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The Fibonacci topological order is the simplest platform for a universal topological quantum computer. While
the v = 12/5 fractional quantum Hall (QH) state has been proposed to support a Fibonacci sector, a dynamical
picture of how a pure Fibonacci state may emerge in a QH system has been lacking. We use non-Abelian dualities
to construct a Fibonacci state of bosons at filling v = 2 starting from a trilayer of integer QH states. Our parent
theory consists of bosonic composite vortices coupled to fluctuating U(2) gauge fields, which is dual to the
theory of Laughlin quasiparticles. The Fibonacci state is obtained by interlayer clustering of the composite
vortices, along with flux attachment. We use this framework to motivate a wave function for the Fibonacci state.
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I. INTRODUCTION

Non-Abelian topological orders are among the most
promising platforms for fault-tolerant quantum computa-
tion [1]. The excitations in these phases are non-Abelian
anyons, which are quasiparticles with non-Abelian exchange
statistics [2]. Non-Abelian anyons therefore provide a source
of topological degeneracy, allowing for nonlocal storage of
information. Information can then be manipulated through
braiding of the anyons, a process which is resilient against de-
coherence from local perturbations because of its topological
nature [3—7]. Among the most promising systems for realizing
non-Abelian topological order are 2d gases of electrons in
strong magnetic fields, which can form fractional quantum
Hall (FQH) states. Excitingly, there is mounting experimental
evidence for fractional statistics in FQH states [8], and for a
non-Abelian FQH state at filling fraction v = 5/2 supporting
the simplest non-Abelian anyon, the Ising anyon [9-13].

Ising anyons, however, are not sufficient for universal
quantum computation [1]. In contrast, topological orders sup-
porting the so-called Fibonacci anyon can serve as universal
quantum computers [14]. This follows from the Fibonacci
anyon’s fusion rule T x 7 = 1 4 7, where 7 is the Fibonacci
anyon, 1 is the trivial anyon, and x denotes anyon fusion.
For this reason there has been much interest in the observed
v =12/5 FQH state, as numerics suggest this may corre-
spond to the Z3 Read-Rezayi (RR) state [15], which supports
the Fibonacci anyon among other, Abelian anyons [16,17].
Unfortunately, the presence of the other anyons can compli-
cate manipulation of the Fibonacci anyons by entering into
braiding processes, and so frustrates the identification of non-
Abelian anyons in interferometry experiments, as discussed
in Ref. [7] for conjectured v = 5/2 states. It is thus of interest
to understand if it is possible to realize a topological order
supporting the Fibonacci anyon as its only excitation.

Several proposals have been put forward for realizing such
a Fibonacci state. These include the nucleation of a Fibonacci
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state on top of an Abelian FQH state using proximity coupled
superconductors [18], chiral superconducting islands with
special couplings [19], and the possible realization of the
Fibonacci state at an integer filling of Landau levels [20].
Further studies have sought Fibonacci anyons in coupled,
Coulomb-blockaded IQH islands [21] and via projective par-
ton constructions [22,23], but all of these constructions lead to
additional anyon content as well. All of the studies that realize
a purely Fibonacci state follow the spirit of coupled wire
constructions [24] which, although providing concrete and
analytically tractable microscopic models with topologically
ordered ground states, do not provide a physical picture for
the dynamics that could lead to the emergence of such states.
A quantum loop model for a Fibonacci state was proposed
in Ref. [25]. In the context of Abelian FQH states, such a
picture is provided by composite fermion/boson field theo-
ries [26-28]. While a composite particle picture is lacking
for most non-Abelian states, including the Fibonacci state,
notable exceptions include the Moore-Read FQH state (and
its cousins) at v = 5/2, which can be described as arising
from the pairing of composite fermions [29], the Read-Rezayi
sequence [30,31], and a range of Blok-Wen states [32-34].
Indeed, it is an open problem to establish a precise compos-
ite particle picture for any purely non-Abelian state, as flux
attachment generically leads to Abelian anyon content.

In this article we employ recently proposed Chern-Simons-
matter field theory dualities [35-37] to construct a composite
particle theory for the emergence of the Fibonacci state in
a QH system of bosons at v = 2, following our earlier ap-
proach in Refs. [31,34]. These dualities can be interpreted
as non-Abelian analogs of flux attachment. In the present
work we instead use duality to construct a Landau-Ginzburg
description of a Fibonacci state of bosons starting from a
trilayer of IQH states, using flux attachment to render the elec-
tric charges bosonic. In this setup, the dynamical mechanism
leading to the Fibonacci state is manifest as interlayer clus-
tering of dual bosonic “composite vortices,” which couple to

©2021 American Physical Society
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FIG. 1. A schematic of our construction of the (a) U(2); and
(b) U(2);,1 Fibonacci states. These are FQH states of fermions and
bosons, respectively. Here <> denotes duality between the theories
of Laughlin quasiparticles and composite vortices. The non-Abelian
state is obtained by clustering of the dual composite vortices between
the layers.

a fluctuating, non-Abelian gauge field. Our chosen clustering
mechanism binds electric charges on two of the layers to holes
on the third, breaking the interlayer exchange symmetry. Our
flux attachment procedure similarly breaks this symmetry,
rendering two of the layers topologically trivial and endowing
the remaining layer with the topological order of the Halperin
(2,2,1) state.

Our dynamical mechanism therefore has an element of
clustering, which underlies the interpretation of the RR states,
while retaining the character of a multilayer state, as the
(2,2,1) state is commonly interpreted as a bilayer (it has a
7, exchange symmetry). In parallel to this intuition, we moti-
vate an ideal wave function for the Fibonacci state, an as-yet
unprecedented achievement. This wave function superficially
describes a bilayer state, but nevertheless has the clustering
properties of the Z3 RR state, which describes clusters of three
local quasiparticles.

II. PARENT MODEL AND NON-ABELIAN DUALITY

Our starting point is a trilayer of v =2 IQH states, as
shown in Fig. 1. We will take each layer to be nearav =2 —
1 transition described by a free Dirac fermion in the clean
limit,

3
Lign=)_ [wn(im — M)W, —

n=1

31 }
——AdA|. 1)
24n
Here W, is a two-component Dirac fermion on layer n, A, is
the background electromagnetic (EM) gauge field, and we use
the notation Dj = 9" — iB*, BdC = ¢""*B,,9,C;, and B =
B*y,, where y* are the Dirac gamma matrices. Integrating
out the Dirac fermions yields a v =2 (v = 1) IQH phase
for sgn(M) < 0 [sgn(M) > 0]. Note we define the filling as
v = —27p,/B, p. = (§L/8A¢), B = € 3;A;. Our interest will
be in the physics near the quantum phase transition at M = 0.
Near M = 0, this theory has been proposed to satisfy a
large number of boson-fermion dualities [37], which are rela-
tivistic generalizations of the familiar flux attachment duality
that relates the IQH transition of fermions to the condensation
of composite bosons [27]. These relate the free Dirac fermion
theory on each layer to one of a Wilson-Fisher boson ¢,,
coupled to a fluctuating U (N) Chern-Simons (CS) gauge field
ay, in the fundamental representation [38—40]. While a free

Dirac fermion has a bosonic dual for any value of N, our
interest will be in the case of N = 2,

3
Lign =) _[IDagul* = rlgpnl* — |¢0l]

n=1
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Here —|¢|* denotes tuning such that the Wilson-Fisher fixed
point occurs at » = 0, and traces are over color [i.e. U(2)]
indices. We have also selected the BF terms in Eq. (4) such
that the second layer has opposite EM charge from the other
two. Because each layer is decoupled from one another, we
may freely determine the signs in Eq. (4) because the partition
function has a charge conjugation symmetry.

The fact that the theory in Eq. (2) has the same phase
diagram as that of Eq. (1) follows from the so-called
level-rank duality of topological quantum field theories
(TQFTs) [38,41,42], which is an equivalence between U (N )y
and SU(k)_y CS theories, where the subscript is the CS level.
In particular, one can set k = 1, leading to a duality between
a trivial (i.e. IQH) theory and a U (N); CS theory,

1 N
Lcs[b] + —Ad Tr[b] «— ——AdA, 5)
2 4

where b is a U (N) gauge field, and we have suppressed gravi-
tational Chern-Simons terms.

Using level-rank duality, we can check the phase diagram
of Eq. (2): for sgn(r) > 0, the ¢ bosons are gapped, leading
to a U(2), theory on each layer, which describes a trilayer of
v = 2 IQH states by Eq. (5). Similarly, for » < 0 the bosons
condense, breaking the gauge group down to U(1) on each
layer. Integrating out the remaining U(1) gauge fields leads
to the desired trilayer v = 1 response. The equivalence of the
phase diagrams of the theories in Egs. (1) and (2) has led to the
conjecture that the critical points at » = M = 0 are identical.
Below we will assume this to be the case, our confidence
bolstered by the large-N, k derivations of Refs. [35,36] and
the Euclidean lattice derivation of Ref. [39].

III. LANDAU-GINZBURG THEORY

To target the Fibonacci phase, we first identify a CS TQFT
representation of the state. It was recently shown [43] that one
such representation is

SU2); x U(1),
7y ’

This is a U(2) CS gauge theory where the Abelian and non-
Abelian parts of the gauge field have different CS levels. The
quotient by Z, simply enforces that these two components
are part of the same U(2) gauge field, projecting out the
Wilson lines which transform under odd half-integer represen-
tations of the SU(2) factor. We elaborate on our Chern-Simons
conventions in Appendix A and show explicitly that U (2);

U@2)3, = (6)
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describes the Fibonacci topological order in Appendix B. The
Lagrangian for this theory is written as

1 1
Lri, = 3 Lcs[a]l — — Tr[ald Tr[a] + —Ad Tr[a], (7)
4 2

where a is again a U(2) gauge field. One can check that
this theory has a single nontrivial anyon, besides the vac-
uum, which transforms in the spin-1 representation of U (2),
satisfies the Fibonacci fusion rule T x t =1+ 7, and has
topological spin 4, = 2/5. We also comment that this theory
is known to be dual to a (G»); TQFT, where G is the smallest
exceptional simple Lie group [17,43,44].

To access the U(2)s3; state, our strategy will be to first
illustrate how one can obtain a U(2); topologically ordered
state in the trilayer IQH system. We will then show how the
U(2)3,) arises as a descendant state of this theory, in a way
we make precise below. We start by introducing interlayer
clustering to the composite vortex theory, Eq. (2), via coupling
to a scalar field X,,,,,

Losier == Y _ &b T — VIZI. ®)

n,m

Under gauge transformations X, > U, EanJ , where U, is
a U(2) gauge transformation on layer n. It can be understood
as a Hubbard-Stratonovich field associated with the order
parameter ¢:1¢,,. We choose the potential V[X] such that

<2mn> = an 12a an ?é 0, M;m > O, detM > O,
)]

where 1, is the 2 x 2 identity matrix in color space and M,,, is
a constant Hermitian matrix. In the resulting ground state, the
¢, fields are individually gapped, while the clustering order
parameter ¢;;'1¢n is condensed.

Because Eq. (9) is invariant under gauge transformations
where U, = U, = Us, the gauge group is broken as U(2) x
UR)xUR)— U(Q2), Higgsing gauge field configurations
except for those with a; = a; = a3 = a. As a result, the CS
terms for each of the a, gauge fields add, leading to a U (2);
theory,

1
»CU(2)3 [Cl, A] =3 »CCS[a] + EAd TI'[CZ]. (10)

Computing the Hall response by integrating out Tr[a] =
Tr[al,] = 2a, one finds that the total filling fraction is now
v = 2/3, rather than v = 6. The change in the filling fraction
is related to our choice of charge assignments in Eq. (4), which
results in the unit coefficient of the BF term in Eq. (10).
While in the decoupled trilayer theory this choice of signs
was immaterial, upon clustering the EM charge densities
on each layer p, = s,-‘,-BiTr[a{l]/br, i,j =x,y are pinned
as p; = p3 = —p,, thereby breaking the discrete symmetry
exchanging the layers and altering the filling fraction. The
resulting minimal EM charge will prove crucial to obtaining
the Fibonacci state.

The Fibonacci state, Eq. (7), is a descendant of the U(2)3
state at v = 2/3. To see this, we attach a single unit of flux to
the “electrons,” the charges which couple to the background
EM vector potential A,, and are understood to be the vortices
of Tr[a] in the variables of Eq. (10). Since in our starting
theory, Eq. (1), the EM charges are fermions, flux attachment

shifts their statistics and renders the fundamental EM charges
bosonic. Explicitly, introducing an Abelian statistical gauge
field b we have

1 1 1
= b —bdb + —bdA + —AdA. 11
L= Lywy,la, bl + y + 5 + yp (1D

Integrating out b, one immediately finds the Lagrangian in
Eq. (7), which displays a v =2 Hall response. We have
therefore found, using a combination of flux attachment and
interlayer clustering, a Fibonacci state of bosons at v = 2.

The flux attachment transformation in Eq. (11) transmutes
the original electric charges, which are fermions, to bosons,
but it also mixes the three layers of the parent model, Eq. (1).
A more physically transparent approach, which also leads to a
Fibonacci state at v = 2, proceeds by first attaching a positive
flux to each electron on the first and third layers of the theory
in Eq. (1) while attaching a negative flux to each electron
on the second layer, explicitly breaking the layer exchange
symmetry outright and leading to the parent theory depicted
in Fig. 1(b). As is standard for multilayer FQH states, this
layer-dependent flux attachment can be understood as encod-
ing changes in the intralayer interaction strengths between
electrons [45,46]. The details of this procedure are provided
in Appendix C. By attaching fluxes in this way to the theory
of Eq. (1), we obtain a bosonic theory,

3
LP=>"Ly. (12)

n=1

2
L2 = |Da®, > — r|®,* — |<I>n|“+—4 AdA,  (13)
’ T

2 2
LY, = |De®:* — r|®s)* — |&2* + —ada + —pdp
4 47
1

+2rr

adf + L,BdA. (14)
2

Here the &, are composite bosons dual to the original Dirac
fermions, while « and B are emergent U (1) gauge fields aris-
ing from the flux attachment transformation. On the first and
third layers, flux attachment has led to theories of electrically
charged Wilson-Fisher bosons on top of a v = —2 IQH state.
On the second layer, however, this leads to Wilson-Fisher
bosons coupled to the Halperin (2,2,1) CS gauge theory at
filling v = 42/3, as illustrated in Fig. 1(b). This constitutes
the parent Abelian theory for the Fibonacci state. We note that
the Halperin (2,2,1) state has appeared as a parent state for the
Fibonacci order in related constructions [18,47].

Applying the same flux attachment procedure to the
non-Abelian composite vortex theory of Eq. (2) yields a
new composite vortex theory dual to the Abelian theory of
Eq. (12),

3
Lr=>3"7%, (15)
n=1
~ 1 2.
LY = |Dupu* = Flgul* = |pul* + — Tr [andan - —laz}
4 3

+ (—1)”|:L Trla,]d Trla,] + LAd Tr[an]]. (16)
4 2
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This duality between the theories of Eqgs. (12) and (16) is
illustrated schematically in Fig. 1(b) and derived in detail
in Appendix C. Using this bosonic parent description, the
final Landau-Ginzburg theory of the Fibonacci state can be
expressed in terms of the clustering order parameter X, after
integrating out the composite vortices ¢,, and the auxiliary
gauge fields associated with flux attachment,

L= ZTI[|azl7zn — iy Zpn + izmnan|2] + Z‘CCS[an]

1 1
+ Xn:(—l ) (E Trla,]d Trla,] + 5—Ad Tr[an]>

—V.[Z], (17)

where the first term is a kinetic term generated by quantum
corrections due to integrating out ¢, and V. is the renormalized
potential for X. The trace is again over color indices. The
phase diagram can be understood as follows. For (£) = 0, the
theory consists of three decoupled layers: two IQH insulators
and a single Halperin (2,2,1) layer. For (X,,,) = (¢jﬂ¢n) #0,
the gauge fields are again Higgsed such that a; = a; = a3 =
a. Hence the low-energy physics of the system is described by
the U(2)3,; Chern-Simons action

3 2i 1
Lrip = e Tr |:andan - gta,ﬂ e Tr[ald Tr[a]

+ iAd Tr[a]. (18)
2m

The theory thus finds itself in a phase with Fibonacci topolog-
ical order.

Furthermore, one can identify the Fibonacci anyons with
gapped degrees of freedom in the Landau-Ginzburg theory;
namely, the excitations of the adjoint bilinear of composite
vortices ¢ t%¢, where 1 are the generators of SU(2) C U(2).
This can be observed from the fact that this operator trans-
forms in the spin-1 representation of the gauge group and
has vanishing electric charge, both properties of the Fibonacci
anyon. Note that while the ¢ fields possess a layer index, in the
Fibonacci state this does not lead to any unwanted degeneracy
due to the condensation of (qfnd),,), and so there is only one
Fibonacci anyon.

IV. FIBONACCI WAVE FUNCTION

Having developed an effective field theory that provides a
concrete dynamical mechanism for how the Fibonacci state
may be realized in a bosonic system at v = 2, we now seek
to develop an ideal wave function, which until now has
also proven elusive. Ideal wave functions encode information
about the clustering properties of electrons (or bosons, in
our case) in non-Abelian states and can be compared with
numerically obtained ground states in order to identify the
topological order realized in realistic Hamiltonians. Remark-
ably, the wave function we will obtain displays a number of
physical features that parallel the above effective field theory
construction.

To obtain a wave function for the Fibonacci state of bosons,
we employ the standard conformal field theory (CFT) ap-
proach, in which the wave function is constructed in terms

of correlation functions of the edge (G2); = U(2)3,; Wess-
Zumino-Witten (WZW) CFT, W({z7}) = (l—[f]: L Yo (7)) (2]
Here z7 = x7 + iy{ are the complex coordinates of the elec-
trons o =1,...,n a type of “flavor” index, nyN is the
number of electrons, and W, (z;) are operators in the CFT.
Physically, W, (z) represents an electron operator and can
in general be written as the product W, (z) = x, (z)e#@/V?,
where v is the filling fraction and ¢ is a compact scalar.
The x,(z) operators are electrically neutral. From Eq. (6) we
observe that for the case at hand the x,’s are operators in
the SU(2); CFT, and ¢/#/v”, with v = 2, is an operator in the
U(1), CFT.

The first step in constructing a wave function is therefore
to determine the boson operators W,. We claim that the ap-
propriate choice of boson operators is

v, = wzeiqﬁ/«@-i—iw/ﬁ, v, = I/fle—iqﬁ/«/g-k—i(p/«/i. (19)

Here we have made use of the fact that operators in the SU(2)3
CFT can be expressed as products of vertex operators of an-
other compact boson ¢, and so-called Z3 parafermions [48] ¥/
and v, which satisfy the operator product expansions (OPEs)

Vi @Y1(Z) ~ (2 —2) Ya(@) + -+ - (same for | < 2),
Vi@V (@) ~ @—2) P+ (20)

The choice of the two boson operators (labeled by “spin”
1/ {) in Eq. (19) is motivated by the effective field theory
construction discussed above. Indeed, the (2,2,1) Halperin
state involved in the parent state in Fig. 1(b) has two species of
vortices satisfying a Z, exchange symmetry and is commonly
understood as a bilayer state; the remaining two layers in
Fig. 1(b) are topologically trivial. We therefore anticipate that
the Fibonacci wave function “knows” about this exchange
symmetry and choose boson operators as such.

More formally, the need for two boson species arises from
the fact that the boson operators must correspond to gen-
erators of the (G;); current algebra, all of which represent
local excitations. These can be labeled by the 12 roots of
G,, of which two are linearly independent. This suggests
that we should have two distinct boson operators, as is the
case for other FQH wave functions based on rank-two Lie
algebras [49-51]. Following Refs. [49,50] we require that our
choice of boson operators is such that they have the same
electric charge and opposite SU(2) spin. The first require-
ment is satisfied via the two e#/v2 factors; the second by
the fact that their SU(2)s factors are conjugate to one an-
other. We detail the construction of these boson operators in
Appendix D.

The Fibonacci wave function can thus be written as a
2N-point correlation function of the W, operators. The cor-
relators of the vertex operators can be explicitly evaluated, and
so we obtain (up to an overall Gaussian factor)

N
W({zi, wi)) = <H wz(z,-)w1<wi>> [[@—w)'"”

i=1 ij

< [ @ =P TJawi —wp®®, @D

i<j i<j
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where z; (w;) labels the position of the up (down) “spin.” This
formal expression encodes key properties of the Fibonacci
state. Indeed, the highest power of z; appearing in the factors
multiplying the parafermion correlator is 2N (1/2), yielding
a filling fraction of v = 2, consistent with our field theory
construction. Additionally, one can use Eq. (20) to see that
the wave function satisfies the same three-body clustering as
the Z3 RR wave function [15] separately in each of the z;
and w; coordinates, dovetailing with our description in terms
of clustering of composite vortices. These parallels between
our proposed wave function and our dynamical construction
above are encouraging, giving us confidence that Eq. (21) does
indeed describe the Fibonacci state.

By using Eq. (20) to point-split ¥, into a product of ¥, ’s,
one can explicitly evaluate the above parafermion correlator
to express Eq. (21) as

WS Uz, i wi})
w)) = , 22
W({z;, wi}) I—[i<j(zi _ Zj)2 Hi,j(zi — UJj) 22

where \IJ]’§§3({zi,z,-, w;}) is the bosonic v =3/2 RR wave
function for 3N particles, with the coordinates of N pairs of
particles set equal to one another. The details of this compu-
tation are straightforward, but are included for completeness
in Appendix D. The apparent asymmetry in z; and w; is
an artifact of choosing to point split the v,’s. A manifestly
symmetric wave function can be obtained via symmetric com-
bination with the wave function obtained by point splitting
the ¥, ’s. Note that while the wave function exhibits a simple
pole as we bring z; — w;, we expect that this short-distance
singularity can be regularized without altering the topological
properties of the wave function.

V. DISCUSSION

In this article we have presented both a field-theoretic
construction of the bosonic Fibonacci state at v = 2 based on
non-Abelian composite particle dualities, as well as an explicit
wave function for this state. Our construction involves a parent
trilayer system, in which the Fibonacci state is realized via
clustering of dual “composite vortices” coupled to fluctuating
U(2) gauge fields. Leveraging this construction, we obtain
a wave function for the Fibonacci state sharing many of the
physical properties of our field-theoretic construction. Our
approach can therefore be used to generate many other exotic
states in need of a microscopic construction, as well as to
motivate their wave functions.

Unlike other non-Abelian states, short-distance construc-
tions of the Fibonacci state have proven elusive. The fact that
our construction is based on a parent state involving fairly
germane bosonic FQH phases suggests that a Fibonacci state
may be realizable in the laboratory. Furthermore, we antici-
pate our wave function for the v = 2 bosonic Fibonacci state
will motivate future numerical searches for this exotic state
in local, microscopic Hamiltonians. Additionally, going for-
ward, it will be of interest to construct a transparent fermionic
analog of the bosonic Fibonacci state presented here, which
would reproduce the state found in Ref. [34].

One may ask whether a different choice of boson operators
would have yielded an equally reasonable candidate wave

function. In particular, the W4, operators we defined are part
of an SU(2) quartet. For example, the wave function one ob-
tains by choosing the other pair of operators within this quartet
as the bosons describes the Abelian Halperin (2, 2, —1) state.
While it is possible to obtain this state from our parent trilayer
theory, it would be interesting to explore how different choices
of boson operator in the CFT language may represent different
parts of the bulk phase diagram.
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APPENDIX A: CHERN-SIMONS CONVENTIONS

Here we lay out our conventions for non-Abelian Chern-
Simons gauge theories. We define U(N) gauge fields a, =
abt®, where 1" are the (Hermitian) generators of the Lie al-
gebra of U(N), which satisfy [t, t*] = i f®“t¢, where f¢*
are the structure constants of U(N). The generators are nor-
malized so that Tr[r’t‘] = %8“. The trace of a is a U(1)
gauge field, which we require to satisfy the Dirac quantization

condition
dT
/ dal _ ez,
) 27'[

where ¥ C X is an oriented two cycle in space-time, which
we denote X . If a,, couples to fermions, then it is a spin, con-
nection, and it satisfies a modified flux quantization condition

dT
[
) 2 22

where w; is the second Stiefel-Whitney class of X. In general,
the Chern-Simons levels for the SU(N) and U (1) components
of a can be different. We therefore adopt the standard nota-
tion [37]

(AD)

(A2)

SUMN e x U()yw
Zn '

UN)w = (A3)

By taking the quotient with Zy, we are restricting the differ-

ence of the SU(V) and U (1) levels to be an integer multiple
of N,

kK =k+nN, nelZ. (A4)
This enables us to glue the U(1) and SU(N) gauge fields
together to form a gauge invariant theory of a single U(N)
gauge field a = asyw) + a1, with Tr[a] = Na having quan-

tized fluxes as in Eq. (A1). The Lagrangian for the U (N )i«
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theory can be written as

k 2 ;] K —k
Lywy,, = P —Tr |:ada — ga i| + 1N Trlald Tr[a]
(AS)
LI [QSU(N)daSU(N) - ﬁagu } + NK da.
4 3 SUM T y4n
(A6)

For the case k = k' we simply refer to the theory as U (N ).

Throughout this paper we implicitly regulate non-Abelian
(Abelian) gauge theories using Yang-Mills (Maxwell) terms,
as opposed to dimensional regularization [52,53]. In Yang-
Mills regularization there is a one-loop exact shift of the
SU(N) level, k — k + sgn(k)N, that does not appear in di-
mensional regularization. Consequently, to describe the same
theory in dimensional regularization, one must start with a
SU(N) level kpg = k + sgn(k)N. The dualities discussed in
this paper therefore would take a somewhat different form in
dimensional regularization.

APPENDIX B: REPRESENTATION OF THE FIBONACCI
ORDER IN TERMS OF U (2);

In this Appendix we demonstrate explicitly that U(2);; =
[SUR2); x U(1),]1/Z, possesses the same anyon content as
that of (G»);, namely, just the Fibonacci anyon. There are
multiple ways to describe the process of enforcing the Z;
quotient in the definition of U(2)3 ;. From the perspective
of the anyon content of the theories, this quotient amounts
to condensing [54] a bosonic anyon in the SU(2); x U(1);
product theory with Z, fusion rules and either O or & braiding
statistics with all other anyons. The condensed anyon is then
identified as a local quasiparticle, and so all anyons with
which it braids nontrivially are projected out. In order to
identify the anyon to be condensed, let us remind ourselves
of the anyon content of the SU(2)3; and U (1), factors:

U(l)y: 1,s (B1)

SU@2)s = [0], [1/2], [1], [3/2]. (B2)

Here s is the semion, which has topological spin &, = 1/4 and
satisfies the fusion rule s x s = 1. We have labeled the anyons
of SU(2)3 by the representation of SU(2) under which they
transform. They are all self-dual, satisfying the fusion rules

(0] x [0] = [0], (B3)
[1/2] x [1/2] = [0] + [1], (B4)
[1] x [1] = [0] + [1], (BS)
[3/2] x [3/2] = [0]. (B6)

From this we see that [1], which has spin A} = 2/5, is the
Fibonacci. The only Abelian anyon is [3/2], which has spin
hi3/21 = 3/4, trivial braiding with [1], and nontrivial braiding
with [1/2]. We immediately see that, in the product theory,
[3/2]s is an Abelian anyon with spin unity. On condensing
this anyon, all anyons aside from the Fibonacci will become

confined, yielding the desired (G,); Fibonacci topological
order.

APPENDIX C: DERIVATION OF THE BOSONIC PARENT
STATE FROM INTRALAYER FLUX ATTACHMENT

Here we describe the intralayer flux attachment procedure
described in the main text, which yields the bosonic parent
state depicted in Fig. 1(b) of the main text. We start again with
a trilayer of free Dirac fermions near a v =2 — 1 plateau
transition,

3

31
Lign=)Y [\1: (iDs — M)WV, — E—AdA} (C1)

n=1
This theory is dual to a trilayer of Wilson-Fisher composite
bosons ®,,, coupled to fluctuating CS gauge fields «,, [55,56],

LignlA] < Zz:q’[obn, o, Al, (C2)

where

LE[Dy, ap, Al = [Dg, @, — 1|0, )* — |D,[*

1 1 1
+ —a,da, Ada, — —AdA. (C3)
4

4 + 2
Here —|®|* again denotes tuning such that the theory is at its
Wilson-Fisher fixed point when r = 0, and the phase diagrams
of the two theories match if sgn(r) = — sgn(M).

We now attach a positive flux to the electric charges on
layers n =1 and 3 and a negative flux to those on layer
n = 2. This is implemented in a manifestly gauge invari-
ant way by the following transformation on each layer’s
Lagrangian [57,58]:

1
Ed)[(bn’ a}’l’A] - £¢[®n7 a}’h yl‘l] + yndﬂn

(— )”

Bnd Bn + Ad Bn (C4)
2

where B,, y, are new fluctuating U (1) gauge fields. One can
easily check that the electric charges in the gapped phases of
this theory have had their statistics shifted by +x. Because
the equation of motion for y,, is

d(an + ﬁn) = d)/m (CS)
y» may be integrated out while preserving flux quantization.
The resulting Lagrangian on each layer is
2
= Do, ®ul” = r|®yl” = |Bl* + —atpder,

1
57 AdBn.

(C6)

1 1
+ [+ 1)" Otndﬁn

i /3nd Bn +

where we have redefined £& to minimize the number of
labels in use. On layers n = 1, 3, the CS term for S, van-
ishes. Integrating it out therefore Higgses «,, (in other words,
sets da,, = dA), leaving a topologically trivial theory near a
superconductor-insulator transition. On layer n = 2, however,
the CS term for B, has level 2, meaning that the gauge theory
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is topologically nontrivial and has the K matrix of the
Halperin (2,2,1) state. Explicitly, renaming a, = «, 8, = B,

2
Ly 3= |Da®,* — r|®,)* — |@,* + JoAdA, (€D
’ T

L)y = Da®2l? = r[®2f — [P
2
4
The trilayer theory >, [13’ is that of Eq. (12) and is depicted
in Fig. 1(b) of the main text.

We now check that these theories are dual to theories of
composite vortices, which on clustering yield the Fibonacci
state. Applying the duality used in Eq. (2) of the main text

along with the transformation flux attachment transformation
in Eq. (C4), the dual theories of composite vortices are

L & L? = Dugal® — Flopul® — 160l*

2 1 1
+ —ada+ —pBdB + —adB + —BdA. (C8)
4 2w 2

1 2i
— T nd n— 5 )
—}—47[ r|:a a 3anj|

1 1
+ _Vnd TI'[Cln] + _Vndﬁn

2 2
(=1 1
+ ﬂndﬁn + _Ad,Bru (Cg)
4 2

where again a, are U(2) gauge fields. In this case, both y,
and B, can be safely integrated out without running afoul of
flux quantization: integrating out y,, implements a constraint
on (i.e., Higgses) B,,, d B, = —d Tr[a,]. The resulting theories
involve U(2); _; gauge theories on layers n = 1, 3, which is
topologically trivial [38], and a U(2); 3 theory on the n =2
layer,

~ 1 20
LS = |Dugul® = Flgul* — |¢ul* + — Tr |ayda, — =-a}
4 3

+ (—1)”[% Trla,]d Trla,] + %Ad Tr[a,,]].

(C10)

As in the discussion in the main text, we are free to invoke
charge conjugation symmetry to flip the sign of the BF term
on layer n = 2 relative to those on layers 1,3.

APPENDIX D: DETAILS OF THE WAVE FUNCTION
CONSTRUCTION

1. Constructing the local boson operators

As stated in the main text, the boson operators used in
constructing the Fibonacci wave function must be selected
from the generators of the (G,); current algebra. We present
the technical details of this process here. The (G,); current
algebra has 14 generators, 12 of which are labeled by the
roots of G,. In order to obtain explicit expressions for these
operators, we make use of the duality between (G,); and
U2)31 =[SU2)3 x U(1)2]/Z,, which will allow us to write
the generators in terms of operators in the SU(2)3 and U (1),
conformal field theories (CFTs).

The U (1), factor is described by a chiral boson ¢ with
compactification radius R = 1. It supports a single anyon, the

TABLE I. Scaling dimensions of the Parafermion;primary fields.

1 (4 %) 01 [ep] €
A 0 2/3 2/3 1/15 1/15 2/5

semion, represented by the vertex operator

s(2) = eiéﬂ(Z)/ﬁ, (D1)

which has scaling dimension A; = 1/4. The operators s> =

¢V and 5% = ¢~V2 generate the U(1), chiral algebra, and
so correspond to local excitations.

As for SU(2)3, its primary fields, like the anyons in the
corresponding TQFT, fall into four topological sectors labeled
by the SU(2) representation under which they transform: [],
j=0,1/2,1,3/2. In order to write down explicit forms of
these fields and the current operators, we make use of the
fact that the operators of SU(2); can be expressed in terms
of products of operators in the k = 3 parafermion and U (1)
CFTs, the former of which we will write as Parafermions. The
U(1)¢ CFT is described by a chiral boson ¢ at radius R = 1,
with primary fields

ilp/~/6

d@@)=e 1=0,...,5. (D2)

These fields have scaling dimensions A; =/ 2 /12, from which
we see that the field a® represents a local excitation. The
primary fields of the Parafermion;CFT and their scaling di-
mensions are given in Table I while their fusion rules are given
in Table II. The raising and lowering operators of the SU(2)3
algebra are given by the operators

Yia® =y eVl yiat = yne V. (D3)

Now, in order to obtain the (G;); algebra from SU(2); x
U(1),, we must perform the Z, quotient. As in the TQFT
description, this corresponds to condensing operators in the

Hi

topological sectors. In the language of CFT, this “condensa-
tion” means that the operators in these topological sectors
will be identified as generators of the [SU(2); x U(1)2]/Z>
[equivalently, (G»);] CFT. Explicitly, the operators

a, Ya, yna, d

are all in the [3/2] sector, and so are topologically equivalent.
Indeed, each is related to the other by fusion with the SU(2)3

(D4)

(D3)

TABLE II. Fusion rules of Parafermions.

S (] ) (o] 02 €
¥ 12

) 1 Y

o1 € 02 0y + Yy

(o0} (o5} € 1+e€ o1 +'(//2

€ 02 o] o1+ or + Y I+e
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Vs

FIG. 2. Root system of G, labeled by the corresponding (G,);
current generators. The green circles indicate the operators we iden-
tify as the boson operators.

generators, forming an SU(2); quartet. Hence, performing the
Z, quotient means condensing the operators

Zl3s, yias, ynas, a3s,

a’s, Y.as, ynas, a’s. (D6)
This set of operators, combined with the generators of SU(2);3
and U (1),, constitute the 12 generators of (G;); labeled by its
roots [59].

Figure 2 depicts the G, root system labeled by the cor-
responding current generators. One can check that vector
addition of the roots matches up with fusion of the cor-
responding current operators. Note also that the generators
naturally organize themselves in terms of their transformation
properties under SU(2) and U (1). The vertical coordinate of
the root corresponds to the U(1) charge and the horizontal
coordinate to the SU(2) spin.

It now remains to determine which generators we should
identify as the physical bosons. In the spirit of Refs. [49,50]
we expect that we must choose two boson operators, by virtue
of the fact that the root system is two dimensional. The bosons
should have the same positive charge, suggesting we should
restrict ourselves to the upper half-plane of the root system.

J

As described in the main text, we expect the Fibonacci wave
function to describe a two-flavor system, and so the boson
operators should have opposite SU(2) spin. We thus claim
that

U, = ynas = wzekb/xfﬁ-&-w/ﬁ’

W, = Yyas = ye #/VOHRIV2 (D7)
are the appropriate boson operators.

We note that operators @’s and a’s also satisfy our two
criteria for charge and spin. In fact, W4 and W, form
an SU(2) quartet with @s and a’s (as can be seen from
Fig. 2), and so one may reasonably ask whether the latter
two operators constitute equally valid choices for the bo-
son operator. As it turns out, the wave function obtained
from @s and a®s describes an Abelian state, as we demon-
strate in the following section. This suggests, a posteriori,
that W4, are the correct boson operators needed to ob-
tain a wave function describing the non-Abelian Fibonacci
state.

2. Derivation of the Fibonacci wave function

In this section we present a computation of the explicit
form of the Fibonacci wave function provided in the main text.
With the choice of boson operators given in Eq. (D7), we can
express the wave function as

N
W({zi, wi)) = <H wT<zi>w¢(wi)0bg>

i=1

N
= <H wzas(z,»>w1as(w,~>0bg>, (D)

i=1

where z; and w; label the positions of the up and down spins
(spin is used as a stand-in for some flavor index). Here Oy, is a
background charge operator that ensures the correlator of the
s fields is nonvanishing and yields the usual Gaussian factor
on the plane [60]. Note that such an operator for the a fields
is not necessary, since there are an equal number of a and a
fields, ensuring their charge neutrality condition is satisfied.
Physically, this is a consequence of the fact that it is the U (1),
sector and hence the s fields which are charged under the
external electromagnetic field. We thus obtain (dropping the
usual overall Gaussian factor),

N N N
W({z, wi)) = <1—[ K//Z(Zi)llfl(wi)><l_[ ei\}g¢(zz')e—i\lfo¢(wl’)><1_[ eikW(Zi)eiﬁw(wi)Obg> (D9)
i=1 i=1

N
= <ﬂ wz(z,->1/u<wi)> [[@—wd'?[[G =27 [ Jawi — w;*>.
i=1 ij

i=1

(D10)

i<j i<j

In order to evaluate the remaining correlator, we can use the parafermion operator product expansions (OPEs)

Vi@ (@) ~ (2 —2) PYa@) + - - - (likewise for 1 <> 2),

Vi@Y@)~ @ —2) P+ (D11)
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to effectively point split the ¥, operators into products of ¥r; operators:

N
Ciwl me»—<rH#—ﬁY”WAﬁWWM»+~-, (D12)

i=1

where, here and in the following, the limit z} — z7 is taken implicitly. The ellipses represent less singular terms in the ¥ x ¥
OPE which vanish in this limit, allowing us to isolate the desired parafermion correlator when we take z} = z? = z; at the end of
the computation.

Now, the correlator of i fields is precisely given in terms of the Read-Rezayi (RR) wave functions:

<H Vi (27) v (&) ¥ (i >> = Wi ({a & wih) Wi (el 2 wil).- (D13)

Here \IJ1’§§3 and ¥ ;({z;}) = I—[K]( —z;) are the v = 3/2 bosonic RR (taking k = 3 and M = 0 in the notation of Ref. [15])
and Landau-Jastrow wave functions, respectively. Hence,

N
<H v (22) ¥ (wy) > — \pl’g?({zil, 22, wi})\IJEJZB zl,z, L wi} 1—[ z —z7) 2/3 (D14)
i=1
= U ({2 77 wi}) 1_[ (z — zjl-)72/3(z,-2 — z?)fz/S(wi - w;m
i<j
<TG =2 TTE —w) @ —wy) ™ (D15)
i#] iJ

We can now safely set zil = zi2 = z;, in which case the terms contained in the ellipses vanish identically. Combining terms and
ignoring unimportant overall phase factors, we obtain

Wz, wih) = ViR (e 2o wh [ J@ — 27 [ [ —wp)™! (D16)

i<j iJ

as our Fibonacci wave function. Here W{{R ({zi, zi, w;}) is the bosonic v = 3/2 RR wave function for 3N particles, with the
coordinates of N pairs of these particles set equal to one another. As noted in the main text, the asymmetry in z; and w; is a
consequence of having point split the ¥, parafermions as opposed to the yr; parafermions. Had we instead point split the ¥
parafermions into products of v, parafermions, we would have obtained the above expression with z; and w; exchanged. Since
the expressions obtained via these two different point-splitting procedures must necessarily be equal, we can write down the
wave function in a manifestly symmetric way by taking their average:

Rz ziowi)) R (i, wi, wy }))
S i ke 1 1 D17
({zi, wi}) ( TG0 + [Ticj(wi —w;)? H(Z wj)” DI7)

Finally, we return to the remark regarding the choice of boson operators made at the end of the preceding section. Had we
instead attempted to construct a wave function using W44 = a’s and W W= @s as the boson operators, we would have obtained

N
Mme=<HwM@wummm> (D18)

i=1

N N
. /3 . /3 i L ) L .
— <1_[ el\/:¢(z;)e—tﬁ¢(w,)><1_[ elﬁw(Z1)61ﬁ¢(W')0bg>. (D19)
i=1 i=1
The correlators of vertex operators can be straightforwardly evaluated to obtain

wmwn—ﬂm—qnm—mfﬂm—w>l (D20)

l<j

which describes the Abelian Halperin (2,2, —1) state, again at filling v = 2. This gives us some confidence that W({z;, w;})
correctly describes the Fibonacci state.
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