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ABSTRACT

This paper focuses on the empirical derivation of regret
bounds for mobile systems that can vary their locations within a
spatiotemporally varying environment in order to maximize per-
formance. In particular, the paper focuses on an airborne wind
energy system, where the replacement of towers with tethers and
a lifting body allows the system to adjust its altitude continu-
ously, with the goal of operating at the altitude that maximizes
net power production. While prior publications have proposed
control strategies for this problem, often with favorable results
based on simulations that use real wind data, they lack any the-
oretical or statistical performance guarantees. In the present
work, we make use of a very large synthetic data set, identified
through parameters from real wind data, to derive probabilis-
tic bounds on the difference between optimal and actual perfor-
mance, termed regret. The results are presented for a variety of
control strategies, including a maximum probability of improve-
ment, upper confidence bound, greedy, and constant altitude ap-
proaches.

INTRODUCTION

Airborne Wind Energy (AWE) systems, such as Altaeros’
Buoyant Airborne Turbine (BAT) [1], replace conventional tow-
ers with tethers and a lifting body (wing or aerostat) that holds the
airborne generator aloft. These systems are of particular interest
due to their ability to reach high altitudes, where wind speeds
can be much higher than wind speeds typically seen by ground
mounted turbines. Whereas a typical wind turbine is constructed

FIGURE 1: Altaeros Buoyant Airborne Turbine (BAT) [1]

and left in place, an AWE system has the capability of adjust-
ing its altitude to seek the optimal conditions for power genera-
tion. The opportunities presented by control over altitude result
in an important tradeoff. Because the wind speed is an unknown
variable at all altitudes besides the current altitude of the AWE
system, the controller must balance exploring other altitudes to
search for better wind conditions (for more power generation
later) and exploiting the current estimate of the maximum wind
speed (for more power generation now). This problem is classi-
fied as exploration vs. exploitation in a spatiotemporally varying
environment.

A large body of research has examined different control
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strategies for balancing exploration and exploitation in the con-
text of AWE systems (see [2], [3], [4], [5], and [6]). Each
of these results has demonstrated, based on simulations driven
by real wind speed vs. altitude data, that appropriately de-
signed altitude optimization algorithms can significantly outper-
form constant-altitude flight, even at the best constant altitude
(which is only obtained through omniscient knowledge). The
exploration/exploitation tradeoff addressed in the AWE litera-
ture has also been examined in wheeled mobile robotics liter-
ature (see [7], [8]), in addition to the unmanned aerial vehicle
literature (see [9]). In these instances, the objective is to utilize
a team of mobile robots to perform a mission in an unknown,
spatiotemporally varying environment.

An examination of the aforementioned results reveals that
while numerous strategies have been employed in the control of
mobile systems in spatiotemporally varying environments, often
very successfully, these results are not accompanied by theoret-
ical or statistical performance guarantees. It is intuitive to fo-
cus on the difference between optimal and realized performance,
termed regret, in formulating such bounds. In fact, a number of
papers investigate the formulation of regret bounds in classical
bandit problems [10, 11, 12]. Here, a gambler must, at every in-
stance, select one of many arms to pull on, where each arm yields
a different reward that is subject to some stochastic distribution.
In the context of our problem, the gambler is the mobile (AWE)
system, the arms are spatial locations (altitudes), and the rewards
are performance outputs (power output or wind speed). Addi-
tionally, a few papers investigate the use of Gaussian Process
modeling to determine regret bounds in bandit problems [13,14].
However, none of these papers provide a hard probabilistic bound
on regret (e.g., with probability €, regret will fall below a value
of ). Instead, the papers provide regret bounds that are speci-
fied in “big O” notation as a function of time, thereby identifying
the manner by which regret will vary in time but not providing a
hard bound. For practical purposes, this does not allow for cal-
culable bounds that can be used to compare the relative strengths
of different control strategies.

Focusing on AWE systems, this paper provides an empiri-
cal quantification of regret, calculated through a large synthetic
data set that is informed by real wind speed vs. altitude data. In
particular, we use wind speed vs. altitude data to identify statisti-
cal hyperparameters of a Gaussian Process (GP) model, then use
this model to generate a synthetic wind data set. For several al-
titude control strategies, including maximum probability of im-
provement (MPI), upper confidence bound (UCB), greedy, and
baseline constant altitude strategies, we compute statistical re-
gret bounds using a Monte Carlo simulation setup. In particular,
we generate empirical cumulative distribution functions (CDFs)
for regret under each control strategy. This represents the first
rigorous effort at “scoring” these spatiotemporal optimal control
strategies.

The paper is organized as follows. First, we introduce the

concept of regret and an important axiom that underlies our
derivation of a CDF for regret under each control strategy. We
then describe the process by which we generate a very large syn-
thetic data set from existing wind data, followed by a description
of altitude control strategies that are evaluated in the paper. We
finish by presenting regret bound CDFs for each of the altitude
control strategy.

MATHEMATICAL PRELIMINARIES

For the control strategies evaluated in this paper, the variable
z(r) will be used to represent the spatial decision variable (the
chosen altitude in the AWE application), P(z(¢)) will be used to
represent the reward (power generation) at the chosen z, for a
given time, ?.

When judging control strategies operating in a partially ob-
servable environment, it is important to utilize a quantitative per-
formance metric. In this paper, we work with a quantity known
as regret. Put simply, regret is the difference in performance
between the optimal strategy given perfect knowledge and the
strategy chosen by the controller based on imperfect knowledge.
Mathematically:

r(t) = E[P(z()) = P(z(1)], (1

where r(t) is the instantaneous regret, or the regret at a single
instant in time, P*(z()) is the current maximum value of the
performance function over the entire spatial domain, and P(z(¢)
is the value of the performance function evaluated at the point
chosen by the control strategy. In many instances, cumulative
regret and average regret are more informative statistics than in-
stantaneous regret. These quantities are given by:

R0 = Y1) = L EP O PO, @)

=1 =1

Ruvg(t) = 3)

where R(r) represents cumulative regret and Ry (f) represents
average regret. These metrics are especially useful because max-
imizing overall performance over a certain time interval is of-
ten more important than attempting to maximize performance at
each point in time. In fact, the best strategy will necessarily sac-
rifice some of its current performance in order to explore the pay-
offs at other locations. This is necessary so that the system can
determine whether any other point has become more profitable.
This trade-off is often referred to as exploration vs. exploitation.
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Having defined regret, we now turn to the quantification of
regret bounds. Because the spatiotemporally varying environ-
ment is stochastic in nature, there always exists a chance that
any control strategy will yield zero reward at any time. Conse-
quently, it is impossible to derive an upper bound on regret (other
than a trivial zero-reward bound) with 100% confidence. To cir-
cumvent this issue, we examine regret bounds in a probabilistic
sense. In particular, for every regret bound, there will exist some
confidence level with which that regret bound can be achieved.
Equivalently, given a specified confidence bound, there will exist
some corresponding regret bound that will be achieved with that
level of confidence. This relationship is encoded in the following
axiom:

Axiom Forevery € € (0,1),7 >0, 3 (&) > 0 such that
Prir(t) <o6(e)]=1—eVt>T 4)

This relationship can also be expressed in terms of average re-
gret:

Pr[Raug(t) <6(8)]=1-¢, Vt>T (5)

The key contribution of this paper lies in the estimation of
8(¢) (and §(€) in the case of average regret) for different control
strategies; the regret bound acts as a scoring mechanism for each
strategy. It is worth noting that the relationship between 0 and
1 — € is equivalent to the cumulative distribution function (CDF)
for regret. Two sample relationships between 6 and € are illus-
trated in Figure 2. By definition, € is bounded between 0 and
1. Given that low regret is desirable, a & — € curve closer to the
€-axis describes a superior control strategy. If two curves cross,
neither strategy is superior in an absolute sense.

DATA-DRIVEN SYNTHETIC WIND MODEL

To use empirical methods to derive regret bounds of the form
of Equations (4) and (5), a large data set is required. In order to
obtain this, actual wind speed vs. altitude data from [15] was
first used to extract critical statistical properties that describe the
temporal and spatial evolution of the wind speed. This data has
been obtained by a 900 MHz Doppler wind profiler deployed in
Lewes, Delaware. Data is available for nearly the entirety of a
year, at altitudes up to 3km.

The characteristics identified from the aforementioned train-
ing data serve as the backbone for the generation of a much larger
synthetic data set, which is based on a Gaussian Process (GP)
model, as described below.

Example Expected € — § Curves
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' - - --Superior
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06r

0.4+ D
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FIGURE 2: Expected Shape of € — § Curve.

Overview of Model

A GP model can be used to describe a stochastic process for
which a collection of random variables is described via a mean
function and covariance function. Available MATLAB tools for
GP modeling [16] were used in conjunction with the aforemen-
tioned wind data to estimate the mean function and tune the hy-
perparameters of the covariance function, namely the spatial and
temporal length scales.

The mean function of a GP model defines the predicted
mean at any location if there is no data available upon which to
condition a prediction. We used a fourth-order polynomial, m(z),
to define the mean function for the GP, as shown in Equation (6).
The coefficients of this mean function are its hyperparameters.
It is key to note that the assumed mean function does not vary
in time, meaning that simulated data can be generated for any
length of time. The parameterization of the mean function is
given by:

m(z) = ao+ a1z + a2 + a3’ + ay 7t (6)

Based on the data that were used in identifying the mean func-
tion, we fit the coefficients ag, ai, as, az, and a4 to the data used
in identifying the mean function with least squares regression.
The polynomial coefficients are given by:

ao = 13.366", a3 =9.103—_
K} s-km
m m m
=2.596—— =-2707T——~ =0.535——
@ ? s km2 P s km3? s - km*

The covariance of a GP model defines the amount of corre-
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lation between two points. This level of correlation is a function
of the distance and time between the two points. The parametric
function used by the GP model to encode this correlation is re-
ferred to as a covariance kernel. In this work, we use a squared
exponential covariance kernel, which has the form:

-5 o7
K(z,1,7 1) =s% % e 2. (7

Here, s, I, and [; are the hyperparameters of the kernel,
which are identified from data. Specifically, s* is the signal
variance, which characterizes the expected deviation (squared)
of a given wind measurement from the mean. The variables I,
and /; are the length scales of the system, and they characterize
how quickly the wind profile changes with respect to altitude and
time, respectively. Based on the calibration of the model, /; and
[, are given by:

l; =22 min, [, = .27 km

The aforementioned mean and covariance functions are re-
lated to two very important quantities, namely the prediction
mean and prediction variance. These are the conditional mean
and variance of the prediction error, conditioned upon data col-
lected up until that point in time, and are given by [16]:

pe = m(x.) + K (2, 0)K (x,x) ' (y = m(x)) ®)
02 = K(x,,x,) — K(x,,x)K (x,x) 'K (x,x,) )

where x, is a test point for which the prediction mean ., and pre-
diction variance 6?2 are calculated. The functions m(-) and K (-, -)
are the mean and covariance functions defined in Equations (6)
and (7). The vector y is the set of training outputs corresponding
to the inputs x. In this paper, each x is a 2-element vector contain-
ing altitude (z) and time (#). The prediction mean and prediction
variance are critical in defining the control strategies that balance
exploration and exploitation. Furthermore, they are also critical
in generating synthetic data.

The method for generating the GP model consisted of two
main steps. First, the model’s hyperparameters were calibrated
based on the available wind data, using the methodology from
[16]. The hyperparameters were chosen to maximize the log
marginal likelihood over 100 evaluations of the model with re-
spect to the training data, which is calculated as follows:

1 B 1 n
—log(p(yx)) = 5¥" K(x,x) y+ 508K (x,x)| + 7 log2m
(10)

input, x

FIGURE 3: 2-D Example GP Model Mean 20 [16]

where 7 is the number of training points. Using these hyperpa-
rameters, the GP model calculates the prediction mean and vari-
ance of any point, given a set of observed data. A 2-D example of
this is shown in Figure 3. The points represent observed data, the
blue curve represents the prediction mean, and the gray region
represents two standard deviations (square root of the prediction
variance) in either direction of the mean. Note that at positions
far from any observed data, the prediction variance is large due
to the fact that there is no data in the vicinity upon which to cal-
culate the prediction mean.

Generating Synthetic Data

Given parameters of the GP model, synthetic data is gen-
erated by marching forward in time, using synthetic data up to
that point in time to characterize prediction mean and variance at
the next time step, then generating random data at that next time
step based on that mean and variance. To initialize the model, an
initial wind profile, v, (t,z), was chosen. To generate v,,(11,7),
v (to,2) was fed into the GP model, which was used to compute
W (z) and o;(z) at #;. The wind speed at each altitude, at time
t1, was then computed as a Gaussian random variable with mean
W (z) and standard deviation o;(z). This synthetic wind profile
was then appended to the synthetic data, and the synthetic data
for time #, (and all future times) were generated by applying the
same process for each time step.

On-Board Estimates for Control

Ultimately, each candidate control strategy must make a de-
cision (which altitude to operate at) based on available data. In
all candidate strategies, the chosen altitude is a function of the
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prediction mean and prediction variance, based on the data at
altitudes that have been visited up to that time, which represents
a subset of the total set of synthetic data. This is where the GP
model shines; it effectively allows for the calculation of a pre-
diction mean and variance based upon any amount of available
data.

Figure 4 shows a sample set of synthetic data in the top left
plot, along with three sets of on-board estimated wind profiles,
each based on a different control strategy (where the details of the
control strategies are given in the subsequent section). Figure 5
shows each control trajectory overlaid on a contour plot of syn-
thetic data. Because the data made available under each control
strategy comprises only a subset of the available synthetic data,
deviations between the on-board estimates and synthetic data are
observed and indeed expected. Furthermore, because each con-
trol strategy results in the exploration of a different sequence of
altitudes, variation in the on-board models is observed and in-
deed expected.

CONTROL STRATEGIES

In this section, we compare five control strategies for alti-
tude control: Maximum Probability of Improvement (MPI), Up-
per Confidence Bound (UCB), a “greedy” algorithm, and two
constant altitude strategies, defined as “constant altitude - om-
niscient” and “constant altitude - average.” It is important to
note that the two constant altitude strategies require omniscient
knowledge; thus, they are not real-time implementable strategies
but rather merely serve as benchmarks against which the other
altitude control strategies can be compared.

Each control strategy operates based on the maximization of
an acquisition function, oy (4 (z), 6;(z)), which is always a func-
tion of the prediction mean () and prediction variance (Gtz). In
particular, each control law takes the form:

z(t) = arg f?eazx o (1:(2),0¢(2)), (11)

where Z represents the domain of allowable control variables
(altitudes for the AWE system). By tailoring the structure of
a(u(z),0:(z)), it is possible to obtain different tradeoffs be-
tween exploration and exploitation.

Upper Confidence Bound

The Upper Confidence Bound (UCB) [17] control strategy
explicitly trades off exploration and exploitation through the fol-
lowing acquisition function:

o (1:(2), 01(2)) = e (2) + /B % 0:(2), (12)

where B, is a parameter that defines the relative weighting of
W (z) and 0;(z) in the acquisition function. To determine an ac-
ceptable value of 3, several simulations were run with different
B values, and ; = 1 was determined to be near-optimal. This
value of B; means that the acquisition function will be defined as
the prediction mean plus one standard deviation. A more opti-
mistic algorithm would have a higher B, value, giving a higher
weighting to the possibility of improvements past one standard
deviation.

Each time the acquisition function is evaluated, points with
high variance and points with high expected value are both val-
ued. This is an example of “optimism in the face of uncertainty.”
Although the environment is uncertain, the algorithm is opti-
mistic about its chances if it visits an altitude with a high poten-
tial wind speed, even if the expected wind speed at that altitude
is low. The outcome of this strategy is that at least one of two re-
sults will arise from each control action: Either the performance
(wind speed) will be high or the system will learn a significant
amount about a point in the spatial domain that was previously
poorly characterized.

Maximum Probability of Improvement (MPI)

The MPI strategy [18] manages the exploration/exploitation
tradeoff in a different manner than the UCB approach. As the
name suggests, instead of a linear function of mean and standard
deviation, the MPI acquisition function is simply the probability
that the reward for visiting some altitude is greater than the great-
est reward seen so far. The corresponding acquisition function is
given by:

13)

o (1 (z),01(z)) =P (W) ’

where @ is the cumulative distribution function with a normal
distribution and P, is the greatest reward seen so far.

“Greedy” Algorithm

Slivkins and Upfal [10] define a “greedy” algorithm that
simply selects the control value with the highest expected reward,
then remains there for a selected amount of time. Its acquisition
function is therefore given by:

o (1:(2),0:(2)) = e (2)- (14)

The number of time steps for which the strategy decides to
remain at each chosen altitude is given by:

©=1,\/logl, —k, (15)
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Simulated Omniscient Model, MPI
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FIGURE 4: Comparison of Several On-Board Models to Synthetic Generated Data

Synthetic Wind Profile and AWE Trajectories
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FIGURE 5: Contour Plot showing AWE Trajectories
Where [; is the time scale of the environment, and k is the number

of discretized altitudes to choose from. This algorithm is termed
greedy because it ignores exploration in its acquisition function.

However, the amount of time spent at each altitude is a function
of time scale to account for variability of the system.

Fixed Altitude - Omniscient (FAO)

The fixed altitude omniscient strategy simply involves stay-
ing at the constant altitude that provides the highest average re-
ward. It is important to note that this strategy is not real-time
implementable, as it requires omniscient knowledge of the wind
data over the entire time window and all altitudes. This strategy
merely represents a benchmark against which variable altitude
algorithms can be compared.

Fixed Altitude - Average (FAA)

The fixed altitude average algorithm involves remaining at
the altitude that results in an average reward equal to the mean of
all possible rewards. Like the constant altitude omniscient strat-
egy, this strategy is not real-time implementable but instead rep-
resents a benchmark against which variable altitude algorithms
can be compared.
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€ vs. 0 for Average Regret
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FIGURE 6: Average Regret Epsilon-Delta Plot

€ vs. 0 for Instantaneous Regret
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FIGURE 7: Instantaneous Regret Epsilon-Delta Plot

RESULTS

Using each of the acquisition functions defined above,
100,000 simulations were run, each with a different set of syn-
thetic wind data generated as described earlier in the paper. In-
stantaneous and average regret were logged for each run of each
control strategy. For every simulation, each control strategy op-
erated independently under the same set of synthetic data. These
synthetic data were used to generate the regret bound compar-
isons of Figs. 6 and 7, which describe the relationship between &
and g, as defined in Equations (4) and (5).

Several conclusions can be drawn from these results. First,

Control Strategy

MPI

UCB

Greedy

FAO

FAA

8(m/s)

7.90

6.47

13.39

9.38

22.03

TABLE 1: Comparison of Average Regret Upper Bounds with
95% Confidence

each algorithm outperformed the average stationary strategy by
a significant margin, so each has some merit. However, the
greedy strategy failed to outperform the omniscient stationary
strategy, reinforcing the idea that the explicit incentivization of
exploration in the acquisition function is important to long-term
exploitation. Both UCB and MPI outperformed the omniscient
stationary strategy by a significant margin, showing that each is
an effective algorithm in a wide range of cases.

A useful property of these graphs is the ability to compare
individual points as well. For instance, comparing each strategy
based on a 95% confidence interval on average regret can be done
by comparing the & values at € = .05. The resulting average re-
gret bounds at this 95 percent confidence level are given in Table
1.

Another key fact to note is that both plots seem to have an
asymptote along the & axis. This result is intuitive, since there
is no way to provide a hard upper bound on regret. It is interest-
ing that each graph has a different trend as it approaches € = 1.
Because it is possible to obtain zero instantaneous regret (in a
discretized spatial environment), there is a range of € over which
0 is zero under all algorithms. Comparing this to the average re-
gret plots, 8 increases extremely quickly in going from & = 1 to
€ =.99. This also makes sense because it is nearly impossible to
obtain zero cumulative (and therefore average) regret.

CONCLUSIONS AND FUTURE WORK

Focusing on AWE systems as a case study for optimal con-
trol in a spatiotemporally varying environment, this paper pre-
sented the formulation of a Gaussian Process model for use in
generating synthetic wind speed profiles varying in time. These
wind models were then used to compare Upper Confidence
Bound (UCB), Maximum Probability of Improvement (MPI),
and greedy algorithms in terms of instantaneous and cumulative
regret. UCB outperformed MPI, which outperformed the greedy
algorithm by a significant margin.

Future work will focus on expanding the characterization
to include other exploration/exploitation strategies, particularly
extremum seeking and model predictive control strategies devel-
oped in [2] and [5], which both explicitly incorporate exploration
and exploitation into their objective functions. Further work will
also investigate the dependence of regret bounds on spatiotem-
poral length scales, along with an investigation into analytical
expressions for regret bounds and a comparison with the empiri-
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cal results presented herein.
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