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ABSTRACT

Despite an increasing adoption of high-level synthesis (HLS) for its
design productivity advantages, there remains a significant gap in
the achievable clock frequency between an HLS-generated design
and a handcrafted RTL one. A key factor that limits the timing
quality of the HLS outputs is the difficulty in accurately estimating
the interconnect delay at the HLS level. Unfortunately, this problem
becomes even worse when large HLS designs are implemented on
the latest multi-die FPGAs, where die-crossing interconnects incur
a high delay penalty.

To tackle this challenge, we propose AutoBridge, an automated
framework that couples a coarse-grained floorplanning step with
pipelining during HLS compilation. First, our approach provides
HLS with a view on the global physical layout of the design, al-
lowing HLS to more easily identify and pipeline the long wires,
especially those crossing the die boundaries. Second, by exploit-
ing the flexibility of HLS pipelining, the floorplanner is able to
distribute the design logic across multiple dies on the FPGA de-
vice without degrading clock frequency. This prevents the placer
from aggressively packing the logic on a single die which often
results in local routing congestion that eventually degrades tim-
ing. Since pipelining may introduce additional latency, we further
present analysis and algorithms to ensure the added latency will
not compromise the overall throughput.

AutoBridge can be integrated into the existing CAD toolflow for
Xilinx FPGAs. In our experiments with a total of 43 design configu-
rations, we improve the average frequency from 147 MHz to 297
MHz (a 102% improvement) with no loss of throughput and a negli-
gible change in resource utilization. Notably, in 16 experiments we
make the originally unroutable designs achieve 274 MHz on average.
The tool is available at https://github.com/Licheng-Guo/AutoBridge.
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1 INTRODUCTION

High-level synthesis (HLS) tools simplify the FPGA design pro-
cesses by allowing users to express untimed designs in high-level
languages such as C/C++ or OpenCL without concern for cycle-
accurate details at the register-transfer level (RTL). However, while
the productivity is significantly improved, there still exists a consid-
erable gap between the quality of result (QoR) of an HLS-generated
design and what is achievable by an RTL expert.

One major cause that leads to the unsatisfactory frequency is
that HLS cannot easily predict the physical layout of the design
after placement and routing. Current HLS tools typically rely on
pre-characterized operation delays and a very crude interconnect
delay model to insert clock boundaries (i.e., registers) into an un-
timed design to generate a timed RTL implementation [1, 2, 3].
Afterwards, optimizations in RTL and physical synthesis such as
retiming are expected to fix the potential critical paths due to in-
adequate pipelining. However, while retiming can redistribute the
registers along a path, the total number of registers along each path
or cycle must remain a constant [4], significantly limiting the scope
of improvement. Hence, as the HLS designs get larger, the timing
quality of the synthesized RTLs usually further degrade.

This timing issue is worsened as modern FPGA architectures
become increasingly heterogeneous [5]. The latest FPGAs integrate
multiple dies using silicon interposers to pack more logic on a single
device; however, the interconnects that go across the die boundaries
will carry a non-trivial delay penalty. In addition, specialized IP
blocks such as PCle and DDR controllers are embedded amongst
the programmable logic. These IP blocks usually have fixed loca-
tions near dedicated I/O banks and will consume a large amount
of programmable resources nearby. As a result, these dedicated IPs
often detour the signals close-by towards more expensive and/or
longer routing paths. Further, modules interacting with such fixed-
location IPs are also more constrained in their layout. This, in turn,
results in long-distance communication to other modules. Together
these factors tend to further lower the final clock frequency.

There are a number of prior attempts that couple the physi-
cal design process with HLS compilation [1, 6, 7, 8, 9]. Zheng et.
al. [1] propose to iteratively run placement and routing to obtain
accurate delay statistics of each wire and operator. Based on the
post-route information, HLS re-runs the scheduling step for a bet-
ter pipelining; Cong et. al. [6] is another representative work that
presents placement-driven scheduling and binding for multi-cycle
communications in an island-style architecture similar to FPGAs.
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Figure 1: Core Idea of the Proposed Methodology.

The previous approaches share the common aspect of focusing
on the fine-grained interaction between HLS and physical design,
where individual operators and the associated wires and registers
are all involved during the delay prediction and iterative HLS-layout
co-optimization. While such a fine-grained method can be effective
on relatively small HLS designs and FPGA devices, it is too expen-
sive (if not infeasible) for today’s large designs targeting multi-die

FPGAs, where each implementation iteration from HLS to bitstream

may take days to complete.

In this paper we propose AutoBridge, a coarse-grained floorplan-
guided pipelining approach that addresses the timing issue of large
HLS designs in a highly effective and scalable manner. Instead of
coupling the entire physical design process with HLS, we guide HLS
with a coarse-grained floorplanning step, as shown in Figure 1. Our
coarse-grained floorplanning involves dividing the FPGA device
into a grid of regions and assigning each HLS function to one region
during HLS compilation. For all the inter-region connections we
further pipeline them to facilitate timing closure while we leave
the intra-region optimization to the default HLS tool.

Our methodology has two major benefits. First, the early floor-
planning step provides HLS a view of the global physical layout
which helps HLS more accurately identify and pipeline the long
wires, especially those crossing the die boundaries. Compared
to retiming [10], HLS-level pipelining creates more optimization
opportunities for the downstream synthesis and physical design
steps, thus potentially leading to higher performance. Second, the
pipelining-aware floorplanning can reduce local routing congestion
by guiding the subsequent placement steps to better distribute logic
across multiple dies, instead of attempting to pack the logic into a
single die as much as possible.

While AutoBridge can improve the frequency with additional
interconnect pipelining, we also need to ensure the added latency
does not negatively impact the overall throughput of the design. To
this end, we present analysis and latency balancing algorithms to
guarantee the throughput of the resulting design is not negatively
impacted.

Our specific contributions are as follows:

e To the best of our knowledge, we are the first to tackle the
challenge of high-frequency HLS design on multi-die FPGAs by
coupling floorplanning and pipelining.

e We design a coarse-grained floorplan scheme tailored for HLS
which can distribute the design logic across multiple dies on an
FPGA to effectively reduce local congestion and facilitate HLS
to adequately pipeline global interconnects.

e We analyze how the additional latency may affect the throughput
of the design, and propose algorithms to offset the potential
negative influence of the added latency.
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Figure 2: Overview of the AutoBridge Framework. Grey
boxes represent the original software flow and blue boxes
represent components of AutoBridge.

e Our framework, AutoBridge, interfaces with the commercial
FPGA design toolflow, with a compile time overhead in the order
of seconds. It improves the average frequency of 43 designs from
147 MHz to 297 MHz with and a negligible area overhead.

Figure 2 shows the overall flow of our proposed methodology.
The rest of the paper is organized as follows: Section 2 introduces
background information on modern FPGA architectures and shows
motivating examples; Section 3 details our coarse-grained floorplan
scheme inside the HLS flow; Section 4 describes our floorplan-
aware pipelining methods; Section 5 presents experimental results;
Section 6 provides related work, followed by conclusion and ac-
knowledgements.

2 BACKGROUND AND MOTIVATING
EXAMPLES

2.1 Multi-Die FPGA Architectures

Figure 3 shows three representative multi-die FPGA architectures,

each of which is described in more details as follows.

e The Xilinx Alveo U250 FPGA is one of the largest FPGAs with
four dies. All the I/O banks are located in the middle column
and the four DDR controller IPs are positioned vertically in a
tall-and-slim rectangle in the middle. On the right lies the Vitis
platform region [11], which incorporates the DMA IP, the PCle
IP, etc, and serves to communicate with the host CPU.

e The Xilinx Alveo U280 FPGA is integrated with the latest High-
Bandwidth Memory (HBM) [12, 13, 14], which exposes 32 inde-
pendent memory ports at the bottom of the chip. I/O banks are
located in the middle columns. Meanwhile, there is a gap region
void of programmable logic in the middle.

e The Intel Stratix 10 FPGA [15] also sets the DDR controller
and I/O banks in the middle of the programmable logic. The
embedded multi-die interconnect bridges and the PCle blocks
are distributed at the two sides of the chip, allowing multiple
FPGA chips to be integrated together. Although this paper uses
the Xilinx FPGAs to demonstrate the idea, our methodology is
also applicable to Intel FPGAs and other architectures.
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Figure 3: Block diagrams of three representative FPGA archi-
tectures: the Xilinx Alveo U250, U280 (based on the Xilinx
UltraScale+ architecture) and the Intel Stratix 10.

Compared to previous generations, the latest multi-die FPGA
architectures are divided into disjoint regions, where the region-
crossing naturally incurs additional signal delay. In addition, the
large pre-located IPs consume significant programmable resources
near their fixed locations that may also cause local routing conges-
tion. These characteristics can hamper the existing HLS flows from
achieving a high frequency.

2.2 Motivating Examples

We show two examples to motivate our floorplan-guided HLS ap-
proach. First, Figure 4 shows a CNN accelerator implemented on
the Xilinx U250 FPGA. It interacts with three DDR controllers, as
marked in grey, pink, and yellow blocks in the figure. In the original
implementation result, the whole design is packed close together
within die 2 and die 3. To demonstrate our proposed idea, we first
manually floorplan the design to distribute the logic in four dies
and to avoid overlapping the user logic with DDR controllers. Ad-
ditionally, we pipeline the FIFO channels connecting modules in
different dies as demonstrated in the figure. The manual approach
improves the final frequency by 53%, from 216 MHz to 329 MHz.

Second, Figure 5 shows a stencil computation design on the
Xilinx U280 FPGA. It consists of four identical kernels in linear
topology with each color representing a kernel. In the original
implementation, the tool’s choice of die-crossing wires are sub-
optimal and one kernel may be divided among multiple regions.
Instead in our approach, we pre-determine all the die-crossing wires
during HLS compilation and pipeline them, so the die boundaries
will not cause any problems for the placement and routing tool. For
this example, we achieve 297 MHz while the design is originally
unroutable.

3 COUPLING HLS WITH COARSE-GRAINED
FLOORPLANNING

In this section, we present our coarse-grained floorplanning scheme
that can be integrated with HLS. We assume that HLS preserves
the hierarchy of the source code, and each function in the HLS
source code will be compiled into an RTL module.

Note that the focus of this work is not about improving floorplan-
ning algorithms; instead, we intend to properly use coarse-grained
floorplan information to guide HLS and placement.

Die 3
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Die 1

Die O
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Figure 4: Implementation results of a CNN accelerator on
the Xilinx U250 FPGA. Spreading the design across the de-
vice helps reduce local congestion, while the die-crossing
wires are additionally pipelined.

Default Floorplan-Guided

Figure 5: Implementation results of a stencil computing de-
sign on U280. Floorplanning during HLS compilation signif-
icantly benefits the physical design tools.

3.1 Coarse-Grained Floorplanning Scheme

Instead of finding a dedicated region with a detailed aspect ratio
for each module, we choose to view the FPGA device as a grid
that is formed by the die boundaries and the large IP blocks. These
physical barriers split the programmable fabric apart into a series
of disjoint slots in the grid where each slot represents a sub-region
of the device isolated by die boundaries and IP blocks. Using our
coarse-grained floorplanning, we will assign each function of the
HLS design to one of these slots.

For example, for the Xilinx Alveo U250 FPGA, the array of DDR
controllers forms a vertical split in the middle column; and there
are three horizontal die boundaries. Thus the device can be viewed
as a grid of 8 slots in 2 columns and 4 rows. Similarly, the U280
FPGA can be viewed as a grid of 6 slots in 2 columns and 3 rows.

In this scheme, each slot contains about 700 BRAM_18Ks, 1500
DSPs, 400K Flip-Flops and 200K LUTs. Meanwhile, to reduce the
resource contention in each slot, we set a maximum utilization ratio
for each slot to guarantee enough blank space. Experiments show
that such slot sizes are suitable, and HLS has a good handle of the
timing quality of the local logic within each slot, as in Section 5.



3.2 Problem Formulation

We first assume the HLS design adopts a dataflow programming
model, where each function corresponds to one dataflow process,
and each function will be compiled into an RTL module. Functions
communicate with each other through FIFO channels.

Given: (1) a graph G(V, E) representing the HLS design where
V represents the set of functions! of the dataflow design and E
represents the set of FIFO channels between vertices; (2) the number
of rows R and the number of columns C of the grid representation
of the target device; (3) maximum resource utilization ratios for
each slot; (4) location constraints such that certain I0 modules
must be placed nearby certain IP blocks. In addition, we may have
constraints that certain vertices must be assigned to the same slot.
This is for throughput concerns and will be explained in Section 4.

Goal: Assign each v € V to one of the slots such that (1) the
resource utilization ratio? of each slot is below the given limit; (2)
the cost function is minimized. We choose the total number of slot-
crossings as the cost instead of the total estimated wire lengths.
Specifically, the cost function is defined as

Z ejj.width X (Jvj.row —vj.row| + |vj.col —vj.col]) (1)
eij€EE
where e;j.width is the bitwidth of the FIFO channel connecting v;
and v; and module v is assigned to the v.col-th column and the
v.row-th row. The physical meaning of the cost function is the sum
of the number of slot boundaries that every wire crosses.

3.3 Solution

Our problem is small in size as HLS-level FPGA designs seldom
have more than a few hundred functions. We adopt the main idea of
top-down partitioning-based placement algorithms [16, 17, 18] to
solve our problem. Meanwhile, due to the relatively small problem
size, we plan to pursue an exact solution in each partitioning.

Figure 6 demonstrates the floorplanning of an example design
through three iterations of partitioning. The top-down partitioning-
based approach starts with the initial state where all modules are
assigned to the same slot, iteratively partitions the current slots
in half into two child slots and then assigns the modules into the
child slots. Each partitioning involves splitting all of the current
slots in half either horizontally or vertically.

Since the problem size is relatively small, we formulate the parti-
tioning process of each iteration using integer linear programming
(ILP). In every partitioning iteration, all current slots need to be
divided in half. Since some of the modules in a slot may be tightly
connected to modules outside of the slot, ignoring such connec-
tions can adversely affect the quality of the assignment. Therefore
our ILP formulation considers the partitioning of all slots together
for an exact solution which is possible due to the small problem
size. Experiments in Section 5 show that our ILP formulation is
solvable within a few seconds or minutes for designs of hundreds
of modules.

Performing an N-way partitioning is another potential method.
However, compared to our iterative 2-way partitioning, experi-
ments show that it is much slower than iterative 2-way partitioning.

!Inlined functions will be merged accordingly in the C++ front-end processing.
?Based on the estimation of resource utilization by HLS.
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Figure 6: Generating the floorplan for a target 2 X 4 grid.
Based on the floorplan, all the cross-slot connections will be
accordingly pipelined (marked in red) for high frequency.

ILP Formulation of One Partitioning Iteration.

The formulation declares a binary decision variable v, for each
o to denote whether v is assigned to the left or the right child slot
during a vertical partitioning (or to the upper or the lower child
slot for a horizontal one). Let R denote the set of all current slots.
For each slot r € R to be divided, we use r, to denote the set of all
vertices that r is currently accommodating. To ensure that the child
slots have enough resources for all modules assigned to them, the
ILP formulation imposes the resource constraint for each child slot
rehila and for each type of on-chip resource.

Z 0g X Varea < (Ychild)area

VEry
where vgreq is the resource requirement of v and (rgy,p )area repre-
sents the available resources in the child slot divided from r.

To express the cost function that is based on the coordi-
nates of each module, we first need to express the new coor-
dinates (v.row,v.col) of v based on the previous coordinates
((v.row)preos (v.col)prey) and the decision variable v,. For a verti-
cal partitioning, the new coordinates of v will be

v.col = (v.col)prep X 2 +0g
v.row = (0.row)prey
And for a horizontal partitioning, the new coordinates will be
v.row = (0.rOW)pres X 2 +0g
v.col = (v.col)prev

Finally, the objective is to minimize the total slot-crossing shown
in Formula (1) for each partitioning iteration.

For the example in Figure 6, Table 1 shows the row and col
indices of selected vertices in each partitioning iteration.

Table 1: Coordinates of selected vertices in Figure 6

\ [ v [ v [ o [ o5

Init row = 0; col =0

iter-1 % = L; vd = 0;
row=0Xx2+1=1 row=0X2+0=0

iter-2 vg =1; vg =0; vg =1; vy =0;

row=1X2+1|row=1X2+0 | row=0X2+1|row=0X2+0
. vg =0; vg=1;
iter-3 col=0x2+0 col=0%x2+1




4 FLOORPLAN-AWARE PIPELINING

Based on the generated floorplan, we aim to pipeline every cross-slot
connection to facilitate timing closure.

Although HLS has the flexibility to pipeline them to increase the
final frequency, the additional latency could potentially lead to
large increase of the execution cycles, which we need to avoid. This
section presents our methods to pipeline slot-crossing connections
without hurting the overall throughput of the design.

We will first focus on pipelining the dataflow designs, then ex-
tend the method to other types of HLS design. In Section 4.1 we in-
troduce our approach of pipelining with latency balancing; and Sec-
tion 4.2 presents the detailed algorithm. In Sections 4.3 we present
how to utilize the internal computation pattern to construct loop-
level dataflow graphs that allow more pipelining opportunities. In
Section 4.4 we discuss pipelining other types of HLS designs.

4.1 Pipelining Followed by Latency Balancing
for Dataflow Designs

In our problem, an HLS dataflow design consists of a set of concur-
rently executed functions communicating through FIFO channels,
where each function will be compiled into an RTL module controlled
by a finite-state machine (FSM) [19]. The rich expressiveness of
FSM makes it difficult to statically determine how the additional
latency will affect the total execution cycles. Note that our problem
is different from other simplified dataflow models such as the Syn-
chronous Data Flow (SDF) [20] and the Latency Insensitive Theory
(LIT) [21], where the firing rate of each vertex is fixed. Unlike SDF
and LIT, in our problem each vertex is an FSM and the firing rate is
not fixed and can have complex pattern.

Therefore, we adopt a conservative approach, where we first
pipeline all edges that cross slot boundaries, then balance the la-
tency of parallel paths based on the cut-set pipelining [22]. A cut-set
is a set of edges that can be removed from the graph to create two
disconnected sub-graphs; and if all edges in a cut-set are of the same
direction, we could add an equal amount of latency to each edge
and the throughput of the design will be unaffected. Figure 7 (a)
illustrates the idea. If we need to add one unit of latency to ej3
(marked in red) due to the floorplan results, we need to find a cut-
set that includes ej3 and balance the latency of all other edges in
this cut-set (marked in blue).

Since we can choose different cut-set to balance the same edge,
we need to minimize the area overhead. For example, for e;3, bal-
ancing the cut-set 2 in Figure 7 (b) costs smaller area overhead
compared to cut-set 1 in Figure 7 (a), as the width of e47 is smaller
than that of ej4. Meanwhile, it is possible that multiple edges can
be included in the same cut-set. For example, the edges ez7 and e37
are both included in the cut-set 3, so we only need to balance the
other edges in cut-set 3 once.

Cut-set pipelining is equivalent to balancing the total added
latency of every pair of reconvergent paths [22]. A path is defined
as one or multiple concatenated edges of the same direction; two
paths are reconvergent if they have the same source vertex and
destination vertex. When there are multiple edges with additional
latency from the floorplanning step, we need to find a global optimal
solution that ensures all reconvergent paths have a balanced latency,
and the area overhead is minimized.

cut-set 1

(@
Figure 7: Assume that the edges e;3, e37 and ey7 are pipelined
according to some floorplan, and each of then carries 1 unit
of inserted latency. Also assume that the bitwidth of e4 is
2 and all other edges are 1. In the latency balancing step,
the optimal solution is adding 2 units of latency to each of
e47, €57, g7 and 1 unit of latency to e;2. Note that edge ez7 and
e37 can exist in the same cut-set.

4.2 Latency Balancing Algorithm

Problem Formulation.

Given: A graph G(V,E) representing a dataflow design that
has already been floorplanned and pipelined. Each vertex v € V
represents a function in the dataflow design and each edge e € E
represents the FIFO channel between functions. Each edge e € E
is associated with e.width representing the bitwidth of the edge.
For each edge e, the constant e.lat represents the additional latency
inserted to e in the previous pipelining step. We use the integer
variable e.balance to denote the number of latency added to e in
the current latency balancing step.

Goal: (1) For each edge e € E, compute e.balance such that for
any pair of reconvergent paths {p1, p2}, the total latency on each
path is the same:

Z (e.lat + e.balance) = Z (e.lat + e.balance)

eep; ecpz

and (2) minimize the total area overhead, which is defined as:

Z e.balance X e.width
e€E
Note that this problem is different from the min-cut problem [23]

for DAG. One naive solution is to find a min-cut for every pipelined
edge, and increase the latency of the other edges in the cut accord-
ingly. However, this simple method is suboptimal. For example in
Figure 7, since edge ez7 and e37 can be in the same cut-set, we only
need to add one unit of latency to the other edges in the cut-set
(e.g., e47, es7 and eg7) so that all paths are balanced.

Solution.

We formulate the problem in a restricted form of ILP that can
be solved in polynomial time. For each vertex v;, we associate
it with an integer variable S; that denotes the maximum latency
from pipelining between v; and the sink vertex of the graph. In
other words, given two vertices vx and vy, (Sx — Sy) represents the
maximum latency among all paths between the two vertices. Note
that we only consider the latency on edges due to pipelining.

For each edge e;j, we have

NP +eij.lat



According to our definition, the additional balancing latency
added to edge e;; in this step can be expressed as

ejj.balance = (S; — Sj — e;j.lat)

since we want every path from ; to v; have the same latency.
The optimization goal is to minimize the total area overhead, i.e.
the weighted sum of the additional depth on each edge:

minimize Z ejj.balance X e;j.width
eij€EE

For example, assume that there are two paths from v; to vz where
path p; has 3 units of latency from pipelining while ps has 1 unit.
Thus from our formulation, we will select the edge(s) on pz and
add 2 additional units of latency to balance the total latency of p;
and py so that the area overhead is minimized.

Our formulation is essentially a system of differential constraints
(SDC), in which all constraints are in the form of x;—x; < b;;, where
bij is a constant and x;, x; are variables. Because of this restrictive
form of constraints, we can solve SDC as a linear programming
problem while the solutions are guaranteed to be integers. As a
result, it can be solved in polynomial time [4, 24].

If the SDC formulation does not have a solution, there must be
a dependency cycle in the dataflow graph [24]. This means that
at least one of the edges in the dependency cycle are pipelined
based on the floorplan. In this situation, we will feedback to the
floorplanner to constrain those vertices into the same region and
then re-generate a new floorplan.

4.3 Loop-Level Latency Balancing

In the previous subsection, we treat each function as a vertex in
the dataflow graph and perform latency balancing. The limitation
is that when there are dependency cycles in the graph, we must
choose a conservative course and refrain from adding additional
pipelining to the involved channels. As a result, the functions in
a cycle must be floorplanned in the same slot. However, we could
potentially resolve the dependency cycles if we treat each loop
within a function as a vertex and construct a loop-level dataflow
graph.

Figure 8 shows a motivating example. In this design, there are two
functions A and B. We assume that the HLS scheduler has scheduled
the loops to execute sequentially. If we view the topology of the
design at the granularity of functions, there is a dependency cycle
from A to B then back to A. To ensure that it works properly, we
cannot add latency to either edge. However, if we look into the
function and treat each loop as a vertex, we will find that the cycle
is resolved and the edges now form a pair of reconvergent paths,
which we can handle as presented in the previous subsection. To
achieve such conversion, we make the former loop send a start
signal after finishing to trigger the latter loop through a 1-bit-wide
FIFO.

Note that the goal of loop-level analysis is not splitting the mod-
ule, but determining whether it is safe to place A and B into different
slots and pipeline the connections between them. We still consider
floorplanning each function as a unit, not each loop. The loop-level
dataflow graph allows more opportunities to produce a valid floor-
plan as many dependency cycles at function level can be resolved,
thus allowing more flexibility for the floorplanning step.

void A(fifo_t& f1, fifo_t& f2) {
for (i=0; i<128; i++) { fl.write( i ); }
for (i=0; i<128; i++) { f2.read(); }

kernel-level view

}
void B(fifo_t& f1, fifo_t& f2) {
for (i=0; i<128; i++) { fl.read();
for (i=0; i<128; i++) { f2.write( 1 ); } //B

}

G

Loop-level view

Figure 8: Motivating example for loop-level latency balanc-
ing. Assume the loops within a function are scheduled to ex-
ecute sequentially. Black arrows represent the original data
FIFOs in the dataflow design; green arrows represent our
conceptual 1-bit-wide FIFO used to pass control signals. A1
refers to the first loop in the function A. f1 and f2 represent
FIFO connections between the three functions.

4.4 Extension to Non-Dataflow Designs

In the previous subsections, we focus on pipelining and latency
balancing for dataflow designs as they can be easily pipelined. How-
ever, our methodology applies to other types of HLS designs as
well. Since most interface protocols of HLS-generated modules
have pre-determined operation latency, we can accurately predict
at compile time whether the additional latency on certain interface
will cause throughput degradation, in which case we will adjust
the constraints for the floorplanning step.

When a C++ function is compiled into an RTL module, the argu-
ments to the function become ports of the module with IO protocols
according to the type of C++ arguments. Here we discuss how to
add latency to interfaces with Vivado HLS [25] designs, but the
concept and implementation is similar in other HLS compilers. Be-
sides the FIFO interface, there are four major types of ports on RTL
modules generated by HLS:

e Control signals. These include start, ready and done which
indicate when the module starts executing and whether it has
finished. They can be directly pipelined without influencing
functionality. We require that the function is not invoked inside
aloop to prevent the added latency from increasing the initiation
interval of the loop.

e Scalar or input pointer. By default the pass-by-value input
arguments and pointers are implemented as simple input wire
ports. They can be directly pipelined, and the start should be
pipelined accordingly.

e Qutput pointers. These are implemented with an associated
output valid signal to indicate when the output data is valid.
We can directly pipeline the output signals along with the valid
signals.

e Array arguments. The compiler will compile them into a stan-
dard block RAM interface with data, address, chip-enable, and
write-enable ports. For such interface, the configuration option
specifies the read or write latency of the RAM resource driving
the interface, which is known at compile time. Adding pipelining
to all signals of the RAM interface will change the latency of
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Figure 9: Pipelining FIFO interfaces using almost-full FIFOs.

RAM access operations, thus we require that the array should
only be accessed inside a pipelined loop, where increasing the
latency of the RAM operation will not increase the initiation
interval of the pipeline.

In addition, we must re-run HLS synthesis for each function
after annotating the new interface latency in the source code. In
comparison, this is not needed for dataflow designs with latency-
insensitive interfaces.

5 EXPERIMENTS

5.1 Implementation Details

We implement our proposed methods in Python interfaced with
the CAD flow for Xilinx FPGAs, including Vivado HLS, Vivado
and Vitis (2019.2). We parse the scheduling and binding reports
of dataflow HLS designs to create the graph representation of the
design and obtain the resource utilization of each RTL module.
We use the Python MIP package [26] coupled with Gurobi [27] to
solve the various ILP problems introduced in previous sections. We
generate TCL constraint files to be used by Vivado to enforce our
high-level floorplanning scheme. Our RTL generator parses the
RTL from Vivado HLS using PyVerilog [28], then traverses the AST
to add the additional pipelining and regenerate the optimized RTL.

We mainly implement the AutoBridge prototype for Vivado
HLS dataflow designs, where the top function instantiates all the
dataflow processes and the FIFO connections. In addition, we sup-
port the TAPA compiler [29], which serves as a front-end to the
existing HLS tools to enable more expressibility over task-level
parallel programs. We also include tools to process non-dataflow
designs and some manual help is necessary due to the limited ac-
cess to the internals of the HLS compiler. A certain coding style is
expected and we provide examples in our open-sourced repository.

Figure 9 shows how we add pipelining to a FIFO-based connec-
tion. We adopt FIFOs that assert their full pin before the storage
actually runs out, so that we could directly register the interface
signals without affecting the functionality.

Meanwhile, we turn off the hierarchy rebuild process during RTL
synthesis [30] to prevent the RTL synthesis tool from introducing
additional wire connections between RTL modules. The hierarchy
rebuild step first flattens the hierarchy of the RTL design then
tries to rebuild the hierarchy. As a result, hierarchy rebuild may
create unpredictable new connections between modules. As a result,
if two modules are floorplanned far apart, these additional wires
introduced during RTL synthesis will be under-pipelined as they
are unseen during HLS compilation. Note that disabling this feature
may lead to slight differences in the final resource utilization.

We test out designs on the Xilinx Alveo U250 FPGA? with 4
DRAM s and the Xilinx Alveo U280 FPGA* with High-Bandwidth

3The U250 FPGA contains 5376 BRAM18K, 12288 DSP48E, 3456K FF and 1728K LUT
4The U280 FPGA contains 4032 BRAM18K, 9024 DSP48E, 2607K FF and 434K LUT
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Figure 10: Topologies of the benchmarks. Blue rectangles
represent external memory ports and black circles represent
computation kernels of the design. In the genome sequenc-
ing design, the arrows represent BRAM channels; in other
designs, the arrows represent FIFO channels.

Memory (HBM). As the DDR controllers are distributed in the
middle vertical column while the HBM controller lies at the bottom
row, these two FPGA architectures present different challenges to
the CAD tools. Thus it is worthwhile to test them separately.

To run our framework, users first specify how they want to divide
the device. By default, we divide the U250 FPGA into a 2-column X 4-
row grid and the U280 FPGA into a 2-column X 3-row grid, matching
the block diagram of these two architectures shown in Figure 3. To
control the floorplanning, users can specify the maximum resource
utilization ratio of each slot. The resource utilization is based on
the estimation by HLS. Users can also specify how many levels of
pipelining to add based on the number of boundary crossings. By
default, for each boundary crossing we add 2 levels of pipelining to
the connection. The processed design is integrated with the Xilinx
Vitis (2019.2) infrastructure to communicate with the host.

5.2 Benchmarks

We use six representative benchmark designs with different topolo-
gies and change the parameter of the benchmarks to generate a
set of designs with varying sizes on both the U250 and the U280
board. The six designs are all large-scale designs implemented and
optimized by HLS experts. Figure 10 shows the topology of the
benchmarks. Note that even for those benchmarks that seem reg-
ular (e.g. CNN), the location constraints from peripheral IPs can
highly distort their physical layouts.

o The stencil designs created by the SODA [31] compiler have a
set of kernels in linear topologies.

o The genome sequencing design [32] performing the Minimap2
overlapping algorithm [33] has processing elements (PE) in
broadcast topology. This benchmark is based on shared-memory
communication and all other benchmarks are dataflow designs.

e The CNN accelerators created by the PolySA [34] compiler are
in a grid topology.



e The HBM graph processing design [29] performs the page rank
algorithm. It features eight sets of processing units and one
central controller. This design also contains dependency cycles,
if viewed at the granularity of computing kernels.

o The HBM bucket sort design adapted from [35] which includes
8 parallel processing lanes and two fully-connected layers.

e The Gaussian elimination designs created by the AutoSA [36]
compiler are in triangle topologies.

5.3 Frequency Improvements

By varying the size of the benchmarks, in total we have tested the
implementation of 43 designs with different configurations. Among
them, 16 designs failed in routing or placement with the baseline
CAD flow, compared AutoBridge which succeeds in routing all of
them and achieves an average of 274 MHz. For the other 27 designs,
we improve the final frequency from 234 MHz to 311 MHz on
average. In general, we find that AutoBridge is effective for designs
that use up to about 75% of the available resources. We execute
our framework on an Intel Xeon CPU running at 2.2GHz. Both the
baseline designs and optimized ones are implemented using Vivado
with the highest optimization level. The final checkpoints of all
experiments are available in our open-sourced repository.

In some experiments, we may find that the optimized versions
have even slightly smaller resource consumption. Possible reasons
are that we adopt a different FIFO template and disable the hierarchy
rebuild step during RTL synthesis. Also, as the optimization leads to
very difference placement results compared to those of the original
version, we expect different optimization strategies will be adopted
by the physical design tools. The correctness of the code is verified
by cycle-accurate simulation.

Next, we present the detailed results of each benchmark.

Stencil Computation.

For the stencil computing design, the kernels are connected in a
chain format through FIFO channels. By adjusting the number of
kernels, we can vary the total size of the design. We test anywhere
from 1 kernels up to 8 kernels, and Figure 11 shows final frequency
of the eight design configurations on both U250 and U280 FPGAs.
In the original flow, many design configurations fail in routing due
to routing resource conflicts. Those that are routed successfully still
achieve relatively low frequencies. In comparison, with the help of
AutoBridge, all design configurations are routed successfully. On
average, we improve the timing from 86 MHz to 266 MHz on the
U280 FPGA, and from 69 MHz to 273 MHz on the U250 FPGA.

Starting from the 7-kernel design, we observe a frequency de-
crease on the U280 FPGA. This is because each kernel of the design
is very large and uses about half the resources of a slot; thus starting
from the 7-kernel design on the relatively small U280, two kernels
have to be squeezed into one slot which will cause more severe
local routing congestion. Based on this phenomenon, we recom-
mend that users avoid designing very large kernels and instead
split the functionality into multiple functions to allow the tool more
flexibility in floorplanning the design.

CNN Accelerator.
The CNN accelerator consists of identical PEs in a regular grid
topology. We adjust the size of the grid from a 2 X 13 array up to a
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Figure 11: Results of the stencil computation designs.

16 X 13 array to test the robustness of AutoBridge. Figure 12 shows
the result on both U250 and U280 FPGAs.

Although the regular 2-dimensional grid structure is presumed
to be FPGA friendly, the actual implementation results from the
original toolflow is not satisfying. With the original toolflow, even
small size designs are bounded at around 220 MHz when targeting
U250. Designs of larger sizes will fail in placement (13 X 12) or
routing (13 x 10 and 13 X 14). Although the final frequency is high
when the design is small for the original toolflow targeting U280,
the timing quality is steadily dropping as the designs become larger.

In contrast, AutoBridge improves from 140 MHz to 316 MHz on
U250 on average, and from 214 MHz to 328 MHz on U280. Table 2
lists the resource consumption and cycle counts of the experiments
on U250. Statistics on U280 are similar and are omitted here.

Table 2: Post-placement results of the CNN designs on U250.

The design point of 13 x 12 failed placement and 13 X 10 and
13 x 14 failed routing with the original tool flow.

Sipe _ LUT(%) FF(%) BRAM(%) __ DSP(%) Cycle

orig opt orig opt orig opt orig opt orig opt

13x2  17.82 17.90 14.11 14.25 21.69 21.67 8.57 857 53591 53601
13x4 2352 23.59 1898 19.04 2574 25.73 17.03 17.03 68630 68640
13x6  29.26 29.24 2386 23.80 29.80 29.78 25.50 25.50 86238 86248
13x8 3498 34.90 28.72 28.56 33.85 33.84 33.96 33.96 103882 103892
13x10 40.71 40.48 33.58 33.25 37.91 37.89 4242 4242 121472 121491
13x12 - 46.18 - 38.06 - 41.95 - 50.89 139098 139108
13x14 52.10 51.92 43.28 4293 46.02 46.00 59.35 59.35 156715 156725
13x16 57.82 57.61 48.13 47.70 50.07 50.06 67.81 67.81 174377 174396
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Figure 12: Results of the CNN accelerator designs.

Gaussian elimination.

The PEs in this design form a triangle topology. We adjust the
size of the the triangle and test on both U250 and U280. Table 3
shows the results. On average, we improve the frequency from 245
MH?z to 334 MHz on U250, and from 223 MHz to 335 MHz on U280.

Table 3: Results of Gaussian Elimination Designs on U250.

LUT(%) FF(%) BRAM(%) DSP(%) Cycle

Size orig opt orig opt orig opt orig opt orig opt

12x12 18.58 18.69 13.05 13.14 13.24 13.21 279 279 758 781
16X16 26.62 26.68 17.36 17.30 13.24 13.21 499 499 1186 1209
2020 38.55 38.28 23.46 23.38 13.24 1321 7.84 7.84 1728 1738
24X24 54.05 53.59 3216 32.06 13.24 13.21 11.34 11.34 2361 2375
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Figure 13: Results of the Gaussian elimination designs.

Genome Sequencing,.

The genome sequencing design contains eight parallel PEs that
communicate with the external memory through local buffers of
a BRAM interface. The design provides parameters to adjust the
computation accuracy of each PE and higher accuracy will result in
larger area. Thus, we test three design configurations where each PE
is of 1x, 1.5X and 2x the original size. For this non-dataflow design,
AutoBridge first performs floorplanning and creates a wrapper for
each PE to pipeline all I/O signals. Then we manually add pragmas
to the source code to specify the modified latency on shared mem-
ory blocks and re-run HLS to update the internals of each PE. On
average, we improve the frequency from 132 MHz to 248 MHz as in
Table 4. When the original size of the PE is small Vivado performs
well, but AutoBridge outperforms Vivado with larger PEs.

Table 4: Experiment result of genome sequencing on U250
Fmax (MHz) LUT% FF% BRAM% DSP% Cycle (K)

Orig, Size=1 265 2543 1612  17.21 438 11710
Opt, Size=1 267 25.48 16.29 17.21 4.38 11830
Orig, Size=1.5 - - - - - 12350
Opt, Size=1.5 272 31.73 19.39 15.14 6.46 12470
Orig, Size=2 131 3889 2311  17.21 8.54 12990
Opt, Size=2 206 38.91 23.31 17.21 8.54 13110
HBM Bucket Sort.

The bucket sort design has two complex fully-connected layers.
Each fully-connected layer involves a 8x8 crossbar of FIFO channels,
with each FIFO channel being 256-bit wide. AutoBridge pipelines
the FIFO channels to alleviate the routing congestion. Table 5 shows
the frequency gain, where we improve from 255 MHz to 320 MHz
on U280. As the design requires 16 external memory ports and U250
only has 4 available, the test for this design is limited to U280 only.

Because the original source code have enforced a BRAM-based
implementation for some small FIFOs, which results in wasted
BRAM resources, the results of AutoBridge has slightly lower BRAM
and flip-flop consumption than the original implementation. In
comparison, we use a different FIFO template that chooses the
implementation style (BRAM-based or shift-register-based) based
on the area of the FIFO. Cycle accurate simulation has proven the
correct functionality of our optimized implementation.

Table 5: Results of the Bucket Sort Design on U280.
Fmax (MHz) LUT% FF% BRAM% DSP% Cycle
Original 255 28.44 19.11 16.47 0.04 78629
Optimized 320 29.39  16.66 13.69 0.04 78632

5.4 Loop-Level Latency Balancing

We employ the HBM Page-Rank design based on the TAPA com-
piler to demonstrate our loop-level analysis technique presented

in Section 4.3. This design incorporates eight sets of processing
units, each interfacing with two HBM ports. There are also cen-
tralized control units that exchange control information with five
HBM ports. As can be seen from the block diagram of this design
in Figure 10, if we treat each function as a vertex in the dataflow
graph, there will be many dependency loops which results in no
valid floorplan solution. However, all loop structures are similar to
Figure 8. Therefore, by analyzing at loop level of each function we
are able to determine that it is safe to add additional pipelining to
the edges in those cycles. This enables us to find feasible floorplan
solutions. Table 6 shows the experiment results and we improve
final frequency from 136 MHz to 210 MHz on U280.

Table 6: Results of the Graph Processing Design on U280.
Fmax (MHz) LUT% FF% BRAMY% DSP% Cycle

Original 136 38.56  26.97 26.74 14.43 120458
Optimized 210 39.49  27.53 30.08 14.43 120495

5.5 Control Experiments

First, we test whether the frequency gain comes from the combi-
nation of pipelining and HLS-floorplanning, or simply pipelining
alone. To do this, we set a control group where we perform floor-
planning and pipelining as usual, but we do not pass the floorplan
constraints to the physical design tools. The blue curve with tri-
angle markers in Figure 14 shows the results. As can be seen, the
control group has lower frequency than the original design for
small sizes and has limited improvements over the original designs
for large sizes. In all experiments the group with both pipelining
and floorplan constraints (green curve with crossing markers) has
the highest frequency. This experiment proves that the frequency
gain is not simply a result of more pipelining.

Meanwhile, if we only do floorplanning without pipelining, obvi-
ously the frequency will be much degraded, as visualized by Fig. 4.

Second, we test the effectiveness of setting a slot boundary based
on the DDR controllers. We run a set of experiments where we only
divide the FPGA into four slots based on the die boundaries, minus
the division in the middle column. The yellow curve with diamond
markers in Figure 14 shows the results. As can be seen, it achieves
lower frequency compared to our default eight-slot scheme.
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Figure 14: Control experiments with the CNN accelerators.

5.6 Scalability

To show that the tool works well on designs with large numbers
of small functions, we utilize the CNN experiments to test the
scalability of our algorithms, as the CNN designs have the most
vertices (HLS functions) and edges. Table 7 lists The compile time
overhead for the floorplanning and the latency balancing when



using Gurobi as the ILP solver>. For the largest CNN accelerator that
has 493 modules and 925 FIFO connections, the floorplan step only
takes around 20 seconds and the latency balancing step takes 0.03s.
Usually FPGA designs are not likely to have this many modules
and connections [37] [38], and our method is fast enough.

Table 7: Computing time for the CNN test cases targeting the

U250 FPGA. Div-1 and Div-2 denote the first and the second

vertical decomposition, and Div-3 denotes the first horizon-

tal decomposition. Re-balance denotes the delay balancing.
Size #V #E Div-1 Div-2 Div-3 Re-balance

13X 2 87 141 0.02s 0.02s 0.01s <0.01s
13x4 145 253 0.05s 0.02s 0.20s <0.01s
13x6 203 365 007s 1.02s 0.56s <0.01s

13x8 261 477 007s 1.07s 3.58s 0.01s

13x10 319 589 3.17s 1.61s 2.63s 0.01s
13x12 377 701 342s 143s 9.84s 0.01s
13x 14 435 813 354s 1.55s 6.18s 0.03s

13X 16 493 925 495s 2.02s 1256s 0.03 s

6 RELATED WORK

Layout-Aware HLS Optimization. Previous works have studied
how to couple physical design process with HLS in a fine-grained
manner. Zheng et al. [1] propose to iteratively run placement and
routing for fine-grained calibration of the delay estimation of wires.
The long running time of placement and routing prohibits their
methods from benefiting large-scale designs, and their experiments
are all based on small examples (1000s of registers and 10s of
DSPs in their experiments). Cong et. al. [6] presented placement-
driven scheduling and binding for multi-cycle communications in
an island-style reconfigurable architecture. Xu et. al. [7] proposed
to predict a register-level floorplan to facilitate the binding pro-
cess. Some commercial HLS tools [8, 9] have utilized the results
of logic synthesis to calibrate HLS delay estimation, but they do
not consider the interconnect delays. In contrast, we focus on a
coarse-grained approach that only pipelines the channels that span
long distances and guides the detailed placement.

Other works have studied methods to predict delay estima-
tion at the behaviour level. Guo et al. [3] proposed to calibrate
the estimated delay for operators with large broadcast factors by
pre-characterizing benchmarks with different broadcast factors.
Tan et al. [2] showed that the delay prediction of logic operations
(e.g., AND, OR, NOT, etc) by HLS tools is too conservative. Therefore
they consider the technology mapping for logic operations. These
works mainly target local operators and have limited effects for
global interconnects. Zhao et al. [39] used machine learning to
predict how the manual pragmas affect routing congestion.

In addition, Cong et al. [40] presented tools to allow users to
insert additional buffers to the designated datapath. Chen et al. [41]
proposed to add additional registers to the pipeline datapath dur-
ing HLS synthesis based on the profiling results on the CHStone
benchmark. [42] proposes to generate floorplanning constraints
only for systolic array designs, and their method does not consider
the interaction with peripheral IPs such as DDR controllers. In
comparison, our work is fully-automated for general designs and
our register insertion is accurate due to HLS-floorplan co-design.

SMeanwhile, we observed that many open-sourced ILP solvers are much slower.

Optimization for Multi-Die FPGAs. To adapt to multi-die
FPGAs, previous works have studied how to partition the entire
design or memories among different dies [43, 44, 45, 46, 47, 48,
49]. These methods are all based on RTL inputs, thus the partition
method must observe the cycle-accurate specification. [46, 47] try
to modify the cost function of placement to reduce die-crossing.
This will lead to designs confined in fewer dies with higher level of
local congestion. Zha et al. [50] propose methods to virtualize the
FPGA and let different applications execute at different partitions.

Floorplanning Algorithms. Floorplanning has been extensively
studied [51, 52, 53, 54]. Conventionally, floorplanning consists of 1)
feasible topology generation and 2) determining the aspect ratios
for goals such as minimal total wire length. , the floorplanning step
works on RTL input. In contrast, we propose to perform a coarse-
grained floorplanning during the HLS step to help gain layout
information for the HLS tool. Similar to [55, 56, 57], our algorithm
adopts the idea of the partitioning-based approach. As our problem
size is relatively small, we use ILP for each partitioning.

Throughput Analysis of Dataflow Designs. Various dataflow
models have been proposed in other literature, such as the Kahn
Process Network (KPN) [58], Synchronous Data Flow (SDF) [20],
among many others. The more simplified the model is, the more
accurately we can analyze its throughput. In the SDF model, it
is restricted that the number of data produced or consumed by a
process for each firing is fixed and known. Therefore, it is possi-
ble to analytically compute the influence of additional latency on
throughput [59]. The latency insensitive theory (LIT) [60, 61, 62, 63,
64] also enforces similar restrictions as SDF. [65] proposes methods
to insert delays when composing IP blocks of different latency. [66]
studies the buffer placement problem in dataflow circuits [67, 68].

In our situation, each function will be compiled into an FSM
that can be arbitrarily complex, thus it is difficult to quantitatively
analyze the effect of the added latency on the total execution cycles.
Therefore, we adopt a conservative approach to balance the added
latency on all reconvergent paths.

7 CONCLUSIONS

We propose to couple coarse-grained floorplanning with pipelining
to improves the frequency of the HLS designs on multi-die FPGAs.
Our methodology has two key advantages: (1) it helps HLS identify
and pipeline the long wires, especially those that will cross die
boundaries; (2) it further reduces local routing congestion since
early floorplanning can distribute the logic across multiple dies.
According our evaluation on 43 realistic benchmarks, our frame-
work effectively improves the average frequency from 147 MHz to
297MHz without compromising the throughput of the design.
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