
AutoBridge: Coupling Coarse-Grained Floorplanning and
Pipelining for High-Frequency HLS Design on Multi-Die FPGAs

Licheng Guo
1
, Yuze Chi

1
, Jie Wang

1
, Jason Lau

1
, Weikang Qiao

1
, Ecenur Ustun

2
, Zhiru Zhang

2
, Jason Cong

1

1
University of California, Los Angeles

2
Cornell University

{lcguo,yuzechi,jaywang,lau,wkqiao,cong}@cs.ucla.edu,{eu49,zhiruz}@cornell.edu

ABSTRACT
Despite an increasing adoption of high-level synthesis (HLS) for its

design productivity advantages, there remains a significant gap in

the achievable clock frequency between an HLS-generated design

and a handcrafted RTL one. A key factor that limits the timing

quality of the HLS outputs is the difficulty in accurately estimating

the interconnect delay at the HLS level. Unfortunately, this problem

becomes even worse when large HLS designs are implemented on

the latest multi-die FPGAs, where die-crossing interconnects incur

a high delay penalty.

To tackle this challenge, we propose AutoBridge, an automated

framework that couples a coarse-grained floorplanning step with

pipelining during HLS compilation. First, our approach provides

HLS with a view on the global physical layout of the design, al-

lowing HLS to more easily identify and pipeline the long wires,

especially those crossing the die boundaries. Second, by exploit-

ing the flexibility of HLS pipelining, the floorplanner is able to

distribute the design logic across multiple dies on the FPGA de-

vice without degrading clock frequency. This prevents the placer

from aggressively packing the logic on a single die which often

results in local routing congestion that eventually degrades tim-

ing. Since pipelining may introduce additional latency, we further

present analysis and algorithms to ensure the added latency will

not compromise the overall throughput.

AutoBridge can be integrated into the existing CAD toolflow for

Xilinx FPGAs. In our experiments with a total of 43 design configu-

rations, we improve the average frequency from 147 MHz to 297

MHz (a 102% improvement) with no loss of throughput and a negli-

gible change in resource utilization. Notably, in 16 experiments we

make the originally unroutable designs achieve 274MHz on average.

The tool is available at https://github.com/Licheng-Guo/AutoBridge.

KEYWORDS
High-Level Synthesis; Multi-Die FPGA; Frequency; Timing Closure;

Floorplan; Dataflow; Pipeline; Latency Insensitive Design.

ACM Reference Format:
Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,

Zhiru Zhang, Jason Cong, 2021. AutoBridge: Coupling Coarse-Grained

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00

https://doi.org/10.1145/3431920.3439289

Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die

FPGAs. In 2021 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’21), February 28–March 2, 2021, Virtual Event, USA. ACM,

New York, NY, USA, 12 pages.

1 INTRODUCTION
High-level synthesis (HLS) tools simplify the FPGA design pro-

cesses by allowing users to express untimed designs in high-level

languages such as C/C++ or OpenCL without concern for cycle-

accurate details at the register-transfer level (RTL). However, while

the productivity is significantly improved, there still exists a consid-

erable gap between the quality of result (QoR) of an HLS-generated

design and what is achievable by an RTL expert.

One major cause that leads to the unsatisfactory frequency is

that HLS cannot easily predict the physical layout of the design

after placement and routing. Current HLS tools typically rely on

pre-characterized operation delays and a very crude interconnect

delay model to insert clock boundaries (i.e., registers) into an un-

timed design to generate a timed RTL implementation [1, 2, 3].

Afterwards, optimizations in RTL and physical synthesis such as

retiming are expected to fix the potential critical paths due to in-

adequate pipelining. However, while retiming can redistribute the

registers along a path, the total number of registers along each path

or cycle must remain a constant [4], significantly limiting the scope

of improvement. Hence, as the HLS designs get larger, the timing

quality of the synthesized RTLs usually further degrade.

This timing issue is worsened as modern FPGA architectures

become increasingly heterogeneous [5]. The latest FPGAs integrate

multiple dies using silicon interposers to pack more logic on a single

device; however, the interconnects that go across the die boundaries

will carry a non-trivial delay penalty. In addition, specialized IP

blocks such as PCIe and DDR controllers are embedded amongst

the programmable logic. These IP blocks usually have fixed loca-

tions near dedicated I/O banks and will consume a large amount

of programmable resources nearby. As a result, these dedicated IPs

often detour the signals close-by towards more expensive and/or

longer routing paths. Further, modules interacting with such fixed-

location IPs are also more constrained in their layout. This, in turn,

results in long-distance communication to other modules. Together

these factors tend to further lower the final clock frequency.

There are a number of prior attempts that couple the physi-

cal design process with HLS compilation [1, 6, 7, 8, 9]. Zheng et.
al. [1] propose to iteratively run placement and routing to obtain

accurate delay statistics of each wire and operator. Based on the

post-route information, HLS re-runs the scheduling step for a bet-

ter pipelining; Cong et. al. [6] is another representative work that

presents placement-driven scheduling and binding for multi-cycle

communications in an island-style architecture similar to FPGAs.

Figure 1: Core Idea of the Proposed Methodology.

The previous approaches share the common aspect of focusing

on the fine-grained interaction between HLS and physical design,

where individual operators and the associated wires and registers

are all involved during the delay prediction and iterative HLS-layout

co-optimization. While such a fine-grained method can be effective

on relatively small HLS designs and FPGA devices, it is too expen-

sive (if not infeasible) for today’s large designs targeting multi-die

FPGAs, where each implementation iteration fromHLS to bitstream

may take days to complete.

In this paper we propose AutoBridge, a coarse-grained floorplan-

guided pipelining approach that addresses the timing issue of large

HLS designs in a highly effective and scalable manner. Instead of

coupling the entire physical design process with HLS, we guide HLS

with a coarse-grained floorplanning step, as shown in Figure 1. Our

coarse-grained floorplanning involves dividing the FPGA device

into a grid of regions and assigning each HLS function to one region

during HLS compilation. For all the inter-region connections we

further pipeline them to facilitate timing closure while we leave

the intra-region optimization to the default HLS tool.

Our methodology has two major benefits. First, the early floor-

planning step provides HLS a view of the global physical layout

which helps HLS more accurately identify and pipeline the long

wires, especially those crossing the die boundaries. Compared

to retiming [10], HLS-level pipelining creates more optimization

opportunities for the downstream synthesis and physical design

steps, thus potentially leading to higher performance. Second, the

pipelining-aware floorplanning can reduce local routing congestion

by guiding the subsequent placement steps to better distribute logic

across multiple dies, instead of attempting to pack the logic into a

single die as much as possible.

While AutoBridge can improve the frequency with additional

interconnect pipelining, we also need to ensure the added latency

does not negatively impact the overall throughput of the design. To

this end, we present analysis and latency balancing algorithms to

guarantee the throughput of the resulting design is not negatively

impacted.

Our specific contributions are as follows:

• To the best of our knowledge, we are the first to tackle the

challenge of high-frequency HLS design on multi-die FPGAs by

coupling floorplanning and pipelining.

• We design a coarse-grained floorplan scheme tailored for HLS

which can distribute the design logic across multiple dies on an

FPGA to effectively reduce local congestion and facilitate HLS

to adequately pipeline global interconnects.

• We analyze how the additional latencymay affect the throughput

of the design, and propose algorithms to offset the potential

negative influence of the added latency.

Figure 2: Overview of the AutoBridge Framework. Grey
boxes represent the original software flow and blue boxes
represent components of AutoBridge.

• Our framework, AutoBridge, interfaces with the commercial

FPGA design toolflow, with a compile time overhead in the order

of seconds. It improves the average frequency of 43 designs from

147 MHz to 297 MHz with and a negligible area overhead.

Figure 2 shows the overall flow of our proposed methodology.

The rest of the paper is organized as follows: Section 2 introduces

background information on modern FPGA architectures and shows

motivating examples; Section 3 details our coarse-grained floorplan

scheme inside the HLS flow; Section 4 describes our floorplan-

aware pipelining methods; Section 5 presents experimental results;

Section 6 provides related work, followed by conclusion and ac-

knowledgements.

2 BACKGROUND AND MOTIVATING
EXAMPLES

2.1 Multi-Die FPGA Architectures
Figure 3 shows three representative multi-die FPGA architectures,

each of which is described in more details as follows.

• The Xilinx Alveo U250 FPGA is one of the largest FPGAs with

four dies. All the I/O banks are located in the middle column

and the four DDR controller IPs are positioned vertically in a

tall-and-slim rectangle in the middle. On the right lies the Vitis

platform region [11], which incorporates the DMA IP, the PCIe

IP, etc, and serves to communicate with the host CPU.

• The Xilinx Alveo U280 FPGA is integrated with the latest High-

Bandwidth Memory (HBM) [12, 13, 14], which exposes 32 inde-

pendent memory ports at the bottom of the chip. I/O banks are

located in the middle columns. Meanwhile, there is a gap region

void of programmable logic in the middle.

• The Intel Stratix 10 FPGA [15] also sets the DDR controller

and I/O banks in the middle of the programmable logic. The

embedded multi-die interconnect bridges and the PCIe blocks

are distributed at the two sides of the chip, allowing multiple

FPGA chips to be integrated together. Although this paper uses

the Xilinx FPGAs to demonstrate the idea, our methodology is

also applicable to Intel FPGAs and other architectures.

Figure 3: Block diagrams of three representative FPGAarchi-
tectures: the Xilinx Alveo U250, U280 (based on the Xilinx
UltraScale+ architecture) and the Intel Stratix 10.

Compared to previous generations, the latest multi-die FPGA

architectures are divided into disjoint regions, where the region-

crossing naturally incurs additional signal delay. In addition, the

large pre-located IPs consume significant programmable resources

near their fixed locations that may also cause local routing conges-

tion. These characteristics can hamper the existing HLS flows from

achieving a high frequency.

2.2 Motivating Examples
We show two examples to motivate our floorplan-guided HLS ap-

proach. First, Figure 4 shows a CNN accelerator implemented on

the Xilinx U250 FPGA. It interacts with three DDR controllers, as

marked in grey, pink, and yellow blocks in the figure. In the original

implementation result, the whole design is packed close together

within die 2 and die 3. To demonstrate our proposed idea, we first

manually floorplan the design to distribute the logic in four dies

and to avoid overlapping the user logic with DDR controllers. Ad-

ditionally, we pipeline the FIFO channels connecting modules in

different dies as demonstrated in the figure. The manual approach

improves the final frequency by 53%, from 216 MHz to 329 MHz.

Second, Figure 5 shows a stencil computation design on the

Xilinx U280 FPGA. It consists of four identical kernels in linear

topology with each color representing a kernel. In the original

implementation, the tool’s choice of die-crossing wires are sub-

optimal and one kernel may be divided among multiple regions.

Instead in our approach, we pre-determine all the die-crossing wires

during HLS compilation and pipeline them, so the die boundaries

will not cause any problems for the placement and routing tool. For

this example, we achieve 297 MHz while the design is originally

unroutable.

3 COUPLING HLS WITH COARSE-GRAINED
FLOORPLANNING

In this section, we present our coarse-grained floorplanning scheme

that can be integrated with HLS. We assume that HLS preserves

the hierarchy of the source code, and each function in the HLS

source code will be compiled into an RTL module.
Note that the focus of this work is not about improving floorplan-

ning algorithms; instead, we intend to properly use coarse-grained

floorplan information to guide HLS and placement.

Figure 4: Implementation results of a CNN accelerator on
the Xilinx U250 FPGA. Spreading the design across the de-
vice helps reduce local congestion, while the die-crossing
wires are additionally pipelined.

Figure 5: Implementation results of a stencil computing de-
sign on U280. Floorplanning during HLS compilation signif-
icantly benefits the physical design tools.

3.1 Coarse-Grained Floorplanning Scheme
Instead of finding a dedicated region with a detailed aspect ratio

for each module, we choose to view the FPGA device as a grid
that is formed by the die boundaries and the large IP blocks. These

physical barriers split the programmable fabric apart into a series

of disjoint slots in the grid where each slot represents a sub-region

of the device isolated by die boundaries and IP blocks. Using our

coarse-grained floorplanning, we will assign each function of the

HLS design to one of these slots.

For example, for the Xilinx Alveo U250 FPGA, the array of DDR

controllers forms a vertical split in the middle column; and there

are three horizontal die boundaries. Thus the device can be viewed

as a grid of 8 slots in 2 columns and 4 rows. Similarly, the U280

FPGA can be viewed as a grid of 6 slots in 2 columns and 3 rows.

In this scheme, each slot contains about 700 BRAM_18Ks, 1500

DSPs, 400K Flip-Flops and 200K LUTs. Meanwhile, to reduce the

resource contention in each slot, we set a maximum utilization ratio

for each slot to guarantee enough blank space. Experiments show

that such slot sizes are suitable, and HLS has a good handle of the

timing quality of the local logic within each slot, as in Section 5.

3.2 Problem Formulation
We first assume the HLS design adopts a dataflow programming

model, where each function corresponds to one dataflow process,

and each function will be compiled into an RTL module. Functions

communicate with each other through FIFO channels.

Given: (1) a graph 𝐺 (𝑉 , 𝐸) representing the HLS design where

𝑉 represents the set of functions
1
of the dataflow design and 𝐸

represents the set of FIFO channels between vertices; (2) the number

of rows 𝑅 and the number of columns 𝐶 of the grid representation

of the target device; (3) maximum resource utilization ratios for

each slot; (4) location constraints such that certain IO modules

must be placed nearby certain IP blocks. In addition, we may have

constraints that certain vertices must be assigned to the same slot.

This is for throughput concerns and will be explained in Section 4.

Goal: Assign each 𝑣 ∈ 𝑉 to one of the slots such that (1) the

resource utilization ratio
2
of each slot is below the given limit; (2)

the cost function is minimized. We choose the total number of slot-

crossings as the cost instead of the total estimated wire lengths.

Specifically, the cost function is defined as∑
𝑒𝑖 𝑗 ∈𝐸

𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ × (|𝑣𝑖 .𝑟𝑜𝑤 − 𝑣 𝑗 .𝑟𝑜𝑤 | + |𝑣𝑖 .𝑐𝑜𝑙 − 𝑣 𝑗 .𝑐𝑜𝑙 |) (1)

where 𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ is the bitwidth of the FIFO channel connecting 𝑣𝑖
and 𝑣 𝑗 and module 𝑣 is assigned to the 𝑣 .𝑐𝑜𝑙-th column and the

𝑣 .𝑟𝑜𝑤-th row. The physical meaning of the cost function is the sum

of the number of slot boundaries that every wire crosses.

3.3 Solution
Our problem is small in size as HLS-level FPGA designs seldom

have more than a few hundred functions. We adopt the main idea of

top-down partitioning-based placement algorithms [16, 17, 18] to

solve our problem. Meanwhile, due to the relatively small problem

size, we plan to pursue an exact solution in each partitioning.

Figure 6 demonstrates the floorplanning of an example design

through three iterations of partitioning. The top-down partitioning-

based approach starts with the initial state where all modules are

assigned to the same slot, iteratively partitions the current slots

in half into two child slots and then assigns the modules into the

child slots. Each partitioning involves splitting all of the current

slots in half either horizontally or vertically.

Since the problem size is relatively small, we formulate the parti-

tioning process of each iteration using integer linear programming

(ILP). In every partitioning iteration, all current slots need to be

divided in half. Since some of the modules in a slot may be tightly

connected to modules outside of the slot, ignoring such connec-

tions can adversely affect the quality of the assignment. Therefore

our ILP formulation considers the partitioning of all slots together

for an exact solution which is possible due to the small problem

size. Experiments in Section 5 show that our ILP formulation is

solvable within a few seconds or minutes for designs of hundreds

of modules.

Performing an N-way partitioning is another potential method.

However, compared to our iterative 2-way partitioning, experi-

ments show that it is much slower than iterative 2-way partitioning.

1
Inlined functions will be merged accordingly in the C++ front-end processing.

2
Based on the estimation of resource utilization by HLS.

Figure 6: Generating the floorplan for a target 2 × 4 grid.
Based on the floorplan, all the cross-slot connections will be
accordingly pipelined (marked in red) for high frequency.

ILP Formulation of One Partitioning Iteration.
The formulation declares a binary decision variable 𝑣𝑑 for each

𝑣 to denote whether 𝑣 is assigned to the left or the right child slot

during a vertical partitioning (or to the upper or the lower child

slot for a horizontal one). Let 𝑅 denote the set of all current slots.

For each slot 𝑟 ∈ 𝑅 to be divided, we use 𝑟𝑣 to denote the set of all

vertices that 𝑟 is currently accommodating. To ensure that the child

slots have enough resources for all modules assigned to them, the

ILP formulation imposes the resource constraint for each child slot

𝑟𝑐ℎ𝑖𝑙𝑑 and for each type of on-chip resource.∑
𝑣∈𝑟𝑣

𝑣𝑑 × 𝑣𝑎𝑟𝑒𝑎 < (𝑟𝑐ℎ𝑖𝑙𝑑)𝑎𝑟𝑒𝑎

where 𝑣𝑎𝑟𝑒𝑎 is the resource requirement of 𝑣 and (𝑟𝑠𝑢𝑏)𝑎𝑟𝑒𝑎 repre-

sents the available resources in the child slot divided from 𝑟 .

To express the cost function that is based on the coordi-

nates of each module, we first need to express the new coor-

dinates (𝑣 .𝑟𝑜𝑤, 𝑣 .𝑐𝑜𝑙) of 𝑣 based on the previous coordinates

((𝑣 .𝑟𝑜𝑤)𝑝𝑟𝑒𝑣, (𝑣 .𝑐𝑜𝑙)𝑝𝑟𝑒𝑣) and the decision variable 𝑣𝑑 . For a verti-

cal partitioning, the new coordinates of 𝑣 will be

𝑣 .𝑐𝑜𝑙 = (𝑣 .𝑐𝑜𝑙)𝑝𝑟𝑒𝑣 × 2 + 𝑣𝑑
𝑣 .𝑟𝑜𝑤 = (𝑣 .𝑟𝑜𝑤)𝑝𝑟𝑒𝑣

And for a horizontal partitioning, the new coordinates will be

𝑣 .𝑟𝑜𝑤 = (𝑣 .𝑟𝑜𝑤)𝑝𝑟𝑒𝑣 × 2 + 𝑣𝑑
𝑣 .𝑐𝑜𝑙 = (𝑣 .𝑐𝑜𝑙)𝑝𝑟𝑒𝑣

Finally, the objective is to minimize the total slot-crossing shown

in Formula (1) for each partitioning iteration.

For the example in Figure 6, Table 1 shows the 𝑟𝑜𝑤 and 𝑐𝑜𝑙

indices of selected vertices in each partitioning iteration.

Table 1: Coordinates of selected vertices in Figure 6
𝑣2 𝑣1 𝑣4 𝑣5

Init row = 0; col = 0

iter-1

𝑣𝑑 = 1;

row = 0 × 2 + 1 = 1

𝑣𝑑 = 0;

row = 0 × 2 + 0 = 0

iter-2

𝑣𝑑 = 1;

row = 1 × 2 + 1

𝑣𝑑 = 0;

row = 1 × 2 + 0

𝑣𝑑 = 1;

row = 0 × 2 + 1

𝑣𝑑 = 0;

row = 0 × 2 + 0

iter-3

𝑣𝑑 = 0;

col = 0 × 2 + 0

𝑣𝑑 = 1;

col = 0 × 2 + 1

4 FLOORPLAN-AWARE PIPELINING
Based on the generated floorplan, we aim to pipeline every cross-slot
connection to facilitate timing closure.

Although HLS has the flexibility to pipeline them to increase the

final frequency, the additional latency could potentially lead to

large increase of the execution cycles, whichwe need to avoid. This
section presents our methods to pipeline slot-crossing connections

without hurting the overall throughput of the design.

We will first focus on pipelining the dataflow designs, then ex-

tend the method to other types of HLS design. In Section 4.1 we in-

troduce our approach of pipelining with latency balancing; and Sec-

tion 4.2 presents the detailed algorithm. In Sections 4.3 we present

how to utilize the internal computation pattern to construct loop-

level dataflow graphs that allow more pipelining opportunities. In

Section 4.4 we discuss pipelining other types of HLS designs.

4.1 Pipelining Followed by Latency Balancing
for Dataflow Designs

In our problem, an HLS dataflow design consists of a set of concur-

rently executed functions communicating through FIFO channels,

where each functionwill be compiled into an RTLmodule controlled

by a finite-state machine (FSM) [19]. The rich expressiveness of

FSM makes it difficult to statically determine how the additional

latency will affect the total execution cycles. Note that our problem

is different from other simplified dataflow models such as the Syn-

chronous Data Flow (SDF) [20] and the Latency Insensitive Theory

(LIT) [21], where the firing rate of each vertex is fixed. Unlike SDF

and LIT, in our problem each vertex is an FSM and the firing rate is

not fixed and can have complex pattern.

Therefore, we adopt a conservative approach, where we first

pipeline all edges that cross slot boundaries, then balance the la-

tency of parallel paths based on the cut-set pipelining [22]. A cut-set

is a set of edges that can be removed from the graph to create two

disconnected sub-graphs; and if all edges in a cut-set are of the same

direction, we could add an equal amount of latency to each edge

and the throughput of the design will be unaffected. Figure 7 (a)

illustrates the idea. If we need to add one unit of latency to 𝑒13
(marked in red) due to the floorplan results, we need to find a cut-

set that includes 𝑒13 and balance the latency of all other edges in

this cut-set (marked in blue).

Since we can choose different cut-set to balance the same edge,

we need to minimize the area overhead. For example, for 𝑒13, bal-

ancing the cut-set 2 in Figure 7 (b) costs smaller area overhead

compared to cut-set 1 in Figure 7 (a), as the width of 𝑒47 is smaller

than that of 𝑒14. Meanwhile, it is possible that multiple edges can

be included in the same cut-set. For example, the edges 𝑒27 and 𝑒37
are both included in the cut-set 3, so we only need to balance the
other edges in cut-set 3 once.

Cut-set pipelining is equivalent to balancing the total added

latency of every pair of reconvergent paths [22]. A path is defined

as one or multiple concatenated edges of the same direction; two

paths are reconvergent if they have the same source vertex and

destination vertex. When there are multiple edges with additional

latency from the floorplanning step, we need to find a global optimal

solution that ensures all reconvergent paths have a balanced latency,

and the area overhead is minimized.

Figure 7: Assume that the edges 𝑒13, 𝑒37 and 𝑒27 are pipelined
according to some floorplan, and each of then carries 1 unit
of inserted latency. Also assume that the bitwidth of 𝑒14 is
2 and all other edges are 1. In the latency balancing step,
the optimal solution is adding 2 units of latency to each of
𝑒47, 𝑒57, 𝑒67 and 1 unit of latency to 𝑒12. Note that edge 𝑒27 and
𝑒37 can exist in the same cut-set.

4.2 Latency Balancing Algorithm

Problem Formulation.
Given: A graph 𝐺 (𝑉 , 𝐸) representing a dataflow design that

has already been floorplanned and pipelined. Each vertex 𝑣 ∈ 𝑉

represents a function in the dataflow design and each edge 𝑒 ∈ 𝐸

represents the FIFO channel between functions. Each edge 𝑒 ∈ 𝐸

is associated with 𝑒.𝑤𝑖𝑑𝑡ℎ representing the bitwidth of the edge.

For each edge 𝑒 , the constant 𝑒.𝑙𝑎𝑡 represents the additional latency

inserted to 𝑒 in the previous pipelining step. We use the integer

variable 𝑒.𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to denote the number of latency added to 𝑒 in

the current latency balancing step.

Goal: (1) For each edge 𝑒 ∈ 𝐸, compute 𝑒.𝑏𝑎𝑙𝑎𝑛𝑐𝑒 such that for

any pair of reconvergent paths {𝑝1, 𝑝2}, the total latency on each

path is the same:∑
𝑒∈𝑝1

(𝑒.𝑙𝑎𝑡 + 𝑒.𝑏𝑎𝑙𝑎𝑛𝑐𝑒) =
∑
𝑒∈𝑝2

(𝑒.𝑙𝑎𝑡 + 𝑒.𝑏𝑎𝑙𝑎𝑛𝑐𝑒)

and (2) minimize the total area overhead, which is defined as:∑
𝑒∈𝐸

𝑒.𝑏𝑎𝑙𝑎𝑛𝑐𝑒 × 𝑒.𝑤𝑖𝑑𝑡ℎ

Note that this problem is different from the min-cut problem [23]

for DAG. One naïve solution is to find a min-cut for every pipelined

edge, and increase the latency of the other edges in the cut accord-

ingly. However, this simple method is suboptimal. For example in

Figure 7, since edge 𝑒27 and 𝑒37 can be in the same cut-set, we only

need to add one unit of latency to the other edges in the cut-set

(e.g., 𝑒47, 𝑒57 and 𝑒67) so that all paths are balanced.

Solution.
We formulate the problem in a restricted form of ILP that can

be solved in polynomial time. For each vertex 𝑣𝑖 , we associate

it with an integer variable 𝑆𝑖 that denotes the maximum latency

from pipelining between 𝑣𝑖 and the sink vertex of the graph. In

other words, given two vertices 𝑣𝑥 and 𝑣𝑦 , (𝑆𝑥 − 𝑆𝑦) represents the
maximum latency among all paths between the two vertices. Note

that we only consider the latency on edges due to pipelining.

For each edge 𝑒𝑖 𝑗 , we have

𝑆𝑖 ≥ 𝑆 𝑗 + 𝑒𝑖 𝑗 .𝑙𝑎𝑡

According to our definition, the additional balancing latency

added to edge 𝑒𝑖 𝑗 in this step can be expressed as

𝑒𝑖 𝑗 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = (𝑆𝑖 − 𝑆 𝑗 − 𝑒𝑖 𝑗 .𝑙𝑎𝑡)
since we want every path from 𝑣𝑖 to 𝑣 𝑗 have the same latency.

The optimization goal is to minimize the total area overhead, i.e.

the weighted sum of the additional depth on each edge:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑
𝑒𝑖 𝑗 ∈𝐸

𝑒𝑖 𝑗 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒 × 𝑒𝑖 𝑗 .𝑤𝑖𝑑𝑡ℎ

For example, assume that there are two paths from 𝑣1 to 𝑣2 where

path 𝑝1 has 3 units of latency from pipelining while 𝑝2 has 1 unit.

Thus from our formulation, we will select the edge(s) on 𝑝2 and

add 2 additional units of latency to balance the total latency of 𝑝1
and 𝑝2 so that the area overhead is minimized.

Our formulation is essentially a system of differential constraints

(SDC), in which all constraints are in the form of 𝑥𝑖−𝑥 𝑗 ≤ 𝑏𝑖 𝑗 , where

𝑏𝑖 𝑗 is a constant and 𝑥𝑖 , 𝑥 𝑗 are variables. Because of this restrictive

form of constraints, we can solve SDC as a linear programming

problem while the solutions are guaranteed to be integers. As a

result, it can be solved in polynomial time [4, 24].

If the SDC formulation does not have a solution, there must be

a dependency cycle in the dataflow graph [24]. This means that

at least one of the edges in the dependency cycle are pipelined

based on the floorplan. In this situation, we will feedback to the

floorplanner to constrain those vertices into the same region and

then re-generate a new floorplan.

4.3 Loop-Level Latency Balancing
In the previous subsection, we treat each function as a vertex in

the dataflow graph and perform latency balancing. The limitation

is that when there are dependency cycles in the graph, we must

choose a conservative course and refrain from adding additional

pipelining to the involved channels. As a result, the functions in

a cycle must be floorplanned in the same slot. However, we could

potentially resolve the dependency cycles if we treat each loop

within a function as a vertex and construct a loop-level dataflow

graph.

Figure 8 shows amotivating example. In this design, there are two

functions A and B. We assume that the HLS scheduler has scheduled

the loops to execute sequentially. If we view the topology of the

design at the granularity of functions, there is a dependency cycle

from A to B then back to A. To ensure that it works properly, we

cannot add latency to either edge. However, if we look into the

function and treat each loop as a vertex, we will find that the cycle

is resolved and the edges now form a pair of reconvergent paths,

which we can handle as presented in the previous subsection. To

achieve such conversion, we make the former loop send a start
signal after finishing to trigger the latter loop through a 1-bit-wide

FIFO.

Note that the goal of loop-level analysis is not splitting the mod-

ule, but determining whether it is safe to place A and B into different
slots and pipeline the connections between them. We still consider

floorplanning each function as a unit, not each loop. The loop-level

dataflow graph allows more opportunities to produce a valid floor-

plan as many dependency cycles at function level can be resolved,

thus allowing more flexibility for the floorplanning step.

Figure 8: Motivating example for loop-level latency balanc-
ing. Assume the loops within a function are scheduled to ex-
ecute sequentially. Black arrows represent the original data
FIFOs in the dataflow design; green arrows represent our
conceptual 1-bit-wide FIFO used to pass control signals. A1
refers to the first loop in the function A. f1 and f2 represent
FIFO connections between the three functions.

4.4 Extension to Non-Dataflow Designs
In the previous subsections, we focus on pipelining and latency

balancing for dataflow designs as they can be easily pipelined. How-

ever, our methodology applies to other types of HLS designs as

well. Since most interface protocols of HLS-generated modules

have pre-determined operation latency, we can accurately predict

at compile time whether the additional latency on certain interface

will cause throughput degradation, in which case we will adjust

the constraints for the floorplanning step.

When a C++ function is compiled into an RTL module, the argu-

ments to the function become ports of the module with IO protocols

according to the type of C++ arguments. Here we discuss how to

add latency to interfaces with Vivado HLS [25] designs, but the

concept and implementation is similar in other HLS compilers. Be-

sides the FIFO interface, there are four major types of ports on RTL

modules generated by HLS:

• Control signals. These include start, ready and done which
indicate when the module starts executing and whether it has

finished. They can be directly pipelined without influencing

functionality. We require that the function is not invoked inside

a loop to prevent the added latency from increasing the initiation

interval of the loop.

• Scalar or input pointer. By default the pass-by-value input

arguments and pointers are implemented as simple input wire

ports. They can be directly pipelined, and the start should be

pipelined accordingly.

• Output pointers. These are implemented with an associated

output valid signal to indicate when the output data is valid.

We can directly pipeline the output signals along with the valid

signals.

• Array arguments. The compiler will compile them into a stan-

dard block RAM interface with data, address, chip-enable, and

write-enable ports. For such interface, the configuration option

specifies the read or write latency of the RAM resource driving

the interface, which is known at compile time. Adding pipelining

to all signals of the RAM interface will change the latency of

almost_full

wr_enable

wr_data

full

wr_en

data

empty

read

data

Producer ConsumerFIFO

Figure 9: Pipelining FIFO interfaces using almost-full FIFOs.

RAM access operations, thus we require that the array should

only be accessed inside a pipelined loop, where increasing the

latency of the RAM operation will not increase the initiation

interval of the pipeline.

In addition, we must re-run HLS synthesis for each function

after annotating the new interface latency in the source code. In

comparison, this is not needed for dataflow designs with latency-

insensitive interfaces.

5 EXPERIMENTS
5.1 Implementation Details
We implement our proposed methods in Python interfaced with

the CAD flow for Xilinx FPGAs, including Vivado HLS, Vivado

and Vitis (2019.2). We parse the scheduling and binding reports

of dataflow HLS designs to create the graph representation of the

design and obtain the resource utilization of each RTL module.

We use the Python MIP package [26] coupled with Gurobi [27] to

solve the various ILP problems introduced in previous sections. We

generate TCL constraint files to be used by Vivado to enforce our

high-level floorplanning scheme. Our RTL generator parses the

RTL from Vivado HLS using PyVerilog [28], then traverses the AST

to add the additional pipelining and regenerate the optimized RTL.

We mainly implement the AutoBridge prototype for Vivado

HLS dataflow designs, where the top function instantiates all the

dataflow processes and the FIFO connections. In addition, we sup-

port the TAPA compiler [29], which serves as a front-end to the

existing HLS tools to enable more expressibility over task-level

parallel programs. We also include tools to process non-dataflow

designs and some manual help is necessary due to the limited ac-

cess to the internals of the HLS compiler. A certain coding style is

expected and we provide examples in our open-sourced repository.

Figure 9 shows how we add pipelining to a FIFO-based connec-

tion. We adopt FIFOs that assert their full pin before the storage

actually runs out, so that we could directly register the interface

signals without affecting the functionality.

Meanwhile, we turn off the hierarchy rebuild process during RTL

synthesis [30] to prevent the RTL synthesis tool from introducing

additional wire connections between RTL modules. The hierarchy

rebuild step first flattens the hierarchy of the RTL design then

tries to rebuild the hierarchy. As a result, hierarchy rebuild may

create unpredictable new connections between modules. As a result,

if two modules are floorplanned far apart, these additional wires

introduced during RTL synthesis will be under-pipelined as they

are unseen during HLS compilation. Note that disabling this feature

may lead to slight differences in the final resource utilization.

We test out designs on the Xilinx Alveo U250 FPGA
3
with 4

DRAMs and the Xilinx Alveo U280 FPGA
4
with High-Bandwidth

3
The U250 FPGA contains 5376 BRAM18K, 12288 DSP48E, 3456K FF and 1728K LUT

4
The U280 FPGA contains 4032 BRAM18K, 9024 DSP48E, 2607K FF and 434K LUT

Figure 10: Topologies of the benchmarks. Blue rectangles
represent externalmemory ports and black circles represent
computation kernels of the design. In the genome sequenc-
ing design, the arrows represent BRAM channels; in other
designs, the arrows represent FIFO channels.

Memory (HBM). As the DDR controllers are distributed in the

middle vertical column while the HBM controller lies at the bottom

row, these two FPGA architectures present different challenges to

the CAD tools. Thus it is worthwhile to test them separately.

To run our framework, users first specify how theywant to divide

the device. By default, we divide the U250 FPGA into a 2-column× 4-

row grid and the U280 FPGA into a 2-column× 3-row grid, matching

the block diagram of these two architectures shown in Figure 3. To

control the floorplanning, users can specify the maximum resource

utilization ratio of each slot. The resource utilization is based on

the estimation by HLS. Users can also specify how many levels of

pipelining to add based on the number of boundary crossings. By

default, for each boundary crossing we add 2 levels of pipelining to

the connection. The processed design is integrated with the Xilinx

Vitis (2019.2) infrastructure to communicate with the host.

5.2 Benchmarks
We use six representative benchmark designs with different topolo-

gies and change the parameter of the benchmarks to generate a

set of designs with varying sizes on both the U250 and the U280

board. The six designs are all large-scale designs implemented and

optimized by HLS experts. Figure 10 shows the topology of the

benchmarks. Note that even for those benchmarks that seem reg-

ular (e.g. CNN), the location constraints from peripheral IPs can

highly distort their physical layouts.

• The stencil designs created by the SODA [31] compiler have a

set of kernels in linear topologies.

• The genome sequencing design [32] performing the Minimap2

overlapping algorithm [33] has processing elements (PE) in

broadcast topology. This benchmark is based on shared-memory

communication and all other benchmarks are dataflow designs.

• The CNN accelerators created by the PolySA [34] compiler are

in a grid topology.

• The HBM graph processing design [29] performs the page rank

algorithm. It features eight sets of processing units and one

central controller. This design also contains dependency cycles,

if viewed at the granularity of computing kernels.

• The HBM bucket sort design adapted from [35] which includes

8 parallel processing lanes and two fully-connected layers.

• The Gaussian elimination designs created by the AutoSA [36]

compiler are in triangle topologies.

5.3 Frequency Improvements
By varying the size of the benchmarks, in total we have tested the

implementation of 43 designs with different configurations. Among

them, 16 designs failed in routing or placement with the baseline

CAD flow, compared AutoBridge which succeeds in routing all of

them and achieves an average of 274 MHz. For the other 27 designs,

we improve the final frequency from 234 MHz to 311 MHz on

average. In general, we find that AutoBridge is effective for designs

that use up to about 75% of the available resources. We execute

our framework on an Intel Xeon CPU running at 2.2GHz. Both the

baseline designs and optimized ones are implemented using Vivado

with the highest optimization level. The final checkpoints of all

experiments are available in our open-sourced repository.

In some experiments, we may find that the optimized versions

have even slightly smaller resource consumption. Possible reasons

are that we adopt a different FIFO template and disable the hierarchy

rebuild step during RTL synthesis. Also, as the optimization leads to

very difference placement results compared to those of the original

version, we expect different optimization strategies will be adopted

by the physical design tools. The correctness of the code is verified

by cycle-accurate simulation.

Next, we present the detailed results of each benchmark.

Stencil Computation.
For the stencil computing design, the kernels are connected in a

chain format through FIFO channels. By adjusting the number of

kernels, we can vary the total size of the design. We test anywhere

from 1 kernels up to 8 kernels, and Figure 11 shows final frequency

of the eight design configurations on both U250 and U280 FPGAs.

In the original flow, many design configurations fail in routing due

to routing resource conflicts. Those that are routed successfully still

achieve relatively low frequencies. In comparison, with the help of

AutoBridge, all design configurations are routed successfully. On

average, we improve the timing from 86 MHz to 266 MHz on the

U280 FPGA, and from 69 MHz to 273 MHz on the U250 FPGA.

Starting from the 7-kernel design, we observe a frequency de-

crease on the U280 FPGA. This is because each kernel of the design

is very large and uses about half the resources of a slot; thus starting

from the 7-kernel design on the relatively small U280, two kernels

have to be squeezed into one slot which will cause more severe

local routing congestion. Based on this phenomenon, we recom-

mend that users avoid designing very large kernels and instead

split the functionality into multiple functions to allow the tool more

flexibility in floorplanning the design.

CNN Accelerator.
The CNN accelerator consists of identical PEs in a regular grid

topology. We adjust the size of the grid from a 2 × 13 array up to a

Figure 11: Results of the stencil computation designs.

16 × 13 array to test the robustness of AutoBridge. Figure 12 shows

the result on both U250 and U280 FPGAs.

Although the regular 2-dimensional grid structure is presumed

to be FPGA friendly, the actual implementation results from the

original toolflow is not satisfying. With the original toolflow, even

small size designs are bounded at around 220 MHz when targeting

U250. Designs of larger sizes will fail in placement (13 × 12) or

routing (13 × 10 and 13 × 14). Although the final frequency is high

when the design is small for the original toolflow targeting U280,

the timing quality is steadily dropping as the designs become larger.

In contrast, AutoBridge improves from 140 MHz to 316 MHz on

U250 on average, and from 214 MHz to 328 MHz on U280. Table 2

lists the resource consumption and cycle counts of the experiments

on U250. Statistics on U280 are similar and are omitted here.

Table 2: Post-placement results of the CNN designs on U250.
The design point of 13 × 12 failed placement and 13 × 10 and
13 × 14 failed routing with the original tool flow.

Size

LUT(%) FF(%) BRAM(%) DSP(%) Cycle

orig opt orig opt orig opt orig opt orig opt

13x2 17.82 17.90 14.11 14.25 21.69 21.67 8.57 8.57 53591 53601

13x4 23.52 23.59 18.98 19.04 25.74 25.73 17.03 17.03 68630 68640

13x6 29.26 29.24 23.86 23.80 29.80 29.78 25.50 25.50 86238 86248

13x8 34.98 34.90 28.72 28.56 33.85 33.84 33.96 33.96 103882 103892

13x10 40.71 40.48 33.58 33.25 37.91 37.89 42.42 42.42 121472 121491

13x12 - 46.18 - 38.06 - 41.95 - 50.89 139098 139108

13x14 52.10 51.92 43.28 42.93 46.02 46.00 59.35 59.35 156715 156725

13x16 57.82 57.61 48.13 47.70 50.07 50.06 67.81 67.81 174377 174396

Figure 12: Results of the CNN accelerator designs.

Gaussian elimination.
The PEs in this design form a triangle topology. We adjust the

size of the the triangle and test on both U250 and U280. Table 3

shows the results. On average, we improve the frequency from 245

MHz to 334 MHz on U250, and from 223 MHz to 335 MHz on U280.

Table 3: Results of Gaussian Elimination Designs on U250.

Size

LUT(%) FF(%) BRAM(%) DSP(%) Cycle

orig opt orig opt orig opt orig opt orig opt

12×12 18.58 18.69 13.05 13.14 13.24 13.21 2.79 2.79 758 781

16×16 26.62 26.68 17.36 17.30 13.24 13.21 4.99 4.99 1186 1209

20×20 38.55 38.28 23.46 23.38 13.24 13.21 7.84 7.84 1728 1738

24×24 54.05 53.59 32.16 32.06 13.24 13.21 11.34 11.34 2361 2375

Figure 13: Results of the Gaussian elimination designs.

Genome Sequencing.
The genome sequencing design contains eight parallel PEs that

communicate with the external memory through local buffers of

a BRAM interface. The design provides parameters to adjust the

computation accuracy of each PE and higher accuracy will result in

larger area. Thus, we test three design configurations where each PE

is of 1×, 1.5× and 2× the original size. For this non-dataflow design,

AutoBridge first performs floorplanning and creates a wrapper for

each PE to pipeline all I/O signals. Then we manually add pragmas

to the source code to specify the modified latency on shared mem-

ory blocks and re-run HLS to update the internals of each PE. On

average, we improve the frequency from 132 MHz to 248 MHz as in

Table 4. When the original size of the PE is small Vivado performs

well, but AutoBridge outperforms Vivado with larger PEs.

Table 4: Experiment result of genome sequencing on U250
Fmax (MHz) LUT % FF % BRAM % DSP % Cycle (K)

Orig, Size=1 265 25.43 16.12 17.21 4.38 11710

Opt, Size=1 267 25.48 16.29 17.21 4.38 11830

Orig, Size=1.5 - - - - - 12350

Opt, Size=1.5 272 31.73 19.39 15.14 6.46 12470

Orig, Size=2 131 38.89 23.11 17.21 8.54 12990

Opt, Size=2 206 38.91 23.31 17.21 8.54 13110

HBM Bucket Sort.
The bucket sort design has two complex fully-connected layers.

Each fully-connected layer involves a 8×8 crossbar of FIFO channels,

with each FIFO channel being 256-bit wide. AutoBridge pipelines

the FIFO channels to alleviate the routing congestion. Table 5 shows

the frequency gain, where we improve from 255 MHz to 320 MHz

on U280. As the design requires 16 external memory ports and U250

only has 4 available, the test for this design is limited to U280 only.

Because the original source code have enforced a BRAM-based

implementation for some small FIFOs, which results in wasted

BRAM resources, the results of AutoBridge has slightly lower BRAM

and flip-flop consumption than the original implementation. In

comparison, we use a different FIFO template that chooses the

implementation style (BRAM-based or shift-register-based) based

on the area of the FIFO. Cycle accurate simulation has proven the

correct functionality of our optimized implementation.

Table 5: Results of the Bucket Sort Design on U280.
Fmax (MHz) LUT % FF % BRAM % DSP % Cycle

Original 255 28.44 19.11 16.47 0.04 78629

Optimized 320 29.39 16.66 13.69 0.04 78632

5.4 Loop-Level Latency Balancing
We employ the HBM Page-Rank design based on the TAPA com-

piler to demonstrate our loop-level analysis technique presented

in Section 4.3. This design incorporates eight sets of processing

units, each interfacing with two HBM ports. There are also cen-

tralized control units that exchange control information with five

HBM ports. As can be seen from the block diagram of this design

in Figure 10, if we treat each function as a vertex in the dataflow

graph, there will be many dependency loops which results in no

valid floorplan solution. However, all loop structures are similar to

Figure 8. Therefore, by analyzing at loop level of each function we

are able to determine that it is safe to add additional pipelining to

the edges in those cycles. This enables us to find feasible floorplan

solutions. Table 6 shows the experiment results and we improve

final frequency from 136 MHz to 210 MHz on U280.

Table 6: Results of the Graph Processing Design on U280.
Fmax (MHz) LUT % FF % BRAM % DSP % Cycle

Original 136 38.56 26.97 26.74 14.43 120458

Optimized 210 39.49 27.53 30.08 14.43 120495

5.5 Control Experiments
First, we test whether the frequency gain comes from the combi-

nation of pipelining and HLS-floorplanning, or simply pipelining

alone. To do this, we set a control group where we perform floor-

planning and pipelining as usual, but we do not pass the floorplan

constraints to the physical design tools. The blue curve with tri-

angle markers in Figure 14 shows the results. As can be seen, the

control group has lower frequency than the original design for

small sizes and has limited improvements over the original designs

for large sizes. In all experiments the group with both pipelining

and floorplan constraints (green curve with crossing markers) has

the highest frequency. This experiment proves that the frequency

gain is not simply a result of more pipelining.

Meanwhile, if we only do floorplanning without pipelining, obvi-

ously the frequency will be much degraded, as visualized by Fig. 4.

Second, we test the effectiveness of setting a slot boundary based

on the DDR controllers. We run a set of experiments where we only

divide the FPGA into four slots based on the die boundaries, minus

the division in the middle column. The yellow curve with diamond

markers in Figure 14 shows the results. As can be seen, it achieves

lower frequency compared to our default eight-slot scheme.

0

100

200

300

400

13x2 13x4 13x6 13x8 13x10 13x12 13x14 13x16

Fr
eq

 (M
H

z)

Original Pipe. w/o Constraints AutoBridge No Horizontal Parition

Figure 14: Control experiments with the CNN accelerators.

5.6 Scalability
To show that the tool works well on designs with large numbers

of small functions, we utilize the CNN experiments to test the

scalability of our algorithms, as the CNN designs have the most

vertices (HLS functions) and edges. Table 7 lists The compile time

overhead for the floorplanning and the latency balancing when

using Gurobi as the ILP solver
5
. For the largest CNN accelerator that

has 493 modules and 925 FIFO connections, the floorplan step only

takes around 20 seconds and the latency balancing step takes 0.03s.

Usually FPGA designs are not likely to have this many modules

and connections [37] [38], and our method is fast enough.

Table 7: Computing time for the CNN test cases targeting the
U250 FPGA. Div-1 and Div-2 denote the first and the second
vertical decomposition, and Div-3 denotes the first horizon-
tal decomposition. Re-balance denotes the delay balancing.

Size # V # E Div-1 Div-2 Div-3 Re-balance

13 × 2 87 141 0.02 s 0.02 s 0.01 s <0.01 s

13 × 4 145 253 0.05 s 0.02 s 0.20 s <0.01 s

13 × 6 203 365 0.07 s 1.02 s 0.56 s <0.01 s

13 × 8 261 477 0.07 s 1.07 s 3.58 s 0.01 s

13 × 10 319 589 3.17 s 1.61 s 2.63 s 0.01 s

13 × 12 377 701 3.42 s 1.43 s 9.84 s 0.01 s

13 × 14 435 813 3.54 s 1.55 s 6.18 s 0.03 s

13 × 16 493 925 4.95 s 2.02 s 12.56 s 0.03 s

6 RELATED WORK
Layout-Aware HLS Optimization. Previous works have studied
how to couple physical design process with HLS in a fine-grained
manner. Zheng et al. [1] propose to iteratively run placement and

routing for fine-grained calibration of the delay estimation of wires.

The long running time of placement and routing prohibits their

methods from benefiting large-scale designs, and their experiments

are all based on small examples (1000s of registers and 10s of

DSPs in their experiments). Cong et. al. [6] presented placement-

driven scheduling and binding for multi-cycle communications in

an island-style reconfigurable architecture. Xu et. al. [7] proposed
to predict a register-level floorplan to facilitate the binding pro-

cess. Some commercial HLS tools [8, 9] have utilized the results

of logic synthesis to calibrate HLS delay estimation, but they do

not consider the interconnect delays. In contrast, we focus on a

coarse-grained approach that only pipelines the channels that span

long distances and guides the detailed placement.

Other works have studied methods to predict delay estima-

tion at the behaviour level. Guo et al. [3] proposed to calibrate

the estimated delay for operators with large broadcast factors by

pre-characterizing benchmarks with different broadcast factors.

Tan et al. [2] showed that the delay prediction of logic operations

(e.g., AND, OR, NOT, etc) by HLS tools is too conservative. Therefore

they consider the technology mapping for logic operations. These

works mainly target local operators and have limited effects for

global interconnects. Zhao et al. [39] used machine learning to

predict how the manual pragmas affect routing congestion.

In addition, Cong et al. [40] presented tools to allow users to

insert additional buffers to the designated datapath. Chen et al. [41]
proposed to add additional registers to the pipeline datapath dur-

ing HLS synthesis based on the profiling results on the CHStone

benchmark. [42] proposes to generate floorplanning constraints

only for systolic array designs, and their method does not consider

the interaction with peripheral IPs such as DDR controllers. In

comparison, our work is fully-automated for general designs and

our register insertion is accurate due to HLS-floorplan co-design.

5
Meanwhile, we observed that many open-sourced ILP solvers are much slower.

Optimization for Multi-Die FPGAs. To adapt to multi-die

FPGAs, previous works have studied how to partition the entire

design or memories among different dies [43, 44, 45, 46, 47, 48,

49]. These methods are all based on RTL inputs, thus the partition

method must observe the cycle-accurate specification. [46, 47] try

to modify the cost function of placement to reduce die-crossing.

This will lead to designs confined in fewer dies with higher level of

local congestion. Zha et al. [50] propose methods to virtualize the

FPGA and let different applications execute at different partitions.

Floorplanning Algorithms. Floorplanning has been extensively

studied [51, 52, 53, 54]. Conventionally, floorplanning consists of 1)

feasible topology generation and 2) determining the aspect ratios

for goals such as minimal total wire length. , the floorplanning step

works on RTL input. In contrast, we propose to perform a coarse-

grained floorplanning during the HLS step to help gain layout

information for the HLS tool. Similar to [55, 56, 57], our algorithm

adopts the idea of the partitioning-based approach. As our problem

size is relatively small, we use ILP for each partitioning.

Throughput Analysis of Dataflow Designs. Various dataflow
models have been proposed in other literature, such as the Kahn

Process Network (KPN) [58], Synchronous Data Flow (SDF) [20],

among many others. The more simplified the model is, the more

accurately we can analyze its throughput. In the SDF model, it

is restricted that the number of data produced or consumed by a

process for each firing is fixed and known. Therefore, it is possi-

ble to analytically compute the influence of additional latency on

throughput [59]. The latency insensitive theory (LIT) [60, 61, 62, 63,

64] also enforces similar restrictions as SDF. [65] proposes methods

to insert delays when composing IP blocks of different latency. [66]

studies the buffer placement problem in dataflow circuits [67, 68].

In our situation, each function will be compiled into an FSM

that can be arbitrarily complex, thus it is difficult to quantitatively

analyze the effect of the added latency on the total execution cycles.

Therefore, we adopt a conservative approach to balance the added

latency on all reconvergent paths.

7 CONCLUSIONS
We propose to couple coarse-grained floorplanning with pipelining

to improves the frequency of the HLS designs on multi-die FPGAs.

Our methodology has two key advantages: (1) it helps HLS identify

and pipeline the long wires, especially those that will cross die

boundaries; (2) it further reduces local routing congestion since

early floorplanning can distribute the logic across multiple dies.

According our evaluation on 43 realistic benchmarks, our frame-

work effectively improves the average frequency from 147 MHz to

297MHz without compromising the throughput of the design.

ACKNOWLEDGMENTS
We would like to thank Luciano Lavagno, Gai Liu, Zixuan Jiang, Yifan Yuan

and the anonymous reviewers for their valuable feedback. This work is

partially supported by the CRISP Program, members from the CDSC Indus-

trial Partnership Program, the Intel/NSF CAPA program, the NSF NeuroNex

Award No. DBI-1707408 and the NIH Award No. U01MH117079. The authors

acknowledge the valuable support of the Xilinx Adaptive Compute Clusters

(XACC) Program. We thank Gurobi and GNU Parallel for their support to

academia.

REFERENCES
[1] Hongbin Zheng, Swathi T Gurumani, Kyle Rupnow, and Deming Chen.

“Fast and effective placement and routing directed high-level synthesis for

FPGAs”. Proceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays. 2014, pp. 1–10.

[2] Mingxing Tan, Steve Dai, Udit Gupta, and Zhiru Zhang. “Mapping-aware con-

strained scheduling for LUT-based FPGAs”. Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 2015, pp. 190–199.

[3] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru

Zhang, and Jason Cong. “Analysis and Optimization of the Implicit Broad-

casts in FPGA HLS to Improve Maximum Frequency”. 57th ACM/IEEE Design
Automation Conference. 2020. doi: 10.1109/DAC18072.2020.9218718.

[4] Charles E Leiserson and James B Saxe. “Retiming synchronous circuitry”.

Algorithmica 6.1-6 (1991), pp. 5–35.
[5] Xilinx. Xilinx UltraScale Plus Architecture. 2020. url: https://www.xilinx.com/

products/silicon-devices/fpga/virtex-ultrascale-plus.html.

[6] Jason Cong, Yiping Fan, Guoling Han, Xun Yang, and Zhiru Zhang. “Architec-

ture and synthesis for on-chip multicycle communication”. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 23.4 (2004), pp. 550–
564.

[7] Min Xu and Fadi J Kurdahi. “Layout-driven RTL binding techniques for high-

level synthesis using accurate estimators”. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES) 2.4 (1997), pp. 312–343.

[8] Cadence. 2020. url: https://www.cadence.com/.

[9] Synopsys. 2020. url: https://www.synopsys.com/.

[10] Charles E Leiserson, FlavioMRose, and James B Saxe. “Optimizing synchronous

circuitry by retiming (preliminary version)”. Third Caltech conference on very
large scale integration. Springer. 1983, pp. 87–116.

[11] Xilinx. Xilinx Vitis Unified Platform. 2020. url: https : / /www.xilinx . com/

products/design-tools/vitis/vitis-platform.html.

[12] Young-kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, and Jason Cong. “When

HLS Meets FPGA HBM: Benchmarking and Bandwidth Optimization”. arXiv
preprint arXiv:2010.06075 (2020).

[13] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong.

“HBM Connect: High-Performance HLS Interconnect for FPGA HBM”. Proceed-
ings of the 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 2021.

[14] Xilinx-HBM. 2020. url: https://www.xilinx.com/products/silicon-devices/

fpga/virtex-ultrascale-plus-hbm.html.

[15] Intel. Intel Stratix 10 FPGA. 2020. url: https://www.intel.com/content/dam/

www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf.

[16] Melvin A Breuer. “A class of min-cut placement algorithms”. Proceedings of the
14th Design Automation Conference. 1977, pp. 284–290.

[17] Alfred E Dunlop, Brian W Kernighan, et al. “A procedure for placement of

standard cell VLSI circuits”. IEEE Transactions on Computer-Aided Design 4.1

(1985), pp. 92–98.

[18] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan. “Fast timing-driven

partitioning-based placement for island style FPGAs”. Proceedings of the 40th
annual design automation conference. 2003, pp. 598–603.

[19] Wuxu Peng and S Puroshothaman. “Data flow analysis of communicating finite

state machines”. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13.3 (1991), pp. 399–442.

[20] Edward A Lee and David G Messerschmitt. “Synchronous data flow”. Proceed-
ings of the IEEE 75.9 (1987), pp. 1235–1245.

[21] Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli.

“Theory of latency-insensitive design”. IEEE Transactions on computer-aided
design of integrated circuits and systems 20.9 (2001), pp. 1059–1076.

[22] Keshab K Parhi. VLSI digital signal processing systems: design and implementa-
tion. John Wiley & Sons, 2007.

[23] Minimum-Cut. 2020. url: https://en.wikipedia.org/wiki/Minimum_cut.

[24] Jason Cong and Zhiru Zhang. “An efficient and versatile scheduling algorithm

based on SDC formulation”. 2006 43rd ACM/IEEE Design Automation Conference.
IEEE. 2006, pp. 433–438.

[25] Xilinx. Vivado High-Level Synthesis. 2020. url: https : / /www.xilinx . com/

products/design-tools/vivado/integration/esl-design.html.

[26] H.G. Santos and T.A.M. Toffolo. PythonMIP (Mixed-Integer Linear Programming)
Tools. 2020. url: https://pypi.org/project/mip/.

[27] Gurobi. 2020. url: https://www.gurobi.com/.

[28] Shinya Takamaeda-Yamazaki. “Pyverilog: A python-based hardware design

processing toolkit for verilog hdl”. International Symposium on Applied Recon-
figurable Computing. Springer. 2015, pp. 451–460.

[29] Yuze Chi, Licheng Guo, Young-kyu Choi, Jie Wang, and Jason Cong. “Ex-

tending High-Level Synthesis for Task-Parallel Programs”. arXiv preprint
arXiv:2009.11389 (2020).

[30] Xilinx.Vivado Design Suite. 2020. url: https://www.xilinx.com/products/design-

tools/vivado.html.

[31] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. “SODA: stencil with op-

timized dataflow architecture”. 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE. 2018, pp. 1–8.

[32] LichengGuo, Jason Lau, Zhenyuan Ruan, PengWei, and Jason Cong. “Hardware

acceleration of long read pairwise overlapping in genome sequencing: A race

between FPGA and GPU”. 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE. 2019, pp. 127–
135.

[33] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences”. Bioinfor-
matics 34.18 (2018), pp. 3094–3100.

[34] Jason Cong and Jie Wang. “PolySA: polyhedral-based systolic array auto-

compilation”. 2018 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE. 2018, pp. 1–8.

[35] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank Chang,

and Jason Cong. “Bonsai: High-Performance Adaptive Merge Tree Sorting”.

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture.
IEEE. 2020, pp. 282–294.

[36] Jie Wang, Licheng Guo, and Jason Cong. “AutoSA: A Polyhedral Compiler

for High-Performance Systolic Arrays on FPGA”. Proceedings of the 2021
ACM/SIGDA international symposium on Field-programmable gate arrays. 2021.

[37] Xilinx-Vitis-Library. 2020. url: https://github.com/Xilinx/Vitis_Libraries.

[38] Intel-OpenCL-Examples. 2020. url: https://www.intel.com/content/www/

us / en / programmable / products / design - software / embedded - software -

developers/opencl/support.html.

[39] Jieru Zhao, Tingyuan Liang, Sharad Sinha, and Wei Zhang. “Machine learning

based routing congestion prediction in FPGA high-level synthesis”. 2019 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2019,
pp. 1130–1135.

[40] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. “Latte: Locality aware

transformation for high-level synthesis”. 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines. IEEE. 2018,
pp. 125–128.

[41] Yu Ting Chen, Jin Hee Kim, Kexin Li, Graham Hoyes, and Jason H Ander-

son. “High-Level Synthesis Techniques to Generate Deeply Pipelined Circuits

for FPGAs with Registered Routing”. 2019 International Conference on Field-
Programmable Technology (ICFPT). IEEE. 2019, pp. 375–378.

[42] Jiaxi Zhang, Wentai Zhang, Guojie Luo, Xuechao Wei, Yun Liang, and Jason

Cong. “Frequency improvement of systolic array-based CNNs on FPGAs”. 2019
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2019,
pp. 1–4.

[43] Kalapi Roy and Carl Sechen. “A timing driven N-way chip and multi-chip

partitioner”. Proceedings of 1993 International Conference on Computer Aided
Design (ICCAD). IEEE. 1993, pp. 240–247.

[44] Raghava VCherabuddi andMagdyABayoumi. “Automated system partitioning

for synthesis of multi-chip modules”. Proceedings of 4th Great Lakes Symposium
on VLSI. IEEE. 1994, pp. 15–20.

[45] Fubing Mao, Wei Zhang, Bo Feng, Bingsheng He, and Yuchun Ma. “Modular

placement for interposer based multi-FPGA systems”. 2016 International Great
Lakes Symposium on VLSI (GLSVLSI). IEEE. 2016, pp. 93–98.

[46] Andre Hahn Pereira and Vaughn Betz. “Cad and routing architecture for

interposer-based multi-FPGA systems”. Proceedings of the 2014 ACM/SIGDA
international symposium on Field-programmable gate arrays. 2014, pp. 75–84.

[47] Ehsan Nasiri, Javeed Shaikh, Andre Hahn Pereira, and Vaughn Betz. “Multiple

dice working as one: CAD flows and routing architectures for silicon interposer

FPGAs”. IEEE Transactions on Very Large Scale Integration Systems 24.5 (2015),
pp. 1821–1834.

[48] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. “Multilevel

hypergraph partitioning: applications in VLSI domain”. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 7.1 (1999), pp. 69–79.

[49] Nils Voss, Pablo Quintana, Oskar Mencer, Wayne Luk, and Georgi Gaydadjiev.

“Memory Mapping for Multi-die FPGAs”. 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE.
2019, pp. 78–86.

[50] Yue Zha and Jing Li. “Virtualizing FPGAs in the Cloud”. Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 2020, pp. 845–858.

[51] Charles J Alpert, Dinesh P Mehta, and Sachin S Sapatnekar. Handbook of
algorithms for physical design automation. CRC press, 2008.

[52] Lei Cheng and Martin DF Wong. “Floorplan design for multimillion gate

FPGAs”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25.12 (2006), pp. 2795–2805.

[53] Pritha Banerjee, Susmita Sur-Kolay, and Arijit Bishnu. “Fast unified floorplan

topology generation and sizing on heterogeneous FPGAs”. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 28.5 (2009), pp. 651–
661.

[54] Kevin E Murray and Vaughn Betz. “HETRIS: Adaptive floorplanning for het-

erogeneous FPGAs”. 2015 International Conference on Field Programmable Tech-
nology (FPT). IEEE. 2015, pp. 88–95.

[55] Ulrich Lauther. “A min-cut placement algorithm for general cell assemblies

based on a graph representation”. Papers on Twenty-five years of electronic
design automation. 1988, pp. 182–191.

[56] David P La Potin and Stephen W Director. “Mason: A global floorplanning

approach for VLSI design”. IEEE transactions on computer-aided design of inte-
grated circuits and systems 5.4 (1986), pp. 477–489.

[57] H Modarres and A Kelapure. “AN AUTOMATIC FLOORPLANNER FOR UP

TO 100,000 GATES”. VLSI Systems Design 8.13 (1987), p. 38.

[58] KAHN Gilles. “The semantics of a simple language for parallel programming”.

Information processing 74 (1974), pp. 471–475.

[59] Amir Hossein Ghamarian, Marc CWGeilen, Sander Stuijk, Twan Basten, Bart D

Theelen, Mohammad Reza Mousavi, Arno JM Moonen, and Marco JG Bekooij.

“Throughput analysis of synchronous data flow graphs”. Sixth International
Conference on Application of Concurrency to System Design (ACSD’06). IEEE.
2006, pp. 25–36.

[60] Luca P Carloni and Alberto L Sangiovanni-Vincentelli. “Performance analysis

and optimization of latency insensitive systems”. Proceedings of the 37th Annual
Design Automation Conference. 2000, pp. 361–367.

[61] Ruibing Lu and Cheng-Kok Koh. “Performance optimization of latency in-

sensitive systems through buffer queue sizing of communication channels”.

ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.
03CH37486). IEEE. 2003, pp. 227–231.

[62] Ruibing Lu and Cheng-Kok Koh. “Performance analysis of latency-insensitive

systems”. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 25.3 (2006), pp. 469–483.

[63] Rebecca L Collins and Luca P Carloni. “Topology-based optimization of maxi-

mal sustainable throughput in a latency-insensitive system”. Proceedings of the
44th annual Design Automation Conference. 2007, pp. 410–415.

[64] Mustafa Abbas and Vaughn Betz. “Latency insensitive design styles for FPGAs”.

2018 28th International Conference on Field Programmable Logic and Applications
(FPL). IEEE. 2018, pp. 360–3607.

[65] Girish Venkataramani and Yongfeng Gu. “System-level retiming and pipelin-

ing”. 2014 IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines. IEEE. 2014, pp. 80–87.

[66] Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi

Cortadella. “Buffer placement and sizing for high-performance dataflow cir-

cuits”. The 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. 2020, pp. 186–196.

[67] Lana Josipović, Radhika Ghosal, and Paolo Ienne. “Dynamically scheduled high-

level synthesis”. Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 2018, pp. 127–136.

[68] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Ienne, and John

Wickerson. “Combining Dynamic & Static Scheduling in High-level Synthesis”.

The 2020 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 2020, pp. 288–298.

