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Abstract— This paper presents a nonlinear control method,
which achieves simultaneous fluid flow velocity control and
limit cycle oscillation (LCO) suppression in a flexible airfoil.
The proposed control design is based on a dynamic model
that incorporates the fluid structure interactions (FSI) in the
airfoil. The FSI describe how the flow field velocity at the
surface of a flexible structure gives rise to fluid forces acting
on the structure. In the proposed control method, the LCO
are controlled via control of the flow field velocity near the
surface of the airfoil using surface-embedded synthetic jet
actuators. Specifically, the flow field velocity profile is driven to a
desired time-varying profile, which results in a LCO-stabilizing
fluid forcing function acting on the airfoil. A Lyapunov-based
stability analysis is used to prove that the active flow control
system asymptotically converges to the LCO-stabilizing forcing
function that suppresses the LCO. Numerical simulation results
are provided to demonstrate the performance of the proposed
active flow-and-LCO suppression method.

I. INTRODUCTION

The interaction between a flexible structure and the fluid
surrounding it is referred to as fluid structure interactions
(FSI). A detailed understanding of FSI is of critical impor-
tance in numerous applications in aeronautical and aerospace
systems, petroleum and chemical industries, renewable en-
ergy systems, and others [1], [2], [3], [4]. A particularly
important application of FSI is in the development of limit
cycle oscillation (LCO) suppression control systems for air-
craft. Indeed, a thorough understanding of the FSI and LCO
can lead to significant improvements in the aerodynamic
characteristics of aircraft, such as drag reduction and lift
enhancement. While standard LCO suppression control in
aircraft wings is achieved using deflection surfaces (e.g.,
ailerons, rudders), the contribution of this paper is the
analysis of a control system that achieves LCO suppression
via control of the wing boundary-layer flow field.

LCO (or flutter) are self-excited aeroelastic instabilities
that can have a detrimental effect on aircraft flight perfor-
mance and can even lead to catastrophic failures [5], [6],
[7]. A thorough review of research and development in LCO
suppression technology over 50 years is presented in [5].
Aerodynamic performance characteristics such as increased
lift and delayed stall can be improved through control of the
flow over the wing by considering the FSI. To implement
flow control in an LCO suppression application, surface-
embedded flow actuators can be employed to influence the
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flow dynamics near the wing boundary-layer.
Synthetic jet actuators (SJA) have been widely used in

recent flow control and LCO suppression research. In [7], a
SJA-based output feedback control method is presented that
proves asymptotic regulation of LCO in small unmanned
aerial vehicles UAVs. In [8], a numerical investigation of
active flow control using SJAs is presented. A primary
challenge in SJA-based control design is that the input-output
characteristic of the SJA is nonlinear and contain parametric
uncertainty. Additional challenges arise in designing flow
control systems based on reduced-order mathematical models
of the flow dynamics.

Active flow control techniques have been presented in
numerous recent research results [9], [10], [11], [12]. A key
challenge in designing control laws for fluid flow is that the
governing dynamic equations are partial differential equa-
tions (PDEs) (e.g., Navier-Stokes equations), which are not
amenable to control design. Proper orthogonal decomposition
(POD)-based model order reduction is a popular technique,
which can be used to express the Navier-Stokes PDEs as
a finite set of ordinary differential equations (ODEs) [13],
[14]. In the POD-based method, the nonlinear Navier-Stokes
equations are projected onto a finite-dimensional subspace
using Galerkin technique so that the projection error is
minimized. The resulting reduced-order model is expressed
as a set of nonlinear ordinary differential equations (ODEs),
which are amenable to control design.

The contribution of this paper is the development of a
nonlinear control method, which is rigorously proven to
simultaneously control the boundary-layer flow dynamics
and suppress the LCO in an aircraft wing section. To achieve
the result, an LCO dynamic model is utilized, which incorpo-
rates FSI through a fluid forcing function. The fluid forcing
function is in turn a function of the fluid flow velocity, which
is controlled using surface-embedded SJAs. A POD-based
reduced-order model for the actuated flow dynamics is used
to develop a detailed tracking error system, and a rigorous
Lyapunov-based stability analysis is utilized to prove that
the flow control law drives the fluid forcing function to
an offline-designed (desired) LCO-stabilizing fluid forcing
function. Numerical simulation results are also provided,
which incorporate detailed models of the LCO and reduced-
order flow dynamics.

II. MATHEMATICAL MODEL

In this section, the mathematical model for the LCO
dynamics and flow field dynamics are presented. Section II-
A describes the LCO dynamics of a foil in the presence of
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fluid forces. Next, a POD-based model reduction technique is
utilized to recast the incompressible Navier-Stokes equations
as finite set of nonlinear ODEs. The reduced-order model for
the actuated flow dynamics will be utilized to develop the
proposed closed-loop control system.

A. LCO Dynamic Model

The equation of motion describing the LCO dynamics, in
the presence of a fluid forcing function are expressed as [15]

M(s)q̈(s, t) + C(q̇(s, t)) +K(q(s, t)) = BFfluid(s, t) (1)

where q (t) ,
[
h (t) η (t)

]T ∈ R2 denotes the LCO
displacement vector containing plunging (h (t)) and pitching
(η (t)) displacements, s ∈ R is the linear position along the
structure (i.e., wing), M(s) ∈ R2×2 is the inertia matrix
of the wing, and C(∗) ∈ R2 and K(∗) ∈ R2 denote
viscous damping and stiffness functions, respectively. In (1),
Ffluid(s, t) ∈ R denotes the fluid forces acting on the wing
(i.e., a “virtual” control input), and B ∈ R2 is a constant
input gain vector.

In the LCO dynamic model given by (1), the fluid forcing
function Ffluid(s, t) can be mathematically expressed as the
product of the boundary-layer turbulence velocity υ(s, t) and
a position-dependent function b(s) as [15]

Ffluid(s, t) = b(s)υ(s, t). (2)

In (2) the fluid forcing function is directly dependent on the
flow turbulence υ(s, t) near the surface of the wing. The
variable s used in (2) is the linear position introduced in (1),
and the function b(s) in the fluid forcing function Ffluid(s, t)
can be expressed in terms of geometric and aerodynamic
parameters as

b(s) = ρdcdU(s) (3)

where ρ denotes the density of the air/fluid, d is the wing
cross-sectional area, and cd is the drag coefficient. In (3),
U(s) denotes the mean air flow velocity near the surface
of the wing. The objective in this paper is to use wing
surface-embedded SJAs to control the boundary layer flow
perturbations υ(s, t) to track a desired time-varying profile
that results in an LCO-suppressing fluid forcing function.

B. Flow Dynamics Reduced Order Model

In this section, a POD-based model reduction technique is
utilized to recast the incompressible Navier-Stokes equations
as a finite set of nonlinear ODEs. By expressing the Navier-
Stokes PDEs as a set of ODEs, an approximate dynamic
model for the flow dynamics will be obtained, which is more
amenable to control design.

The incompressible Navier-Stokes equations are given as
[16]

∇ · υ = 0,
∂υ

∂t
= −(υ · ∇)υ + ν∇2(υ)−∇p, (4)

where υ(s, t) : Ω × [0,∞) → R denotes the velocity of the
flow field over a spatial domain s ∈ Ω; p(s, t) ∈ R is the
space- and time-dependent pressure of the flow field over Ω;

∇ denotes the spatial gradient; and ν , 1
Re is the kinematic

viscosity, where Re denotes the Reynolds number.
In the POD-based model order reduction method, the

flow field velocity υ(s, t) is expanded as a weighted sum
of actuated and unactuated POD modes defined in the
spatial domain Ω. The actuation effects are embedded in
the coefficients of the Galerkin system. Specifically, the
actuation effects can be included in the reduced-order model
by defining the modal decomposition as [17], [18]

υ(s, t) = υ0(s, t) +
n∑
i=1

xi(t)φi(s) +
m∑
i=1

γi(t)ψi(s) (5)

In (5), φi(s) ∈ R denote the POD modes; xi(t), i = 1, ..., n,
are time-varying coefficients resulting from the modal de-
composition; and υ0(s, t) ∈ R denotes the mean flow
velocity over Ω, where ψi (s) ∈ R denote the actuation
modes, and γi (t) ∈ R denote actuation values (i.e., control
inputs). Physically, the actuation values could represent the
controllable flow perturbations due to synthetic jet actuators,
for example [19].

C. Reduced-order Model for the Actuated Flow

For the control design presented here, it will be assumed
that an input separation method [18] is utilized to expand
the flow field in terms of baseline (unactuated) POD modes
and actuation modes. The following two subsections provide
details on the reduced-order model for actuated flow that is
being considered in this paper.

1) Actuated Dynamic Model: By substituting the actuated
modal decomposition in (5) into (4), the actuated reduced-
order flow dynamics can be expressed in terms of an auxil-
iary (“virtual”) control input u(t) as

ẋ = f(x) + g(x)u, y = h(x) (6)

where x(t) , [x1(t), x2(t), ...., xn(t)]T ∈ Rn contains the
unmeasurable coefficients resulting from POD-based model
order reduction, g(x) ∈ Rn×m (m ≥ n) is an input
gain matrix, u(t) , [u1 (t) , ..., um (t)]

T ∈ Rm denotes
a subsequently defined virtual control input (e.g., resulting
from m arrays of synthetic jet actuators), and y(t) ∈ Rp
is the measurable output (e.g., sensor measurements of flow
field velocity or pressure). A detailed derivation of actuated
reduced-order model in (6) can be found in [20], [18] and is
omitted here for brevity.
In the subsequent flow control design and analysis, the con-
troller development will be presented using a virtual control
signal u (t) ∈ Rm, which is defined via the parameterization

g (x)u = Qain (x, γ) +Qin (γ, γ) . (7)

Remark 1: In (7), the terms Qain (x, γ) , Qin (γ, γ) ∈
Rn are quadratic in their respective arguments. Since the
γ (t) dependence is quadratic in this case, the mapping
between γ (t) and u (t) will not be unique in general; but
the subsequent discussion is based on the assumption that
the desired, commanded control input can be delivered by
the virtual control signal.
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Property 1: If x (t) ∈ L∞, then the first and second
partial derivatives of f (x), g (x), and h (x) with respect to
x (t) exist and are bounded. Based on the flow measurement
equation and the actuated flow dynamics in (6), f (x) and
h (x) can be expressed as f(x) , (L +

∑n
i=1 xiQi)x

and h(x) , Cx, where L,Qi ∈ Rn×n contain constant
parameters resulting from POD; and the product xiQi is
calculated element-wise.

The subsequently defined simulation model in Equation
(41) provides a specific example of a POD-based flow
dynamic model in this form. Detailed derivations of f (x)
and h (x) in (6) can be found in [21].

III. SJA-BASED CONTROL MODEL DERIVATION

In this section, the POD-based reduced-order model for
the actuated flow dynamics will be augmented to include
the effects of SJA actuation. To this end, a well-accepted,
empirical model for the virtual surface deflection generated
by SJA actuators [22] will be utilized to express the SJA-
actuated flow dynamics in a control-oriented form, which
explicitly includes the parametric uncertainty inherent in the
SJA actuator model.

Remark 2: (SJA in Flow Control) The actuation term
u (t) in the flow dynamics in (6) is assumed to be generated
by means of the virtual deflection angle resulting from an
array of SJAs. For further details on the use of SJA in flow
control applications, the reader is referred to [22].

A. SJA Actuator Model

The virtual deflection angle generated by an array of m
SJAs (i.e., u(t) in (6)) can be expressed as [22]

ui(t) = θ?2i −
θ?1i
vi(t)

, i = 1, 2, ....,m. (8)

In (8), vi(t) , A2
ppi (t) ∈ R+ denotes a measurable

input signal, where Appi represents the peak-to-peak voltage
magnitude applied to the ith SJA array; and θ?1i, θ

?
2i ∈ R are

uncertain positive parameters. The SJA actuator model given
in (8) illustrates one of the main challenges in SJA-based
estimator and control design: the virtual surface deflection
control input ui(t) depends nonlinearly on the SJA voltage
input signal vi(t) and contains parametric uncertainty due to
θ?1i and θ?2i. To address these challenges, the voltage input
signal vi(t) can be designed using the robust-inverse control
structure [19]

vi(t) =
θ̂1i

θ̂2i − udi(t)
(9)

where, θ̂1i, θ̂2i ∈ R+ are constant, best-guess feedforward
estimates of the uncertain parameters θ?1i and θ?2i. In (9),
udi(t) ∈ R, for i = 1, ...,m, are subsequently defined
auxiliary control signals. Note that (9) can be implemented
using a singularity avoidance algorithm [23].

After substituting (8) and (9) into (6), the SJA-based
control model can be expressed as

ẋ = f(x) + ΞB + Ωud(t) (10)

where ud (t) , [ud1 (t) , ..., udm (t)]
T ∈ Rm, and expres-

sions for the uncertain constant auxiliary terms ΞB ∈ Rm
and Ω ∈ Rn×m can be readily obtained. To handle the
uncertainty in the input-multiplicative matrix Ω in (10), the
auxiliary control signal ud (t) is designed as

ud(t) = Ω̂#µ(t) (11)

where Ω̂ ∈ Rn×m denotes a feedforward estimate of Ω, and
[·]# denotes the pseudoinverse of a (nonsquare) matrix. Note
that the standard matrix inverse operation could be used in
place of the pseudoinverse for the case where n = m. In (11),
µ(t) ∈ Rn denotes a known, nominal, measurable control
input signal. After substituting (11) into (10), the open loop
SJA-based system can be expressed as

ẋ = f(x) + ΞB + Ω̃µ(t) (12)

where Ω̃ , ΩΩ̂# ∈ Rn×n. Heuristically, the uncertain matrix
Ω̃ represents the deviation between the actual SJA parameters
θ?1i and their constant estimates θ̂1i, for i = 1, ...,m.

Property 2: The uncertain matrix Ω̃ can be decomposed
as

Ω̃ = In + ∆(t) (13)

where In ∈ Rn×n denotes the identity matrix, and ∆(t) ∈
Rn×n denotes uncertain “mismatch” matrix.

Assumption 1: Approximate model knowledge is avail-
able such that the mismatch matrix ∆ satisfies

‖∆(t)‖i∞ < ε (14)

where ε ∈ R+ is a known bounding constant, and ‖·‖i∞
denotes the induced infinity norm of a matrix. Heuristically,
Inequality (14) can be interpreted as the assumption of
approximate SJA model knowledge.

Preliminary results show that Assumption 1 is mild in the
sense that the proposed control method performs well over
a wide range of SJA parametric uncertainty.

By substituting (13) into (12), the SJA-based flow dynamic
model can be expressed as

ẋ = f (x) + ΞB + µ (t) + ∆(t)µ (t) , y = Cx, (15)

where the output matrix C ∈ R1×n for the single output
case.

Remark 3: The control objective in this paper is based on
driving the fluid forcing function to a desired fluid forcing
function, which is designed in a separate step based on the
objective of regulating LCO. The fluid forcing function in
(2) can be approximated using POD as

Ffluid = b(s)υ(s, t) ' b(s)y(t) = b(s)Cx(t), (16)

where y(t) is the output of the flow dynamic model described
in (15). The approximation accuracy can be made arbitrarily
accurate by adjusting the number of POD modes which are
defined in (5).
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IV. CONTROL DEVELOPMENT

The control objective is to design the control signal µ (t)
to regulate the fluid forcing function Ffluid defined in (16) to
a desired fluid forcing function Ffluid,des, which is defined
as

Ffluid,des = b(s)yd(t) (17)

where yd(t) is the desired flow field velocity output that
suppresses LCO. To quantify the control objective, a tracking
error e(t) ∈ R and an auxiliary tracking error r(t) ∈ R are
defined as

e(t) = Ffluid − Ffluid,des, r(t) = ė+ αe, (18)

where α ∈ R is a positive, constant control gain. Thus, the
control objective can be stated mathematically as

e (t)→ 0. (19)

A. Open Loop Error System

Taking the time derivative of r (t) and using the definition
of (18), the open loop error dynamics can be expressed as

ṙ = b(s)C
[
∂f(x)
∂x ẋ+ Ω̃µ̇(t) + ∆̇(t)µ(t)

]
− F̈fluid,des + α(r − αe), (20)

where the constant uncertain matrix Ω̃ is defined in (12). The
error dynamics in (20) can be rewritten as

ṙ = Ñ(t) +Nd(t) + Ω̃1µ̇(t) + b(s)C∆̇(t)µ(t)− e, (21)

where Ω̃1 ≡ b(s)CΩ̃ and the unknown, unmeasurable
auxiliary functions, Ñ (t), Nd(t) ∈ R are defined as

Ñ = b(s)C ∂f(x)
∂x ẋ+ α(r − αe) + e, (22)

Nd = −F̈fluid,des (23)

Assumption 2: Approximate model knowledge is avail-
able such that the mismatch matrix ∆̇(t) satisfies

b(s)C
∥∥∥∆̇(t)

∥∥∥
i∞

< ε1 < 1 (24)

where ε1 ∈ R+ is a known bounding constant, and ‖·‖i∞
denotes the induced infinity norm of a matrix.
The motivation for the separation of terms in (21), (22) and
(23) is based on the fact that the following inequalities can
be developed

|Ñ | ≤ ρ(‖z‖) ‖z‖ , |Nd| ≤ ζNd
, |Ṅd| ≤ ζṄd

,
(25)

where ζNd
, ζṄd

∈ R+ are known bounding constants; ρ(·) is
a positive, globally invertible, non-decreasing function; and
z(t) ∈ R2 is defined as

z (t) ,
[
e (t) r (t)

]T
. (26)

Note that the upper bound on |Ñ(t)| in (25) can be derived
from (22) by using Property 1 along with the definitions in
(16), (17), and (18).

B. Closed-Loop Error System

Based on the open-loop error system dynamics in (20),
the control µ(t) is defined via

µ̇(t) = −ku‖µ(t)‖sgn(r)− (ks + 1)r − βsgn(r) (27)

where ku, ks, β ∈ R are positive, constant control gains.
Remark 4: The control design in (27) includes measure-

ments of the tracking error derivative (i.e., ė(t)). This deficit
can be remedied through the use of an observer; however,
the observer design and analysis are omitted here to avoid
distraction from the focus of the current result.

After substituting (27) into (20), the closed-loop error
dynamics is rewritten as

ṙ = Ñ +Nd − Ω̃1ku‖µ(t)‖sgn(r)− Ω̃1(ks + 1)r

−Ω̃1βsgn(r) + b(s)C∆̇(t)µ(t)− e. (28)

V. STABILITY ANALYSIS

Theorem 1: The robust nonlinear control law given in (9),
(11), and (27) ensures that all system signals remain bounded
throughout closed-loop operation, and that the fluid forcing
function tracking error is asymptotically regulated in the
sense that

‖e (t)‖ → 0 as t→∞, (29)

provided the control gain ku, ks and β introduced in (27) are
selected according to the conditions

ks >
ρ2(‖z‖)

4(1− ε)min(α, 1− ε)
, ku >

ε1
1− ε

, β >
ζNd

1− ε
.

(30)
Proof: Let V (z, t) : R2 → R be a positive-definite

function defined as

V =
1

2
e2 +

1

2
r2 (31)

After taking the time derivative of (31) and using (13), (18)
and (28), V̇ (z, t) can be expressed as

V̇ (z, t) = −αe2 + rÑ + rNd − rΩ̃1ku‖µ(t)‖sgn(r)

− rΩ̃1(ks + 1)r − rΩ̃1βsgn(r) + b(s)rC∆̇(t)µ(t). (32)

By using Assumptions 1 and 2, Property 2, the bounding
inequalities in (22) and (23), and the gain conditions in (30),
the expression in (32) can be upper bounded as

V̇ (z, t) ≤ −

[
min(α, 1− ε)− ρ2(‖z‖)

4(1− ε)ks

]
‖z‖2. (33)

Provided the gain conditions in (30) is satisfied, (31) and
(33) can be used to show that V (t) ∈ L∞; hence, e (t),
r (t) ∈ L∞. Given that e (t), r (t) ∈ L∞, a standard linear
analysis technique can be used along with (18) to show that
ė (t) ∈ L∞. Since e (t), ė (t) ∈ L∞, (18) can be used along
with the assumption that yd (t), ẏd (t) ∈ L∞ to prove that
x (t), ẋ (t) ∈ L∞. Given that x (t), ẋ (t) ∈ L∞, (6) can be
used along with the Assumption 1 to prove that the control
input µ (t) ∈ L∞. Since r (t) ∈ L∞, Assumption 1 can be
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used along with (27) to prove that µ̇ (t) ∈ L∞.

The definition of V (z, t) in (31) can be used along
with the inequality (33) to show that V (z, t) can be
upper-bounded as

V̇ (z, t) ≤ −cV (z, t) (34)

provided the sufficient condition in (30) is satisfied. The
differential inequality in (34) can be expressed as

V (z, t) ≤ V (z(0))e−ct. (35)

Hence, (26), (31) and (35) can be used to conclude that

‖e(t)‖ ≤ ‖z(0)‖e− c
2 t ∀ t ∈ [0,∞). (36)

VI. SIMULATION RESULTS

A numerical simulation was performed to demonstrate the
performance of the proposed control law. The simulation
tests the capability of the proposed controller design in (27)
to regulate the fluid forcing function in (2) to a desired fluid
forcing function that suppresses the pitching and plunging
LCO. Although the control design methodology in this paper
is applicable to general systems with p sensor measurements
and m control inputs, the simulation results address the
specific case where p = m = 1 as a proof of concept.

A. LCO Dynamic Model

The LCO dynamic equation (cf. Equation (1)) used in the
simulation can be expressed as

Msq̈ + Csq̇ +K (q (t)) q = BFfluid (37)

where q (t) ,
[
h (t) α (t)

]T ∈ R2 denotes the LCO
displacement vector containing plunging (h (t)) and pitching
(α (t)) displacements, Ffluid (t) ∈ R is the fluid forcing
function as defined in (2) and (3), and B ∈ R2 is a constant
weighting matrix that depends on aerodynamic parameters.
In (37), Ms, Cs ∈ R2×2 denote linear mass and damping
matrices, respectively; and K (q (t)) ∈ R2×2 denotes a
nonlinear stiffness matrix; all of which are explicitly defined
as follows:

Ms =

[
m mxα

mxαb Iα

]
, Cs =

[
Ch 0
0 Cα

]
(38)

K (q (t)) =

[
Kh 0
0 Kα (α)

]
(39)

where the values of the aerodynamic and geometric parame-
ters can be found in [7] and are omitted here for brevity. In
(39), the nonlinear stiffness term Kα (α) is explicitly defined
as

Kα = 2.82
(
1− 22.1α+ 1315.5α2 − 8580α3 + 17290α4

)
.

(40)
In (37), Ffluid (t) is defined as in (2), where the values of the
physical parameters can be found in [7]. The desired fluid
forcing function Ffluid,des (t) is generated via the control
signal in a stable LCO model reference system.

B. Flow Dynamic Model
The reduced-order model for the flow dynamics in the

simulation is in the form of (6). Specifically, the flow
dynamic equations can be expressed as follows, where the
POD parameters (see Property 1) can be found in [9]:

ẋ1 = b1 + L11x1 +Q141x1x4 +Q111x
2
1 +Q121x1x2

+Q131x1x3 + u(t) (41)

ẋ2 = b2 +
[
L22 + t2

(
x22 + x23

)]
x2 + L23x3 +Q121x1x2

+ u(t)

ẋ3 = b3 + L32x2 +
[
L33 + t3

(
x22 + x23

)]
x3 +Q313x1x3

+Q314x1x4 + u(t)

ẋ4 = b4 + L41x1 + L44x4 +Q444x
2
4 +Q414x1x4

+Q424x2x4 +Q434x3x4 + u(t)

y = c1x1 + c2x2 + c3x3 + c4x4.

The measurement equation coefficients c1, ..., c4 were all
selected as 1 without loss of generality. The control gain
values were selected as ks = 10, ku = 0.1, α = 0.5, and β =
2.25. The control input u(t) in the simulation is generated
using the SJA formulation in Equations (8) and (9), where
the actual SJA parameters θ?1 , θ?2 deviate from the best-guess
estimates by approximately 6%.

Fig. 1. Open-loop plunging and pitching response of the LCO system.

Fig. 1 shows the open-loop plunging and pitching re-
sponses of the LCO and Fig. 2 shows the closed-loop reg-
ulation of the LCO for six different initial conditions using
the proposed control law. Fig. 3 shows the response of the
actual and desired fluid forcing function during the closed-
loop controller operation. The results clearly demonstrate the
capability of the proposed control method to asymptotically
regulate LCO via the control of the boundary-layer flow
velocity.

VII. CONCLUSION

A nonlinear control method is developed, which is rigor-
ously proven to asymptotically suppress LCO in a flexible
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Fig. 2. Closed-loop response of the LCO plunging and pitching for six
different initial conditions.

Fig. 3. Actual (top) and desired (bottom) fluid forcing functions during
closed-loop controller operation for six different initial conditions.

wing section by using SJA to drive the wing boundary-
layer flow velocity to a desired LCO-suppressing flow
velocity profile. To achieve the result, a LCO dynamic
model is utilized along with detailed mathematical models
for the FSI, SJA, and the POD-based reduced-order flow
dynamics. A Lyapunov-based stability analysis is utilized
to prove asymptotic tracking of a desired LCO-suppressing
fluid forcing function. Numerical simulation results are also
provided, which demonstrate the capability of the proposed
control method to achieve asymptotic regulation of LCO via
boundary-layer flow control.
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