve the maximum thermal endurance. However, given the
relatively large computation time associated with solving NLPs,
a nonlinear MPC formulation is only practical if the update step
size At can be made large enough to accommodate this solution
time. Unfortunately, designing an MPC controller with a large
update step size introduces new challenges, especially when the
system is subject to unknown disturbances. If a controller cannot
react quickly, such disturbances can cause unexpected constraint
violations that reduce thermal endurance and negate the benefit
of using a nonlinear controller.

Therefore, a mixed-linearity hierarchical MPC formulation
serves as an ideal combination of nonlinear and linear MPC that
leverages their unique advantages and overcomes their individ-
ual limitations. This paper proposes a two-level hierarchy (Fig
4c), with nonlinear MPC at the upper-level and linear MPC at
the lower-level. The upper-level controller has the same time
step size, Af; = 100 seconds, as the centralized nonlinear MPC
in order to achieve a long prediction horizon with relatively few
discrete steps. The lower-level controller has a smaller time step
size, A, = 1 second, to improve disturbance rejection and the
overall responsiveness of the controller. Additionally, the lower-
level controller is designed with a shrinking and resetting pre-
diction horizon such that the controller is always predicting to
the next update of the upper-level controller. With a prediction
horizon of N, = 100 steps and a time step of A, = 1 second, a
full nonlinear hierarchy with controllers using nonlinear models
at both levels is unlikely to achieve real-time computation given

V001T11A003-6 Copyright © 2020 ASME

120 dunf /| uo Jasn se|leq iy sexa JO Aussaniun Aq ypd-g0z€-020229SP-€00€ | L1L.00A/L222299/€00V | L L LOOA/0LZ#8/020200Sa/Pd-sBulpasooid/0sa/bio awse: uoyos)|oole)bipawse//:diy wouy papeojumoq



70

0 4000 8000 12000
tfs]
FIGURE 5: Known time-varying heat load disturbance profile.

the computationally demanding task at the lower-level of solving
a complex nonlinear optimization problem in 1 second.

To coordinate the decisions made by the two controllers,
this paper employs the waypoint-based coordination approach
from [14]. This waypoint-based coordination is imposed as a
terminal constraint in the lower-level MPC formulation such that
the last state in the prediction horizon must exactly equal the op-
timal state at that time step as determined by the upper-level con-
troller. In this way, the lower-level controller is able to deviate
from the upper-level controller’s plan between the slow updates
Aty to further improve control performance. However, the way-
point constraint provides a simple mechanism to ensure that the
short-sighted lower-level controller follows the long-term plan
optimized by the upper-level controller to maximize thermal en-
durance.

In [14], feasibility of this terminal constraint is guaranteed
due to the fact that both the upper-level and lower-level con-
trollers are formulated based on the same discrete-time linear
model. Unfortunately, the proposed mixed-linearity hierarchical
MPC formulation does not benefit from the same guarantee due
to linearization error introduced in the model used by the lower-
level controller. Therefore, the terminal constraint from [14] is
slightly modified to bound the difference between the terminal
state of the lower-level controller, x;y, and the optimal state
determined by the upper-level controller, x;_ y, as

*
—Swaypoint < Xk+N — Xk N < Swaypoint 5 (12)

where 0 < $yqypoins 18 an additional slack variable that bounds
this difference and is penalized with a large weighting term when
added to (11).

5 NUMERICAL RESULTS
5.1 Time-varying known disturbance

The performance of the controllers proposed in Section 4
is evaluated under three scenarios: i) with no external distur-
bances, ii) with known, low-frequency, large disturbances, and
finally iii) with unknown, high-frequency, random disturbances.
The source of disturbances is considered the parameter 0y, . In
the first scenario, th is kept constant at its nominal value from
Table 1. In the second case, th is designed to deviate from the
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TABLE 2: SUMMARY OF CONTROLLER PERFORMANCE.

. Thermal Computation time® [s]
Scenario Controller Endurance [s]
Average Max
Constant Linear 10700 0.02 0.03
Heat Nonlinear 11207 0.22 2.16
Load
oa Hierarchical 11237 0.23/0.026  2.19/0.863
Linear 8000 0.02 0.06
Known .
disturbances Nonlinear 11103 0.42 2.76
Hierarchical 11106 0.37/0.025  2.38/0.059
Unknown Nonlinear 10152 0.24 3.9
disturbances - prieryrchical 10706 0.52/0.025  9.5/0.084

b Hierarchical MPC: values refer to upper-level/lower-level controllers.

nominal value as shown in Fig. 5. This profile is provided as
preview to the MPC controllers. And in the final scenario, Q.h‘,. is
randomly perturbed every 10 seconds within the range of 20% to
170% of its nominal value. In this case the controllers only have
knowledge of the nominal constant value for trajectory planing.
The high-frequency disturbance is considered to be measurable,
so the current value of th is fed to the lower-level controller in
the Hierarchical MPC. The measured value is not provided to the
upper-level controller or the Nonlinear MPC since their update
rates are too slow to effectively take advantage of this informa-
tion. Throughout this section the reader is referred to Table 2
for exact values of computation times and thermal endurance ob-
tained for each case.

5.2 Constant Heat Load

Figs. 6a and 6b show the closed-loop MPC results based on
the nonlinear and linear models, respectively. As expected, the
nonlinear closed-loop results are very similar to the open-loop
results from Fig. 3a due to the lack of model error, resulting in
an achieved thermal endurance of 11,207 seconds. As for the
closed-loop Linear MPC results, the input trajectory obtained is
similar to the one obtained with the open-loop optimization using
the linear model. The resulting thermal endurance is 10,700 sec-
onds, which is 4.5% less than that achieved using the nonlinear
controller. This highlights the need for a more accurate model for
long-term prediction and thermal endurance maximization, such
as the one used by the Nonlinear MPC. As expected though, the
sub-optimal performance of the Linear MPC comes with a much
lower computational cost as shown in Table 2.

Fig. 6c shows the input and state trajectories of the Hier-
archical MPC. Note that the rapid changes in the control input
at roughly 11600 seconds occurs after the temperature constraint
is violated and has no effect on the thermal endurance. In the
absence of time-varying and unknown disturbance, the control
performance of the Hierarchical MPC closely resembles that of
the Nonlinear MPC controller from Fig. 6a. Thus, the key result
for this constant heat load case is demonstrating the effective-
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FIGURE 6: Input, mass, and temperature trajectories when using the (a) Nonlinear MPC, (b) Linear MPC (re-linearized at each time
step), and (c) Hierarchical MPC controllers in closed-loop with the nonlinear model in (8).
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FIGURE 7: Input, mass, and temperature trajectories when using the (a) Nonlinear MPC, (b) Linear MPC, and (c) Hierarchical MPC
controllers and subject to the known time-varying disturbance from Fig. 5.

ness of the waypoint coordination between the two controllers resulting thermal endurance is only 8,000 seconds. Alternatively,
of the hierarchy and that the linear lower-level control is able to both the Nonlinear MPC and the Hierarchical MPC accurately
produce the optimal input trajectory despite the linearization er- predict the effects of the time-varying heat load and are capable
ror. Consequently, the state trajectories and the corresponding of executing the transient system operation required to maintain
thermal endurance are also very similar. Considering the com- T, below its upper-bound. The resulting thermal endurance is
putation times obtained, these results show that the use of a lin- 11,103 for the Nonlinear MPC and 11,106 seconds for the Hier-
ear lower-level controller does not compromise the performance archical MPC. As seen by the approximately 15K of precooling
achieved by the Nonlinear MPC while not requiring significant the fuel in Tank 1 between 4,000 and 6,000 seconds, maximizing
additional computation time. thermal endurance is no longer as simple as maximizing 77, as in

Fig. 7 shows the closed-loop control results for the Non- the constant heat load scenarios from Section 5.2.

linear, Linear, and Hierarchical MPC controllers under known

time-varying disturbances. All three controllers increase ¢ to 5.3 High frequency unknown disturbance

drain more fuel from Tank 1 when the heat load is decreased in Note that, due to its poor performance on previous simu-
preparation for the second large heat load at 8,000 seconds. How- lations, the Linear MPC is not included in the analysis of this
ever, the Linear MPC (Fig. 7b) does not accurately anticipate the section to better focus on the comparison between the Nonlinear
effect of this sudden increase in heat load at 8,000 seconds, re- MPC and Hierarchical MPC.

sulting in a 10K temperature constraint violation. Therefore, the As preview of the high-frequency disturbance is not known
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to the controllers, the uncertainly in the closed-loop system is ex-
pected to produce temperature constraint violations much earlier
than the usual temperature rise at the end of operation. When us-
ing the original temperature constraints from Table 1, constraint
violations of up to 2K and 0.5K were observed for the Nonlin-
ear MPC and Hierarchical MPC controllers, respectively. The
magnitude of these constraint violations is a measure of each
controller’s disturbance rejection capabilities. Since the objec-
tive is to prevent violations of any magnitude, the temperature
constraint for each controller is tightened by the amount neces-
sary to prevent premature violations of the original constraints.
Therefore, the temperature constraint is reduced by 2K for the
Nonlinear MPC and 0.5K for the Hierarchical MPC.

Fig. 8 shows the response obtained with the constraint tight-
ening for both controllers, including a 400 second view of the
simulations where the effect of the high-frequency disturbance
can be better seen. With the constraint tightening, both con-
trollers were capable of keeping the temperature below the orig-
inal constraint value.

Compared to the closed-loop control under a constant heat
load (Sections 4 and 4.2), the Hierarchical MPC had a reduction
in thermal endurance of 531 seconds while the Nonlinear MPC
had a reduction of 1,055 seconds. These results not only show
how the unknown disturbances affect thermal endurance but also
highlight the differences in disturbance rejection capabilities of
both controllers. By tightening the temperature constraint to ac-
commodate for the disturbances, the average fuel temperature in
the recirculation tank is effectively being lowered, thereby reduc-
ing the amount of heat that is rejected to the engine and conse-
quently reducing the thermal endurance. The more the constraint
is reduced, the lower the thermal endurance. Fig. 8c shows an
important feature of the MPC-based lower-level controller where
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and temperature (Nonlinear MPC red; Hierarchical MPC green) trajectories for this scenario.

the input is able to increase and decrease very rapidly around
1600 seconds to prevent a constraint violation while still track-
ing the desired long-term fuel mass and temperature trajectories
provided by the upper-level controller in the form of a way-
point. This aggressive, multi-objective behavior could not be
easily achieved by replacing the lower-level controller by a static
feedback control law.

Thus, a key benefit of the Hierarchical MPC when compared
to the Nonlinear MPC is the inclusion of the lower-level MPC
controller that provides superior disturbance rejection resulting
in less stringent constraint tightening needed to ensure safe oper-
ation.

6 CONCLUSION

A mixed-linearity hierarchical MPC formulation was pre-
sented to maximize the thermal endurance of aircraft by account-
ing for nonlinear dynamics in the Fuel Thermal Management
System. Model linearization techniques typically used for MPC
of nonlinear systems were shown to produce large modeling er-
rors over long-term prediction horizons, resulting in a 5-10% re-
duction in thermal endurance compared to optimized trajectories
using a nonlinear model. With a nonlinear model in the upper-
level and a linear model in the lower-level, the mixed-linearity
hierarchical MPC controller was shown to be a computationally
efficient and effective approach that benefits from capturing sys-
tem nonlinearities over long prediction horizons and fast update
rates for improved disturbance rejection. Future work will focus
on quantifying linearization error and computationally-efficient
methods for nonlinear reachability analysis to develop a robust
hierarchical MPC framework for the control of nonlinear sys-
tems with guaranteed constraint satisfaction.
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