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Abstract

We propose an importance sampling algorithm with proposal distribution obtained
from variational approximation. This method combines the strength of both importance
sampling and variational method. On one hand, this method avoids the bias from
variational method. On the other hand, variational approximation provides a way to
design the proposal distribution for the importance sampling algorithm. Theoretical
justification of the proposed method is provided. Numerical results show that using
variational approximation as the proposal can improve the performance of importance
sampling and sequential importance sampling.

Keywords f-divergence - Monte Carlo - Proposal distribution - Variational inference

1 Introduction

Monte Carlo methods, such as importance sampling (IS) and Markov chain Monte
Carlo (MCMC), are widely used in Bayesian inference when analytical computation
based on the posterior distribution is difficult. The posterior distributions are sometimes
hard to sample directly, especially for complex statistical models with both unknown
parameters and latent variables. In that case, importance sampling draws samples from
an easy-to-sample proposal distribution, and then corrects the bias by the importance
weights. Choosing a good proposal distribution is essential to the efficiency of impor-
tance sampling algorithms. We often try to find a proposal distribution that is close
to the target distribution to reduce the variance of the importance weight. For high
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dimensional problems, sequential importance sampling (SIS) (Liu and Chen 1998;
Doucet et al. 2000) gives a way to construct the proposal distribution sequentially.

Variational Bayes (VB) (Jordan et al. 1999) tackles the problem in a different way
by deriving a tractable approximation to the posterior distribution. It minimizes the
Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) between the posterior
and the variational approximation, and uses the variational approximation to make
inference. In the optimization part, VB algorithm usually uses stochastic optimization
(Robbins and Monro 1951) or coordinate optimization strategy. This method is also
related to the EM algorithm (Dempster et al. 1977). VB, IS and MCMC can be used
for general computational problems, but in this paper we focus on the application in
Bayesian settings to make the discussion more concrete.

An advantage of VB is the variational approximation can be obtained quickly, and
it usually runs faster than Monte Carlo sampling algorithms such as MCMC. The
variational method has been applied in many fields, such as computational biology
(Sanguinetti et al. 2006), network data analysis (Hofman and Wiggins 2008; Zreik
etal. 2017; O’Hagan and White 2019), natural language processing (Blei et al. 2003),
and statistical inference (Armagan and Dunson 2011; Depraetere and Vandebroek
2017). However, one issue with the variation method is that the gap between the vari-
ational approximation and the true posterior distribution may lead to biased inference
based on variational approximation. In many problems, the estimate based on variation
approximation may not be consistent. Also the uncertainty of the VB estimate is not
available.

In this paper, we consider using the variational approximation as the proposal
distribution for importance sampling, and then using the importance weight to correct
the bias. Since the importance sampling estimate is consistent under mild conditions,
the bias issue of VB is resolved. The uncertainty of the importance sampling estimate
is also relatively easy to obtain. In the meantime, since the variational approximation
is close to the true posterior distribution and is usually easy to sample, it is a good
choice for the importance sampling proposal distribution. So this idea combines the
strength of these two methods. We will provide theoretical justification of the proposed
method using the f-divergence (Ali and Silvey 1966), and implement the proposed
methods on several models to demonstrate its performance in practice.

The paper is organized as follows. We first review importance sampling and vari-
ational approximation in Sect. 2, and introduce the new method in Sect. 3. Then,
we provide theoretical justification in Sect. 4, and give numerical results of the new
method on several examples in Sect. 5. Section 6 concludes with a discussion.
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2 Literature review
2.1 Importance sampling

Suppose Z is a random vector with probability density function p(z), and we want to
estimate the expectation of some function 4 (Z):

n=Eyh(@) = /h(z)p(z)dz-

If p(z) is hard to sample directly, we may consider importance sampling (IS) to
generate samples from a proposal distribution ¢(z). Then the expectation x can be
estimated by the weighted average

wEZMhEM) + - + w@z™)h(Ez™)

= ; ey

where w(z®) = p(z®)/q(z"")) are the importance weights. The estimate fi is consis-
tent, and it can also handle densities that are only known up to normalizing constants.

The standard error of fi can be used to measure the efficiency of the IS algorithm.
Another criterion is the effective sample size (ESS) (Kong et al. 1994; Kong 1992;
Martino et al. 2017):

m

ESS = ——,
1+ cv?

where the coefficient of variation (cv) is defined as:

2 Varg[w(Z)]
B2 w@)]

The ESS roughly approximates the number of independent and identically distributed
(i.i.d.) samples these m importance samples are equivalent to. Thus, a smaller cv?
indicates that the IS algorithm is more effective in terms of the ESS. In addition,
the cv? is also the x 2 distance between the proposal distribution ¢ (z) and the target
distribution p(z), defined as

Y
ol =/¥dz,

and this will be used later in our theoretical justification.

For high dimensional problems, it is often hard to find a good proposal for IS.
To overcome this difficulty, Liu and Chen (1998) and Doucet et al. (2000) provided
the general framework of sequential importance sampling (SIS) to build up the pro-
posal ¢g(z) sequentially. For a d-dimensional vector z = (zy, ..., Z4), the proposal

@ Springer



1904 X.Su, Y. Chen

distribution can be decomposed as:

qz) = q1(z1)q2(z2121) - - - qa(zalz1, - . ., Za—1)-

Each proposal distribution in the decomposition is for a low dimensional component,
so it is relatively easier to design a good proposal. The target distribution p(z) can
be decomposed in a similar way by using auxiliary distributions to guide the choice
of the proposal distribution (Liu and Chen 1998). The importance weight can also be
computed recursively based on the decomposition. SIS has been successfully applied
to many problems, including the filtering problem in hidden Markov models (or state
space models).

Another variation of IS is adaptive importance sampling (AILS) (Cappé et al. 2004,
2008; Bugallo et al. 2017), which provides a scheme to find a good proposal distri-
bution adaptively based on samples in previous steps. For multi-modal distributions,
Owen (2013) suggested using mixture importance sampling as a way to carry out
AIS. However, AIS does not work well for high dimensional distributions without
incorporating an additional MCMC layer, and the computation time of AIS is usually
much longer than importance sampling (Bugallo et al. 2017).

2.2 Variational approximation

Variational Bayesian method (Jordan et al. 1999) is a technique for approximating the
intractable integrals in Bayesian inference. It is typically useful when the statistical
models are relatively complex with a lot of parameters and latent variables. In Bayesian
inference, suppose we have aset of n i.i.d. datax, and all latent variables and parameters
are denoted by Z. We need to find an approximation to the posterior distribution p(z|x)
that can minimize the KL divergence, i.e.,

q*(z) = argmin KL(q(z)|| p(z|x)),
q(z)eD

where D is a restricted distribution family. Here D is usually a simpler family of
distributions to make the optimization and inference tractable.

Xing et al. (2002) assumed the variational distribution g (z) can be factorized over
some partitions of the latent variables as follows:

M
9@ = []a;cp
j=I
where M is the number of parameters and latent variables. The best distribution q;‘

for each factor that solves the optimization problem can be expressed as:

E_;[l R
q".‘(z )= eE—jllog p(z,x)] o eE_j[log p(zj,2—j.X)] )
J\J f eE_j[logp(z,x)]de :
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Here E_;[-] means the expectation with respect to all g; (z;) withi % j and z_; means
all the elements in the vector z except z ;. However, the optimal mean-field variational
approximations qj (z;) cannot be computed directly because E_;[z;] (i # j) are
involved in the right hand side of (2). Thus, an iterative method is often used to obtain
the best solution, and such mean-field variational algorithm can only guarantee to
converge to a local minimum of KL(g(z)|| p(z|x)) (Blei et al. 2017).

Beal and Ghahramani (2003) proposed a variational Bayesian EM algorithm to
estimate the marginal likelihood of probabilistic models with latent variables or incom-
plete data. They also compared the variational bound with a sampling-based method
known as annealed importance sampling (Neal 2001). Dieng et al. (2017) proposed
another variational algorithm by minimizing the yx-divergence between the variational
approximation and the posterior distribution.

3 VB approximation for importance sampling

Although obtaining variational approximation is faster than some sampling based
methods, such as MCMC, and it learns the approximate probability density functions
through optimization, the inference based on the approximation is biased due to the
gap between the variational approximation and the true posterior distribution. On the
other hand, IS provides a consistent estimate, but the proposal distribution is hard
to design. Here we combine VB with IS by using variational approximation ¢ (z) as
the proposal distribution for IS. It avoids the bias from VB approximation and also
provides a good way to construct the proposal distribution for IS.

Suppose we have a model with prior p(z) and likelihood function p(x|z), where z
contains both parameters and latent variables, then the posterior distribution is

pah = POPXE o) pixia) = pix. o).
p(x)
By the mean-field variational algorithm, we can obtain the variational approximation
¢(z) to the posterior p(z|x). If the support of ¢g(z) includes the support of p(z|x),
then the expectation of the function /(Z) with respect to p(z|x) can be estimated by
importance sampling as in (1), with w(z®) = p(z(i)|x(i)) /q (). The variational
importance sampling algorithm is summarized in Algorithm 1.

Algorithm 1 Variational importance sampling

1. Obtain the analytical expression of p(z|x) (up to a normalizing constant)
2. Derive the variational approximation ¢(z) = H?’IZI qj(zj) to p(z|x)
3.Fori € {l,...,m}

4. Draw z() from the proposal distribution g(z) )

5. Calculate importance weight wz®) = p(z(’)lx(’))/q z®)

6. Estimate the expectation of 4 (Z) with respect to p(z|x) by (1).

Dowling et al. (2018) used the modes of the variational distributions to initialize
the location parameters of the proposal distributions in adaptive importance sampling,
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which is applicable when the variational approximation is in the location scale fam-
ily. Our proposed method uses the variational approximation itself as the proposal
distribution for importance sampling. It does not put restrictions on the proposal dis-
tribution, and it can be extended to sequential importance sampling as shown in the
next section.

3.1 VB approximation for sequential importance sampling

If the dimension of the parameters and latent variables is high, or if the data arrive
sequentially, SIS is often used. VB can be combined with SIS as well by constructing
the proposal with VB sequentially.

Let z be all the hidden variables, and z;.; = {z1, ..., z;} be the first # components.
Letx = {x1, ..., x7} be the data which arrive sequentially. The posterior distribution
of interest is p(z1.+|X1:), t = 1, ..., T. In variational approximation, we assume the
approximation ¢ (z1.;|X1.;) can be factorized in the following way:

13
q@idxi) = [ [ qGlxi), t=1,...,T.
k=1

We consider two different approaches for constructing the proposal distribution
sequentially.

VB-SIS1. In the first method, at each time ¢+ = 1,..., T, we minimize the KL
divergence between ¢(z1.|X1.;) and the true posterior distribution p(zi.|x1.), and
obtain the variational distributions as follows:

qZi:1lx1:1) = q1(z1:1) = q11(21),
q(z121x12) = g2(212) = q21(21) 922(22),

q(zy.7|X1:7) = qr(Zz1.7) = qr1(z1) 912(22) - - qr7(2T).

We will use g4 (z;),t = 1,2, ..., T, as the proposal distributions in SIS, and we call
this method VB-SIS1 with general procedure given in Algorithm 2.

VB-SIS2. Another method is to obtain the proposal distribution in the current step
t by reusing the proposals in previous steps. This procedure can be represented as
follows:

gzi1lx1:1) = q1(z1:1) = q1(z1),
G(z121X122) = @2(212) = §1(21) §2(22),

Gzr.7IX17) = gr(Z1.,7) = §1(21) §2(22) - - - g7 (27)-

At time ¢, in order to obtain ¢,(z;,), we fix the proposals from previous steps
q1(z1), -, qr—1(zs—1), and obtain g, (z;) by minimizing the KL divergence between
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Algorithm 2 Variational sequential importance sampling 1 (VB-SIS1)

L. Setwo@'y) =1,i=1,....m

2.Forte{l,...,T}

3. Obtain the analytical expression of p(zj.;|X1.;)

4. Derive the variational approximation to p(z1.¢|X1.;) using VB-SIS1:

q(@1:1X1:0) = qr1(21)q12(22) - - qee (21)

5. Fori e {l,...,m}
6. Draw z,( f from the proposal distribution g (z¢)
(i)
7. Update importance weight wt(z]’,;) = w;_1 (z%l,Ll )#
’ ’ Zy.,_ l‘xli 1)61n(~, )
8. Using the sample zg 2,1 =1, ..., m,andimportance weights w,(zlzi) to estimate the expectation

of h(z1.;) with respect to p(z1.;|X1:;)

q(z1:+]X1.+) and the true posterior distribution p(z;.;|X1.;). Since we only need to deter-
mine the variational distribution for the last latent variable at each step, the running
time will be shorter than VB-SIS1. We will use ¢;(z;), t = 1,..., T, as the pro-
posal distribution, and we call this method VB-SIS2 with general procedure given in
Algorithm 3.

Algorithm 3 Variational sequential importance sampling 2 (VB-SIS2)

LSetwo(@\h) = 1i=1,....m

2.Fortefl,...,T}

3. Obtain the analytical expression of p(z1./|X1.;)

4. Derive the variational approximation to p(zj.;|X.;) using VB-SIS2:

q(Z141x1:) = q1(z1)G2(22) - - G (2¢)

5. Fori e{l,...,m}

Draw z,( D) from the proposal distribution gy (z;)

. . z X
7. Update importance weight wt(zll_t) = w;_1| (zg{z_l)#
’ ' 1, X1 — l)qt(Z, )
8. Using the sample zi i ,i =1, ..., m,and importance weights w; (zl:,) to estimate the expectation

of h(z1.;) with respect to p(z1.;|X1:¢)

In some cases (such as the hidden Markov model example in Sect. 5.4), we use the
following approximation to further simplify the variational approximation:

P(Z1:41X1:4) X p(Z1:¢|Xmax(1,1— A+1):t)

where A is a tuning parameter. This approximation assumes that the observations at
time k < t— A almost provide no additional information to z;.,. Under this assumption,
we can obtain the variational approximation at step ¢ only based on the observations
Xmax(1,t—A+1):t» that is,

q(Z14|X1:) = q(Z14 |Xmax(1,t—A+1):t)~

@ Springer



1908 X.Su, Y. Chen

Naesseth et al. (2018) considered approximating the posterior distribution for the
state space model by introducing variational parameters and resampling procedures.
The variational SIS algorithms we proposed are different because we obtain the pro-
posal distribution at each step by deriving variational approximation sequentially. Our
variational SIS can be used for general computation based on SIS, including state
space models. Adding the resampling procedure can further improve the efficiency of
SIS. We will not consider it here because we would like to compare the VB proposal
with the standard proposal to evaluate the efficiency gain from VB proposal. Adding
resampling steps will make it hard to distinguish where the efficiency gain is coming
from. In practice, users can always combine resampling with variational SIS to make
it more effective in high dimensional problems.

4 Theoretical justification

To simplify the notation, we will use p and ¢ to denote the true posterior distribution
p(z]x) and the variational distribution ¢ (z) in this section. In variational inference, we
minimize the KL divergence between ¢ and p:

KL(gllp) = fqlog%dz.

In importance sampling, the cv? is the x 2 distance between p and g:
r—q7
X pllg) = / — iz

and we hope to find a proposal distribution ¢ with a relatively small cv?.
In order to make connections between these two distances, we introduce a more
general f-divergence (Ali and Silvey 1966) between p and g as:

w1 (3)] - 1(2) v

where f(-) satisfies the following three conditions:

@ fa)=0.
(i1) f(x) is a convex function.
(iii) f(x) is continuous at x = 1.

Letu = p/q, fi(u) = —logu and fo(u) = (u — 1)2, then we can see that the two
distances can be written as:

KL(qllp) = Dy (pllg) and  x*(pllg) = Dy (pllg).

Sason and Verdi (2016) showed the following f-divergence inequality:
0 < KL(pllg) < log(l + x*(pllg)),
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and stated that there is no lower-bound on KL divergence in terms of x> distance. That
means the convergence in x? distance implies the convergence in KL divergence, but
the other way may not be true. We examine the relationship between KL divergence
and x? distance more closely below.

The Taylor expansion for f1(u) atu = 11is:

_12 _13
(w—D" (u )+..._

fil) = ~logu = —log(1 4 (u = 1) = ~(u = 1) + = ;

Taking expectation on both sides with respect to ¢ and using the fact E,[u] =
E,[p/q] = 1, we obtain the following equations

1
KL(qllp) = 5x2<p||q) +o((u — 1)?).

This indicates that when u is close to 1, these two distances are equivalent, i.e.,

1
KL(qllp) =< §x2<p||q>.

In order to quantify the value of u, we introduce two quantities 8; and 3, as follows
(Sason and Verdu 2016):

-1 -1
B1 = essinf ki = (ess sup E) , B2 =essinf P = (ess sup 2) . 3)
p q q p

The essential infimum and the essential supremum are defined as:
ess inf L sup{b e R: u({x : p(x)/q(x) < b}) =0},
q

ess sup g =inf{fa e R: u({x : p(x)/q(x) > a}) =0},

where 1 (-) denotes the Lebesgue measure.

Since [q(z)dz = land [ p(z|x)dz = 1,wehave 0 < B1, < l,and B; = 1 &
Br=1<x p=gq.Suppose 0 < f; < land 0 < B> < 1. We say a sequence of
probability measures with densities p, converge to g if

lim essinf Pn _ 1. (@)

n—oo q

Lemma 1 Suppose f is a function satisfying Conditions (i)—(iii), and a sequence of
probability measures with densities p, converge to q in the sense of (4). Let

,BI_,Il = ess sup &, Bo.n = essinf &.
’ q q
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Then we have

lim ,Bl,n = lim ﬂZ.n =1,
n—00 n—oo

and
lim Dy(pyllg) =0.
n—0oo

The proof of the lemma as well as the proof of the following theorem are in the
Appendix. Define a function:

_ tlogr+(1—1)

“O =) logr

O<t<landtr>1, %)

which is increasing for ¢ € (0, 1) U (1, oo). Then, from Sason and Verdud (2016), the
following inequalities hold:

KL(pallg) -
k(Ban) < m =By ), (6)
1 KL(pnllg) 1,4
3P S < %)

where p,, B1.,, and B2 , are defined in Lemma 1. Note that (6) and (7) do not require
the convergence of p, to g. The following theorem gives the limit of the ratios in (6)
and (7).

Theorem 1 Suppose a sequence of probability measures with densities p,, converge
10 q in the sense of (4). For KL divergence and x? distance, we have

im KL(pullg) 1 lim KL(pullg) :l
n—oo KL(q|lpn) ~ n—o x*(pallg) 2

From the above theorem, we immediately have the following corollary.

Corollary 1 Suppose a sequence of probability measures with densities py, converge
10 q in the sense of (4). For KL divergence and x? distance, we have

KL(@llp,) 1
1m 2— = —.
n—oo y=(pullg) 2

The theorem and corollary show that the KL divergence and x? distance are equiv-
alent (up to a constant) when the proposal distribution and the target distribution are
getting close to each other. In practice, we cannot obtain a proposal that is arbitrarily
close to the target distribution, but following the insight of the theorem and corollary,
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we can use the KL divergence to bound the x 2 distance . When we consider a proposal
distribution ¢ in importance sampling, we have from (6) and (7) that

x2(pllg)

1, -1
m <28, k(B ). (8)

2Bk (B2) <

Therefore the upper and lower bounds for x? distance are

2B2c(BK L(qllp) < x*(pllg) < 287 k(BT YK L(qlIp). (€))

Our goal is to find a proposal distribution g close to the target distribution p in terms
of the x? distance x2(p||g). The relation in (9) indicates that the distribution ¢ that
minimizes the KL divergence K L(g|| p) tends to give tighter bounds for the % distance
x2(pllg), and under a smaller upper bound in (9), the x 2 distance x*(p||q) tends to be
small as well, which is what we hope to achieve in choosing the proposal distribution
for importance sampling. Therefore, it is reasonable to use the distribution ¢ that
minimizes the KL divergence K L(g||p) as the proposal distribution. This justifies
the use of VB solution as the proposal distribution for importance sampling. The
upper bound in (9) can give us an intuitive way to evaluate the choice of the proposal
distribution since a smaller upper bound often indicates that the corresponding proposal
distribution has better performance in importance sampling. This idea is illustrated in
the example in Sect. 5.1 by computing B and B, explicitly. However, the exact values
of B1 and B, are hard to calculate in some complex models.

5 Numerical results

All examples in this section were coded in R and run on a MacBook Pro with 2.3 GHz
Intel Core 17 processor.

5.1 Univariate normal

This toy example is on Bayesian inference for a univariate normal distribution. Suppose
our observed data x = {x, ..., xy} is a random sample from a normal distribution
with mean p and precision . We use the normal-gamma conjugate prior for © and t
as follows:

p(ult) = N(no, (hot)™ 1), p(r) = Gamma(ag, bo).

We consider a factorized variational approximation to the posterior distribution
q(, ) = qu(u)g:(r). The variational approximation algorithm gives g, (u) ~
N (v, 2~ 1) with the mean and precision:

b Aomo + Nx

d A=+ N)E[1],
o L N an (Ao + N)E[7]
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Contour for VB approximation Contour for true posterior

Fig. 1 Contour plots for the true posterior and the VB approximation

and g, (t) ~ Gamma(a, b) with two parameters:

N

N 1 ) )

a=ao+3, b=bo+§Eu{§l(xn—u) + Aot — o) }
1=

If we follow the updating rules and compute the expectation with the parameter val-
ues from the previous step, we can obtain the variational distribution g(u, t) as in
Algorithm 4.

Algorithm 4 Variational algorithm for univariate normal
1. Initialize b = 1,A =1

2. Calculate v = }‘OA’:)O:I\IJVX anda = ag + %

3. Repeat the following until convergence

4. r=Ro+MNjp

5. b=by+3 [(Z;":1 x7 4+ doud) — @ XN x4 200000V + (o + N2 + %)]

We set the hyperparameters g = 1,10 = 1,a0 = 1,b9 = 1, and generated N = 50
data points from N(1, 1). For this simple example, the true posterior distribution
p(u, T|X) can be derived as

Aomo + Nx 1
X)) =N ——— (W +N ,
p(plt, x) < o LN (Ao + N) )

AN — 110)>
p(r|x) = Gamma <a0+ . bo + > [Z(xz -0+ 2 kf)x+ ;O) })

The contour plots in Fig. 1 show some resemblance between the true posterior distri-
bution and the VB approximation.

We compared the performance of different methods in Table 1, including the varia-
tional Bayes method (denoted by “VB”), IS with variational distribution as the proposal
(denoted by “VB as proposal”), IS with the prior as the proposal (denoted by “Prior
as proposal”), and adaptive importance sampling (denoted by “AIS”) (Bugallo et al.
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Table 1 Simulation results for the univariate normal example

Parameter VB VB as proposal Prior as proposal AIS True mean
" 1.1445 1.1453 (0.0007) 1.1448 (0.0226) 1.1443 (0.0021) 1.1445
T 0.8992 0.9170 (0.0006) 0.9192 (0.0183) 0.9181 (0.0015) 0.9169

Table 2 The values of ,Bfl and

B> for the univariate normal VB as proposal Prior as proposal
example pr! 1751 2513
B 0.673 0.282

2017). The variational distributions are well-known standard distributions in this exam-
ple, and the expectations are easy to compute. The three IS algorithms are based on
m = 100, 000 samples, and the numbers in parentheses are the standard errors. The
true posterior mean is also provided (denoted by “True mean”).

Table 1 shows that IS with variational distribution as proposal gives much smaller
standard errors than IS with prior as the proposal and AIS. The computation time
of AIS is much longer than IS with VB or prior as the proposal, since AIS needs
to update the proposal distribution adaptively based on samples from previous
steps, while the variational distribution and the prior are relatively easier to obtain.
Using variational method directly gives a biased estimate for t (the estimate for
u happens to be the same as the true mean), and the variability of the estimate is
unknown.

Since the true posterior distribution is known in this example, we can calculate §;
and B, defined in (3). The values of B and B,, which are presented in Table 2, are
related to the ratio between the posterior distribution p and the proposal distribution
g. They also appear in the upper and lower bounds of the x? distance between p
and ¢ in (8) and (9). Since B, ! is smaller when VB is the proposal and «(#) is an
increasing function for 0 < ¢ < 1, that implies the upper bounds 28, llc(,Bf Y in
(8) and Zﬁflk(ﬁfl)KL(qu) in (9) are smaller when VB is the proposal (note that
K L(q||p) is minimized for VB proposal). Similarly, VB proposal has a larger 8, which
implies 28>k (B2) in the lower bound in (8) and (9) is larger for the VB proposal. All
these suggest that using VB as the proposal may lead to a smaller x? distance and
better performance.

5.2 Gaussian mixture model

Suppose we have N i.i.d. observations X = {X1, X2, ..., Xy} from a Gaussian mixture
distribution, and each x; is a D-dimensional vectorx; = (X1, Xj2, . .., Xip) .. Suppose
there are K mixture components and & = (7, 72, ..., 7g) denotes the mixture
proportions. The labels that indicate the membership of the observations are denoted
by the latent variables z = {z, z, ..., Zy}, where z; ~ Multinomial(1, ). In other
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words, z; = (zi1, zi2, ..., zik) T is a K-dimensional vector with one element equal to
1, which specifies the label of x;, and all other elements equal to 0. If the k-th element
of z; is 1, we write

Xilzik =1 ~ Ny, ALY,

where u; and A; are the mean and precision matrix of each multivariate Gaussian
component.

We use a symmetric Dirichlet distribution with hyperparameter o as the prior
distribution for :

K

p() = Dir(x|ag) = C(ap) l_[ n,‘:o, where ag = (g, ag, ..., ).
k=1

For the mean vector p; and the precision matrix A, we use a normal-Wishart prior
distribution as the conjugate prior for these two parameters:

K
Ay ~ Wishart(Wo, vo) = p(A) = [ [ W(AIWo. vo),
k=1

e~ N (oo BoA0 ™) = p<u|A>=ﬁN(ukmO,(ﬂoAk)—l),

k=1

where A = (A1, Ay ..., Ag)and p = (1y, M, ..., g ). The likelihood function of
the Gaussian mixture model is

N K
palm) =[] ]~

i=1k=1

N K
pxlm, pw, A) =[] (Z e N (il Akl)> :

i=1 \k=1

The posterior distribution is

p(, m, AlX) X p(X, 7w, u, A) = p(x|x, pu, A)p(x) p(r|A) p(A).

For variational approximation, following Bishop (2006) we first factorize
q(m, p, A) into the following variational distribution:

K

q(m, ., A) =q(0) [ | ¢ Av).
k=1
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After calculating the logarithm of the optimal distribution, we get:
K N K
Ing*(m) = (g — 1) Zlnnk + Z Zriklnnk
k=1 i=1 k=1

N
=  ¢*(w) = Dir(r|a) where oy = ag + Ny and Ni = Zrik‘
i=1

Then we further decompose the variational distribution as ¢*(p;, Ax) =

q*(mi|Ar)g*(Ag), and the variational joint posterior distribution of (g, Ax) is also
normal-Wishart distribution with different parameters from the prior distributions:

q* (Mg, Ap) = N(ﬂklmks (ﬂkAk)il) W(Ak|Wi, vi).

If we follow the updating rules for each parameter, we can obtain the variation approx-
imation for Gaussian mixture model as in Algorithm 5.

Algorithm 5 Variational algorithm for Gaussian mixture model
1. Initialize o, X, Wy, my, Sg and rjj

2. Repeat the following steps until convergence

3. Calculate N = ZlN:l rir and update o by o = g + N

4. Update X; and Sy by

N N
1 1 _ _\T
X = N i;rikxi and S = Ne ;rik(xi = Xp)(X; — Xg)

5. Update Wy, and vy by

BoNk - T
Xk — o)X — o) and v = v + Ny
Bo + Ni

-1 -1
Wil =wil + NS+

6. Update my and B by

1 _
my = Fk(ﬁouo + NiXg) and B = Bo + Ny

7. Update rj by
D v Pik
Pik = exp (—2— = o o —m) T Wi — mk)) and rij = —p—
Br j=1Pik
8. Variational distribution is g™ (puy, Ag) = N(/Lk\mk, (ﬂkAk)_l) W(Ar Wy, vg) and

q* () = Dir(r |).

In the following simulation, we fix the hyperparameters cg = 1, Bo = 5, pog = 0,
Wy = Ip, and vy = 5. Tables 3, 4 and 5 show the results for different combinations
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Table 3 Simulation results for Gaussian mixture model with D =1, K =2, and ¢g = 1

Parameter VB VB as proposal Prior as proposal ‘True mean’ True parameter
] 0.782 0.774 (0.004) 0.665 (0.125) 0.775 0.7

) 0.218 0.227 (0.004) 0.335 (0.125) 0.235 0.3

“1 —2.671 —2.666 (0.007) —1.149 (0.892) —2.663 -3

U2 1.945 1.870 (0.032) 0.161 (1.193) 1.847 3

Ay 0.292 0.287 (0.006) 1.419 (0.726) 0.278 1

Ay 0.686 0.682 (0.005) 0.446 (0.316) 0.677 1

of the dimension of the data D and the number of mixture components K. The vari-
ational distributions are well-known standard distributions in this example, and the
expectations of all parameters are easy to compute when applying VB directly. The
two IS algorithms are based on m = 10, 000 samples. The last column denotes the
true parameters when we generated the observed data. The “True mean’ is an estimate
of the true posterior mean based on 1, 000, 000 samples from importance sampling
with VB approximation as the proposal.

From Tables 3, 4 and 5, we can see that IS with variational distribution as proposal
gives smaller standard errors than IS with prior as the proposal. In addition, using VB
directly will introduce bias to the estimates.

5.3 Linear regression model

Let {(vi, x,-)}lN: | be the observed pairs of data, where x; € R”. Consider the linear
regression model

vi =x] B+ei,
where B € R” and €; ~ N (0, 02). The likelihood function is
yIB, 0% ~ N(XB, oD,
where y = (y1, 2, ..., yv)T, X = (X1, X2, ...,xy)7, and I is the identity matrix.
Similar to You et al. (2014), we use inverse gamma and normal conjugate priors for
B and o2 as follows:

0% ~ Inv-Gamma(A, B), B~ N(O, ogl),

where A, B, aé are hyperparameters.

Let z be all parameters of interests, i.e., Z = [ T, UZ]T. We consider a factorized
variational approximation g*(z) = q/’; B)q> (0 2). Since we chose the conjugate priors
for z, the variational distributions can be written as:

ap(B) ~ Ny Zg): q.2(0%) ~ Inv-Gamma (A +n/2, By(,2)) -
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Variational approximation for importance sampling 1919

By solving the optimization problem iteratively, we can obtain the updating rules of
all the parameters, as well as the corresponding variational algorithm in Algorithm 6.

Algorithm 6 Variational algorithm for linear regression model

oy . _ _ T
1. Initialize Eq(ﬁ) =1Ip, Ryp) = 14, Bq(a
2. Repeat the following until convergence

2)=1

3. Update X, (g):
A+n/2 -
Zyp) = {( : )XTX”ﬂzl]
Byo2
4. Update pg(py:
A+n)2 T
RqB) = < B, )Eq(ﬂ)x y
q(°)
5. Update Bq(az):

1 2, 1 T
Bq(az) =B+ El\y —Xugpll” + Etr (X qu(ﬂ))

In the simulation, we generated N = 50 data pairs from the following true model
y=340-x1—3x2+5x3+¢€, e ~N(@O,0%),

where x1 has no influence on the response variable y. We fix the hyperparameters
og =2, A =2,and B = 5. The variational distribution obtained from Algorithm 6
is used to estimate the parameters directly and also as the proposal for IS. The two
IS algorithms with different proposals are both based on m = 10, 000 samples. The
‘True mean’ is an estimate of the true posterior mean based on 1, 000, 000 samples
from IS with VB approximation as the proposal.

Table 6 shows that IS with variational distribution as proposal gives smaller standard
errors than IS with prior as the proposal. Using variational method directly gives a
biased estimate and variability of the estimate is unknown. For example, using VB
directly gives an estimate of —0.096 for 8; without quantification of the uncertainty
of the estimate, so it is hard to tell whether the true value of 81 is 0. On the other hand,
the 95% confidence interval of the estimates based on both IS algorithms contain 0,
which indicates that 8; is not significant in the linear model.

5.4 Hidden Markov model

The hidden Markov model (HMM) consists of a Markov chain with hidden states
z = {z0,21,22,...,27} and an observed sequence of data x = {x1,x2,...,x7},
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Variational approximation for importance sampling 1921

where zo is the initial state, and T is the length of the sequence. The hidden states
evolve according to

Zil(Zi—1 = z—1) ~ [(zelz-1),
and the dependence between the observed data and hidden state can be represented as
Xil(Zy = z¢) ~ g(xt1z4).

Given the observed data, the posterior distribution of the hidden states can be written
as:

p(Zo.T, X1:7)
p(zo:r|X1:1) = ———— & p(zo:7) p(X1:7|20:7),
p(Xi.1)

where

T T
por) = fGo) [ [ fGilz-1) and pGirlzor) =[] elz).
t=1

t=1

We consider the filtering problem, which is to infer z;., from the observations x.;,
t = 1,...,T. When applying SIS to the filtering problem, the naive choice of the
proposal distribution is to sample z; from f(z;|z;—1). However, this proposal is not
very efficient because it does not take into account the information contained in the
observations.

The two variational approximations in Sect. 3.1, VB-SIS1 and VB-SIS2, can be
used to construct better proposals for SIS. The corresponding algorithm is the same as
Algorithms 2 and 3, and the weight updating step for HMM can be written explicitly
as

P (Z1:4]X1:)
PE1—11X1— 1) (2)
g(lzi) f 122D

‘Itt(Z;(i))

wy(2{)) = w1 (z)_)

= Wi—1 (Z(llzifl)

3

or

i P(Z1:1|X1:)
wt—l(zgl:g—l) -~ ()
P(Z1r—11X1:0-1)q1(2;7)

PN IEA I VR oy
wl—l(zl:t—l) - ) .
Clt(Z, )

Wy (zilzz

We study two examples below, one is a discrete HMM and the other one is a
continuous HMM.
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1922 X.Su, Y. Chen

Tgble 7 Simulatipn results for Proposal m ) Time (s)

discrete HMM with A = 7,

T = 50, and varying sample size iz 1000 321.0979 0.8

" VB-SIS1 A =7 1000 78.0338 235
VB-SIS2 A =7 1000 205.3263 52
felzi—1) 5000 342.0129 42
VB-SIS1 A =7 5000 75.1225 251
VB-SIS2 A =7 5000 202.2352 63
flzi—1) 30000 336.1599 20.6
VB-SIS1 A =7 30000 77.9406 306
VB-SIS2 A =7 30000 208.3262 75

Tl Simltien sl g P e )

;nd varying length of sequence Fzelz—1) 30 97.0153 3.1
VB-SIS1 A =7 30 18.0764 149
VB-SIS2 A =7 30 45.6237 34
frlzi—1) 50 342.0129 4.2
VB-SIS1 A =15 50 75.1225 335
VB-SIS2 A =15 50 202.2352 63
f@tlze—1) 100 1252.2339 8.3
VB-SIS1 A =32 100 193.3824 703
VB-SIS2 A =32 100 527.2363 233

5.4.1 Discrete hidden Markov model

In the discrete HMM example, assume z; € {1,..., K} and x; € {1,..., W}. Then
the model can be specified by two matrices: transition matrix Ak« x and emission
matrix Bg . w, where A;; denotes the probability of transitioning from state i to state
J and By, denotes the probability of emitting observation w from state k. We propose
the variational approximation similar to Wang and Blunsom (2013).

In the simulation study, we set zo = 1, K =3 and W =4, i.e., z; € {1,2,3} and
x; € {1, 2, 3, 4}. The transition and emission matrices are chosen to be:

0.10.40.5 0.30.3030.1
A=1040204|,B=|040.10203
0.60.20.2 0.10.60.20.1

We considered different combinations of the length of the sequence 7, the
number of samples m, and the tuning parameter A. The results are presented in Tables 7
and 8 and Fig. 2.

From Table 7, we can see that if we fix A and the length of sequence 7, the cv?
for each method will not change much when we increase the number of samples m.
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- VB-SIS1
S - == VB-SIS2
= . — = state evolution

cv2
60 80 100 120 140 160

40

20

5 10 15 20

Delta

Fig.2 cv? for variational SIS for discrete HMM with m = 5000, T = 30, and varying tuning parameter A

Table 8 shows that if we fix m, then T will influence both cv? and the computation
time a lot. In general, using the state evolution f(z/|z;—1) takes less time, but the cv?
is large. VB-SIS1 gives the smallest cv?, but the computation time is the longest. The
performance of VB-SIS2 is somewhere between the other two methods. Note that after
the data are generated, we only need to compute the variational approximation once, so
this time-consuming step will not be influenced by the sample size m. Figure 2 shows
how the cv? of importance sampling changes with the value of A. The horizontal
dashed line is the cv? when the state evolution f(z¢1z:—1) is used as the proposal, and
it can serve as a benchmark.

5.4.2 Stochastic volatility model

The stochastic volatility model consists of the following state equation and observation
equation:

Z;=aZi1+0oV,, X,=PBexp(Z/2)W;,

where V; i N(@©, 1), W, i N (0, 1), and both the hidden state Z, and the observation
X, are continuous real-valued random variables.

In the simulation study, the initial state Zg ~ AN(0,0%/(1 — ?)), and we set
a = 0.3, 0 =5 and B = 2. In this case, the variational distributions {g, (z,)}tT:1 also
follow the normal distribution. We considered different combinations of the length of
the sequence 7', the number of samples m, and the tuning parameter A. The results
are in Tables 9 and 10.

From Table 9, we can see that if we fix A and the length of sequence 7, the cv?
for each method will not change much when we increase the number of samples m.
Table 10 shows that if we increase the length of the observed sequence T, then the cv?
increases for all proposal distributions we tested. Tables 9 and 10 indicate that using
the state evolution f(z;|z,—1) as the proposal distribution takes less time, but the cv?
is relatively large. VB-SISI gives the smallest cv?, but the computation time is the
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Table 9 Simulation results for stochastic volatility model with A = 7, T = 50, and varying sample size m

2

Proposal Estimate (s.e.) m cv Time (s)
Sfzilze—1) 15.32 (1.42) 1000 151.0883 0.7
VB-SIS1 A =7 13.90 (0.97) 1000 48.0338 15.3
VB-SIS2 A =7 13.63 (1.23) 1000 68.5262 3.6
f@lzi—1) 14.98 (0.42) 5000 134.9283 32
VB-SIS1 A =7 14.71 (0.25) 5000 45.1735 17.7
VB-SIS2 A =7 14.64 (0.36) 5000 62.2415 5.7
f@tlz—1) 14.53 (0.04) 30000 142.1737 17.5
VB-SIS1 A =7 14.48 (0.03) 30000 51.2624 242
VB-SIS2 A =7 14.44 (0.03) 30000 98.1525 19.7

Table 10 Simulation results for stochastic volatility model with m = 5000 and varying length of the

sequence 7'

Proposal Estimate (s.e.) T cv? Time (s)
flzi=1) 15.32 (1.42) 30 151.0883 0.7
VB-SIS1 A =7 13.90 (0.97) 30 48.0338 15.3
VB-SIS2 A =7 13.63 (1.23) 30 65.5262 3.6
Sf(zilze—1) 24.72 (2.42) 50 412.5422 2.2
VB-SIS1 A =15 26.37 (1.75) 50 73.2527 22.4
VB-SIS2 A =15 26.43 (1.98) 50 83.6236 8.4
f@tlzi—1) —24.52 (3.42) 100 1524.3532 15.3
VB-SIS1 A =32 —27.12 (2.52) 100 265.3262 32.5
VB-SIS2 A =32 —27.26 (2.97) 100 436.2363 20.3

longest. The performance of VB-SIS2 is somewhere between the other two methods.
If we fix the running time, VB-SIS2 has a larger effective sample size than VB-SIS1.

5.5 Dirichlet process

The last example is a Dirichlet process (DP) mixture model widely used in Bayesian
inference. Dirichlet Process can be written as G ~ DP(«, Gg), where Gy is the base
distribution of this stochastic process, and « is a positive scalar parameter. In addition,
G and G should have the same support, but G is a discrete distribution with countably
infinite number of point masses. Given the previous n — 1 observations, we generate
the next one as follows:

Xl’llxla '-'7Xn71 =
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where w.p. means “with probability”. Let K be the unique valuesamong { X1, ..., X,,_1},
denoted by {X}} le, and we can rewrite the sampling procedure as

* num, 1 (X3) _
Xp|X1. o Xy = X W.p. — e k=1,...,K),

anew draw from Gy Ww.p. #
where num,,_1 (X}) is the number of X; in the set {Xy, ..., X;—1}. Then, the joint
density function can be written as
P(Xy,...,Xn) = P(X)P(X2| X)) - P(XN|X1s .o s XN—1)

AT (umy (X)) — D!

“w(lta) - (N—1ta) L[lGo(XK),

which does not depend on the order of variables.

Dirichlet process can also be treated as a stick breaking process. We first draw
Vi, Va, ... ~ Beta(l, o), then generate X}, X3, ... ~ Go. A multinomial distribution
can be derived as

i—1
n,-(v):v,-l—[(l—vj).

j=I1

The Dirichlet process G is a discrete distribution with P(G = X ;") = m;(v), and it
can be written as G = Z?i | i (v)dx*, where 8, is the Dirac measure at point x. In
Dirichlet process mixture model, data come from a mixture of an infinite number of
distributions. If we have N observed data points {x; }1N= |» they will be generated from
at most N different components. The following is the generating procedure of DP
mixture model.

- V1, Va, ...~ Beta(l, @)
i—1
m(v)=v [ =)
j=1

— y; ~ Multinomial ()
- Nk~ GO
— Xilyi, n ~ p(xilny,)

Given the latent variable z;, we assume the observation x; follows a distribution from
an exponential family with the likelihood function p(x;|ny,).

Following Blei and Jordan (2006) and Hughes and Sudderth (2013), let Z =
{V,n, Y} be all latent variables and & = {«} be the hyper parameter. Since the num-
ber of different components is infinite, we introduce a truncated level 7' as an upper
bound of the number of clusters, that is, mixture proportions 7;(v) = 0 for¢t > T.
Then we can factorize the posterior distribution and obtain the following variational
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Table 11 Simulation results for Dirichlet process mixture models

T o cv? (naive proposal) cv? (VB proposal) s.e. ratio (naive/VB)
2 1 159.43 32.62 1.52

3 1 142.52 21.63 3.62

5 1 163.13 19.63 10.39

7 1 158.40 29.64 7.52

5 3 235.12 62.35 3.74

7 3 265.32 53.52 5.96

9 3 257.41 37.36 12.94

11 3 246.51 51.74 9.62
decomposition:

T-1

T N
av,n.y) =[] an@)[]az:) [ ] a3.00m),

t=1 t=1 n=1

where g1 ;(v;) are beta distributions, g2 (1) are exponential family distributions, and
q3.n(yn) are multinomial distributions. We can use the coordinate ascent algorithm to
solve the optimization problem. A general rule to choose the truncated level T is to be
close to the theoretical value of the expected number of clusters, given N observations:

E [number of clusters|xy, ..., xy] = Z ajL(XT =a(Y(a+ N)—¢¥(a)),

i=1
where ¥ (+) is the digamma function.

We generated N = 50 observed data from DP mixture model, and implemented
IS with different proposal distributions based on m = 1, 000 samples. We considered
different combinations of the hyper parameters (¢, 7'). Since the number of parameters
is large, we only reported the cv® and the average of the ratios of the standard errors
of the parameter estimates from different methods.

From the results in Table 11, we can see that IS with variational distribution as
proposal gives smaller cv? than IS with prior as the proposal. The average of the
ratios of the standard errors is greater than 1 in all settings, which means using VB as
the proposal usually gives smaller standard errors than using the naive proposal. This
average ratio becomes larger when the truncated level T is close to the theoretical
expectation of the number of clusters (4.49 for ¢ = 1 and 9.11 for o = 3).

6 Discussion

In this paper, we combine variational approximation and IS to improve the performance
of both methods. Using variational approximation as the proposal distribution of IS
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can avoid the biased estimate and the lack of uncertainty quantification of the VB
estimate. It also provides a way to design a good proposal for IS. We provide theoretical
justification of the proposed methods, and numerical results also show that using
variational approximation as the proposal can enhance the performance of IS and SIS.

Using VB as proposal for IS tends to be computationally more expensive than some
naive choice of the proposal. This is mainly due to the computational cost for finding
the VB solution. Sometimes it might be worthwhile to stop the VB algorithm a little
early to obtain a rough approximation and allow more time for IS to correct the bias.
The tradeoff between VB-SIS1 and VB-SIS2 also illustrates this point.

There are several possible directions for future research in this area. One topic is to
further improve the efficiency and performance of the algorithm, especially for models
involving HMM and Dirichlet process. For example, the tuning parameter A plays an
important role in the proposed VB-SIS algorithm for HMM. It is of interest to develop
theory or find an analytic expression for the optimal A. Another direction is to consider
other variational approximations beyond mean-field variational approximation, which
may lead to good proposals for importance sampling. Applying the proposed method
in more complex models or real data examples is valuable as well.

Appendices

A Proof of Lemma 1

Proof We have lim,,_, o 2., = 1 immediately from the definition of convergence in
).

Now we prove lim, o 81, = 1. For Ve > 0 and § > 0, define Il(n) = {x:
JUACI R Y 12(") ={x:1—€< _;;,,(ix)) < 146}, and 13(n) ={x: —p"S(X) > 146}

q(x)
From (4), we have for any given € > 0, there exists N € N such that foralln > N,

we have

essinf Pn >1—e.
q

By the definition of essential infimum, we have

sup(b € R : ju({x : pa(¥)/q(x) < b)) =0} > 1 — e,

which implies

M(Ifn)) =pl{x: pp(x)/q(x) <1 —¢€}) =0.

Then we have

/ &quzf pndx =0 forn > N.
" q "
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So

1=/pndx=/ &qu—i—/ &qu—i—/ &qu
R " q K g " q

=/ &qu—i—/ &qu forn > N.
5 q 5 q

3

From the definitions of 12(") and 13(n), we have

1=/ &qu—i-/ &qu
B q 5 q

> (l—e)/l(m qu—i—(l—i—S)/I(n) gdx forn> N. (10)
2 3

Similarly, we also have

1=/qu:/ qu—i—/ qu—i—/ qdx
R Il(n) Iz(n) 13()1)
:/ qu—i—/ gdx forn> N. (11
12()1) 13(”)

From (10) and (11), the following inequality holds:

1> (1—6)/(n) gdx + (149) (1—/(@ qu)
12 12

=(1+3)—(6+3)/()qu forn > N. (12)
n"

Suppose lim sup f1<n) gdx =0(e, §) € [0, 1], then lim inf fl(n) gdx =1-0(e,§)
n— 00 2 n—0oo 3

based on (11). Since the definition of 13(n) depends only on §, not €, we know that
lim inf f [ q dx also depends only on §, not €. Thus 6 (¢, §) = 6(5) does not depend
n—oo 3
on €.

Taking limit inferior on both sides of (12), we have

n— o0

1> (1496)—limsup ((e —|—<S)/() qu) =148 —(e+506(0). (13)
Ln"

Therefore,

8
0(8) > e (14)

Note that (14) is true for any € > 0 and 6 > 0 selected at the beginning of the proof.
Since the left hand side of (14) does not depend on ¢, letting € — 0 on the right hand
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side of (14), we have 6(§) > 1. On the other hand, lim supf m gdx =0(58) € [0, 1].
2

1
n—o00

Therefore we have 6(§) = 1, which implies lim io%f f1<n> gdx =1—0(5) = 0for any
n— 3
8 > 0. From the definition of f; ,, we have lim, o 1., = 1.
Since 11({x : pa(x)/q(x) < Bon)) = w({x 1 pa(x)/q(x) > By 1)) = 0, we have

ﬁwf(&ﬁ dx< s |f(B)

m@mw=/ : |
Bon<B<pi)

<Pn <
{/32,71_ q =

Letting n — 00, due to the continuity of f at 1, we have lim, . Dr(pnllg) <

f)=0. o

B Proof of Theorem 1

Proof From Lemma 1, we have

lim B1, = lim B, =1
n— 00 n—oo

By L’Hospital’s rule, we have lim;_, | k (t) = 1, where « (¢) is defined in (5). Therefore,
take limit on the both sides of (6) and (7), we have

KL(pall) . . KL(pallg) 1

n—o0 KL(qllp,)  n=o x2(pullg)  2°
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