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Abstract
Objective. Classification of electroencephalography (EEG) signals with high accuracy using short
recording intervals has been a challenging problem in developing brain computer interfaces
(BCIs). This paper presents a novel feature extraction method for EEG recordings to tackle this
problem. Approach. The proposed approach is based on the concept that the brain functions in a
dynamic manner, and utilizes dynamic functional connectivity graphs. The EEG data is first
segmented into intervals during which functional networks sustain their connectivity. Functional
connectivity networks for each identified segment are then localized, and graphs are constructed,
which will be used as features. To take advantage of the dynamic nature of the generated graphs, a
long short term memory classifier is employed for classification.Main results. Features extracted
from various durations of post-stimulus EEG data associated with motor execution and imagery
tasks are used to test the performance of the classifier. Results show an average accuracy of 85.32%
about only 500 ms after stimulus presentation. Significance. Our results demonstrate, for the first
time, that using the proposed feature extraction method, it is possible to classify motor tasks from
EEG recordings using a short interval of the data in the order of hundreds of milliseconds (e.g.
500 ms). This duration is considerably shorter than what has been reported before. These results
will have significant implications for improving the effectiveness and the speed of BCIs,
particularly for those used in assistive technologies.

1. Introduction

Brain computer interfaces (BCIs) are designed to
establish a communication link between the human
brain and external devices. BCIs offer the possibil-
ity of generating commands from brain recordings to
control external devices such as those used in assist-
ive technologies. Among different types of BCIs, elec-
troencephalography (EEG)-based BCIs have received
considerable attention in the BCI research com-
munity due to their advantages including non-
invasiveness, high temporal resolution, low-cost, and
portability [1, 2].

Two important metrics that impact the perform-
ance of BCIs and influence their efficiency and prac-
ticality in various applications are (1) the buffering
lag, i.e. the duration of recordings required by the
classification algorithm to create commands (which
largely determines the speed of the BCI), and (2) the

classification accuracy (which determines the reliabil-
ity of the BCI). Clearly, an algorithm capable of clas-
sifying a number of different tasks with high accur-
acy using a ‘short’ interval of recordings is of great
interest.

In EEG-based BCIs, motor imagery (MI) tasks,
targeting imagination of different forms of muscle
movements, such as arms, hands, tongue, and legs
have been commonly used. To this date, numer-
ous classification algorithms, utilizing various feature
extraction and classification techniques have been
used in EEG-based BCIs for decoding motor execu-
tion/imagery tasks [3]. To provide an overview of
recent work in this domain, in table 11, a compar-
ison of recent work is given. These studies have been

1Note that due to high volume of papers in this field, we only con-
sidered highly-cited studies that considered classification ofmotor-
related tasks, and were published after 2014.
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categorized into different groups based on the buf-
fering lag, which is the duration of the data that
needs to be collected before a prediction can take
place. We divided these studies into three groups
of 1–2 s, 2–4 s, and equal or greater than 4 s. For
each study, we have summarized information on the
number of classes, number of EEG electrodes (chan-
nels), feature extraction domain (time, frequency,
time-frequency), classification algorithm, and repor-
ted classification accuracy.

From table 1, one can see that the majority of
studies have considered two-class problems. For two
class problems, the highest accuracy results for using
1–2 s of data were reported in [4], for using 2–4 s
of data in [5–9], and for using equal or greater than
4 s of data in [10]. For multi-class problems, the
highest accuracy results were achieved in [11] for
using 1–2 s of data, in [9, 12, 13] for using 2–4 s of
data, and in [14–16] for using equal or greater than
4 s of data. Considering these studies, it can be con-
cluded that with respect to the required buffering lag,
the decoding process has been relatively slow. This
slowness causes challenges in BCI applications, where
a sequence of commands needs to be decoded and
executed in order to complete a task, such as mov-
ing a robotic arm from one place to another. There is
therefore, a crucial need to develop newmethods cap-
able of early decoding of EEG signals to improve the
efficiency of BCIs. In this paper, we aim to target this
problem, and propose a framework, which requires a
relatively short duration of EEG data (in the order of
hundreds of milliseconds) to achieve high accuracy in
classification.

Our proposed approach is based on functional
connectivity and the hypothesis that for the execu-
tion of tasks, the brain relies on dynamic interactions
among its different regions [17–20]. Previous work
[21–24] have indicated that brain’s functional con-
nectivity throughout the course of movement-related
(execution/imagery) tasks can be used to study the
underlyingmechanisms involved in performing those
tasks. These results suggest the potential of acquir-
ing useful information from functional connectiv-
ity networks for discriminating variousmotor-related
tasks. Indeed, functional connectivity has been util-
ized in recent EEG-based BCI work. As an example,
in [25], phase-locking value was used to estimate
functional connectivity patterns from EEG record-
ings. The authors then identified node-pairs in con-
structed functional networks that discriminate rest-
ing state vs MI tasks. Using this information along
with a subject-specific frequency band selection pro-
cedure, features were extracted to discriminate left
and right hand MI tasks, where an average classific-
ation accuracy of 64.27% was achieved. In another
connectivity-BCI study [26], after identifying func-
tional connectivity patterns using partial directed
coherence metric, a statistical selectionmethod based
on the appearance rate of directed connectivities and

larger partial directed coherence magnitude was used
to characterize task-specific functional connectivity
networks. The identified networks were then used
as features and an average classification accuracy of
78.76% for discriminating right hand vs right foot
MI tasks was reported. In [27], the feasibility of using
functional connectivity patterns for classification of
MI (left vs right hand) was explored. In this study,
interactions among EEG electrodes were modeled as
graphswhichwere constructed usingmotif synchron-
izationmethod, and then, various graphmetrics were
used as features for the classification problem. The
results of this study demonstrate the feasibility of
using graphmethods for the classification ofMI tasks.
In another work [23] graph measures were employed
as features for decodingMI tasks, resulting in an aver-
age classification accuracy of 71.5% for classifying
pairs of left hand, right hand, foot, and tongue MI
tasks. In [11], connectivity graphmeasures combined
with channel-based time/frequency domain features
were employed for the classifications of MI tasks,
and an average accuracy of 79.69% was reported
for a 4-class MI classification. These studies demon-
strate the feasibility of using functional connectiv-
ity networks for decoding motor-movement tasks in
BCIs. However, as seen in table 1, in these functional
connectivity-based BCI studies, features were extrac-
ted from durations of equal or greater than 2 s. As for
dynamics, dynamic brain functional networks corres-
ponding to MI tasks during the event-related syn-
chronization (ERS) and de-synchronization (ERD)
periods were investigated in [22], where it was
shown that different stages of motor preparation
and imagery can be characterized by network meas-
ures. Their findings demonstrated that the underly-
ing dynamic information processing during MI tasks
can be described by dynamic functional connectivity
networks, suggesting the potential for using dynamic
functional connectivity in BCIs. In [28], empirical
mode decomposition phase lockingmethod was used
to model the functional connectivity between EEG
channels, and time-frequency connectivitymapswere
generated by computing time-dependent mean clus-
tering coefficients of graph nodes for different fre-
quency bands. A Hidden Markov Model was then
employed to classify the dynamics of the mean clus-
tering coefficients in different frequency bands, indic-
ating that the dynamics of functional connectivity
networks could provide useful information for differ-
entiating motor tasks.

Motivated by the results of functional
connectivity-based BCIs, in this paper, we propose
a new framework that utilizes the spatial and tem-
poral (dynamic) characteristics of brain functional
networks for early decoding of motor execution and
imagery tasks. Our hypothesis is that for different
movement execution/imagery tasks, the ‘spatial’ dis-
tribution of the brain functional networks as well as
their ‘dynamics’ provide discriminatory information
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Table 1. Performance comparison of recent studies for classification of MI tasks in EEG-based BCIs.

Time # of # of Feature Average
(s) Year Classes Channels Domain Classifier Accuracy (%) Reference

1–2 2016 2 3 Time & Frequency GA-PSO Based 60.97 [29]
k-means Clustering

2018 2 15 Time RF 72.73 [30]
2014 2 128 Frequency SVM 77.11 [31]
2014 2 4 Time & Frequency LDA 77.3 [32]
2017 2 118/3 Time NBPW 76.12/86.41 [33]
2019 2/2 2/2 Frequency SVM 78.04/83.58 [4]
2019 4 22 Time Multi-branch 75.02 [34]

3D CNN
2019 4 22 Time & Frequency SRDA 79.7 [11]

2–4 2016 2 22 Time & Frequency SVM 64.27 [25]
2016 2 118 Time DNN with LRP 71.6 [35]
2014 2 27 Time NBPW 74.14 [36]
2016 2 22 Time & Frequency SVM 74.92 [37]
2018 2 22 Time LSTM 75.28 [38]
2019 2 3 Frequency Capsule Network 78.44 [39]
2017 2 118 Frequency Mahalanobis Distance 78.76 [26]
2014 2 22/32 Time Minimum Distance 78/80 [40]
2019 2 15 Time & Frequency LDA/SVM 79.19 [41]
2018 2 22 Time & Frequency MDRM 79.93 [42]
2016 2 14 Time RF 80.05 [43]
2017 2 3 Time SBL 81.7 [44]
2016 2 59/118 Time SVM 78/83.3 [45]
2017 2 3/2/40 Frequency BTSPRT 83.4 [46]
2018 2 59 Time SVM 84.86 [47]
2019 2 3 Time & Frequency SVM 85 [48]
2015 2 118/60 Time FLDA 84.04/83.77 [49]

/22 /85.52
2016 2 60/118 Time & Frequency DPL 85.7/80.77 [50]
2018 2 18 Time Ensemble Classification 86.23 [51]
2018 2 60/22 Time & Frequency SVM 88.5/83.25 [52]

/3 /84.3
2015 2 118 Frequency – 90.7 [53]
2016 2 32 Time SVM 90.9 [54]
2019 2 118/60 Time MDRM 87.21/90.93 [55]

/22 /80.98
2018 2 64 Time ELM 91 [56]
2019 2 3 Time & Frequency HS-CNN 91.57/87.6 [57]
2017 2 18/59 Time LDA/SVM 91.68/82.34 [58]

/3 /81.02
2015 2 118 Time SVM 81/92 [59]
2015 2 14/118 Time SVM 80.88/92.29 [60]
2017 2 118 Time & Frequency kNN 92.8 [61]
2014 2 118 Time LR 93.91 [62]
2017 2 2 Time Hierarchical ELM 94.54 [5]
2016 2 118 Time NB 96.36/91.97 [6]
2018 2 118 Time SVM 96.89 [7]
2018 2 10 Time & Frequency SVM 97.56 [8]
2015 2/3 32 Time & Frequency LDA/LR/SVM 66.9/60.7 [63]
2015 3 118 Time – 68.94 [64]
2016 3 64 Time Multi-Class 79.5 [65]

Adaboost
2020 3 27 Time & Frequency SVM/ELM 99.38 [66]
2019 2/4 22 Time LS 71.5/49 [23]
2016 4 22 Frequency RF 68.32 [67]
2018 2/3 64 Time CNN 83.49/79.25 [68]

/4 /68.51
2018 4 22 Time Multi-Class 70.3 [69]

Multi-Kernel RVM
2015 2/4 118/60 Time & Frequency SVM 69.40/71.22 [70]
2019 4 22 Time CNN 74 [71]
2018 4 22 Time & Frequency SVM 75.47 [72]

(Continued)
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Table 1. (Continued).

Time # of # of Feature Average
(s) Year Classes Channels Domain Classifier Accuracy (%) Reference

2015 2/2 59/62 Frequency Hierarchical SVM 85.2/94.1 [9]
/4 /62 /83.2

2015 7 32 Frequency Bayesian 62.9 [12]
(2019) 4/5 22/8 Time & Frequency CNN 80.03/76.62 [13]

⩾4 2014 2 64 Time SVM 78 [73]
2019 2 59 Time Regularized LDA 77 [74]
2019 2 3 Time SVM/Ensemble learning 80 [75]

learning
2019 2 3 Time & Frequency SVM 80.7 [76]
2014 2 3/2 Time & Frequency BPNN & SVM 80.8 [77]
2018 2 22 Time Information Fusion 81.87 [78]
2014 2 2 Time & Frequency AFNN 82.5 [79]
2016 2 3 Frequency RBM 84 [80]
2017 2 3/118 Time LDA 81.23/84.08 [81]

/118 /73.71
2019 2 64/118 Time & Frequency GSLDA 84.8 [82]

/3
2017 2 9 Time Fuzzy SVM 86.25 [83]
2017 2 118 Time & Frequency WNB 86.38 [84]
2018 2 118/3 Time Multi-Kernel ELM 87.5/78.9 [85]
2018 2 3 Time & Frequency SVM 88.36 [86]
2015 2 6/7 Time IT2FLS 90.10/56.67 [87]
2016 2 59 Time PSO-SVM 90.20/85.25 [88]
2015 2 2 Time & Frequency LDA 90.71 [89]
2015 2 64/3 Time & Frequency SVM 92.86/72.3 [90]
2019 2 32 Time & Frequency LSTM/pCNN 84.24/92.28 [91]

/RCNN /77.72
2018 2 64 Time LDA/SVM 99 [27]
2016 3 15 Time LDA 63 [92]
2014 3 22 Time SVM 86.25 [93]
2016 3/4 32/22 Frequency NBPW and 59.23/38.07 [94]
2019 2/3/4 64 Time & Frequency LSVM/KSVM/ 93.6/71.9 [95]

GB/SRDA /58.3
2017 4 22 Time Hierarchical SVM 64.4/69.16 [96]
2014 4 18 Time Decision Tree 65.35 [97]
2016 4 64 Frequency SVM 65/74.14 [98]
2015 2/4 64/3 Time Twin SVM 100/74.5 [10]
2014 4 60 Time & Frequency SVM 76.87 [99]
2015 4 22 Time SUSS-SRKDA 77 [100]
2016 4 17 Time & Frequency Mahalanobis Distance 81.4 [14]
2017 4 2 Time RANFN 85.5 [15]
2019 4 22/128 Time CPMS-CNN 74.3/94.7 [16]

for the classification problem, even within a short
interval after the task onset.

In the proposed framework, EEG recordings are
first segmented using our recently-proposed seg-
mentation method [101–103] to identify the time
intervals (segments) during which the spatial distri-
bution of the underlying functional networks stays
quasi-stationary. Functional connectivity networks
for each identified segment are then localized to gen-
erate functional connectivity graphs. The resulting
graphs, extracted from the sequences of the seg-
ments, are then vectorized and passed to the classi-
fier. Considering the dynamic nature of the extrac-
ted functional connectivity graphs, we employ a long
short-term memory (LSTM) network as the clas-
sifier, which allows for using the information in

sequence. To evaluate the early decoding capability
of the proposed framework, we use the sequence
of functional connectivity graphs extracted from the
corresponding sequence of identified post-stimulus
EEG segments, starting with the very first segment.
We also explore changes in the decoding accuracy as
a result of increasing the duration of EEG recordings
used for classification. It is worthmentioning that the
proposed method is a synchronous BCI algorithm.

Two datasets are used to evaluate the perform-
ance of the proposed framework. The first dataset
is collected in our lab and includes various forms
of tongue/hand motor execution and imagery tasks
[104]. The reason for choosing tongue movement
execution task is that voluntary tongue movement
is mostly preserved in patients with severe motor
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Figure 1. Overview of the proposed framework.

disorders, such as those with high spinal cord injury
[105, 106], and therefore, can be utilized in BCIs
to increase the number of commands in BCI-based
assistive technologies for these patients. The second
dataset is taken from a publicly-available source (BCI
competition IV, dataset IIa) and comprises four
different imagery tasks [107]. Our results demon-
strate that although classification accuracy generally
improves over time, an average accuracy of 85.32%
can be reached only 500 ms after task onset.

In summary, the contributions of this paper are as
follows: (1) we present a new framework that utilizes
the spatial and dynamic characteristics of brain func-
tional networks for decoding motor tasks from EEG
recordings; (2) we demonstrate, for the first time,
that it is possible to achieve reasonable classification
accuracy using only a short interval of the data in
the order of hundreds of milliseconds (e.g. 500 ms)
after the task onset, which can pave the path to fur-
ther enhance the performance of the BCIs in terms of
the required buffering lag and increasing the decod-
ing speed; and (3) we consider classification of tongue
movement execution versus hand/tongue movement
imagery, which offers the possibility of increasing the
number of commands in BCIs.

The rest of the paper is organized as follows: the
proposed methods for feature extraction and classi-
fication of EEG data are presented in section 2. In
section 3, the experimental paradigms and data col-
lection procedures are described. Classification res-
ults and discussions are presented in sections 4 and 5,
respectively, and the paper is concluded in section 6.

2. Proposed method

A functional network corresponds to a set of brain
regions that exhibit correlation to a common time-
course, suggesting that they are collaborating func-
tionally when the brain is at rest or when it is engaged
in executing a task [108]. It is also now known
that functional networks are dynamic, i.e., they sus-
tain their inner-connectivity for short intervals of
time [17, 18]. As will be discussed here, our pro-
posed novel feature extraction/classification frame-
work uses functional connectivity networks as well

as their dynamics, to enable the possibility of early
decoding of EEG signals. An overview of the proposed
framework is illustrated in figure 1. We consider a
LSTM classifier to take advantage of the information
contained in the dynamics of the extracted features.
In what follows, we provide details for each step in
the proposed framework.

2.1. Proposed feature extraction framework
The proposed feature extraction framework is com-
prised of twomain steps: first, the pre-processed EEG
data is segmented into quasi-stationary intervals, and
then functional networks in each segment are local-
ized and the corresponding graphs are constructed,
which will then be used as features for the LSTM
classifier.

2.1.1. EEG segmentation
The first step of feature extraction uses our recently
developed source-informed segmentation algorithm
[101]. The main objective of this step is to find
intervals in the EEG recordings during which ‘the
spatial distribution’ of the cortical functional net-
works stays quasi-stationary. In other words, this
step detects the time points in the EEG data, at
which there are changes in the location of cortical
networks. Therefore, this segmentation approach
provides a functionally-relevant means for segment-
ing EEG data, which is different from the commonly-
practiced model-based (e.g. autoregression) and
metric-based (e.g. change point detection) segment-
ation approaches.

The details of the source-informed segmentation
algorithm is presented in [101], and the algorithm
was utilized in [102, 103, 109–111]. Briefly, this seg-
mentation technique employs singular value decom-
position (SVD) along with a reference/sliding win-
dow approach to identify targeted time intervals in
the EEG data. In [101] we have proved that the most
significant left singular subspace of the EEG data cap-
tures the ‘spatial locality’ features of the cortical func-
tional networks and can be used as a feature space
in the segmentation algorithm. Therefore, a signific-
ant change in this span of the feature space, along

5



J. Neural Eng. 18 (2021) 016015 F Shamsi et al

Figure 2. Segmentation and extracted color-coded functional connectivity matrices for each segment of randomly selected trials
from (a):left hand motor imagery, (b): right hand motor imagery, (c): both feet motor imagery, and (d): tongue motor imagery of
BCI Competition IV-IIa dataset. As can be seen, across classes of motor movement tasks, there are variations in the number and
the duration of identified segments, as well as in patterns of constructed graphs.

the time axis, would indicate a change in the spa-
tial distribution of the cortical functional networks.
Using a reference/sliding window approach, this fea-
ture space can be dynamically extracted. The segment
boundaries are detected by statistically comparing the
residual error resulting from projecting the block of
EEG data matrix under a reference window, on one
hand, and that under a sliding window, on the other
hand, onto the feature subspace [101]. It is worth
mentioning that this segmentation algorithm is per-
formed without using source localization methods,
and uses the information from all EEG channels to
detect the boundaries of the segments.

2.1.2. Functional connectivity graphs
The second step of the feature extraction involves
identifying the functional networks sustaining their
connectivity during each identified segment and cal-
culating the corresponding graphs. Since the nodes
of these networks are taken to be the EEG elec-
trodes, the problem of volume conduction needs to
be addressed [112, 113]. For this purpose, the sur-
face Laplacian operator [114, 115] is applied to the
EEG data in order tominimize channel coupling. The
segment-wise average value of each EEG channel is
then removed, in order to allow the next step to focus
on the temporal patterns of the activities, rather than
the intensities, of these channels.

Toward identifying the functional networks form-
ing during a given segment, we first note that each
of these networks is characterized by a distinct time-
course with which the involved nodes show high cor-
relation.Here, we use low-rank SVD to recover amin-
imum mean square error estimate of the zeros-mean
channel activities conforming to these time-courses,

thus, to their associated networks. For more details
about this approach refer to [102]. The functional
connectivity graph that captures the networks form-
ing during that segment can finally be calculated as
the correlation matrix among the estimated channel
activities.

To illustrate an example of the outcome of the
proposed methods, we applied the proposed seg-
mentation and functional connectivity graph extrac-
tion algorithms to four randomly selected trials from
the BCI Competition IV-IIa dataset (see section 3 for
more details about the experimental paradigm). Each
trial was taken from one class of MI (left hand, right
hand, both feet, and tongue). The results for 110 ms
are shown in figure 2 as examples. It can be seen that,
the length and the number of the segments, as well
as the extracted graphs are different for each class,
further suggesting that these features can be utilized
to differentiate various forms of motor-movement
classes.

2.2. Classification scheme
Due to the dynamic nature of the brain, it is import-
ant to consider the information contained in the tem-
poral sequence of the extracted features from iden-
tified segments. We address this point by employing
a LSTM classifier. The input to these classifiers are
variable-length temporal sequences of connectivity
graph-based vectors. The variation in the lengths of
these sequences comes from the variation in the num-
ber of the identified segments, spanning any fixed
time interval.

The structure of the classifier is shown in figure 3.
A neural network with three hidden layers is used:
a fully-connected layer consisting of 20 neurons, an
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Figure 3. The structure of the LSTM classifier.

LSTM layer consisting of 20 neurons with a single-
step delay feedback loop around the second hidden
layer, and another fully-connected layer consisting of
2 neurons. These layers are followed by softmax and
classification layers. An overall classification decision
is made by the neural network after it processes each
segment in the sequence of dynamic functional con-
nectivity graphs.

3. Experimental procedure

To evaluate the performance of the proposedmethod,
two datasets have been used. The first dataset was col-
lected in our lab and the second dataset was available
from the BCI Competition IV-IIa. Detailed descrip-
tions of the experimental paradigms for each dataset
are provided in this section.

Dataset 1: Eight healthy, right-handed volun-
teers (five males and three females) aged between 20
and 35, participated in the study. Written informed
consents approved by Rutgers’ Institutional Review
Board (IRB) were obtained prior to experiments.
Subjects were seated in a comfortable chair with a dis-
play in front of them as shown in figure 4. The exper-
iment included three blocks of dictated motor execu-
tion tasks and three blocks of dictated motor imagery
tasks separated by short breaks. On average each
block took approximately 7.5min. In execution/im-
agery blocks, subjects were instructed to move/visu-
alize moving their tongue upward or downward or
squeeze/visualize squeezing their left or right hand if
they saw an arrow pointing up, down, left, or right,
respectively. The direction of movement, using an
arrow,was shown for 1 s, followed by a diamond stim-
ulus which was shown for 2 s. Subjects were instruc-
ted to performmotor execution or imagery only after
they saw the diamond stimulus and to continue until
it disappeared. The inter-trial interval was set to 2–4 s

(see figure 5(a)). In each block, 15 trials of each class
were performed (a total of 45 trials per class). EEG
data was collected using a 128-channel EEG system
(Brain Products), at a rate of 2000 samples/section
We used 32 EEG channels for data analysis. The selec-
ted channels are shown in figure 5(b). The electrodes
were positioned based on the international extended
10–20 electrode placement system.

The 2 s EEG data obtained during the present-
ation of the diamond stimulus, was extracted from
each trial and was preprocessed using EEGLAB tool-
box [116]. The data was filtered using a band-pass
finite impulse response (FIR) filter in the range of 1–
50 Hz. All imagery and execution trials were treated
the same for preprocessing. The artifacts were then
removedusing visual inspection of the trials and inde-
pendent component analysis (ICA).

Dataset 2:This online dataset was used to conduct
a performance comparison with existing work (see
section 5). The dataset provided by the Laboratory of
Brain-Computer Interfaces, Graz University of Tech-
nology have been used in several BCI papers. The EEG
data was collected from nine right-handed subjects
using 22 Ag/AgCl electrodes (figure 6(b)) and three
EOG channels, at a rate of 250 Hz. The data was col-
lected in two sessions on different days. Each session
comprised 6 runs with short breaks between blocks.
During each run, the subjects were asked to perform
fourMI tasks including the imagination ofmovement
of the left hand, right hand, both feet, and tongue. At
the beginning of each trial, a fixation cross is shown
on the black screen and a short acoustic warning tone
is presented. After 2 s, an arrow pointing to the left,
right, down or up, corresponding to the MI of left
hand, right hand, both feet, and tongue, appears on
the screen for 1.25 s, followed by a fixation cross. Sub-
jects were asked to performMI task until the fixation
cross disappears at t= 6 s. A short resting time was
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Figure 4. Experimental setup for Dataset 1.

0 1 32 4 5 6

t

1 s 2 s 2- 4 s

Motor execution/imagery

(b)(a)

...

Figure 5. Dataset 1- (a): Timing scheme of a single trial. (b): EEG electrodes montage.

0 1 32 4 5 6

t

7

2 s 1.25 s 2.75 s

...

(b)(a)

Figure 6. Dataset 2-(a): Timing scheme of a single trial. (b): EEG electrodes montage.

considered before starting a new trial. Each run con-
sisted of 12 trials of each class, yielding a total of 72
trials per class in each session. A visual illustration of
a single trial is shown in figure 6(a).

Previous studies that used this dataset, have
mostly considered the [3–6] s window as the inter-
val during which MI tasks are performed [23, 25, 37,
42, 52, 69, 72] for the analysis. Therefore, we also
extracted this 3 sMI interval from each trial. Data was
then preprocessed in EEGLAB toolbox [116], using
a band-pass FIR filter in the range of 1–45 Hz. For

artifact removal, the trials marked as bad trials in the
file that accompanied the data, were removed in the
pre-processing step before removing artifacts via ICA.

Table 2 summarizes the total number of available
and used trials for each dataset.

4. Results

In this section, we present the results for
theperformance of the proposed feature extraction/
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Table 2. Number of available and used trials for Dataset 1 and 2.

Available trials Used trials

Dataset 1 2160 (270 per subject, 45 per task) 2160
Dataset 2 5184 (576 per subject, 144 per task) 4699

classification framework for different durations of
post-stimulus EEG data. The trials were separated
into three randomized groups for: training (75%),
validation (10%), and testing (15%) the classifica-
tion model. For Dataset 1, features extracted from
2 s post-stimulus intervals were used for training and
validation. However, for testing, different time inter-
vals of the data were used to study the early decoding
capability of the proposed framework.

Figure 7 displays the probability mass function of
the length of the identified segments for the dura-
tion of motor execution/imagery tasks across all sub-
jects, tasks, and trials forDataset 1. The average length
of the segments is 22.2 ms with standard deviation
of 8.7. The sequences of graph patterns from iden-
tified segments were passed to the classifiers and the
decisions were made at the end of each segment. As
the segments for different trials have different dura-
tions and ending points, to calculate the accuracy at
any time instant, decisions were grouped based on the
ending point of the corresponding segment into non-
overlapping time bins of 100 ms duration.

Let us describe this procedure with an example.
For a randomly selected trial (e.g. subject 6, tongue
imagery movement towards up direction, trial 9), the
identified segments for the duration of [0–300] ms
are as follows: [0–20.5]ms, [20.5–33.5]ms, [33.5–60]
ms, [60–84] ms, [84–108] ms, …, [184–206.5] ms,
[206.5–223] ms, [223–238] ms, [238–250.5] ms,
[250.5–268.5] ms and [268.5–285] ms. The func-
tional connectivity feature extracted from an indi-
vidual segment is passed to the dynamic classifier to
generate a single decision about the type of the task.
The sequence of segments results in a sequence of
decisions. Now, to calculate the average accuracy for
example for the time bin [200–300] ms, the classifica-
tion decisions from all segments whose end-point lies
within the [200–300] ms bin are considered. In this
example, these segments are [184–206.5] ms, [206.5–
223] ms, [223–238] ms, [238–250.5] ms, [250.5–
268.5] ms and [268.5–285] ms. Note that we did not
include the decision from segment [285–304.5] ms in
the calculation of accuracy here, because this segment
does not end within the [200–300] ms bin.

4.1. Dataset 1: classification accuracy using short
duration of post-stimulus EEG data
For Dataset 1, 32 EEG channels (figure 5) were used
for the classification. For the segmentation step, 20
samples for both reference and decision windows
were considered, which according to [101], it is a
proper choice in terms of the performance of the

algorithm in detecting segment boundaries. Using the
32 EEG channels, the size of the extracted functional
graph matrices is 32× 32. Since the extracted graphs
are symmetric and include no self-loops, only the
upper triangle from each graph matrix was extrac-
ted and put into a vector of size 496 (i.e. 32×31

2 ). The
extracted graphs for an exemplary subject and two
randomly-selected trials are shown in figure 8. One
can see, qualitatively, that across tasks, there are dif-
ferences in the patterns of the connectivity graphs as
well as in the duration of the EEG data for which the
graphs were constructed as determined by the seg-
mentation algorithm.

In this work, we focus on the classification
of tongue movement execution vs tongue/hand
imagery tasks. Selecting these pairs of motor execu-
tion vs imagery tasks was motivated by the fact that
the tongue movement ability is often preserved in
patients with motor disabilities, and its inclusion in
BCIs can increase the number of control commands
which is crucial in BCI-based assistive technologies.
In contrast, patients in need of BCI technology usu-
ally do not possess hand movement execution ability.
Therefore, discrimination of hand motor execution
tasks vs tongue/hand MI tasks was not considered in
this study.

The accuracy, using the first 500 ms of the
EEG data for classifying tongue movement execu-
tion vs tongue imagery (in various directions), and
for tongue movement execution vs hand movement
imagery (in various directions) for all subjects, and
averaged across subjects are summarized in tables 3
and 4, respectively.

As expected, the accuracy results are subject-
dependent. For Subject 5, the average accuracy for
all classes was higher than 97%, while for subjects
1, 3, 4, and 6, the average accuracy results for dif-
ferent classes were above 80%. However, the average
accuracy for tongue movement execution vs tongue
imagery for subject 7 was around the chance level,
which could be an outlier. Overall, after 500 ms of
task onset, the average accuracy results of 82.27% and
85.32% were achieved for tongue movement execu-
tion vs tongue imagery, and tongue movement exe-
cution vs hand movement imagery tasks, respect-
ively, across all subjects. These results show that
the discrimination between tasks can be obtained
within a short duration (in the order of hundreds
of milliseconds) of task onset using the proposed
framework.

4.2. Dataset 1: effects of increasing the time
duration of the EEG data on the classification
accuracy
To this point, we only considered average classifica-
tion accuracy 500ms after task onset. To further study
the effects of the post-task onset time elapse, on the
accuracy results, the classification accuracy results for
tongue movement execution vs tongue imagery, and
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Figure 7. PMF of the segment lengths across all subjects, tasks, and trials. The average length of the segments is 22.2 ms with
standard deviation of 8.7.
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Figure 8. Extracted first eight graph sequences of two randomly-selected trials from Dataset 1 for an exemplary subject (subject 6)
(a): execution of tongue movement in the down direction, (b): imagery of right hand squeezing.

Table 3. Classification accuracy results for tongue movement execution (TE) in up (U) or down (D) directions vs tongue imagery (TI)
in up (U) or down (D) directions, 500 ms after the task onset.

U (TE) vs U (TI) U (TE) vs D (TI) D (TE) vs U (TI) D (TE) vs D (TI) Average

Subject 1 83.60± 9.59 79.93± 10.19 87.01± 8.25 80.90± 9.45 82.86± 9.39
Subject 2 84.86± 8.21 79.68± 10.27 78.95± 11.13 82.74± 9.69 81.56± 9.88
Subject 3 92.02± 6.68 94.60± 6.89 89.63± 8.24 90.12± 9.60 91.59± 7.94
Subject 4 93.61± 5.96 87.59± 7.38 94.62± 6.83 89.68± 8.19 91.37± 7.14
Subject 5 98.58± 5.67 98.70± 2.34 98.55± 3.14 98.02± 3.12 98.46± 3.78
Subject 6 91.52± 8.22 90.88± 6.99 81.37± 9.58 77.25± 10.27 85.26± 8.86
Subject 7 55.87± 11.24 50.61± 12.85 58.64± 11.35 53.31± 12.18 54.36± 11.92
Subject 8 77.45± 11.32 69.65± 12.71 77.09± 11.42 66.48± 12.98 72.67± 12.13
Average 84.69± 8.61 81.33± 9.30 83.23± 9.13 79.81± 9.84 82.27± 9.23

for tongue movement execution vs hand movement
imagery are plotted as functions of time in figures 9
and 10, respectively.

Considering these plots, it can be concluded that
for most subjects, using the proposed approach,
the accuracy reaches to its high levels within 500–
1000 ms, except for Subject 5, for whom the highest
accuracy was achieved earlier than 500 ms.

To provide a comparison, the average accuracy
results of the LSTM classifier across all subjects at dif-
ferent post-stimulus instants of 300, 500, 700, 1000,

1500, and 1900 ms are summarized in table 5. These
results suggest that using longer duration of record-
ings leads to some improvements in the classification
accuracy.

4.3. Dataset 1: significance of considering the
dynamics of the functional connectivity graphs on
classification performance
To further emphasize the importance of including
the dynamics contained within the sequence of the
extracted features, we also considered a non-dynamic
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Table 4. Classification accuracy results for tongue movement execution (TE) in up (U) or down (D) directions vs imagery (HI) of left
(L) or right (R) hands, 500 ms after the task onset.

U (TE) vs L (HI) U (TE) vs R (HI) D (TE) vs L (HI) D (TE) vs R (HI) Average

Subject 1 85.42± 10.62 85.80± 10.03 86.20± 7.85 84.13± 8.55 85.39± 9.33
Subject 2 75.48± 11.01 79.45± 10.42 69.95± 9.31 78.34± 10.48 75.81± 10.32
Subject 3 93.09± 7.68 94.94± 5.85 88.33± 8.93 91.19± 9.73 91.89± 8.18
Subject 4 95.12± 5.37 93.07± 6.93 94.05± 6.77 90.85± 9.17 93.27± 7.19
Subject 5 98.15± 3.31 98.07± 5.92 97.57± 4.38 99.14± 2.48 98.23± 4.22
Subject 6 93.98± 6.35 93.05± 7.47 85.30± 9.81 82.91± 9.38 88.81± 8.37
Subject 7 74.88± 10.60 85.68± 9.82 75.69± 11.31 80.37± 11.51 79.16± 10.83
Subject 8 74.301± 12.18 72.69± 11.26 67.65± 12.09 65.52± 12.31 70.04± 11.97
Average 86.30± 8.90 87.84± 8.70 83.09± 9.10 84.06± 9.62 85.32± 9.09

artificial neural network (ANN) classifier. In con-
trast to LSTM, the ANN classifier is incapable of tak-
ing advantage of the information conveyed by the
sequencing of the feature vectors. We used an ANN
model with two fully-connected hidden layers con-
sisting of 20 neurons. The average classification res-
ults achieved at 500 ms using the ANN classifier for
different classes of tongue movement execution vs
imagery, and tongue movement execution vs hand
movement imagery, compared to the accuracy res-
ults achieved from the LSTM classifier are presented
in figure 11. As can be seen, the average classifica-
tion accuracy using the LSTM classifier is about 18%
higher than the accuracy results achieved from the
ANN classifier (across classes), which confirms that
the inclusion of the information that lies in the tem-
poral sequence of extracted features plays an import-
ant role in improving the performance.

Additionally, from figure 12, one can see that,
for the ANN-based classifier, the average classifica-
tion accuracy does not improve as time goes by. This
is caused by the exclusion of the temporal informa-
tion of the sequence in the ANN classifier, thus, dis-
criminating different tasks is only based on the spa-
tial information of functional connectivity graphs. In
summary, these results demonstrate the significance
of considering the dynamics of the functional con-
nectivity graphs for discriminating motor tasks.

4.4. Dataset 2: early classification of MI tasks
In order to compare the performance of the proposed
approach with existing methods, we also applied the
classification algorithm to the BCI Competition IV
dataset IIa (Dataset 2), which has been commonly
used in BCI studies. Features extracted from the 3 s
duration of MI task ([3–6] s interval, see figure 6(a))
were employed for training and validation. For test-
ing, the time bin ending 800 ms, after the MI task
onset, was observed. The reason for selecting this dur-
ation is that when plotting accuracy graphs similar
to figures 9 and 10 for this dataset, we observed that
around 800ms a reasonable accuracy can be achieved.
The classification results for differentiating various
pairs of MI tasks (i.e. left hand vs right hand (L vs
R), left hand vs both feet (L vs F), left hand vs tongue

(L vs T), right hand vs both feet (R vs F), right hand vs
tongue (R vs T), and both feet vs tongue (F vs T)) for
all subjects are presented in table 6. Accuracy results
greater than 80% are also emphasized in bold.

As can be seen, the highest accuracy results have
been achieved for left hand vs tongue, and for right
hand vs tongue classification cases, whereas the low-
est accuracy was obtained for feet vs tongue, and left
hand vs right hand classification cases. One possible
explanation for this observation is that the spatial and
temporal patterns of the estimated functional net-
works are more discriminatory among some pairs
of imagery tasks than others. Further exploration of
the characteristics of these networks can deepen our
understanding of the reasons for achieving different
decoding accuracy results across different pairs of MI
tasks. Moreover, similar to the results obtained from
Dataset 1, the results for this dataset were also subject-
dependent. The accuracy results for subjects 1, 3, 7,
8, and 9 were higher than others, while the accuracy
results for subjects 5 and 6 were mostly low. Although
the accuracy results for other subjects were satisfact-
ory, inclusion of these two subjects, has reduced the
overall obtained averaged accuracy across subjects.

5. Discussion

There has been significant interest in studying task-
based or resting-state brain’s functional connectiv-
ity in healthy and patient subjects, which has resul-
ted in new understanding about the brain function as
well as the mechanisms underlying brain-related dis-
orders [17, 117–126]. InBCIs, functional connectivity
measures have been employed as features to discrim-
inate various tasks [22, 23, 26–28]. This approach is
in contrast to most of the BCI algorithms in which
features are typically extracted from individual EEG
electrodes. Previous studies suggest that using fea-
tures from individual EEG electrodesmay not provide
enough information to discriminate motor tasks in
specific groups of patients with motor disabilities
[127]. For example, it has been shown that there exist
differences in the band power patterns corresponding
to MI tasks across stroke patients with different loc-
ation of lesion [128–130], and therefore, combining
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Figure 9. (a)–(h): Classification accuracy of tongue movement execution (TE) in up (U) or down (D) directions vs tongue
imagery (TI) in up (U) or down (D) directions for all subjects.

various features have been suggested as a solution to
improve the classification performance [129]. Since
performing tasks relies on the interactions among
various brain regions, it is intuitive to consider func-
tional connectivity-based characteristics rather than
using features from isolated regions/electrodes for the
purpose of discriminating intended tasks.

Brain is known to be a dynamical system in which
interactions among different regions are time-varying

[17, 131–134]. These interactions are transient and
rapid (i.e. established on the millisecond time scale).
Accordingly, it has been suggested that studying
the dynamics of functional connectivity networks
provide a better understanding of the brain func-
tion compared to studying the brain in a static
framework. Based on these facts, in this paper,
we presented a novel feature extraction/classifica-
tion framework which utilizes dynamic functional
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Figure 10. (a)–(h): Classification accuracy of tongue movement execution (TE) in up (U) or down (D) directions vs imagery (HI)
of left (L) or right (R) hands for all subjects.

connectivity networks to decode the motor execu-
tion/imagery tasks. Furthermore, we aimed to reduce
the time interval required to achieve reasonable
accuracy.

The proposed framework includes segmentation
of the EEG data into variable-length time inter-
vals where the functional connectivity networks
remain quasi-stationary. It is worth mentioning that
most of the previously-presented methods (such as

dynamic time warping, or microstates) for studying
the brain dynamics through EEG recordings, have
been based on changes in the activities that form on
the scalp (sensor space)[17, 135–137]. In contrast,
our novel source-informed segmentation algorithm
identifies segment boundaries based on changes in
the spatial characteristics of the functional networks
in the cortex (i.e. the source space). This makes the
algorithm informed by the source space, without
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Table 5. Dataset 1- Classification accuracy results averaged across all subjects, for tongue movement execution (TE) vs tongue imagery
(TI), and for tongue movement execution (TE) vs hand movement imagery (HI), at different post-stimulus instants.

Duration (ms) 300 500 700 1000 1500 1900

TE vs TI 78.41± 9.76 82.27± 9.23 84.44± 8.49 85.39± 8.66 87.26± 8.45 87.35± 8.39
TE vs HI 82.14± 9.37 85.32± 9.09 87.64± 8.64 89.08± 8.51 90.01± 8.32 90.48± 8.46

Figure 11. Average classification accuracy results, 500 ms after task onset, for different classes of tongue movement execution (TE)
vs imagery (TI) and tongue movement execution (TE) vs hand movement imagery (HI) using ANN and LSTM classifiers.

Figure 12. Average classification accuracy results for tongue movement execution (TE) vs (a): tongue movement imagery (TI) and
(b): hand movement imagery (HI) using ANN and LSTM classifiers.

Table 6. Classification accuracy results for classifying various pairs of left hand (L), right hand (R), both feet (F), and tongue (T)
movement imagery tasks, 800 ms after the task onset for Dataset 2 (Dataset IIa from BCI competition IV).

SUB L vs R L vs F L vs T R vs F R vs T F vs T

A01 59.91± 6.88 80.62± 6.45 86.12± 4.92 81.49± 6.95 91.56± 4.46 55.18± 6.36
A02 56.24± 6.62 72.87± 7.07 68.56± 7.45 75.35± 6.66 74.06± 6.92 60.39± 6.25
A03 77.26± 6.01 76.08± 6.88 86.47± 5.24 86.21± 5.37 92.19± 3.70 70.57± 6.95
A04 58.88± 7.48 63.23± 7.01 64.91± 6.98 68.84± 8.17 63.59± 6.53 60.92± 7.61
A05 56.88± 6.39 52.03± 4.84 53.49± 5.96 53.44± 5.77 55.07± 6.36 51.03± 5.86
A06 60.42± 8.21 60.67± 6.98 62.31± 7.24 56.23± 7.56 60.21± 7.90 58.59± 7.12
A07 59.48± 6.06 88.13± 4.98 85.97± 5.54 83.22± 5.29 84.80± 6.43 72.74± 6.53
A08 82.50± 5.44 69.69± 7.50 85.81± 5.48 76.91± 6.91 81.00± 5.85 76.90± 5.75
A09 84.87± 5.64 86.04± 5.72 94.13± 3.69 65.82± 6.75 74.31± 7.09 80.66± 6.60
Average 66.27± 6.68 72.19± 6.45 76.42± 5.95 71.94± 6.67 75.20± 6.26 65.22± 6.59

requiring computationally-complex source localiza-
tion algorithms [101].

In the proposed framework, the sequence of
extracted connectivity features are passed to the
LSTM classifier to take advantage of the information
that lies in the temporal sequence of the constructed

connectivity graphs. The obtained classification
accuracy results for Dataset 1 indicate that the pro-
posed method can successfully discriminate tongue
movement execution vs tongue (82.27%)/hand
(85.32%) movement imagery tasks at only 500 ms
after the task onset. These results suggest that the

14



J. Neural Eng. 18 (2021) 016015 F Shamsi et al

connectivity patterns of motor execution/imagery
tasks along with their temporal dynamics can provide
sufficient information for solving the classification
problemwithin a short interval of in the order of hun-
dreds ofmilliseconds. Therefore, the proposed feature
extraction/classification framework can be utilized to
reduce the required buffering lag for the BCIs, and
thereby, increasing their speed. It should be noted
that the time instants indicated for the two datasets
(i.e. 500 ms for Dataset 1, and 800 ms for Dataset
2) were selected as examples to show that by using
the proposed method, good classification accuracy
can be obtained as early as these time instants after
the task onset. However, as illustrated in figures 9
and 10 due to the dynamic nature of the proposed
approach, the decision can be generated at any time
instant since the first identified segment. This is the
feature offered by the proposed method that we refer
to as ‘early decoding’.

It is worth to mention that for Dataset 1, we have
considered tongue movement execution as one of the
tasks for the BCI. The importance of discriminating
tongue movement execution vs other imagery tasks is
that the movement of tongue is often available even
in patients with severe motor disabilities. Further-
more, tongue is a relatively strong muscle and can be
moved in various directions [138]. If a patient pos-
sesses the ability of moving his/her tongue, the BCI
can actually benefit from this available physiological
signal. Therefore, in cases where tongue movement
is available from the patient, it can be used along
with other MI tasks to increase the number of control
commands.

Our results suggest that the temporal dynam-
ics of functional networks play key roles in early
decoding capability offered by the proposed frame-
work. This was highlighted by comparing the clas-
sification results achieved from two classifiers: the
LSTM which considers both the temporal dynam-
ics and the spatial information of functional con-
nectivity graphs, and ANN which only utilizes the
spatial information. It was observed that for the
ANN classifier, there was not much difference in the
obtained classification accuracy results along time,
while in the case of the LSTM classifier, the aver-
age accuracy results improved along the time spent
after task onset (figure 12). These results further con-
firm the importance of the inclusion of the tem-
poral information of the functional connectivity net-
works in achieving good classification performance
within a short interval. The significance of including
the temporal information can be observed as early
as 100 ms after the task onset, where the average
classification accuracy using LSTM is ∼ 5% higher
than the case of using ANN classifier. This difference
increases to 16.39–17.99% and 22.28–25.26% for 500
and 1900 ms after the task onset, respectively. It can
be concluded that the interactions among the brain
regions and how they evolve over time contribute to

discriminatory information needed to solve the clas-
sification problem.

The proposed method was employed to differen-
tiate motor execution vs imagery tasks. The similarit-
ies and differences in connectivity patterns of motor
execution and imagery taskswere investigated in [123,
139–141].

For example, in [139], coupling patterns among
occipital and motor regions in the beta frequency
bandwere reported to be different during handmove-
ment execution and imagery. In [140], it was shown
that the key nodes in networks related to motor exe-
cution and imagery tasks are located in different
areas. In [141] and [123] functional connectivity ana-
lysis based on ERS/ERD and phase synchronization
showed similar connectivity patterns among con-
tralateral brain regions for movement execution and
imagery of finger tapping [141], and foot and hand
[123]. In [142], the results of effective connectiv-
ity networks associated with finger tapping execution
and imagery indicated that the coupling strength of
the feedforward network from dorsolateral prefrontal
cortex to premotor cortex was greater during motor
execution tasks than to MI tasks, whereas the coup-
ling strength of the feedforward network from pre-
motor cortex to supplementary motor area and the
feedback network from the primary motor cortex to
premotor cortex were higher for MI tasks. In [143],
it was suggested that increases in β-band connectiv-
ity occurs similarly in both movement execution and
imagery tasks, while in µ band, motor execution and
imagery tasks are associated with different connectiv-
ity patterns. Considering the results of these stud-
ies, it can be concluded that depending on the ana-
lysis methods and variables that are selected as the
basis of comparisons, one might observe common
or different connectivity patterns among motor exe-
cution and imagery tasks. In this paper, we showed
that using the proposed method, dynamic functional
connectivity networks can provide discriminatory
information corresponding to motor execution vs
imagery tasks. Frequency-specific analysis can bring
more insights into understanding how different EEG
frequency bands contribute in differentiating motor
execution vs imagery tasks. We aim to investigate this
problem in our future studies.

Table 7 summarizes the classification results for
some of the recent work that have used Dataset 2
along with the required duration of the data that was
used to achieve these classification accuracy results. It
can be seen that, our work shows the shortest buffer-
ing lag (800ms) while othermethods required buffer-
ing lags equal or greater than 2 s to achieve the repor-
ted accuracy results.

Due to differences in the preprocessing steps,
types of extracted features, computational complex-
ity, and choice of classifiers, a fair comparison is
not possible across different work. Another main
difference that should be pointed out is that except
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Table 7. Comparison of classification accuracy results and the required time, of the proposed method and existing work using Dataset 2
(Dataset IIa from BCI competition IV).

Feature Accuracy (%)

reference Year Duration (s) Type Classifier L vs R L vs F L vs T R vs F R vs T F vs T

[37] 2016 3 Channel-based SVM 74.92 — — — — —
[25] 2016 3.5 Functional Connectivity SVM 64.27 — — — — —
[38, 80] 2017 3 Channel-based RBM 64.60 65.60 61.90 66.80 70.20 64.60
[144] 2017 unknown Channel-based MNN 79.52 83.19 84.64 81.44 83.40 78.64
[52] 2018 2 Channel-based SVM 82.50 — — — — 84.00
[42] 2018 2 Channel-based MDRM 79.93 85.50 84.30 85.43 83.75 74.78
[38] 2018 3 Channel-based LSTM 74.80 74.20 72.50 76.30 74.30 79.60
[55] 2019 2 Channel-based MDRM 80.98 — — — — —
[23] 2019 3 Functional Connectivity LS 71.00 74.00 74.00 71.00 74.00 65.00
This work — 0.8 Functional Connectivity LSTM 66.27 72.19 76.42 71.94 75.20 65.22

ours, the methods in table 7 cannot be used for
early decoding purposes. That is, they would require
the processing of the full considered interval of EEG
data, before coming up with a decision, while our
method offers the possibility of decoding the tasks
as early as the first identified segment, due to it
dynamic (segment-by-segment) classification nature.
In terms of types of extracted features, [23] and
[25] are the closest to our work for comparison as
they have employed functional connectivity-based
features, albeit without considering the dynamics.
Compared to these two studies, it can be observed that
our work has led to better accuracy results for major-
ity of listed MI tasks, while requiring only 800 ms
after task onset, further suggesting the importance of
the inclusion of dynamic information for discrimin-
ating MI tasks. In terms of classifiers, [38] has also
used LSTM, however, the extracted features are time-
domain and channel-based. The reported classifica-
tion accuracy results from this method for duration
of 3 s after task onset are comparable to our results
after 800 ms. Furthermore, the results for [38] which
uses a deep learning classification algorithm based on
Restricted BoltzmannMachines [80], are lower for all
listed pairs of MI tasks, as compared to our results. In
[144], a method for reducing the effects of noisy trials
was used, which has resulted in improved classifica-
tion performance. In our case, we had only considered
basic preprocessing steps (filtering and ICA). The
possibility of achieving higher accuracy results with
more advanced preprocessing methods such as those
proposed in [144] requires further investigation. Also,
the buffering lag for using this result was not directly
reported in [144], however, it seems the duration of
the trial was used in the analysis, which is consider-
ably longer thanwhat we used in our work. Theworks
[37, 42, 52, 55] have used channel-based features
extracted from 2 or 3 s duration. Despite the good
classification results reported in [37], implementing
this method is not computationally efficient due to
the procedures involved in the decoding algorithm.
In [52], both the filter bandwidth and the time win-
dow used for feature extraction were optimized for

accuracy. In [42] features are extracted from spe-
cific EEG frequency bands. In our work, we did not
consider band-specific results, and it would be inter-
esting to investigate whether optimizing bandwidth
or employing frequency-specific dynamic functional
connectivity networks as features will improve the
accuracy results. Finally, in [55], a Riemannian-based
approach is used which incorporates inter-subject
data to reduce the dimensionality of the covariance
matrices through regularization techniques. Includ-
ing the inter-subject data in our proposed dynamic
functional connectivity-based method can be an
interesting topic for the future studies.

In summary, it can be concluded that although
some of the studies in table 7 have reported higher
classification accuracy results as compared to our
case, we have shown that within a notably shorter
duration, reasonable classification accuracy can be
achieved using our proposed method. Inclusion of
advanced-preprocessing techniques, or optimizing
the performance based on band selection, could fur-
ther improve our accuracy results. Our early decod-
ingmethod is well-suited for applications that require
decoding the user’s intentions within a short inter-
val after the onset of the task, while other methods
could be more preferable if higher decoding accuracy
is required and the duration of the buffering lag is not
a concern.

To the best of our knowledge, this is the first
study that demonstrates the possibility of early decod-
ing of motor tasks in BCIs from EEG recordings.
There are a few limitations in this study. Here, we
have performed off-line processing and classification
of EEG data. In order to use this method in real-
time BCIs, a framework for a real-time implement-
ation of the feature extraction algorithm should be
developed. With the current progress in the devel-
opment of computational hardware and processing
units, this seems to be achievable in the near future.
Moreover, previous studies on MI-based EEG clas-
sification [58, 145–147] have demonstrated the role
of specific EEG frequency bands in the classifica-
tion of MI tasks. We did not incorporate frequency
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decomposition here. An extension of this work could
be focused on the extraction of functional networks
from different EEG frequency bands to investigate
the significance of each frequency band in address-
ing the early decoding problem. Additionally, we only
considered basic FIR filtering and artifact removal
using ICA. The performance of the proposed method
can further be improved by incorporating noise and
artifact reduction techniques in the algorithm and/or
utilizing mechanisms to detect and remove noisy tri-
als as suggested in [144].

It is also worth mentioning that although we
have verified the early-decoding effectiveness of the
proposed approach using two different datasets, the
collected data belonged to healthy groups. For the
purpose of implementing BCI-based assistive techno-
logies for patients, testing the proposed framework
on data collected from patients would be necessary.
Moreover, in this work, we considered the decod-
ing problem for movement-related tasks. However,
the proposed framework can also be applied to other
tasks, such as P300 and cognitive tasks, to evoke
brain activities in BCIs. Implementing the proposed
method for early decoding of other mental activities
from EEG recordings may offer the ability to improve
the speed and practicality of the BCIs that are based
on these tasks.

6. Conclusions

This paper introduced a new feature extraction
method based on dynamic functional connectiv-
ity networks for early decoding of EEG signals.
The proposed method comprised of two steps:
first, segmenting the EEG data into quasi-stationary

temporal blocks during which functional networks
sustain their connectivity, and second constructing
functional connectivity graphs for each identified seg-
ment. An LSTM classifier was then employed for the
classification due to its advantageous utilization of the
contained memory cell which allowed for processing
a sequence of features.

The proposed method enabled us to differenti-
ate among tongue movement execution vs tongue or
handmovement imagery tasks within a short interval
in the order of hundreds of milliseconds (e.g. 500ms)
with good accuracy. These results indicated, for the
first time, that the required duration of EEG data on a
given trial for decodingmotor execution and imagery
tasks, can be significantly reduced compared to exist-
ing methods, suggesting that this framework is an
efficient approach for improving the speed of BCIs.
Additionally, we showed that the early decoding cap-
ability relied on both spatial and temporal inform-
ation of functional connectivity networks that were
captured by using the proposed feature extraction
method and utilizing the LSTM classifier.

This studywas the first step in addressing the early
classification problem from EEG data. The exten-
sion of the proposed method for band-specific early
decoding, and multi-class problems are considered as
our future work.
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Appendix

Table A1. List of Acronyms.

AFNN Adaptive Fuzzy Neural Network
ANN Artificial Neural Network
BCI Brain Computer Interfaces
BPNN Back-Propagation Neural Network
BTSPRT Balanced Threshold Sequential Probability Ratio Test
CPMS-CNN Channel-Projection Mixed-Scale Convolutional Neural Network
CNN Convolutional Neural Network
CSP Common Spatial Pattern
DNN Deep Neural Network
DPL Dictionary Pair Learning
EEG Electroencephalography
ELM Extreme Learning Machine
EOG Electrooculography
ERD Event-related de-synchronization
ERS Event-related synchronization
FIR Finite Impulse Response
FLDA Fisher Linear Discriminant Analysis
GA Genetic Algorithm
GB Gradient Boosting
GSLDA Generalized Sparse Linear Discriminant Analysis
HMM Hidden Markov Model
HS-CNN Convolutional Neural Network with hybrid Convolution Scale
ICA Independent Component Analysis
IT2FLS Interval Type-2 Fuzzy Logic System
kNN k-Nearest Neighbors
KSVM Kernel Support Vector Machine
LDA Linear Discriminant Analysis
LR Logistic Regression
LRP Layerwise Relevance Propagation
LS Least-Square
LSTM Long Short Term Memory
MDRM Minimum Distance to Riemannian Mean
ME Motor Execution
MI Motor Imagery
MNN Modified Neural Network
NB Naive Bayse
NBPW Naive Bayesian Parzen Window
NN Neural Network
pCNN ; Spectrogram-based Convolutional Neural Network
PCSP Probabilistic Common Spatial Pattern
PSO Particle swarm optimization
RANFN Recurrent Adaptive Neuro-Fuzzy Network
RBM Restricted Boltzmann Machines
RCNN Recurrent Convolutional Neural Network
RF Random Forest
SBL Sparse Bayesian Learning
SRC Sparse Representation-based Classification
SRDA Spectral Regression Discriminant Analysis
RVM Relevance Vector Machine
SVD Singular Value Decomposition
SVM Support Vector Machine
SUSS-SRKDA Sequential Updating Semi-Supervised Spectral Regression Kernel Discriminant Analysis
WNB Weighted Naive Bayesian
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