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Abstract—Wireless sensor networks are a cost-effective means
of data collection, especially in areas which may not have signif-
icant infrastructure. There are significant challenges associated
with the reliability of measurements, in particular due to their
distributed nature. As such, it is important to develop methods
that can extract reliable state estimation results in the presence
of errors. This work proposes and compares methods based on
collective intelligence ideas, namely consensus ranking and rating
models, which are founded on axiomatic distances and intuitive
social choice properties. The efficacy of these methods to assess
a transmitted signal’s strength with varying quantity and quality
of incompleteness in the network’s readings is tested.

I. INTRODUCTION

Wireless sensor networks have been used for a wide variety
of estimation tasks including localization, power grid monitor-
ing, and intrusion detection. Although significant technological
improvements have been made in recent years, wireless sensor
networks are still subject to degradation from interference,
which may be due to non-intentional sources (e.g., static
reflectors, hardware failure) or intentional sources (e.g., com-
promise by an adversary) [1]–[3]. This work considers that an
adversary can inject a false sensor position into the network,
while previous work considers the effect of erroneous sensor
positions on source localization [4]–[7]. As such, when trying
to perform state estimation tasks based on data collected
by wireless sensor networks, it is critical that the chosen
methods are robust and capable of achieving high estimation
accuracy in spite of large quantities of incompleteness and
errors in the reported data [8]. One approach that has begun
to show promising results in recent research is the principled
aggregation methods of Collective Intelligence.

Collective Intelligence has recently been adapted from a
primarily socio-theoretical framework into an applicable tool
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for decision-making in multiple domains. This work focuses
on Collective Intelligence methods related to computational
social choice, whose foundations overlap with the idea of
the “wisdom of the crowd” [9]. It applies methods that are
principled, that is, founded on axioms inspired by social choice
properties. These principled aggregation methods have been
successfully translated into distributed decision-making and
data aggregation contexts, e.g., the monitoring of environments
through distributed wireless sensor networks [1]. While several
such methods have been proposed and tested, their effective-
ness in handling highly incomplete and erroneous data has not
been analyzed or evaluated.

In particular, the work discussed herein seeks to evaluate the
effectiveness of several Collective Intelligence approaches at
challenging state estimation tasks on wireless sensor networks
in the presence of an adversary. This analysis will rely on
recent works using axiomatic measures for incomplete ordinal
and cardinal data aggregation and will evaluate the effective-
ness of several methods on simulated networks.

II. PROBLEM

Missing sensor readings and high levels of noise are inherent
to highly distributed wireless sensor networks. These problem-
atic qualities are only amplified when the networks are subject
to injection of false information by an adversary. Incomplete-
ness in an individual sensor’s readings is often addressed via
redundancy, considering only sensors with complete data, or
by directly imputing the missing information [10]–[12]. Each
of these approaches becomes less feasible as the level of
incompleteness rises. Even existing robust Collective Intelli-
gence tools, which have been applied mostly in group decision
making as well as for environmental monitoring and detection
of mobility patterns [13], [14], can struggle to handle such
high levels of incompleteness.

This work experiments with a neutral treatment of incom-
pleteness, where no inferences are made about the missing



values of a sensor’s readings. It adapts several recent Col-
lective Intelligence tools to analyze the effectiveness of each
at handling a state estimation task over a simulated wireless
sensor network. The distance metrics used in these tools treat
all sources of information as equally reliable, regardless of
that source’s level of incompleteness. Each tool is evaluated
on its ability to recover a single source true value using a
collection of sensors that faces both standard measurement
reliability errors and increasing levels of incompleteness. The
incompleteness in sensor readings is simulated to reflect both
random unreliability and more systemic downtime in indi-
vidual sensors, whether due to non-intentional or intentional
sources of error.

To handle these aggregation tasks under significant noise
and incompleteness, three primary models are considered: the
separation-deviation model proposed by Hochbaum and Levin
(SepDev) [15], [16], an adapted separation-deviation model
proposed by Fishbain and Moreno (FM) [1] notably used for
environmental time-series data aggregation via distributed low-
cost sensors, and the ranking and rating model proposed by
Escobedo et al. (RR) [9]. Each of these is an optimization
model which is not necessarily convex. However, each model
is solved using exact linearized models.

The SepDev model considers cardinal pairwise comparisons
to generate an aggregate ranking that minimizes two factors:
disagreement among actual readings and disagreement among
the intensity of difference in pairs of readings. A general form
of this optimization problem is:

min
x

λ1

m∑
k=1

∑
i∈V k

|xi–aki |+ λ2

m∑
k=1

∑
(i,j)∈Ak

|(xi–xj)–pkij | (1)

s.t. L ≤ xi ≤ U i = 1, 2, .., n (2)
xi ≥ 0 i = 1, 2, .., n (3)

Here, V k represents the set of readings recorded by the kth
sensor and Ak is the set of pairs (i, j) s.t. sensor k reads at
both times i and j. The measurements to be optimized are xi,
the preference intensity between two readings is pkij = aki −akj ,
where aki is the value provided by sensor k for reading i.
The relative weights of the separation and deviation pieces
of information in the model are given by λ1 and λ2 (both
set to 1 for SepDev experiment runs). L and U represent
the lower bound and upper bounds of allowed measurements,
respectively, and µ is the minimum considered separation in
values.

The FM model was designed to aggregate data from uncal-
ibrated wireless sensor networks; the model is founded on a
set of axioms for the robust aggregation of cardinal data (i.e.,
ratings) in group decision-making. Its general form is:

min
x

m∑
k=1

d(akx), (4)

where d is a distance function between each input rating vector
and subject to (2) and (3). For this study, the Normalized
Projected Cook-Kress (NPCK) distance measure is used, as in
[1]. This turns out to be a special case of the SepDev problem

with λ1 = 0 and λk2 =
(
4(U − L) · d |V

k|
2 e · b

|V k|
2 c
)−1

, i.e.,
a different separation penalty per sensor, normalized via a
function of its number of readings. The linearized constraints
are described within the RR model. A secondary optimization
problem is solved to find the best constant c to add to the
outputs from FM so as to approximate the magnitude of the
readings. The specific statement of the calibration problem is
provided here, but its application is also considered in some
of the experimental results from the other two models. The
model is given as:

min
c

m∑
k=1

∑
i∈V k

|(x∗i + c)− aki |. (5)

Finally, the RR model provides a similar aggregation
method that can handle the joint aggregation of different
qualities of information, i.e., cardinal and ordinal (or scale-
free) information, allowing more general data to be processed.
The general statement of this problem is:

min
x

m∑
k=1

d1
(
ak,x

)
+

m∑
k=1

d2
(
bk, rank(x)

)
(6)

s.t. 0 ≤ xi ≤ (U − L)/µ i = 1, 2, .., n (7)
xi ∈ Z i = 1, 2, .., n (8)

Here, each of the distances in the objective function is a
pseudometric; specifically, each obeys most axioms of a metric
with the exception that the triangle inequality is satisfied in
the projected space of overlapping readings of the two vectors
being compared. The distances used are dNPCK and dNPKS ,
respectively, where dNPCK is the normalized projected Cook-
Kress distance developed in [1] and dNPKS is the normalized
projected Kemeny-Snell distance developed in [17]. Addition-
ally, the vectors bk are the input ranking vectors and rank(x) is
the ranking solution vector (obtained by sorting x). The exact
reformulation used for this model is developed and described
in [18] and is given below:

max
s,t,x,y

m∑
k=1

−4λk2
∑

(i,j)∈Ak

tkij +

n∑
i=1

n∑
j=1

2B̂ijyij (9)

s.t. yij + yji ≥ 1 i, j = 1, .., n; i 6= j (10)
yij − ykj − yik ≥ −1 i, j, k = 1, .., n; i 6= j 6= k (11)

tkij ≥ µ(xi − xj)− pkij (i, j) ∈ Ak, k = 1, ..,m (12)

tkij ≥ −µ(xi − xj) + pkij (i, j) ∈ Ak, k = 1, ..,m (13)

xi − xj ≥ µ− (µ+M)yij i, j = 1, .., n; i 6= j (14)
xi − xj ≤M(1− yij) i, j = 1, .., n; i 6= j (15)
0 ≤ xi ≤ (U − L)/µ i = 1, .., n (16)
xi ∈ Z i = 1, .., n (17)
yij ∈ {0, 1} i, j = 1, .., n (18)

tkij unrestricted (i, j) ∈ Ak, k = 1, ..,m (19)

where λk2 is defined as in the FM model, B̂ij is the sum
of the scaled input ranking matrices [19] (summarizing the
ordinal relationships expressed by all sensors over all pairs
of readings) and [yij ] represents the solution ranking matrix.



Here, constraints (10) and (11) induce a valid complete ranking
of the output readings. Constraints (12) and (13) and auxiliary
variables tij are added to linearize the part of the objective
function that corresponds to the FM model. Lastly, constraints
(14) and (15) link the variables of the optimal ranking and
rating solutions.

III. METHODOLOGY

The data generation method of the performed experiments
is as follows. We consider the localization of a single station-
ary transmitter. A collection of sensors which are uniformly
distributed in an X by Y area seeks to estimate the location
of this emitter. Each sensor is assumed to be placed along a
straight single line radiating from the transmitter to simplify
the signal strength loss calculations [20]. Specifically, these
sensors are assumed to measure the signal strength based on
free space path loss. Each sensor is assumed to take between 5
and 20 readings at distinct times which will be used to generate
a single estimate of the original signal strength. Results are
only presented for 10 readings, as these were representative
of the patterns seen across all readings recorded. That is, each
sensor produces a 10-element vector, ak, of readings. After
these sensor readings are generated, incompleteness is added
to the system and aggregation is performed using each of the
models described in section 2.

To analyze the effects of incomplete data, two distinct
classes of experiment were performed with different assump-
tions about the nature of incompleteness. In the first class, re-
ferred to as arbitrary incompleteness, data points are removed
at random, distributed uniformly across the full set of existing
data points. The level of this incompleteness is measured via
the parameter 0 ≤ γ1 ≤ 1, where γ1 = 0 corresponds to a
complete data set and γ1 = 1 corresponds to a completely
empty set. This process is repeated until a minimum of
a fixed percentage of data points has been removed. The
exception to this rule, is that each sensor must still report
at least two readings, and for each iteration of readings across
sensors, there must also be at least two reported readings. This
incompleteness is tested at the values γ1 = 0.05, 0.1, .., 0.75.

The second class, referred to as systematic incompleteness,
generates incompleteness on a per-sensor basis, and any sensor
that fails is considered to remain in a failure state for several
consecutive readings. The level of this incompleteness is
measured via the parameter 0 ≤ γ2 ≤ m, where m is the
total number of sensors and γ2 ∈ Z. The number of such
sensors that fail is uniformly random from 1 to m − 1. This
incompleteness is tested at the values γ2 = 1, 2, ..,m − 1.
The start time and duration of failure are similarly randomly
generated, with the number of incomplete readings between
one third and two thirds of the total readings per failed sensor.

Another set of experiments was performed to analyze the
effectiveness of the models in the presence of false data. In
this experiment set, two cases were considered: the presence
of distance measurement error and the existence of false
signal strength. In the first case, an incorrect distance measure
was used by some of the sensors when trying to recover the

broadcasted signal strength in spite of a deliberate injection
of false data. The erroneous distance values derror were gen-
erated randomly between 10 and 30 kilometers, where derror
is different from the actual distance measure of the sensors.
In the second case, an error was introduced by injecting
false input signal values. In order not to arouse suspicion,
which might trigger an alarm if the sensor readings exceed
a predetermined threshold value, the strength of the false
signal transmitted is restricted. In both cases, the percentage
of sensors experiencing errors was measured via the parameter
0 ≤ γ3 ≤ 1, where γ3 = 0 corresponds to none of the sensors
experiencing errors and γ3 = 1 corresponds to all of them
being compromised. As it is unlikely that a large number of
sensors will be experiencing errors at the same time without
being detected, the only tested values of γ3 were kept between
0.2 and 0.6 with a 0.1 increment.

For each combination of number of sensors and type and
amount of incompleteness/error, problem data were generated
and solved 100 times. Data generation and models were coded
in Python 3.6; optimization models were reformulated as in-
teger linear programs and solved in commercial mathematical
programming solvers CPLEX 12.8 and Gurobi 8.0.

IV. RESULTS

The effectiveness of each model was first tested with the
arbitrary incompleteness generation described in section 3.
Figure 1 presents the estimates and the averages for each level
of incompleteness produced from 100 repetitions of the data
generation and state estimation procedure for each of the three
primary models, in which only the FM model is calibrated. The
incompleteness is described as the fraction of data which is
missing. The large symbols represent the average of the 100
estimates performed. Although only m = 20 sensor results are
presented, the results are similar for m = 5, 10, 15, 25, 30; that
is, the standard deviation tends to decrease as the number of
sensors increases, but the trends in estimate values and relative
standard deviation remain similar.

In this first test, the FM model produced superior results to
each of the other two models across any number of sensors,
both in terms of accuracy and precision. In fact, even at only
five sensors, the average estimate produced by the FM model
was always less than 0.005 watts away from the assumed true
broadcast signal strength, with a standard deviation of less
than 0.02 watts. The SepDev model produced results that were
almost as consistent, with approximately double the standard
deviation, but averaged well below the true value of one watt.
This average estimate did increase slightly with more incom-
pleteness, which is to say that the estimated values improved
with less data. However, because of the randomness in which
data is removed, this may be incidental to the randomness of
the data. Finally, the RR model produced very inconsistent
results overall. For all sensors and incompleteness levels, the
standard deviation of its estimates was significantly greater
than either the SepDev or FM models. Its average estimates
were always closer to the true value than the SepDev model,
but also tended to underestimate the original signal strength.



Fig. 1. Estimates for Arbitrary Incompleteness, No Calibration

Fig. 2. Estimates for Arbitrary Incompleteness, Calibration

Unlike the other models, the RR model shows a tendency
toward a bimodal distribution of its estimates, especially as
the number of sensors increases.

Next, the effectiveness of each model was again tested with
the arbitrary incompleteness generation; however, in this case,
the calibration procedure described in section 2 was applied to
all three models. The experiments were repeated for the FM
model, even though it is always calibrated, in order to compare
each model across the same generated datasets, including all
sensors’ initial readings and the generated incompleteness.
Figure 2 is analogous to Figure 1 above. The main effects of
this calibration are that they dramatically improve the accuracy
of the estimations of both the SepDev and RR models, as well
as reduce their standard deviations (not plotted here). This is
most notable in the SepDev model, which produces results
nearly identical to those produced by the FM model, with
slightly more deviation across all numbers of sensors. The RR
model still has the largest standard deviation and produces the
least accurate estimates, but it performs much more closely to
the quality of the other two models. Another notable difference
in the calibrated versus the uncalibrated results is that the
bimodal tendencies of the RR models estimates disappear.

In the next experiment set, all models were tested with
the systematic incompleteness generation method described in
section 3, and the experiments were run both with and without
calibration in the same manner as above. For these results,

Fig. 3. Estimates for Systematic Incompleteness, No Calibration

Fig. 4. Estimates for Systematic Incompleteness, Calibration

incompleteness is measured as the number of sensors with any
missing readings. For the experiments run without calibration,
the RR model performed similarly to the arbitrary incom-
pleteness above, i.e., it had the highest standard deviation of
estimates across all numbers of sensors and exhibited similar
bimodal tendencies. However, the bimodal aspect disappeared
as the levels of incompleteness increased, which corresponds
to a decrease in the standard deviations in its estimates. The
SepDev model had a similarly consistent underestimation of
the ground truth, but the standard deviations of its estimates
was nearly zero as the amount of incompleteness increased,
so for high incompleteness it actually produced more precise
estimates than did the FM model. The FM model also began
to diverge from true value in its estimates as incompleteness
increased, indicating that this model may not continue to
produce accurate state estimates in cases of more systematic
incompleteness. Without calibration, each of these models
performed noticeably worse at estimating the true signal
strength when the incompleteness was generated in this more
systematic way. For the experiments run with calibration, the
SepDev model became both the most accurate and the most
precise. The average and standard deviation of its estimations
barely changed with increased incompleteness, indicating it as
the best performing model for estimating signal strength with
this type of incompleteness. Here, the FM model’s estimations
have a higher standard deviation than the SepDev model’s, and



Fig. 5. Estimates for Systematic Incompleteness, No Calibration, 60% Sensor
with Random Distance Error

Fig. 6. Estimates for Systematic Incompleteness, Calibration, 60% Sensor
with Random Distance Error

it exhibits the same behavior it showed without calibration
of decreasing estimated values as incompleteness rises. The
RR model shows very similar behavior to the FM model
in both average and standard deviation of its estimates as
incompleteness was increased.

In the final set of experiments, all models were tested with
arbitrary and systematic incompleteness in the presence of
both distance and signal errors. Due to the presence of errors,
the standard deviations of the estimates obtained were much
higher than when errors were not present. The induced false
distance measure resulted in much larger deviation of signal
estimates than the results obtained for false input signal. In
each case, the models behaved similarly to cases when errors
were not present. In the experiment sets where calibration was
not performed for the RR and the SepDev models, the FM
model produced a much more consistent strength estimate.
Even with 60% of sensors compromised when introducing
distance measurement errors, the standard deviation of the
FM model for 20 sensors and 10 readings was less than
0.09 watts for random incompleteness and 0.02 for systematic
incompleteness, whereas for the SepDev model it was around
0.12; the RR model resulted in standard deviation over 1
watts in both cases. When calibrated, the performance of

Fig. 7. Estimates for Systematic Incompleteness, No Calibration, 60% Sensor
with Random Signal Error

Fig. 8. Estimates for Systematic Incompleteness, Calibration, 60% Sensor
with Random Signal Error

the three models became similar in the case of arbitrary
incompleteness for both distance and signal errors. But in
the case of systematic incompleteness, the performance of
the SepDev model improved drastically, resulting in a much
better signal estimate as can be seen in Figures 6 and 8. As
the number of compromised sensors increased, the estimates
obtained from the FM model started to fluctuate, but the
performance of the SepDev model was much more consistent.
In all cases, the RR model produced the largest standard
deviation which increased significantly with incompleteness
and the number of compromised sensors.

V. CONCLUSION

The effectiveness of three distinct Collective Intelligence
models at estimating the location of an unknown emitter in
the presence of incomplete data and random errors has been
evaluated, where two of those models are augmented with an
additional calibration step. Each model appears to have some
merits in different circumstances, although the RR model ap-
peared to provide middle of the road performance in all cases.
For situations in which incompleteness is expected to occur
in very short windows and very erratically, the FM model
which has been used for environmental time series estimation



seems to perform with the highest levels of precision and
accuracy, even with small numbers of sensors and readings.
For situations in which incompleteness is expected to occur
among individual sensors for a larger number of readings, e.g.,
scheduled or unscheduled outages, the SepDev model with
calibration performs with comparable accuracy and precision.
In both cases, the best choice model maintains similarly
accurate estimates even as up to 75% of data is missing or
nearly all sensors suffer from a period of non-responsiveness.
Fictitious distances (used in sensor calculations) seem to have
a much higher impact on the estimations than fictitious input
signal strength values (i.e., the readings). But even with these
corrupted readings, the performance of the models is similar to
the first experiments, demonstrating the potential of Collective
Intelligence at handling challenging state estimation tasks in
the presence of false data injection.

Notably, these experiments have demonstrated two things.
The first is that Collective Intelligence methods can be ef-
fectively applied to state estimation tasks with a high level
of incompleteness and errors. These methods can be run on
systems of varying sizes, maintaining much of their accuracy
and precision even in smaller systems that produce few read-
ings. The second is that further study is needed to determine
the best matches between tools and applications. While each
case had at least one method that produced highly accurate
and precise state estimations, not every method performed
equally well. Furthermore, the two most successful models
(the FM and SepDev models) are solvable in polynomial time
as long as their penalty functions are convex [21], as is the case
here. That means these two models can be used to generate
reliable estimations very quickly, even for large networks and
observation spans.

VI. FUTURE WORK

Although some basic experimentation has been performed
on these systems at this time, there are significant ques-
tions that remain, including some raised by the results of
these experiments. These methods should be tested on 2-
and 3-dimensional distributions of sensors. Furthermore, the
potential effectiveness of these models should be tested for
other forms of systematic false data injection. Additionally,
one new question remaining to be tested is the robustness
of the sensors’ observation span overlap (e.g., counting the
maximum number of hops required to compare values at
any two reading times [22]). This could help analyze the
cause of the improvement in the SepDev model with arbitrary
incompleteness as incompleteness increased. The results from
the systematic incompleteness tests also indicate that there
could be a method for optimal sensor downtime scheduling
(e.g. to preserve battery life) such that there is sufficient
overlap in the sensors to guarantee accurate estimations.
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