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Scrambling and Lyapunov exponent in spatially extended systems
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Scrambling of information in a quantum many-body system, quantified by the out-of-time-ordered correlator
(OTOCQ), is a key manifestation of quantum chaos. A regime of exponential growth in the OTOC, characterized
by a Lyapunov exponent, has so far mostly been observed in systems with a high-dimensional local Hilbert space
and in weakly-coupled systems. Here, we propose a general criterion for the existence of a well-defined regime
of exponential growth of the OTOC in spatially extended systems with local interactions. In such systems, we
show that a parametrically long period of exponential growth requires the butterfly velocity to be much larger

than the Lyapunov exponent times a microscopic length scale, such as the lattice spacing. As an explicit example,
we study a random unitary circuit with tunable interactions. In this model, we show that in the weakly interacting
limit, the above criterion is satisfied, and there is a prolonged window of exponential growth. Our results
are based on numerical simulations of both Clifford and universal random circuits supported by an analytical

treatment.
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Introduction. Many-body quantum chaos has recently at-
tracted an increasing amount of attention thanks to its
connections with quantum thermalization [1,2], many-body
localization [3,4], and black hole physics [5-8]. Among the
many operational diagnostics of quantum chaos [8—18], the
scrambling of local quantum information, typically quantified
by out-of-time-ordered correlators (OTOC) [5-7,19-29], aims
to capture the growth of complexity of local operators under
Heisenberg time evolution. In large-N systems such as the
Sachdev-Ye-Kitaev model and conformal field theories with
large central charge and holographic duals, the OTOC has
been shown to exhibit a regime of exponential growth charac-
terized by the quantum Lyapunov exponent, Ay [5,7,30-32].
The scrambling time, which determines the time window for
the exponential growth, is parametrically long in the large-N
limit.

OTOCs in quantum many-body lattice systems with a
finite-dimensional Hilbert space and local interactions have
also been studied extensively [19-21,27,33-38]. In generic
situations, no regime of exponential growth was found
[19,21,37]. A special case which does exhibit exponential
growth is the weak coupling regime [24,39-42]. However, it
remained unclear what controls the scrambling time in sys-
tems with a local structure.

In this work, we propose a general criterion for the exis-
tence of a time period of exponential growth of the OTOC,
which is applicable for any system with spatial structure and
local interactions. We argue that a parametrically long scram-
bling time can arise as a result of a competition between the
exponential growth of the OTOC locally, and the rapid growth
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of the number of accessible degrees of freedom. The latter
growth rate is set by the butterfly velocity vg [43], which is
defined as the velocity of the propagation of the operator front.
The existence of a parametrically long regime of exponential
growth is thus possible in the limit of large vg /(ALa) ratio [see
Eq. (3)], where a is a microscopic length scale, to be discussed
below.

We demonstrate this principle using a random unitary
circuit model. Such models have been employed to draw
insights into the dynamical properties of deterministic quan-
tum systems [9,11,14,19-22.44,45]. Previous works on (1 +
1)D random unitary circuits showed that the front of the
OTOC travels ballistically with a diffusive broadening, and
no extended exponential regime was found [19,21]. Here, we
introduce a random circuit model with a tunable parameter,
that plays the role of the interaction strength. We provide both
analytical results and numerical verifications of the existence
of an extended exponential growth regime in the limit of weak
interaction. Our analysis further reveals the full structure of
the OTOC during the entire evolution, including a crossover
to a saturated regime at late times. In the limit of strong
interactions, we recover the behavior observed in previous
studies [21].

Below, we start by defining the integrated OTOC, which
is suitable to characterize operator growth in systems with
spatial structure. We then introduce our random unitary circuit
model with tunable interactions. Focusing on a special type of
a Clifford circuit, we demonstrate the existence of a regime
of exponential growth, and characterize the crossover time
to the saturated regime. Numerical results for this model are
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FIG. 1. Time evolution of the (a) local and (b) integrated OTOC
in the Clifford circuit (see text), demonstrating the behavior expected
in a generic system. The early time growth is characterized by a
Lyapunov exponent X, while at late times the growth of the iOTOC
is linear, with a rate proportional to the butterfly velocity vg and the
saturation value, Cy,. The crossover time between the two regimes
(the scrambling time) is indicated by z,.

complemented by analytic rate equations. We then consider
more generic circuits and show that our main results remain
unchanged.

Scrambling time in systems with local interactions. We con-
sider a finite-dimensional system defined on a lattice, where
each lattice site contains a degree of freedom with a finite-
dimensional Hilbert space. The OTOC of two local operators,
W;, V;, acting on sites i, j respectively, is given by

C:j(t) = —([Wi(t), V;1). (1)

Under random unitary circuit evolution, temperature is ill-
defined, and therefore we take the expectation value above
with respect to an infinite temperature distribution. For sim-
plicity, we will first focus on the one-dimensional case and
address higher dimensions later. In a generic scenario, upon
time evolution, the support of the operator W;(¢) grows bal-
listically, forming a light cone with the front propagating at
the butterfly velocity vg. The OTOC above becomes nonzero
once the site j enters this light cone. Following an early
exponential growth regime, the value of C; ;(#) must saturate
at late times, since it is bounded due to the finite dimension
of the local Hilbert space. This behavior is shown in Fig. 1(a),
for a random circuit model to be described below.

While the structure and dynamics of the local OTOC (1)
are interesting on their own right, here we focus on the global
properties of the scrambling dynamics. To this end, we intro-
duce the integrated OTOC (iOTOC),
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where a summation is performed over all the lattice sites [46].
The iOTOC measures the expectation value of the “size” of
the operator [47,48], washing out any transients and details of
spatial structure, and thus simplifying the identification and
characterization of the scrambling time. Similar to the local
OTOC, at early times, iOTOC may exhibit an exponential
growth with a Lyapunov exponent f(¢) ~ e*’. At late times,
when the OTOC in the bulk of the system reaches its satu-
ration value Cgy, the iOTOC crosses over to a linear growth
regime (due to the linear growth of the light cone), f(¢) ~
Csyvpt. Assuming a single crossover time ¢, (the scrambling
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FIG. 2. (a) Schematic representation of the Clifford unitary cir-
cuit (see text). (b) Density of o* operators in the operator string o (¢ ),
for a single realization of the circuit with p = 0.9, r = 0.05.

time) between these two regimes, #, can be obtained from
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where we introduced the OTOC density at saturation cg =
Csai/a (a is the lattice spacing) and dropped corrections to
t, that are of higher order in ¢y, vg/Ar. We thus find that a
parametrically long scrambling time is expected when vg /AL
diverges. Note that in the limit of A, — 0, both 1/Ap and ¢,
diverge, however there still is a parametric separation between
the two time scales due to the logarithmic enhancement of
the latter with respect to the former, allowing for a clear
exponential regime to be present. The iOTOC, exhibiting this
behavior, is plotted in Fig. 1(b).

Random Clifford circuit model. To demonstrate the argu-
ments above, we study the scrambling dynamics in a random
unitary circuit. We start with the simplest model in which the
general behavior discussed above can be observed, and which
is amenable to both analytical and large scale numerical anal-
ysis. A study of a more generic version of the circuit, which
concurs with the results obtained here, is presented later. The
structure of the circuit is shown in Fig. 2(a). Every site hosts a
single qubit. At every odd (even) time step, a set of SWAP
gates is applied on the odd (even) bonds, with probability
0 < p < 1 on each bond. A SWAP gate interchanges the state
of the two qubits it acts on, and can be written explicitly as
ooy +0; 0, 4+ (1+0f{05)/2, where 0% and 0* are Pauli
operators. Then, a set of CNOT gates is applied on a fraction
0 < r < 1/2 of all the bonds. The bonds are chosen such
that only configurations where no two bonds share a site are
allowed and each such configuration is equally probable. The
role of each qubit (control or target) is chosen randomly and
independently for each CNOT gate.

Note that the circuit consists of Clifford gates only, and
therefore it can be simulated classically [49], allowing us to
explore large systems and long times. Upon Clifford evolu-
tion, an operator o/ (t = 0) = of, with @ = x, y, z remains a
single operator string of Pauli operators. In particular, for the
circuit structure described above, when the operator ¢ (t) is
considered, the corresponding operator string at times ¢ > 0
consists only of ¢ and identity operators. Figure 2(b) shows
the density of o operators as a function of time, for a single
realization of the circuit.

To understand the evolution of operators consider first the
limit of » = 0 (no CNOT gates), and p = 1 (SWAP gates are
applied on all odd/even bonds at each time step). In this case,
a single-site operator located on an odd (even) site propagates
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ballistically to the right (left) with velocity vg o = 1. Decreas-
ing p can be thought of as introducing disorder, as a missing
SWAP gate results in a back-scattering of an operator, flipping
its velocity. This gives rise to a diffusive propagation with
diffusion constant D ~ v} ,7,, where 7, ~ (1 — p)~! is the
characteristic time between consecutive back-scatterings.

Next, consider r > 0, and for concreteness focus on the
evolution of a o operator. The action of a CNOT gate on
operators (when the first qubit is the control qubit and the
second one is the target) is given by

0'®1 ->0°'®1, 1RQ0°—>0°Q0c% 0°Ro* = 1Roc".
“
This process can be thought of as a scattering event due to
interactions, which increases the support of a local operator.
Denoting the scattering time due to the CNOT gates as 7, ~
r~!, we note that in the diffusive case (p < 1), a finite r gives
rise to a finite butterfly velocity vg ~ +/D/t, ~ /r/(1 — p)
[40].
We are interested in the evolution of the OTOC. Writ-
ing the operator string corresponding to o(t) explicitly as
®ka,f‘k(’) (where k runs over all the sites, and o© is iden-

tity), the commutator [0/ (¢), of ] is given by (®p jolf‘ k(')) ®

[O_‘;’Yj(t)
o 2 .

is simply [077", 01" = 4(8.,) — D1 for a;(t) # 0 Gie.,

VA
o # 1). In particular, the expectation value is state in-

dependent. Performing the summation over j in Eq. (2)
with W = 0%/+/2 and V; = ajﬁ/ﬁ, we find f(1) = Y ;(1 —
38.0;1))(1 — 84,1),0), i.€., the number of (nonidentity) Pauli
operators in o/ (¢) which are different from of. Below, we
consider the OTOC between o/(t) and o7, so that f(t)
amounts to the number of o operators in the string o (¢) at
time ¢. Note that the commutator [0 (¢), af] vanishes iden-
tically for any realization of the circuit. In fact, any product
state in the z basis remains unentangled upon evolution with
the circuit above. However, as shown later, our main results
hold also in more generic circuit models.

Numerical results for integrated OTOCs and crossover
time. We now study the behavior of the iOTOC in this model
as function of the circuit parameters. To this end, we perform
numerical simulations of the operator dynamics, calculat-
ing the local and integrated OTOC. As was already mentioned,
the density of the CNOT gates, r, is the parameter that sets the
growth rate of the support of a local operator in the circuit
and leads to scrambling. Therefore, we expect the Lyapunov
exponent A to be directly determined by r. In the limit r < 1
(and hence large vg /AL ), we expect an extended time regime
in which the growth of the iOTOC is exponential with a well-
defined Lyapunov exponent. We find that this is indeed the
case both for the ballistic and the diffusive parameter regime,
as can be seen in the insets of Figs. 3(a) and 3(c). To further
analyze the crossover time, and its scaling with A and vg, we
look at the average OTOC density, namely the iOTOC, f(¢),
divided by the size of the light cone, 2vgt (see Figs. 3(a) and
3(c)). At late times we expect this quantity to approach the
saturation value of the OTOC in the bulk, which we find to be
1/2 and independent of r in the regime r < 1. (This value is in
agreement with the expectation from the analytic rate equation

) 2
,af ]. Since (a,f‘k(’)) = 1, the commutator squared
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FIG. 3. Numerical results for the OTOC in the Clifford circuit,
for the ballistic case (p = 1) in (a) and (b), and for the diffusive case
(p =0.9) in (c¢) and (d). (a), (c) The OTOC density, f(t)/(2vgt), for
different values of r as function of time. The crossover time, z,., when
the OTOC density reaches half of the saturation value, is indicated by
a star. Insets: f(¢) on a log scale. (b), (d) Scaling of 7, with A (ex-
tracted as the slope of log[ f(¢)] vs. ¢ at early times) and vg (extracted
from the spatial profile of the operator density at late times). Data
points shown correspond to » = 0.003, 0.006, 0.012, 0.024, 0.048 in
(b) and r = 0.002, 0.004, 0.008, 0.016, 0.032 in (d).

analysis presented later on.) We define the crossover time , as
the time at which the averaged OTOC density reaches half of
its saturation value. In Figs. 3(b) and 3(d), we show that the
crossover time extracted as above, indeed obeys the scaling
expected from Eq. (3) both for the ballistic circuit with p = 1
and the diffusive one with p = 0.9. The results were obtained
by averaging over 4 x 10 (10*) realizations for the ballistic
(diffusive) case.

Master equation for integrated OTOC. To gain further
insights on the scrambling process in the model described
above, we now derive analytic rate equations for the iOTOC.
We consider the limit of small but finite r, and 1 —
p < 1, such that the scattering events due to the CNOT
gates are dilute and can be assumed to be uncorrelated
[50]. This assumption is analogous to the molecular chaos
hypothesis.

At time step ¢, the number of CNOT gates applied within
the light cone of an operator o (¢) is Ncnor = 2rvgt. Con-
sider what happens to the total number of ¢° operators in the
operator string upon application of a CNOT gate. From (4),
we see that this number increases by one if the target (but not
the control) site hosts a o operator, while if both sites host
a o operator, the number decreases by one. Let us denote
the fraction of nonidentity operators in the operator string of
o} (t), within its light cone, by ¢ = f(¢)/(2vgt). Assuming the
probabilities of different sites to host a o operator are inde-
pendent, the probabilities for the processes which increase or
decrease the number of nonidentity operators in the string are
given by ¢(1 — ¢) and ¢, respectively. Thus, the change in
the number of o° operators in the operator string in a single
time step is given by Nenor(g(l — g) — qz). Recalling that
the iOTOC is given simply by the number of nonidentity
operators in the operator string, as discussed above, we find
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that the rate equation for the iOTOC is (treating the time as

continuous)
af _ _f@)

vt

This equation admits a solution of the form

goerl

1+ goé[Ei(rt) —Ei(D]’

f@) = (6)
where Fi(rt) is the exponential integral, and g is a constant
set by the initial conditions. At early times, we see that indeed
f(t) ~ e, with a Lyapunov exponent set by the CNOT gates
density, Ap, = r. At late times, using the asymptotic expansion
for the exponential integral, we find f(t) ~ vgt /(1 + (rt)™'),
i.e., the slope asymptotically approaches the butterfly velocity.
The average OTOC density, f(t)/(2vgt) thus tends to 1/2 as
observed numerically (see Figs. 3(a) and 3(c)). The crossover
time, t,, at which the OTOC density reaches a finite fraction of
the saturation value, is given (to leading order) by ¢’** ~ vgt,
in agreement with Eq. (3) and as observed numerically. Al-
though the focus of our discussion here was on the iOTOC, in
which the spatial structure is washed out, in the Supplemen-
tal Material (SM) [50] we discuss hydrodynamic equations
capturing the spatial structure and discuss their validity. We
observe a crossover from a propagation in which the front
maintains its shape to a regime where the front broadens
diffusively.

Generalizations of the random circuit model. As noted
previously, the circuit model considered above is a special
type of a Clifford circuit, in which neither operator entangle-
ment nor state entanglement grow upon time evolution. We
now demonstrate that our results do not rely on either of this
properties. For simplicity, we restrict the analysis below to the
ballistic case, i.e., p = 1.

First, consider a generalization of the circuit, in which the
standard CNOT gate is replaced by a CNOT operation where
the basis for both the control and the target qubits is chosen to
be the x,y, or z basis randomly and independently for each of
the two qubits. Namely,

o o

A ekl W P ek 5 T et (1)
where o, 8 € x,y,z. While this remains a Clifford cir-
cuit, the entanglement of a state generically grows with
time in this case. We consider the averaged OTOC «
Zﬂ’v:x,y’z ([cri“ ®), aj“]z). The averaged iOTOC obtained for
this model, for CNOT gate density r = 0.01, is plotted in
Fig. 4(a) (dashed blue line). It can be seen that a prolonged
regime of exponential growth is present, similarly to the
simplified model. Additional results for this model, and in
particular a verification of the scaling in Eq. (3), are given
in the SM [50].

We next consider a further generalization to a non-Clifford
circuit. In this circuit, operators evolve into superpositions of
operators as in a generic quantum system and the operator
entanglement grows with time. In our non-Clifford circuit, at
each time step of the evolution, following the application of
CNOT gates, a T gate (i.e., a 7 /4 phase gate, around a ran-
domly chosen axis) is applied with probability pr at each site.
To calculate the OTOCs in presence of T gates we perform the

®) )

FIG. 4. (a) Integrated OTOC for the generalized circuit model,
shown on a log-scale, and (b) operator entanglement entropy across
the middle bond in the system, as function of time, for different
bond dimensions M. Averaging over 300 realizations of the circuit
is performed in each case. For p;y = 0, the model becomes a Clifford
circuit, for which the operator entanglement remains zero at all
times.

time evolution of operators using a matrix product state (MPS)
[51] representation of the operator string, employing the ITen-
sor library [52]. Due to the exponential growth of operator
entanglement exact simulations are limited to short times. To
go to longer times, we perform truncation of the MPS bond
dimension. In Fig. 4(a) we plot the iOTOC for r = 0.01 and
T gate density pr = 0.01, for different maximal bond dimen-
sions. The respective operator entanglement that builds up in
the system is shown in Fig. 4(b). We see that although the op-
erator entanglement in the system is now nonzero, the iOTOCs
are essentially unmodified. Note that evolution up to times ¢t ~
300 is carried out without any truncation, and is thus exact.

Discussion. In this work, we proposed a criterion for the
existence of a Lyapunov exponent in many-body systems
with local interactions and a finite dimensional on-site Hilbert
space. Having a parametrically long scrambling time (where
the OTOC is exponentially growing, and hence Ap, is well-
defined) requires the ratio vg/Ar to be large. This condition
is naturally fulfilled in weakly-coupled systems. Whether
the condition is satisfied in other situations, e.g., in generic
strongly-coupled systems in the low-temperature limit, re-
mains to be seen.

Our condition is demonstrated in an explicit one-
dimensional random unitary circuit model, where we have
verified the relation between the scrambling time and vg/Ap.
However, we expect the results to carry over to higher dimen-
sions. Since the number of sites in the light cone grows as
(vgt)? in the d-dimensional case, the late-time iOTOC scales
as f(t) ~ t¢. Therefore, the scrambling time is enhanced by a
factor of d relative to the one-dimensional case.

Finally, we note that other probes for scrambling have
been proposed, in particular the growth of state and operator
entanglement [9-14,19,21,53,54]. In our Clifford circuit, we
find an exponential growth of the OTOC despite the fact that
the operator entanglement (as well as the state entanglement
in the special circuit described above) do not grow, indicating
that the existence of a Lyapunov exponent captures a different
aspect of scrambling.
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51. GENERALIZED CLIFFORD CIRCUIT

In Fig. 51 we present additional results for the general-
1wed Clifford circunit, in which CNOT gates are replaced
by two-qubit operators defined in Eq. (7) in the main
text. Numerical simulations for thiz model are carried
out similarly to the non-Clifford case using MPS-based
techniques. However, due to the nature of the Clifford
circuit, MPS bond dimension in these simulations remains
equal to unity and no truncation is required. Here, an
average over 400 circuit realizations was performed, and
an averaged OTOC over the different pauli operators, 1.e.
oc E##=I.ﬂ.z[af{ﬂ’ t:lr;.']2 was calculated. The length of
the system 1s taken to be large enough such that the light
cone never reaches the boundary and is equal to L = 4000
sites. It can be zeen that the behavior of the 10TOC in
this case is similar to the one observed for the special
Chifford circuit in Fig. 3 in the main text. In particular,
a prolonged regime of exponential growth can be clearly
seen for small values of r, and the scaling of the crossover
time, expected from Eq. (3) in the main text, holds.
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FIG. 51. {a) The OTOC density, i.e. f(t)/(2vgt), for different
values of r in the generalized Clifford circuit with p = 1.
Crossover time at which the OTOC density reaches half of
its saturation value is marked by a star. The inset shows
the iOTOC on a log scale. (b) Scaling of the crossover time
expected from Eq. (3) in the main text.

52. SPATIAL STRUCTURE OF THE OTOC
AND HYDRODYNAMIC EQUATIONS FOR Oz, t)

In the main text we focused on the integrated OTOC,
arguing that this quantity allows for an easier identifi-
cation and characterization of the scrambling time in

systems with local structure. For completeness, here we
discuss the spatial structure of the OTOC in the circuit
under investigation.

52.1. Local OTOCs

In Fig. 52, we show the local OTOC Cy,(t) =
{[o’f{ﬂfurﬂﬂ} as function of time, at different positions
along the 1D chain, obtained for the special Clifford cir-
cuit with p =1 and r = 0.05. For j = i, an exponential
growth of the OTOC at early times can be clearly seen.
For j # i the OTOC vanishes identically before the ar-
rival of the light cone at time ¢ = vg|j — i]. While for
|7 — 2| < t, /vg we expect a regime of exponential growth
to be present, for |j —i| = t,/vg this is no longer the
case as can be seen in the Figure. Here, the scrambling
time obtained numerically as discussed in the main text
1= equal to £, = 118,
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FIG. 52. Local OTOC Cy ; probed at different values of j on
a linear scale in (a) and a log scale in (b), obtained for the
special Clifford circuit with p = 1 and r = 0.05.

§52.2. Scaling of vg with Ay in the diffusive circuit

In the main text, we arpued, that to allow for a paramet-
rically large regime of exponential growth of the OTOC, a
diverging ratio of vg /A, 1s required. When the dynamics
in the absence of interactions is diffusive (which in the
case of the random cirenit model under study oceurs when
p < 1), a finite scattering rate (Le. a finite Ap) is required
to generate a a well-defined butterfly velocity, vg. It is
thus important to verify the scaling of vg with Ap, still
allows for a diverging ratio vg /A7, in the Ay, — 0 limit. In



Fig. 53 we show that in the small A;, regime, the scaling
is vg o /AL as expected [1].
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FIG. 53. Scaling of the butterfly velocity va with the scattering
rate Ap, for a diffusive Clifford circuit with p = 0.9.

52.3. Hydrodynamic equations for C(z,t)

5231, Regime of validity of the hydrodynamic equations

In deriving the hydrodynamic equations we make the
same assumption as in the master equation, that the
creation and annihilation events of o operators in the
operator string, due to CNOT gates, are dilute and un-
correlated. In a correlated collision two o operators that
were generated by a CNOT gate collide again, resulting
in the annihilation of one of them. In other words, a
correlated collision yields a closed loop of world lines of
two initially generated o operators. The hydrodynamic
equation 1= valid when the probability of correlated colli-
sions 1s negligible, 1.e. much smaller than the probability
of the uncorrelated collisions where the world lines do not
form closed loops. Below we estimate the probability of
correlated collision in the ballistic and diffusive circuits
separately.

Ballistic case (p = 1): After two o° operators are
created by a CNOT gate, they start propagating in op-
posite directions under the action of SWAP gates. The
probability that this CNOT gate generated a correlated
collision 1s then equal to the probability that the two oper-
ators undergo a single collision each before meeting again,
which is of order unity, times the probability that the
two operators collide upon meeting, which is r. There-
fore, in the limit v — 0 the probability to generate a
correlated collision event vanishes, and the hydrodynamic
description is justified.

Diffusive case (p < 1): In this case, in addition to
CNOT gates, backscattering events can be generated by
missing SWAP gates. We consider the limit 1< 1/(1 —
p) < 1/r, so that diffusive backscatterings dominate.
We ask once again what is the probability for two of
operators to meet and collide with each other hefore
colliding independently. HRecall that the typical time
between consecutive backscatterings due to missing SWAP
gates is 7, ~ (1 — p)~!. Therefore, the probability for
the two o° operators to meet again without undergoing
a collision is given by pmeer ~ (1 — r)*™. In the regime

Tp < 7 multiple meetings of the operators can oceur
before a CNOT gate acts on them. Summing over all such
trajectories we obtain that the probability to generate a
correlated collision i IS Pmeet [En L oll — )" pheed] T~ (1 —
p). In other words, in the regjme 1 — p % r, the vahdity
of the h)drud}ma.m:c equation is imited b:..r smallness of

1—p

5232  Hydrodymamic equations for the ballistic circuit

In the ballistic circuit, the OTOC density C(z,t) de-
couples into left and right moving densities, Cp(x,t) and
Crlx,t), respectively. Hydrodynamic equations for the
evolution of these densities are given by,

ac ac
WR — —vs,uﬁ +r[CL(1 — Cr) — CLCE]
aCy,

om0 g +r[Cr(l - C) - CuCal. (S1)

For r = 0 these equations describe a decoupled propaga-
tion of the left and right moving operators, and hence the
respective OTOC densities. For a finite r = 0, ° opera-
tors can be generated or annihilated within the operator
string, following the rules in Eq. (4) of the main text.
Note that operators on neighboring sites have opposite
propagation directions. Hence, a right moving operator
can be generated only from a left moving one (and vice
versa), giving rise to the first term in the square brack-
ets above. Annihilation occurs only when left and right
moving operators meet - in this case one of them (the
one corresponding to the control qubit) is annihilated,
resulting in the second term in the square brackets.

We now argue that these coupled equations admit a
traveling wave solution, with no front broadening. We
start by considering a solution of the form CL R =
Cr rl(x — vgt), which turns the set of equations in (51)
into coupled non-linear ordinary differential equations.
There are two fixed point solutions for these equations,
Cr.r =0 and Cp g = 1/2. Performing a linear stability
analysis around these fived points, we find that while the
former point is a saddle point and thus unstable, the latter
one is a stable solution, as long as vg > vgp. While this
suggests that multiple velocities are possible for the propa-
gation of the wave, as discussed in Refs. (2, 3], the physical
velocity corresponds to the lower bound on the allowed
velocities. Note however that the hmit vg — vy p 1s singu-
lar, signaling a breakdown of the continuum limit. Hence,
we expect the velocity of propagation to be vg = ve p+ve,
with the cutoff for v, being set by lattice-scale microscopic
parameters.
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FIG. 54. Front broadening in the special Clifford random
circuit model. (a,c) The width of the front as function of time,
normalized by the width of the front at the time when the
OTOC in the bulk reaches saturation, wp, for p = 1 in (a)
and p = 0.95 in (b). The local OTOC at different times for
p=1,r=0.11n (c) and for p = 0.95,r = 0.1 in (d).

52 3.3, Hydrodynamic equation for the diffusive circuit

In the diffusive case the total OTOC density Oz, t)

satizfies
ac a8°C

For r = 0 this equation describes a diffusive propagation
of the o® operator, with a diffusion constant I). For
T > 0, creation (annihilation) of o° operators in the
operator string following the processes in Eq. (4) of the
main text results in the first (second) term in the square

(82)

brackets. This differential equaion is known as the Fisher-
Kolmogorov-Petrovsky-Piscounov (FKPP) equation [4, 5]
which, similarly to the equations for the ballistic case,
admits a traveling wave solution. Following a similar
analysis to the one outlined in Ref. 2], we find that the
physical velocity for the propagation of the wave in this
case 15 given by vg = 24/ Dr, in qualitative agreement
with the behavior seen in Fig. 53.

5234, Numerical analysis of front broadening

We now present numerical results for the broadening
of the front in our random circuit model. A well defined
front develops once the OTOC reaches saturation value
in the bulk, which in the main text was denoted by Cgy.
We define the front as the region in space where the
OTOC varies between 0.2C,5; and 0.8C.,;. At the time
the OTOC in the bulk reaches saturation value, the front
has a finite width that we denote by wy (this width is
increasing with vg/r). In Figs. 54(ab) we plot the width
w normalized by wy as function of time, for p = 1 and
p = 0.95 for different values of v. As can be seen, the
front does not broaden (or broadens very slowly) in the
limit of p — 1,7 — 0. This iz indeed the regime in which
we expect the hydrodynamic equations to hold, and for a
traveling wave solution without front broadening to exist.
In Figs. 54{c,d) the front itself is shown at different times
for r = 0.1, and p = 1,0.95. Here, to reduce the noise,
a convolution with a uniform kernel of size 10 sites was
performed (note that since the size of the kernel is small
compared to the width of the front this does not alter
the results). It can be explicitly seen that while there is
no broadening for the ballistic case with p = 1, the front
does broaden for p = 0.95 for this value of r.
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