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ABSTRACT: MXenes, transition metal carbides or nitrides, have gained great attention in recent years due to their high electrical
conductivity and catalytic activity, hydrophilicity, and diverse surface chemistry. However, high hydrophilicity and negative ζ
potential of the MXene nanosheets limit their processability and interfacial assembly. Previous examples for modifying the
dispersibility and wettability of MXenes have focused on the use of organic ligands, such as alkyl amines, or covalent modification
with triethoxysilanes. Here, we report a simple method to access MXene-stabilized oil-in-water emulsions by using common
inorganic salts (e.g., NaCl) to flocculate the nanosheets and demonstrate the use of these Pickering emulsions to prepare capsules
with shells of MXene and polymer. Ti3C2Tz nanosheets are used as the representative MXene. The salt-flocculated MXene
nanosheets produce emulsions that are stable for days, as determined by optical microscopy imaging. The incorporation of a
diisocyanate in the discontinuous oil phase and diamine in the continuous water phase led to interfacial polymerization and the
formation of capsules. The capsules were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron
spectroscopy (XPS), and scanning electron microscopy (SEM), confirming the presence of both polymer and nanosheets. The
addition of ethanol to the capsules led to the removal of the toluene core and retention of the shell structure. The ability to assemble
MXene nanosheets at fluid−fluid interfaces without the use of ligands or cosurfactants expands the accessible material constructs
relevant for biomedical engineering, water purification, energy storage, electromagnetic electronics, catalysis, and so on.

■ INTRODUCTION
Emulsions are mixtures of two or more immiscible liquids,
such as oil and water, where droplets of one liquid are
dispersed in a continuous phase of the other. Commonly,
amphiphilic small molecules or polymers are used as
surfactants to stabilize emulsions; for example, sodium dodecyl
sulfate (SDS) decreases the interfacial tension in oil-in-water
emulsions by residing at the fluid−fluid interface with the alkyl
chain exposed to the oil and the charged headgroup in the
water. Molecular and polymeric surfactants have been used in
the food, medicine, and cosmetics industries, among others.
Alternatively, Pickering emulsions are those that are stabilized
by solid particle surfactants and have gained much attention in
emulsion technology.1−4 Particle surfactants yield more stable
emulsions than those that use small molecules, given the
greater energy required to remove a particle from the fluid−

fluid interface. Further, particle surfactants can lead to lower
toxicity and a less negative environmental impact compared to
some small molecule surfactants, and the multifunctional
properties of the particles can be leveraged for additional
applications (e.g., redox activity used for catalysis). Pickering
emulsions have also had increased attention for use as
templates to architect composite structures. For example,
dispersion polymerization in Pickering emulsions can be used
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to prepare composite particles that can be processed into
composite thin films above the Tg of the polymer.5,6

Spherical particles are typically used as Pickering surfactants,
but there is growing interest in 2D particles (e.g., clay platelets
and graphene oxide nanosheets). 2D particle surfactants are
distinct in that their high aspect ratio leads to the particles
being arranged parallel to the fluid−fluid interface, and
therefore, a single particle covers significantly more area than
its spherical counterpart. Pickering emulsions stabilized by 2D
particles have been used as templates to fabricate Janus
nanosheets, armored polymer particles, and capsules.7−10

These systems make use of the spatial confinement of reagents
enabled by the emulsion structure. For example, if one
difunctional monomer is in the discontinuous phase and a
complementary multifunctional monomer is in the continuous
phase, interfacial polymerization gives a composite shell of
polymer and nanosheet. Complementary approaches to
capsule formation in Pickering emulsions include layer-by-
layer assembly onto droplets, freeze-drying and annealing of
emulsions, growth of an inorganic shell templated by droplets,
deposition of a polymer onto droplets, and aerosol spray
pyrolysis.11−15 Our group has recently demonstrated that
Pickering emulsions stabilized by graphene oxide (GO)
nanosheets or their alkylated derivatives can be used to
architect a number of structures and compositions. In these
examples, the GO nanosheets only serve as the particle
surfactant, and the properties of GO are not leveraged for
performance in the final product.16,17 The question remains as
to whether MXenes might also be leveraged as sole surfactants
in Pickering emulsions, enabling the preparation of composite
architectures, which integrate the nanosheet properties.
MXene nanosheets are a relatively new class of 2D particles

that possess high electrical conductivity and catalytic activity
and distinct surface functionality.18,19 MXenes are transition
metal carbides or nitrides that have the general chemical
formula of Mn+1XnTz (n = 1−3), where M represents an early
transition metal such as Ti or V; X is C or N; Tz represents the
different functional groups on the surface (−O, −F,
−OH).20−22 MXene nanosheets are synthesized from a MAX
phase by selectively etching a group “A” element (e.g., Al),
giving a MAX clay that is then subjected to an exfoliation
process.23 The surface functionalities of MXene nanosheets
render them hydrophilic and colloidally stable as aqueous
dispersions. Typical ζ potentials for stable MXene dispersions
at neutral pH are −30 to −40 mV. As aqueous dispersions,
MXenes tend to oxidize into transition metal oxide (e.g., Ti3C2
oxidizes to TiO2 after a few days); however, the addition of
ascorbic acid or storage in the solid state can slow these
changes.24

Recent research addresses the intercalation of MXene clays
with small molecules to control interlayer spacing, the
introduction of ions, or the formation of composites with
other nanomaterials and polymers.25−36 MXenes and their
composites have a number of demonstrated applications in
energy conversion and storage, water purification, biomedical
engineering, electromagnetic shielding electronics, and catal-
ysis.37−45 One route to architecting composite structures is
leveraging the interfacial assembly of MXene nanosheets in
Pickering emulsions. All previous reports have made use of
cosurfactants or ligands to facilitate the interfacial assembly of
MXenes in oil-in-water emulsions. For example, Huang and co-
workers added the well-known organic salt cetyltrimethylam-
monium bromide (CTAB) to an aqueous dispersion of Ti3C2

MXenes to form a dodecane-in-water emulsion; the ability to
form emulsions was pH dependent, attributed to electrostatic
interactions between the ammonium cation and negatively
charged MXene surface.46 Shi et al. combined an amine-
terminated polyoctahedral silsesquioxane (POSS-NH2) with
Ti3C2 nanosheets to produce water-in-toluene Pickering
emulsions, which were then concentrated and freeze-dried to
obtain aerogels.47 Alternatively, n-butylamine was used as a
ligand/cosurfactant to fix MXene nanosheets at the toluene−
water interface; this assembly was used to fabricate MXene
thin films and liquid inks for printing in a matrix of silicone
oil.48 Yu and co-workers prepared Janus MXene nanosheets by
electrostatically binding positively charged polystyrene to the
negatively charged surface of the MXenes; the nanosheets
stabilized toluene-in-water emulsions that were then used to
produce aerogels and thin films.49 In these systems, an organic
cosurfactant is required for the assembly of MXene nanosheets
at fluid−fluid interfaces, and this cosurfactant invariably
becomes an integral part of the emulsion structure.
Here, we report a simple method to stabilize Pickering

emulsions with Ti3C2Tz MXenes by flocculating an aqueous
dispersion of the nanosheets with an inorganic salt and use the
emulsions to template capsule formation, giving a composite
shell of polymer and nanosheet. Inorganic salts are selected as
a flocculant because of prior success in the flocculation of clay
nanosheets under these conditions. For example, Ashby and
Binks demonstrated the importance of salts when flocculating
the Laponite clay particles for the formation of oil-in-water
emulsion.50 Further, MXene gels have been prepared using
multivalent salts, demonstrating the favorable salt/MXene
interactions.51 To prepare stable oil-in-water Pickering
emulsions, MXene nanosheets are flocculated with NaCl;
then, toluene is added, and the system is agitated. We examine
the impact of the concentration and identity of the salt, as well
as the concentration of MXenes, on the formation and stability
of emulsion droplets, as characterized by optical microscopy
imaging. Capsules are prepared by incorporating a diisocyanate
in the toluene phase and diamine in the water phase such that
interfacial polymerization produces a shell of MXene nano-
sheet and polyurea around the inner toluene core. The toluene
core can be extracted by the addition of ethanol, leaving the
shell intact, but collapsed. This is in direct contrast to the
addition of ethanol to the emulsions themselves, which leads to
the dispersion of the nanosheets. This work demonstrates, for
the first time, the interfacial assembly of MXene nanosheets
without organic small molecule or polymer cosurfactant, giving
access to nonorganic surfactant compositions. This method-
ology may be used to produce novel MXene-based
architectures with tailorable composition and applications in,
e.g., energy storage and catalysis.16,52

■ MATERIALS AND METHODS
Materials. The Ti3AlC2 MAX phase was prepared as previously

reported.24,53 Lithium fluoride (LiF; 98%+) was purchased from Alfa
Aesar. Hydrochloric acid (HCl; 37% [w/w], ACS reagent), dimethyl
sulfoxide (DMSO; >99.5%), ethylenediamine (>99%), and hexam-
ethylene diisocyanate (99%) were purchased from Sigma-Aldrich. All
reagents were used as received without further purification.

Instrumentation. Emulsions were made using a hand-held
emulsifier from BioSpec Products Inc. (model 985370). Optical
microscopy images were obtained using an Amscope microscope. The
samples were prepared by placing a drop of emulsion solution onto a
glass slide. X-ray photoelectron spectroscopy (XPS) was performed
using an Omicron X-ray photoelectron spectrometer employing a Mg-

Langmuir pubs.acs.org/Langmuir Article

https://dx.doi.org/10.1021/acs.langmuir.0c03244
Langmuir 2021, 37, 2649−2657

2650

pubs.acs.org/Langmuir?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c03244?ref=pdf


sourced X-ray beam at 15 kV with an aperture of 5. ζ potential and
dynamic light scattering (DLS) measurements were performed using
Zetasizer Nano ZS90 from Malvern Instruments and the appropriate
capillary cell, DTS 1070, from Malvern Instruments; MXene
nanosheet dispersions in water were diluted to 0.033 mg/mL prior
to characterization. Transmission electron microscopy (TEM) was
performed on an FEI Tecnai F20 transmission electron microscope
operating at 200 kV. Scanning electron microscopy (SEM) was
conducted on an FEI Quanta 600 field-emission scanning electron
microscope with an acceleration voltage of 5 and 20 kV for
microscopy and energy-dispersive X-ray spectroscopy (EDS) imaging,
respectively. Fourier transform infrared (FTIR) spectra were collected
on a JASCO FT/IR-4600 using 16 scans in ATR mode using a ZnSe/
diamond prism.
Preparation of Ti3C2Tz MXene Nanosheets. Ti3C2Tz MXene

nanosheets were synthesized following our previous work.54 Briefly,
1.6 g of LiF was dissolved in 20 mL of 6 M aqueous HCl; then, 2 g of
MAX powder was added to this solution. The mixture was stirred
continuously at 40 °C for 40 h. The resulting suspension was
centrifuged, and the supernatant was discarded. The precipitate
(Ti3C2Tz clay) was washed with deionized water until the water
effluent reached a pH of ∼6 as determined by litmus paper. The
Ti3C2Tz clay was intercalated with DMSO at room temperature for 20
h with continuous stirring. Then, excess DMSO was removed by
washing 3 times with deionized water (dispersed in water and then
centrifuged at 9000 rpm for 26 min; the supernatant was discarded,
and then, fresh water was added, followed by a bath sonication for 1
h). To collect Ti3C2Tz MXene nanosheets, the suspension was
centrifuged at 3500 rpm for 45 min and the supernatant was collected.
Flocculation of MXene Nanosheets and Preparation of

Emulsions. MXene/salt solutions were made with a MXene
concentration of 1 or 3 mg/mL and salt concentrations of 0.005,
0.025, 0.05, and 0.1 M. For example, to prepare the 0.1 M NaCl
solution of 1 mg/mL MXenes, 1 mL of MXene nanosheets (2 mg/
mL) was added to glass vials; then, 1 mL of aqueous inorganic salt
(0.2 M) was added. The vial was shaken vigorously by hand, and
visible flocs were formed. To prepare the emulsions, toluene (0.4 mL)
was added to the flocculated nanosheet suspension and the mixture
was emulsified using a hand-held emulsifier at maximum agitation for
a total of 60 s (3 × 20 s of agitation with 5 s pauses between).
Preparation of Capsules in Oil/Water Emulsions. Capsules

were synthesized by interfacial polymerization in a Pickering emulsion
stabilized by flocculated Ti3C2Tz nanosheets. The aqueous phase was
prepared by mixing an aqueous dispersion of Ti3C2Tz MXenes (2 mg/
mL, 1 mL) and NaCl (0.05 M, 1 mL) to give a concentration of 1
mg/mL MXenes, and the oil phase was prepared by dissolving
hexamethylene diisocyanate (HDI) (0.5 mmol) in toluene (0.4 mL).
The aqueous and oil phases were combined in a glass vial and agitated
as described above. After emulsification, an aqueous solution of EDA
(0.7 mmol EDA in 0.5 mL deionized water) was added to the
continuous water phase, and the vial was swirled by hand. The
mixture was stored at 4 °C for 72 h before quenching with
ammonium hydroxide (30 wt %, 2 mL) in deionized water (40 mL).

The capsules were obtained by gravity filtration and washed with
water and then methanol. The isolated capsules were dried under
reduced pressure at 20 °C and stored under vacuum (to prevent
oxidation of MXenes).

Alcohol Challenge. Ethanol was added to both a sample of the
emulsion and a sample of the capsules (before isolation). To test the
stability, ethanol (3 mL) was added to the emulsion precursor prior to
capsule formation (MXene nanosheets had been flocculated with
NaCl, and the discontinuous phase was composed of HDI/toluene);
after the addition of ethanol, the vial was shaken by hand and
vortexed for 10 s. To test the stability of the capsules, ethanol (3 mL)
was added to an aqueous dispersion of capsules (i.e., before isolation
by filtration); then, the vial was shaken by hand and vortexed for 10 s.
For each sample, a drop of the solution was placed on a glass slide and
examined by optical microscopy.

■ RESULTS AND DISCUSSION

Preparation and Characterization of Ti3C2Tz MXenes.
Ti3C2Tz MXenes were prepared and characterized as
previously reported.24,54 Briefly, etching Al from the
Ti3AlC2MAX powder was completed using an aqueous LiF/
HCl solution, followed by intercalation with DMSO and
exfoliation. The resulting Ti3C2Tz MXene nanosheets easily
dispersed in water to give a transparent, dark green dispersion.
The lateral size of the nanosheets ranged from hundreds of
nanometers to a few micrometers (TEM images are shown in
Figure S1). The dynamic light scattering measurements
showed the average hydrodynamic diameter of the nanosheets
was 360 nm. The ζ potential of the nanosheets was −46 mV
(Table S1). This surface charge indicates a stable colloidal
dispersion in water due to electrostatic repulsion between the
nanosheets.

MXene-Stabilized Emulsions. Figure 1 shows the
approach for the preparation of aqueous dispersions of
MXene nanosheets, their flocculation, and their use to stabilize
Pickering emulsions. We first tested whether Ti3C2Tz nano-
sheets themselves could stabilize oil-in-water emulsions.
Toluene and an aqueous dispersion of the nanosheets were
agitated (1 mg/mL of nanosheets with 1:5 vol/vol oil/water);
these are similar to the conditions used to prepare GO-
stabilized emulsions. An emulsion was initially observed, as
verified by optical microscopy imaging; however, the droplets
disappeared, and macrophase separation of the oil and water
was observed after only 2 h (Figure S2). On the basis of the
highly hydrophilic nature of the nanosheets, these results were
not surprising. We hypothesized that the addition of inorganic
salts to the Ti3C2Tz nanosheet solution would shield the
negative charges on the nanosheet surfaces, resulting in their
flocculation. This route is similar to that used for the interfacial

Figure 1. Preparation of Ti3C2Tz nanosheets from the Ti3AlC2 MAX phase and their dispersion in water; salt flocculated Ti3C2Tz nanosheets
stabilized toluene-in-water Pickering type emulsions (1 mg/mL Ti3C2Tz in water; 0.025 M NaCl; 1:5 vol/vol oil/water).
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assembly of clay platelets (e.g., Montmorillonite) and in
contrast to Pickering emulsions stabilized by GO nanosheets,
which possess negative charge only at the nanosheet edges
(i.e., faces of the nanosheet are neutral) and can form stable
emulsions without the addition of salt. Of note, low salt
concentrations also decrease the surface charge at the oil/water
interfaces,55 which may further facilitate nanosheet assembly at
the interface and Pickering emulsion formation. At a NaCl
concentration of 0.025 M, agitation of the biphasic mixture led
to the formation of MXene-stabilized oil-in-water emulsions
(Figure 1).
To determine the conditions that would produce stable and

uniform emulsion droplets, five different NaCl concentrations
(0.005, 0.025, 0.05, 0.1, and 0.5 M) and two different Ti3C2Tz
nanosheet concentrations (1 and 3 mg/mL) were investigated.
Figure S3 shows the optical microscopy images of emulsions
prepared with 3 mg/mL Ti3C2Tz; a wide range of droplet sizes
are present, and the dark background indicates the presence of
excess nanosheets in the continuous phase. In contrast, the
optical microscopy images of emulsions stabilized by 1 mg/mL
Ti3C2Tz, shown in Figure 2, reveal these emulsion droplets
have well-defined shapes, and the continuous phase is light in
color, indicating all nanosheets are present at the fluid−fluid
interface. The comparison of the optical microscopy images of
emulsions prepared with different concentrations of NaCl
illustrates that larger, less-uniform droplets are formed as the
concentration of salt is increased (i.e., compare Figure 2A−F).
The less uniform droplets are also accompanied by darker
regions, suggestive of large aggregates of Ti3C2Tz nanosheets
(compare Figure 2E,F). These images suggest that higher salt
concentrations produce large aggregates of nanosheets that do
not participate in the stabilization of the emulsion. After the
emulsions were left to stand unagitated for 72 h, optical

microscopy images were again taken (Figure S4); these images
showed droplets of a similar size to those present immediately
after emulsion formation. The most consistent and uniform
size distribution of the droplets was obtained using a 1 mg/mL
Ti3C2Tz concentration and 0.025 M NaCl, as determined by
the optical microscopy images.
We initially hypothesized that the addition of salt leads to an

increase in ζ potential of the nanosheets (i.e., makes them less
negatively charged). Therefore, the ζ potential of the Ti3C2Tz
nanosheet dispersions at different NaCl concentrations was
compared; there was an increase of ζ potential from −46 to
−14.1 mV at NaCl concentrations from 0 to 0.5 M (Table S1).
Over this salt concentration range, no substantial change of
solution pH was observed. Perhaps surprisingly, at the lowest
salt concentrations tested (0.005 M NaCl), the ζ potential of
the nanosheets decreased compared to the salt-free sample;
this may be attributed to the chloride anions interacting with
the positively charged nanosheet edges. A further increase in
the salt concentration led to less negative ζ potential, as
expected. Thus, the ability to form emulsions by the
flocculation of MXenes with at an appropriate concentration
of salt can be attributed to shielding of charges between the
nanosheets and not directly related to ζ potential values. Of
note, attempts to prepare water-in-oil emulsions using an
excess of oil were not successful.
Three other inorganic salts were evaluated as flocculating

agents for Ti3C2Tz nanosheets and emulsion formation: LiCl,
CsCl, and MgCl2. The optimized conditions for NaCl were
initially used (1 mg/mL Ti3C2Tz and 0.025 M salt). Figure 3
shows representative optical microscopy images of the
resulting emulsions, indicating that only CsCl led to the
formation of uniform droplets, similar to NaCl, as supported
by droplet shape, uniformity, and lack of a dark continuous

Figure 2. Optical microscopy images and photographs of 1:5 vol/vol toluene/water emulsions stabilized by 1 mg/mL Ti3C2Tz nanosheets
flocculated using NaCl concentrations of (A) 0.005 M, (B) 0.025 M, (C) 0.05 M, (D) 0.1 M, (E) 0.25 M, and (F) 0.5 M. Images were taken
immediately after emulsion formation.
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phase. Figure S5 shows the stability of these emulsions over 72
h, supporting that the flocculation of nanosheets with CsCl
gives stable emulsions, as did the flocculation with NaCl. The
difference in the formation of emulsions based on salt identity
may be attributed to the different ionic radius of the cations or
ionic strength (e.g., Na+ vs Mg2+). Of note, the addition of
0.025 M LiCl flocculates the Ti3C2Tz nanosheets but does not
lead to emulsion formation, as supported by the darker regions
of the optical microscopy image. However, at significantly
higher concentrations of LiCl (0.5 M), emulsion formation was
observed (Figure S6). Computational studies support that
interactions with the MXene nanosheets are cation specif-

ic;56−59 for example, Balke and co-workers56 and others60,61

found that Na+ has a higher adsorption than Li+ and Mg2+.
Capsule Formation and Characterization. Following

some of our previous work with GO stabilized Pickering
emulsions, we leveraged interfacial polymerization with the
Ti3C2Tz-stabilized emulsions for the formation of capsules with
a core of toluene and shell of polyurea and Ti3C2Tz
nanosheets. First, an oil-in-water emulsion was formed as
described above, using 1 mg/mL Ti3C2Tz nanosheets
flocculated with 0.025 M NaCl and a 1:4 oil/water ratio but
with hexamethylene diisocyanate (HDI) added to the toluene.
Similar to the system without HDI, the resulting emulsion had
uniform, distinct droplets, as verified by optical microscopy
imaging (Figure 4A). An aqueous solution of ethylenediamine
(EDA) was then added to the continuous aqueous phase, and
the vial was swirled. Step growth polymerization between the
diisocyanate and the diamine occurred at the fluid−fluid
interface, encasing the Ti3C2Tz nanosheets and forming a
composite shell of nanosheets and polyurea with a core of
toluene (Figure 4B). Optical microscopy images and size
distribution revealed that the diameter of the emulsion
droplets and capsules are similar, 10−50 μm (Figure S7).
To compare the stability of the emulsion and capsules, an

alcohol challenge was performed on both samples. Briefly,
ethanol was added to the HDI/toluene-in-water emulsions and
to a dispersion of the capsules, followed by vigorously shaking.
The addition of ethanol removes the toluene from the droplet
core and thus indicates the stability of the interfacial assembly
(i.e., nanosheets or polymer/nanosheet composites). As shown
in Figure 4C, the addition of ethanol led to destruction of the
emulsion droplets and the formation of large aggregates of
Ti3C2Tz nanosheets. In contrast, after the addition of ethanol
to the capsules, the structures maintained their distinct
spherical shape, though likely collapsed, as determined by
optical microscopy imaging (Figure 4D). These results indicate
that interfacial polymerization led to discrete, stable capsule
shells permeable to ethanol and toluene.
The capsules were isolated by filtration, dried under reduced

pressure, and characterized by thermogravimetric analysis

Figure 3. Optical microscopy images and photographs of 1:5 vol/vol
toluene/water emulsions stabilized by 1 mg/mL Ti3C2Tz nanosheets
flocculated using 0.025 M salt concentrations of (A) LiCl, (B) NaCl,
(C) CsCl, and (D) MgCl2. Images were taken immediately after
emulsion formation.

Figure 4. Capsule formation. (A) Optical microscopy image and photograph of an emulsion prepared with 1 mg/mL Ti3C2Tz and 0.025 M NaCl.
(B) Optical microscopy image and photograph of capsules after interfacial polymerization. (C, D) Optical microscopy images and photographs of
an emulsion and capsules after the addition of ethanol.
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(TGA), Fourier transform infrared (FTIR) spectroscopy,
scanning electron microscopy (SEM), energy dispersive X-
ray spectroscopy (EDS), and X-ray photoelectron spectrosco-
py (XPS). Such processing of the capsules led to the removal
of the toluene core, and thus, only the capsule shell was
characterized. The TGA data show weight loss attributed to
the polymer (210−500 °C) with approximately 3% residual
mass at 800 °C, attributed to the Ti3C2Tz MXenes (Figure
S8). The FTIR spectrum of the capsules was consistent with
polyurea, showing a strong stretching frequency attributed to
the carbonyl group (CO) at 1631 cm−1 and a sharp low
intensity stretching frequency above 3000 cm−1, indicative of
N−H bonds (Figure S9). The XPS survey spectrum of the
capsules showed the presence of C, N, O, and Ti (Figure 5A),
indicating the presence of both polymer and nanosheet. High
resolution spectra for the C 1s, N 1s, and O 1s binding
energies are shown in Figure S10 and that of the Ti 2p binding
energy is shown in Figure 5B. The distinct Ti 2p peak was
deconvoluted into Ti−C, Ti2+, Ti3+, and TiO2. Among all the
Ti 2p components, TiO2 possesses the largest area; this species
can be attributed to the oxidation of Ti3C2Tz MXenes and may
be due to aging of the sample. SEM images (Figure 5C) show
that the morphology of the capsules at the surface is semi-
spherical and wrinkled. The wrinkling may be due to the
collapse of the capsule shell upon removal of toluene. The
element composition of the capsules was investigated by EDS;
the capsules were 54.2 wt % C, 22.0 wt % N, 21.1 wt % O, and
2.7 wt % Ti (Figure S11). This composition is consistent with
the amount of MXene and polymer that is expected, assuming
all monomer becomes polymer (i.e., shell is expected to be 98
wt % polymer) and indicative of the successful formation of
capsules with Ti3C2Tz embedded in the polyurea shell. In
addition to the formation of capsules from Ti3C2Tz flocculated
with NaCl, capsules were prepared using CsCl as flocculant,
giving similar results (Figure S12).

■ CONCLUSIONS
Ti3C2Tz MXene-stabilized oil-in-water Pickering emulsions
were prepared by flocculating the nanosheets with inorganic
salts, adding toluene, and then agitating. Optical microscopy
images showed that 0.025 M NaCl or CsCl and 1 mg/mL
Ti3C2Tz MXenes gave the most uniform droplets and best
stability (at least 72 h) with all nanosheets associated with the
fluid−fluid interface. The use of LiCl led to the formation of
emulsions only at a significantly higher salt concentration (0.5
M), and the use of MgCl2 did not lead to the formation of
emulsions under the conditions tested. Capsules with a core of
toluene and shell of polyurea and MXene were prepared using
these Pickering emulsions as templates and interfacial
polymerization of a diamine and diisocyanate. Upon the
addition of ethanol, the capsules maintained their spherical
shape, whereas under the same conditions, the emulsion
droplets were destroyed and large aggregates of Ti3C2Tz
nanosheets formed. These data indicate that interfacial
polymerization led to the formation of stable Ti3C2Tz
MXene−polymer capsule shells. The composition of the
capsule shells was characterized by FTIR, TGA, XPS, and
SEM-EDS, illustrating the presence of both polyurea and
Ti3C2Tz nanosheets. This approach provides cosurfactant-free
MXene-stabilized Pickering emulsions and is expected to be
broadly applicable to other MXene compositions and oil/water
interfaces. This work expands the range of MXene−polymer
composites available and paves the way for new MXene
architectures using inorganic salts as flocculating agents.
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*sı Supporting Information
The Supporting Information is available free of charge at
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Figure 5. XPS data for capsules prepared by flocculation of Ti3C2Tz with NaCl and interfacial polymerization: (A) survey spectrum and (B)
deconvoluted high resolution Ti 2p spectrum. (C) SEM images of capsules after drying under reduced pressure.
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